JP2013091811A - Multilayer film laminate using aluminum or aluminum alloy as substrate and lamination method therefor - Google Patents

Multilayer film laminate using aluminum or aluminum alloy as substrate and lamination method therefor Download PDF

Info

Publication number
JP2013091811A
JP2013091811A JP2010037580A JP2010037580A JP2013091811A JP 2013091811 A JP2013091811 A JP 2013091811A JP 2010037580 A JP2010037580 A JP 2010037580A JP 2010037580 A JP2010037580 A JP 2010037580A JP 2013091811 A JP2013091811 A JP 2013091811A
Authority
JP
Japan
Prior art keywords
layer
carbon film
amorphous carbon
film
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010037580A
Other languages
Japanese (ja)
Inventor
Koichi Inaba
晃一 稲葉
Kunihiko Shibusawa
邦彦 渋澤
Takeshi Sato
剛 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku Kogyo Co Ltd
Original Assignee
Taiyo Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku Kogyo Co Ltd filed Critical Taiyo Kagaku Kogyo Co Ltd
Priority to JP2010037580A priority Critical patent/JP2013091811A/en
Priority to TW100106068A priority patent/TW201142083A/en
Priority to PCT/JP2011/053902 priority patent/WO2011105392A1/en
Publication of JP2013091811A publication Critical patent/JP2013091811A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably forming a hard amorphous carbon film excellent in abrasion resistance with high adhesion strength on the top of an aluminum or aluminum alloy base that is soft and prone to temperature deformation, and aluminum or an aluminum alloy on the top of which the amorphous carbon film is formed so as to improve the abrasion resistance and sliding property thereof.SOLUTION: A multilayer film structure with an adequate gradient of hardness can be obtained by: forming a zinc-substituted film on a surface of a base that is made of aluminum or an aluminum alloy; forming a nickel-plating layer by an electroless plating method using the zinc-substituted film as a primer layer; subsequently forming a hard chromium-plating layer; and additionally forming, as the uppermost layer, the amorphous carbon film or a silicon-containing amorphous carbon film preferably at a temperature of 350°C or lower and preferably by a low-temperature plasma CVD method.

Description

本発明は、アルミニウム又はアルミニウム合金を基板とする多層膜積体及びその積層方法に関し、特に、最上層に非晶質炭素膜又はシリコンを含む非晶質炭素膜を備えた多層膜積層体及びその積層方法に関する。   The present invention relates to a multilayer film stack using aluminum or an aluminum alloy as a substrate and a method for laminating the multilayer film laminate, and in particular, a multilayer film laminate including an amorphous carbon film or an amorphous carbon film containing silicon as the uppermost layer, and the multilayer film laminate. The present invention relates to a lamination method.

アルミニウム、アルミニウム合金を切削、その他成形した機械部品、冶工具の表面処理として表面に陽極酸化皮膜(アルマイト、硬質アルマイト)を処理したものや、陽極酸化皮膜処理を行った上、同プロセス上表面に生じる微細な穴に、フッ素樹脂などを含浸させた複合処理などが、前述基材加工品の表面処理として広く普及しているが、その耐磨耗性や耐軟質金属の凝着防止性、静電気対応の導電性など、改善すべき問題を抱えている。   Surface treated with anodized film (anodized or hard anodized) as a surface treatment for machined parts or other machined parts of aluminum, aluminum alloy, or other molded parts, or treated with anodized film on the surface in the same process Composite treatments, such as impregnating fluororesins into the fine holes that are generated, are widely used as surface treatments for the aforementioned processed base materials, but their wear resistance, soft metal adhesion prevention, static electricity We have problems that need to be improved, such as the corresponding conductivity.

一方近年、非晶質炭素膜又はシリコン等を含む非晶質炭素膜は、硬く、耐摩耗性に優れ、摩擦係数が小さく、軟質金属の凝着防止性も有しており、また、耐酸・アルカリ性があるため、中性洗剤でなくても清掃に供することができるなど、前述の基材にそれらをコーティングすることで、基材の表面に高機能を付与することができ、陽極酸化処理等に代わる、表面処理として、広い産業分野で利用され始めている。   On the other hand, in recent years, an amorphous carbon film or an amorphous carbon film containing silicon or the like is hard, excellent in wear resistance, has a small coefficient of friction, and has an anti-adhesion property for soft metals. Because it is alkaline, it can be used for cleaning even if it is not a neutral detergent. By coating them on the above-mentioned base material, it is possible to impart high functionality to the surface of the base material, such as anodizing treatment, etc. Instead of surface treatment, it has begun to be used in a wide range of industrial fields.

例えば、アルミニウム合金基材の表面に非晶質炭素膜を形成する方法として、基材を溶体化処理し、その後時効処理と非晶質炭素膜のコーティング処理とを同時に行うことが提案されている(特許文献1)。
しかしながら、基材であるアルミニウム又はアルミニウム合金は、その基材自体が柔らかく、その表面に硬い非晶質炭素膜を薄く形成しても、両者の硬さの差が大きすぎるために、密着性が劣り、また、荷重がかかると硬い膜の下にある基材自体が変形し、その変形に追随できない非晶質炭素膜は簡単に破壊されてしまうという問題がある。
For example, as a method for forming an amorphous carbon film on the surface of an aluminum alloy substrate, it has been proposed to perform a solution treatment on the substrate and then simultaneously perform an aging treatment and a coating treatment on the amorphous carbon film. (Patent Document 1).
However, aluminum or aluminum alloy, which is a base material, is soft because the base material itself is soft, and even if a hard amorphous carbon film is thinly formed on the surface, the difference in hardness between the two is too large, so that the adhesion is low. Inferior, when a load is applied, the base material itself under the hard film is deformed, and the amorphous carbon film that cannot follow the deformation is easily broken.

こうした問題を解決するために、アルミニウム又はアルミニウム合金の表面に、中間層として、無電解Ni−Pめっき層を成膜し、或いは、イオン窒化層からなる拡散層及び無電解Ni−Pめっき層を成膜し、その後非晶質炭素膜の成膜時に、基材の時効処理及び無電解メッキ膜の熱処理を同時に行うことが提案されている(特許文献2)。   In order to solve these problems, an electroless Ni—P plating layer is formed as an intermediate layer on the surface of aluminum or an aluminum alloy, or a diffusion layer and an electroless Ni—P plating layer made of an ion nitride layer are formed. It has been proposed that an aging treatment of a base material and a heat treatment of an electroless plating film are simultaneously performed at the time of film formation and then an amorphous carbon film (Patent Document 2).

また、基材であるアルミニウム又はアルミニウム合金上に、中間層として、蒸着やスパッタなどの真空プロセスで、クロム、タングステン、チタン及びそれらの合金あるいはそれらの炭化物からなる薄膜を形成し、その上に非晶質炭素膜を形成する方法も行われている(特許文献3)。   In addition, a thin film made of chromium, tungsten, titanium and their alloys or their carbides is formed as an intermediate layer on a base material of aluminum or an aluminum alloy by a vacuum process such as vapor deposition or sputtering. A method of forming a crystalline carbon film has also been performed (Patent Document 3).

特開2002−47556号公報JP 2002-47556 A 特開2004−346353号公報JP 2004-346353 A 時開2003−293136号公報No. 2003-293136

特許文献2の方法では、無電解Ni−Pめっき層の熱処理により、該めっき層が結晶化して硬さが向上するために、硬さ分布が段階的に傾斜化されて耐荷重性が向上し、密着性も向上するとしている。
しかしながら、該Ni−Pめっき層の硬さと非晶質炭素膜の硬さの差はまだ大きく、耐荷重性が充分とはいえないばかりでなく、密着性のも充分でないという問題がある。
In the method of Patent Document 2, since the plating layer is crystallized by heat treatment of the electroless Ni-P plating layer and the hardness is improved, the hardness distribution is graded stepwise and the load resistance is improved. The adhesion is also improved.
However, the difference between the hardness of the Ni—P plating layer and the hardness of the amorphous carbon film is still large, and there is a problem that not only the load resistance is sufficient but also the adhesion is not sufficient.

また、特許文献3の方法は、原料となる固形のターゲットが高価であること、CVD装置で炭素膜を合成する場合、蒸着やスパッタなどの機構をCVD装置に追加することが必要であること、または、別の工程としてスパッタや蒸着装置が必要になり、加えて、蒸着やスパッタ薄膜を所望の膜厚まで析出させるための析出時間が長く、高価な炭素膜成膜装置での炭素膜形成の稼働率を落とすことになっている。また、中間層を形成する際に、スパッタ、蒸着等の熱反応で基材密着を図る方法では、方式によっては析出時間の長時間化に伴い、温度変形しやすいアルミニウム又はアルミニウム合金系基材を昇温させる等の不具合も生じる。   Moreover, the method of patent document 3 requires that a solid target as a raw material is expensive, and when a carbon film is synthesized by a CVD apparatus, it is necessary to add a mechanism such as vapor deposition or sputtering to the CVD apparatus. Alternatively, sputtering or vapor deposition equipment is required as a separate process, and in addition, deposition time for depositing vapor deposition or sputtered thin film to a desired film thickness is long, and carbon film formation with an expensive carbon film deposition equipment The occupancy rate is to be reduced. In addition, when forming the intermediate layer, in the method of adhering the substrate by a thermal reaction such as sputtering or vapor deposition, depending on the method, an aluminum or aluminum alloy-based substrate that is easily deformed due to a longer deposition time is used. Problems such as raising the temperature also occur.

また、アルミニウム、またはアルミニウム合金の熱線膨張係数23×10−6/℃と非晶質炭素膜の熱線膨張係数2×10−6/℃前後との間に大きな開きがあり、アルミニウム、またはアルミニウム合金上に非晶質炭素膜を成膜時、又は成膜品の使用上の温度変化を含めて、その密着性を確保するため、の熱線膨張率の大きな違いを考慮し、基材と非晶質炭素膜間の密着性を向上させる必要がある。
さらに、非晶質炭素膜は、成膜中に発生する異常放電等により、膜中に多数のピンホールを形成してしまうことが多く、アルミニウム、またはアルミニウム合金基材上に非晶質炭素膜成膜を成膜したものを使用中、酸やアルカリ系の洗浄液にて洗浄を行う場合や、屋外にて使用する場合、該ピンホールを通じてアルミ、アルミ合金を腐食させる、または腐食を誘発させる物質が進入し、基材の耐酸、アルカリ性、耐侯性保護膜としては欠陥が多く機能上不十分であるという問題もある。
Further, there is a large gap between the thermal linear expansion coefficient 23 × 10 −6 / ° C. of aluminum or aluminum alloy and the thermal linear expansion coefficient 2 × 10 −6 / ° C. of the amorphous carbon film, and the aluminum or aluminum alloy In order to ensure the adhesion, including the temperature change during the formation of the amorphous carbon film or the use of the film-formed product, considering the large difference in the coefficient of thermal expansion of the base material and the amorphous carbon film It is necessary to improve the adhesion between the carbonaceous films.
Furthermore, the amorphous carbon film often forms a large number of pinholes in the film due to abnormal discharge generated during the film formation, and the amorphous carbon film is formed on the aluminum or aluminum alloy substrate. A substance that corrodes or induces corrosion of aluminum or aluminum alloy through the pinhole when cleaning with an acid or alkaline cleaning solution during use, or when used outdoors. Enters, and there is also a problem that the substrate has many defects and is insufficient in function as an acid, alkali, and weather resistant protective film.

本発明は、こうした従来技術における課題を解決するものであって、柔らかく、温度変形しやすいアルミニウム又はアルミニウム合金系基材の最上部に、硬く、耐摩耗性に優れた非晶質炭素膜を、安定して、密着良く形成する方法、及び最上部に非晶質炭素膜を設けて耐磨耗性や摺動性を向上せしめたアルミニウム又はアルミニウム合金を提供することを目的とするものである。   The present invention solves such problems in the prior art, and a hard, amorphous carbon film having excellent wear resistance on the top of an aluminum or aluminum alloy-based substrate that is soft and easily deformed by temperature. An object of the present invention is to provide a method of forming a stable and good adhesion, and aluminum or an aluminum alloy in which an amorphous carbon film is provided on the top to improve wear resistance and slidability.

本発明者が、上記目的を達成すべく検討したところ、アルミニウム又はアルミニウム合金と置換反応にて亜鉛層を析出させたアルミニウム又はアルミニウム合金からなる基材に、無電解ニッケルめっきを行い、さらに、当該無電解ニッケルめっき層に硬質クロムめっきを行い、更にその上に、非晶質炭素膜又はシリコンを含む非晶質炭素膜を形成することにより、適切な硬度の傾斜構造を有し、しかも同時に、熱線膨張係数の傾斜構造に於いても、基材のアルミニウム又はアルミニウム合金の23×10−6/℃から、亜鉛の26.3×10−6/℃を経て、Niの12.8×10−6/℃、及びクロムの6.8×10−6/℃と続き、最後に非晶質炭素膜層の2×10−6/℃、と熱線膨張係数においても傾斜構造を形成可能で、基材と各層間の密着性の高いアルミニウム又はアルミニウム合金の多層膜構造体を得ることができるという知見を得た。 When the present inventor has studied to achieve the above object, electroless nickel plating is performed on a base material made of aluminum or an aluminum alloy in which a zinc layer is deposited by substitution reaction with aluminum or an aluminum alloy. By performing hard chrome plating on the electroless nickel plating layer, and further forming an amorphous carbon film or an amorphous carbon film containing silicon on the electroless nickel plating layer, it has a gradient structure with an appropriate hardness, and at the same time, also in the graded structure of the coefficient of linear thermal expansion, from 23 × 10 -6 / ℃ of aluminum or aluminum alloy base material, via a 26.3 × 10 -6 / ℃ zinc, 12.8 Ni × 10 - 6 / ° C. and 6.8 × 10 −6 / ° C. of chromium and finally 2 × 10 −6 / ° C. of the amorphous carbon film layer, and a thermal linear expansion coefficient can form a gradient structure. Material It was obtained a finding that it is possible to obtain a multi-layer film structure of high adhesion of aluminum or aluminum alloy between the layers.

本発明は、これらの知見に基づいて完成されたものであり、以下の発明を提供するものである。
[1] アルミニウム又はアルミニウム合金からなる基材上に、亜鉛置換層、無電解ニッケルめっき層、硬質クロムめっき層、及び非晶質炭素膜又はシリコン含有非晶質炭素膜がこの順に、又はさらに前記硬質クロムめっき層上に中間接着層を介してこの順に形成されていることを特徴とする多層膜構造体。
[2] 硬度の傾斜構造を有していることを特徴とする、上記[1]の多層膜構造体。
[3] アルミニウム又はアルミニウム合金からなる基材表面に亜鉛置換層を形成し、該亜鉛置換層をプライマー層として無電解めっき法によりニッケル層を形成し、次いで、めっき法により硬質クロム層を形成し、この上に又は中間接着層を介して、350℃以下の条件下で非晶質炭素膜又はシリコン含有非晶質炭素膜を形成することを特徴とするアルミニウム又はアルミニウム合金からなる基板への多層膜積層方法。
[4] 前記非晶質炭素膜又はシリコン含有非晶質炭素膜を、プラズマCVD法で形成することを特徴とする、上記[3]のアルミニウム又はアルミニウム合金からなる基板への多層膜積層方法。
[5] 前記プラズマCVD法が、DCパルスプラズマCVD法であることを特徴とする、上記[4]の多層膜積層方法。
The present invention has been completed based on these findings, and provides the following inventions.
[1] On a substrate made of aluminum or an aluminum alloy, a zinc substitution layer, an electroless nickel plating layer, a hard chromium plating layer, and an amorphous carbon film or a silicon-containing amorphous carbon film are arranged in this order, or further A multilayer film structure formed on a hard chromium plating layer in this order via an intermediate adhesive layer.
[2] The multilayer film structure according to the above [1], which has a hardness gradient structure.
[3] A zinc-substituted layer is formed on the surface of a substrate made of aluminum or an aluminum alloy, a nickel layer is formed by an electroless plating method using the zinc-substituted layer as a primer layer, and then a hard chromium layer is formed by a plating method. And forming an amorphous carbon film or a silicon-containing amorphous carbon film under conditions of 350 ° C. or less on or through an intermediate adhesive layer. Film lamination method.
[4] The method for laminating a multilayer film on a substrate made of aluminum or an aluminum alloy according to [3], wherein the amorphous carbon film or the silicon-containing amorphous carbon film is formed by a plasma CVD method.
[5] The multilayer film stacking method according to [4], wherein the plasma CVD method is a DC pulse plasma CVD method.

本発明の方法によれば、柔らかいアルミニウム又はアルミニウム合金系基材の最上部に、硬く、耐摩耗性に優れた非晶質炭素膜を密着良く形成でき、アルミニウム又はアルミニウム合金の耐磨耗性や摺動性を向上させることが可能になる。また、アルミニウム又はアルミニウム合金系基材は、200℃前後に再結晶温度があると言われており、非晶質炭素膜含め、成膜時の温度を可能な限り低温、好ましくは200℃未満に抑える必要があるが、本発明の方法によれば、基材から非晶質炭素膜までの中間層は全て湿式処理のメッキ処理であるため、温度上昇はメッキ乾燥工程を考慮しても150℃前後に抑えることができる。さらにまた、本発明の非晶質炭素膜又はシリコンを含む非晶質炭素膜をCVD法により形成する場合、該CVD装置に、スパッタ装置等の他の装置を追加する必要がなく、また、高価な、チタン、タングステン、クロムの固形ターゲットが不要になり、さらに高価な非晶質炭素膜の成膜装置の稼働率を下地層形成で落とす必要がなくなる。
また、本発明の多層膜構造体は、最上部の非晶質炭素膜にピンホールが発生して、そのピンホールからの異物や、ガス、水分などの浸入が生じても、下地の硬質クロムメッキ層及びニッケルめっき層は耐侯性に優れているため、最上層部の非晶質炭素膜の耐侯性を補完することができる。また、アルミニウム又はアルミニウム合金のアルマイト処理層の上に、本発明の方法により傾斜構造膜を析出させた場合は、絶縁層であるアルマイト層に代わり、導電の金属層を非晶質炭素膜の下地層とすることが可能となり、非晶質炭素膜が薄い場合は充分な静電気除去効果が期待できる。さらにまた、下地の最外層が硬質クロムめっき(Hv1000前後)となり、非晶質炭素膜の硬度(Hv1000〜)に近づき、一般に基材密着のため成膜されているシリコンを含む非晶質炭素膜からなる中間密着層を不要にすることもできる。
According to the method of the present invention, an amorphous carbon film that is hard and excellent in wear resistance can be formed with good adhesion on the top of soft aluminum or aluminum alloy base material. It becomes possible to improve slidability. Further, it is said that the aluminum or aluminum alloy-based substrate has a recrystallization temperature around 200 ° C., and the temperature during film formation, including the amorphous carbon film, is as low as possible, preferably less than 200 ° C. Although it is necessary to suppress, according to the method of the present invention, since the intermediate layer from the base material to the amorphous carbon film is all a wet plating process, the temperature rise is 150 ° C. even in consideration of the plating drying process. It can be held back and forth. Furthermore, when the amorphous carbon film of the present invention or the amorphous carbon film containing silicon is formed by the CVD method, it is not necessary to add another apparatus such as a sputtering apparatus to the CVD apparatus, and it is expensive. In addition, a solid target of titanium, tungsten, and chromium is not necessary, and it is not necessary to lower the operating rate of the expensive amorphous carbon film forming apparatus in forming the underlayer.
Further, the multilayer film structure of the present invention is such that even if a pinhole is generated in the uppermost amorphous carbon film and foreign matter, gas, moisture, or the like enters from the pinhole, Since the plating layer and the nickel plating layer are excellent in weather resistance, the weather resistance of the amorphous carbon film in the uppermost layer can be supplemented. When a gradient structure film is deposited on the anodized aluminum or aluminum alloy layer by the method of the present invention, the conductive metal layer is placed under the amorphous carbon film instead of the anodized aluminum layer. A sufficient formation of static electricity can be expected when the amorphous carbon film is thin. Furthermore, the outermost layer of the base is hard chrome plating (around Hv 1000), approaching the hardness (Hv 1000) of the amorphous carbon film, and generally an amorphous carbon film containing silicon that is formed for adhesion to the substrate. An intermediate adhesion layer made of

各種めっき膜の熱処理と被膜硬度の関係を示す図。The figure which shows the relationship between the heat processing and film hardness of various plating films. Al(5052材)無処理の板状基材のBOD法による摩擦磨耗試験を示す図。The figure which shows the friction abrasion test by BOD method of the plate-shaped base material of Al (5052 material) non-processing. 非晶質炭素膜を直接成膜したAl(5052材)基材のBOD法による摩擦磨耗試験を示す図。The figure which shows the friction abrasion test by BOD method of the Al (5052 material) base material which formed the amorphous carbon film directly. アルミ合金基材へ亜鉛置換層を形成した後に無電解Ni−Pめっきした基材のBOD法による摩擦磨耗試験を示す図。The figure which shows the friction abrasion test by the BOD method of the base material which electroless Ni-P plated after forming the zinc substitution layer in the aluminum alloy base material. 前記無電解Ni−Pめっきを5μm成膜したものの上に非晶質炭素膜を成膜した基材のBOD法による摩擦磨耗試験を示す図。The figure which shows the friction abrasion test by the BOD method of the base material which formed the amorphous carbon film on what formed the electroless Ni-P plating into a film of 5 micrometers. 試料1(本発明の多層膜構造体)の、摩擦磨耗試験における摩擦係数グラフを示す図。The figure which shows the friction coefficient graph in the friction abrasion test of the sample 1 (multilayer film structure of this invention). 試料1(本発明の多層膜構造体)の、摩擦磨耗試験におけるボール軌跡部分の写真。The photograph of the ball locus part in the friction abrasion test of sample 1 (multilayer film structure of the present invention). 試料2(アルミニウム合金基材上に炭素膜のみを成膜したもの)の、摩擦磨耗試験における摩擦係数グラフを示す図。The figure which shows the friction coefficient graph in the friction abrasion test of the sample 2 (what formed only the carbon film on the aluminum alloy base material). 試料2(アルミニウム合金基材上に炭素膜のみを成膜したもの)の、摩擦磨耗試験におけるボール軌跡部分の写真。A photograph of a ball trajectory portion in a frictional wear test of sample 2 (a carbon film formed on an aluminum alloy substrate). 試料3(超硬合金)の、摩擦磨耗試験における摩擦係数グラフを示す図。The figure which shows the friction coefficient graph in the friction abrasion test of the sample 3 (super hard alloy). 試料3(超硬合金)の、摩擦磨耗試験におけるボール軌跡部分の写真。The photograph of the ball locus part in the friction abrasion test of sample 3 (super hard alloy). 試料4(SUS420J2)の、摩擦磨耗試験における摩擦係数グラフを示す図。The figure which shows the friction coefficient graph in the friction abrasion test of the sample 4 (SUS420J2). 試料4(SUS420J2)の、摩擦磨耗試験におけるボール軌跡部分の写真。The photograph of the ball locus part in the friction abrasion test of sample 4 (SUS420J2).

本発明の方法は、アルミニウム又はアルミニウム合金表面に、アルミニウム又はアルミニウム合金との置換反応により亜鉛層を析出させた後、該亜鉛置換層上に、無電解ニッケルめっきを行い、次いで硬質クロムめっきを行い、更にその上に、非晶質炭素膜又はシリコン含有非晶質炭素膜を形成して、硬度の適切な傾斜構造を有する多層膜構造体を形成することを特徴とする。
特に本発明の中間層の形成方法である、無電解ニッケルめっき及び硬質クロムめっきは、いずれも大気雰囲気中で、大量生産が可能であって、比較的安価にて、それぞれ5〜40μmと厚膜の成膜が低温で実施可能な方法である。
また、本発明において、好ましくは、前記非晶質炭素膜又はシリコン含有非晶質炭素膜はプラズマCVD法により形成される。
以下、本発明における下地層について詳しく記載する。
In the method of the present invention, a zinc layer is deposited on the surface of aluminum or aluminum alloy by a substitution reaction with aluminum or aluminum alloy, then electroless nickel plating is performed on the zinc substitution layer, and then hard chromium plating is performed. Further, an amorphous carbon film or a silicon-containing amorphous carbon film is further formed thereon to form a multilayer film structure having an inclined structure with an appropriate hardness.
In particular, the electroless nickel plating and the hard chromium plating, which are methods for forming the intermediate layer of the present invention, can be mass-produced in an air atmosphere, and are relatively inexpensive, each having a thickness of 5 to 40 μm. This film formation is possible at a low temperature.
In the present invention, preferably, the amorphous carbon film or the silicon-containing amorphous carbon film is formed by a plasma CVD method.
Hereinafter, the underlayer in the present invention will be described in detail.

アルミニウム又はアルミニウム合金系基材上の非晶質炭素膜又はシリコンを含む非晶質炭素膜を含む多層膜構造体上の重要ポイントは、
(1)部分的な押し込み圧力にも対応できる剛性を持ったアルミニウム又はアルミニウム合金基板上の強固な基礎中間層を形成し、高硬度ではるが、成膜の速度や、大きな内部応力による基材密着(剥離)を考慮した場合、数μ程度の膜の厚みに留まる非晶質炭素膜又はシリコンを含む非晶質炭素膜の基礎構造層を形成すること、
(2)アルミニウム又はアルミニウム合金と非晶質炭素膜との熱線膨張係数の大きな乖離を、非晶質炭素膜の成膜時、また、成膜品使用上の温度変化も考慮し、多層膜間で傾斜的に変化させること含め、上記(1)の複数の材料で構成される基礎中間層の最初の層と、アルミニウム又はアルミニウム合金系基材への密着力が充分であり、各層間の密着も最表面の非晶質炭素膜又はシリコンを含む非晶質炭素膜の応力に耐える密着力を有すること、
(3)上記基礎中間層の形成が、可能な限り低温工程であり、また形成速度が早く、低原価であること、
(4)さらに、最上部の非晶質炭素膜形成工程が、多層膜間の熱硬化特性や、基材を含めての各層間の熱線膨張係数の差が考慮されている温度、プロセスであること、
(5)さらに望ましくは、欠陥(ピンホール等)の多い非晶質炭素膜又はシリコンを含む非晶質炭素膜の耐侯性不足を補完できる耐侯性を有していること、
が重要である。
An important point on a multilayer film structure including an amorphous carbon film on an aluminum or aluminum alloy-based substrate or an amorphous carbon film containing silicon is
(1) Forms a strong basic intermediate layer on an aluminum or aluminum alloy substrate having rigidity that can cope with partial indentation pressure, and has a high hardness, but a substrate due to film formation speed and large internal stress When considering adhesion (peeling), forming an amorphous carbon film or a basic structure layer of an amorphous carbon film containing silicon that remains in a thickness of about several μm,
(2) Considering the large divergence of the thermal linear expansion coefficient between aluminum or aluminum alloy and amorphous carbon film, considering the temperature change during the use of the amorphous carbon film and the use of the film, In addition, the adhesive strength between the first layer of the basic intermediate layer composed of a plurality of materials of the above (1) and the aluminum or aluminum alloy-based substrate is sufficient, and the adhesion between each layer is changed. Have an adhesive strength to withstand the stress of the outermost amorphous carbon film or the amorphous carbon film containing silicon,
(3) The formation of the basic intermediate layer is a low-temperature process as much as possible, the formation speed is fast, and the cost is low.
(4) Furthermore, the uppermost amorphous carbon film forming step is a temperature and process in which the thermosetting characteristics between the multilayer films and the difference in the thermal linear expansion coefficient between each layer including the base material are taken into consideration. about,
(5) More preferably, it has a weather resistance that can compensate for the insufficient weather resistance of an amorphous carbon film having many defects (pinholes or the like) or an amorphous carbon film containing silicon,
is important.

そこで、本発明では、下地層として、
(1)アルミニウム又はアルミニウム合金の表面は、大気中の酸素によって強固で緻密な酸化膜を形成しているため、鉄系の基材と異なり、アルミニウム又はアルミニウム合金系基材に直接ニッケルめっき等を行っても、基材との密着性が確保できないため、第一層として、アルミニウム又はアルミニウム合金系の基材の上に、アルミニウム又はアルミニウム合金と物理形状的にも密着性の良い亜鉛置換膜を形成し、それをプライマー層とし、
(2)第二次層として、硬度Hv200前後〜Hv600前後までの無電解ニッケル(Ni−P又はNi−B)めっき層を形成し、
(3)第三次層として、Hv1000前後とさらに硬い硬質クロムメッキ層を形成し、
(4)最後に、Hv1000以上の非晶質炭素膜又はシリコンを含む非晶質炭素膜を形成することで、
第一次層から最上層まで、硬さが傾斜的に上昇し、最上部で最も硬く、その内部応力にて基材剥離を起しやすい炭素膜を最終的に、柔らかい基材であるアルミニウム又はアルミニウム系合金基材の最上部保護層として有効に使えるようにした傾斜多層構造膜とする点にある。
Therefore, in the present invention, as the underlayer,
(1) Since the surface of aluminum or aluminum alloy forms a strong and dense oxide film by oxygen in the atmosphere, unlike iron-based substrates, nickel plating or the like is directly applied to aluminum or aluminum alloy-based substrates. Since the adhesion with the base material cannot be ensured even if it is performed, a zinc-substituted film having good physical adhesion with aluminum or aluminum alloy on the aluminum or aluminum alloy base material is used as the first layer. Forming it as a primer layer,
(2) As a secondary layer, an electroless nickel (Ni-P or Ni-B) plating layer having a hardness of around Hv200 to around Hv600 is formed,
(3) As a tertiary layer, a hard chrome plating layer of around Hv1000 and harder is formed,
(4) Finally, by forming an amorphous carbon film of Hv1000 or higher or an amorphous carbon film containing silicon,
From the primary layer to the uppermost layer, the hardness increases in a gradient, and the carbon film that is the hardest at the uppermost portion and easily causes the substrate peeling due to the internal stress is finally obtained. It is the point which is set as the inclination multilayer structure film | membrane which can be effectively used as an uppermost protective layer of an aluminum-type alloy base material.

さらに、アルミニウム、アルミニウム合金系基材との密着を良くしたい場合は、アルミニウム又はアルミニウム合金系基材の表面をサンドブラスト処理などで荒らすと、亜鉛置換層の密着が向上する。
なお、上記処理を(2)までの無電解ニッケルメッキまでに留めた場合、加熱処理により無電解ニッケルめっき自体の硬度をHv600以上に上げ、炭素膜の下地中間硬度の傾斜層として、その上部に非晶質炭素膜を形成することも摩擦・磨耗試験上十分な効果を確認することもできるが、無電解ニッケルめっき層上に直接成膜される非晶質炭素膜が厚く、大きな内部応力を帯びてくると、非晶質炭素膜の結合に必要な炭素粒子がNiと反応して炭化物を生成しにくく、炭素がNiメッキ膜中に拡散して密着を確保するのが困難と予測され、無電解ニッケルメッキ層−非晶質炭素膜間の密着不足が生じ、非晶質炭素膜が無電解ニッケルめっき層界面から剥離してしまう現象が生じる。
本発明では、無電解ニッケルめっき層と非晶質炭素膜の間に、硬質クロムめっき層を介在させることで該問題を解決するものである。
Furthermore, when it is desired to improve the adhesion with the aluminum or aluminum alloy-based substrate, the adhesion of the zinc-substituted layer is improved by roughening the surface of the aluminum or aluminum alloy-based substrate by sandblasting or the like.
In addition, when the above treatment is limited to electroless nickel plating up to (2), the hardness of the electroless nickel plating itself is increased to Hv600 or more by heat treatment, and a gradient layer of the base intermediate hardness of the carbon film is formed thereon. It is possible to form an amorphous carbon film or to confirm a sufficient effect on the friction and wear test, but the amorphous carbon film directly formed on the electroless nickel plating layer is thick and has a large internal stress. When taken, carbon particles necessary for bonding of the amorphous carbon film are unlikely to react with Ni to generate carbides, and it is predicted that it is difficult to ensure adhesion by carbon diffusing into the Ni plating film, Insufficient adhesion between the electroless nickel plating layer and the amorphous carbon film occurs, and the amorphous carbon film peels off from the electroless nickel plating layer interface.
In the present invention, this problem is solved by interposing a hard chromium plating layer between the electroless nickel plating layer and the amorphous carbon film.

以下、本発明の方法について、各工程順に説明する。
第一次層:亜鉛置換膜の形成
本発明の亜鉛置換膜の形成工程は、無電解ニッケルめっきの下地処理として、すでに公知であり、脱脂工程と、酸性エッチング工程と、硝酸浸漬工程と、第一亜鉛置換工程と、硝酸亜鉛剥離工程と、第二亜鉛置換工程とからなるのが通常である。
具体的には、アルミニウム又はアルミニウム合金基材を、弱アルカリ溶液に浸漬して脱脂し、次いで、硫酸等の酸溶液に浸漬してエッチングした後、硝酸浸漬処理し、次いで、NaOHを主成分とする強アルカリの亜鉛置換溶液にて亜鉛置換層を析出させ(第1次置換)、次いで、スマットを落とすために、硝酸に浸漬し、更に前記と同じ亜鉛置換溶液にて亜鉛置換(第二置換)を行う。
Hereinafter, the method of the present invention will be described in the order of each step.
Primary layer: Formation of zinc-substituted film The zinc-substituted film forming process of the present invention is already known as a base treatment for electroless nickel plating, and includes a degreasing process, an acidic etching process, a nitric acid dipping process, It usually consists of a zinc replacement step, a zinc nitrate stripping step, and a second zinc replacement step.
Specifically, the aluminum or aluminum alloy base material is degreased by dipping in a weak alkaline solution, then dipped in an acid solution such as sulfuric acid and etched, then dipped in nitric acid, and then NaOH is the main component. Deposit a zinc-substituted layer with a strong alkaline zinc-substituted solution (primary substitution), then immerse in nitric acid to remove the smut, and then replace with zinc in the same zinc-substituted solution as above (second substitution) )I do.

第二次層:無電解ニッケルめっき層の形成
無電解ニッケルめっき層は、無電解Ni−Pめっき層であっても、或いは無電解Ni−Bめっき層であってもよい。
例えば、無電解Ni−Pメッキ層を形成する場合であれば、前記亜鉛置換膜を形成した基材を、ニッケルイオンと次亜リン酸イオンが入っためっき液に浸漬して、Ni−Pめっきを形成させる。
めっき液中のニッケルイオンと還元剤である次亜リン酸イオンが接触すると、基材が触媒となって脱水素分解を生じる。その生成した水素原子が、基材に吸着されて活性化し、これがめっき液中のニッケルイオンに接触してニッケルを金属に還元して触媒金属表面に析出するものである。また、触媒金属表面の活性化した水素原子は、液中の次亜リン酸イオンとも反応し、含有するリンを還元してニッケルと合金化する。この析出したニッケルが触媒となって前述のニッケルの還元めっき反応が継続して進行する。すなわちニッケルの自己触媒作用によりめっきの継続進行する特徴がある。これにより、めっき液が流通する空隙があれば、均一にめっき被膜が形成され、まためっき被膜の厚さはめっき時間と比例しており、時間の制御で容易に管理される。
また、無電解Ni−Bメッキ層を形成する場合であれば、ニッケルイオンと、還元剤であるアミンボランなどのホウ素系薬剤を含有する無電解めっき液を用いて同様に形成される。なお、無電解Ni−Bめっきの場合、めっき液の分解劣化が激しく、その都度使い捨てにしなくてはならないので、実際の生産では、無電界Ni−Pが適している。
さらに、本発明の無電解ニッケルめっき層は、無電解Ni−Pめっき層の上に無電解Ni−Bめっき層を形成した二層構造であってもよく、この場合には、後述する図1に示すとおり、無電解Ni−Bめっき層の硬度は、無電解Ni−Pめっき層の硬度より高く、且つ、硬質クロムめっき層の硬度より低いので、より好ましい硬度傾斜構造が形成できる。
形成されるニッケルめっき層の厚さは、基材の用途・用法によって多様であり、特に限定する必要はないが、通常は0.1〜40μmであり、好ましくは3〜20μmである。
Secondary layer: Formation of electroless nickel plating layer The electroless nickel plating layer may be an electroless Ni-P plating layer or an electroless Ni-B plating layer.
For example, in the case of forming an electroless Ni-P plating layer, the base material on which the zinc-substituted film is formed is immersed in a plating solution containing nickel ions and hypophosphite ions, and Ni-P plating is performed. To form.
When nickel ions in the plating solution come into contact with hypophosphite ions as a reducing agent, the base material serves as a catalyst to cause dehydrogenative decomposition. The generated hydrogen atoms are activated by being adsorbed on the base material, which comes into contact with nickel ions in the plating solution to reduce nickel to metal and deposit on the catalyst metal surface. The activated hydrogen atoms on the surface of the catalytic metal also react with hypophosphite ions in the liquid, reducing the contained phosphorus and alloying with nickel. The deposited nickel is used as a catalyst to continue the above-described nickel reduction plating reaction. That is, there is a feature that the plating proceeds continuously by the autocatalytic action of nickel. Thus, if there is a gap through which the plating solution flows, a plating film is uniformly formed, and the thickness of the plating film is proportional to the plating time and can be easily managed by controlling the time.
In the case of forming an electroless Ni—B plating layer, the electroless plating solution is similarly formed using an electroless plating solution containing nickel ions and a boron-based agent such as amine borane as a reducing agent. In the case of electroless Ni—B plating, decomposition and deterioration of the plating solution are severe and must be made disposable each time. Therefore, electroless Ni—P is suitable in actual production.
Furthermore, the electroless nickel plating layer of the present invention may have a two-layer structure in which an electroless Ni—B plating layer is formed on an electroless Ni—P plating layer. In this case, FIG. Since the hardness of the electroless Ni—B plating layer is higher than the hardness of the electroless Ni—P plating layer and lower than the hardness of the hard chromium plating layer, a more preferable hardness gradient structure can be formed.
The thickness of the nickel plating layer to be formed varies depending on the use and usage of the base material and is not particularly limited, but is usually 0.1 to 40 μm, preferably 3 to 20 μm.

第三次層:硬質クロムメッキ層の形成
第三次層である硬質ニッケルめっき層は、クロム酸を含む硫酸水溶液中で通電することにより形成される。
形成される硬質クロムめっき層の厚さは、基材の用途・用法によって多様であり、特に限定する必要はないが、通常は0.1〜40μmであり、好ましくはフラッシュと言われる0.2〜20μmある。
なお、形成される硬質クロムめっきは、温度を高くすればするほど硬度が落ちる。すなわち、硬質クロムめっき後は1000Hv以上あるが、300℃以上の熱処理を施すと、800Hv程度にまで落ちる。しかしながら、スパッタ法で形成されるクロムの硬度500〜600Hvよりは充分に高い。
Tertiary layer: formation of hard chrome plating layer The hard nickel plating layer as the third layer is formed by energization in a sulfuric acid aqueous solution containing chromic acid.
The thickness of the hard chrome plating layer to be formed varies depending on the use and usage of the base material and is not particularly limited, but is usually 0.1 to 40 μm, preferably 0.2 which is referred to as flash. ~ 20 μm.
Note that the hardness of the hard chrome plating formed decreases as the temperature increases. That is, it is 1000 Hv or more after hard chrome plating, but when it is heat-treated at 300 ° C. or more, it falls to about 800 Hv. However, the hardness of chromium formed by sputtering is sufficiently higher than 500 to 600 Hv.

図1は、各種めっき膜の熱処理と被膜硬度の関係を示す図である。
各めっき層の厚さは35μmであり、測定器には、アカシ製MVK−H3を用い、荷重を、25gf(荷重時間20秒)として測定した。
図1に示すとおり、第三次層の硬質クロムめっき層は加熱により軟質化するので、第二次層にNi−Pめっき層を用いる場合には、めっき後の加温でより硬質化して、350℃付近で硬質クロム層と硬度が同じになり、その後逆転する。したがって、好ましい硬度傾斜構造を得る場合には、硬質クロムめっき後に350℃以上に加熱されることを避けることが必要である。
なお、第二次層がNi−Bめっき層である場合には、めっき後の加熱によっても硬質クロムめっき層との硬度の大小の関係は変化しない。
FIG. 1 is a diagram showing the relationship between the heat treatment and coating hardness of various plating films.
The thickness of each plating layer was 35 μm, and the measuring device was MVK-H3 manufactured by Akashi, and the load was measured at 25 gf (loading time 20 seconds).
As shown in FIG. 1, since the hard chromium plating layer of the third layer is softened by heating, when using a Ni-P plating layer for the second layer, it becomes harder by heating after plating, Around 350 ° C, the hardness becomes the same as that of the hard chromium layer, and then reverses. Therefore, in order to obtain a preferable hardness gradient structure, it is necessary to avoid heating to 350 ° C. or higher after the hard chromium plating.
When the secondary layer is a Ni-B plating layer, the magnitude relationship between the hardness and the hard chromium plating layer does not change even after heating after plating.

最上層:非晶質炭素膜又はシリコン含有非晶質炭素膜の形成
非晶質炭素膜は、プラズマCVD法等のCVD(化学的蒸着)法、又はイオンプレーティング法、スパッタリング法等の物理的蒸着(PVD)法等、種々の方法で形成できることが知られているが、本発明では、350℃以下の低温プラズマCVD法を用いるのが好ましい。
すなわち、前述のとおり、硬質クロムめっき層は加熱により硬度が落ちるために、その上に非晶質炭素膜又はシリコン含有非晶質炭素膜を形成する際に、従来のPVD処理では、350〜500℃に加温されて硬質クロムめっき層の硬度が低下してしまい、場合によっては、無電解ニッケルめっき膜と硬質クロムめっき層の硬度が逆転して、好ましい硬度傾斜構造を有する多層膜構造体を得るのが困難になる。
また、硬質クロムめっき層はその製造法上、多量の水素を膜中に含有し、水素フリーで硬く仕上げたい方向の従来のPVD法では、硬質クロムめっき膜中の水素が邪魔になると考えられる。
さらに、PVD法自体が高温処理のため、その高温にて、アルミニウム又はアルミニウム合金系基板のソリ・ゆがみが激しく、PVDの非常に硬いDLC膜との密着性なども含め、アルミ基板へのPVD処理は適していない。
Uppermost layer: Formation of an amorphous carbon film or a silicon-containing amorphous carbon film. An amorphous carbon film is formed by a chemical vapor deposition (CVD) method such as a plasma CVD method, or a physical method such as an ion plating method or a sputtering method. Although it can be formed by various methods such as vapor deposition (PVD), it is preferable to use a low temperature plasma CVD method at 350 ° C. or lower in the present invention.
That is, as described above, since the hardness of the hard chromium plating layer is lowered by heating, when the amorphous carbon film or the silicon-containing amorphous carbon film is formed thereon, in the conventional PVD process, 350 to 500 is used. The hardness of the hard chrome plating layer is lowered by heating to ℃, and in some cases, the hardness of the electroless nickel plating film and the hard chrome plating layer is reversed, and a multilayer film structure having a preferable hardness gradient structure is obtained. It becomes difficult to obtain.
In addition, the hard chromium plating layer contains a large amount of hydrogen in the film because of its manufacturing method, and it is considered that hydrogen in the hard chromium plating film becomes an obstacle in the conventional PVD method in which it is desired to be hard and hydrogen-free.
Furthermore, because the PVD method itself is a high-temperature treatment, the warping and distortion of aluminum or aluminum alloy substrates are severe at that high temperature, including the adhesion of PVD to very hard DLC films. Is not suitable.

350℃以下の低温にて炭素膜を成膜可能な方法として、水素のコンタミを無視した場合には低温スパッタ法や、さらにワークへの強制冷却装置など複雑で高価な機構を設ければその他種類の方法も考えられるが、好ましい方法としては、プラズマCVD法があげられる。プラズマCVD法は、反応ガスにより成膜するものであって、低温、常圧下でも可能で、均質、均一厚、ち密で、密着性のよい膜を大面積に形成可能であり、成膜装置の構造も単純で安価であるために好ましく用いられる。
プラズマCVD法としては、高周波放電を用いる高周波プラズマCVD法や、直流放電を利用する直流プラズマCVD法、あるいはマイクロ波放電を利用するマイクロ波プラズマCVD法などが挙げられるが、特に、300℃以下、好ましくは、200℃以下の低温プラズマCVD法を用いることにより、ニッケル層(Hv500)→硬質クロム層(Hv1000)→非晶質炭素膜(Hv1500)等の綺麗な階段構造を取ることができる。
As a method of forming a carbon film at a low temperature of 350 ° C. or lower, other methods can be used if a complicated and expensive mechanism such as a low-temperature sputtering method or a forced cooling device for workpieces is provided when hydrogen contamination is ignored. Although the above method is also conceivable, a preferable method is a plasma CVD method. The plasma CVD method uses a reactive gas to form a film, and can be performed at a low temperature and normal pressure. A uniform, uniform thickness, dense, and highly adhesive film can be formed over a large area. Since the structure is simple and inexpensive, it is preferably used.
Examples of the plasma CVD method include a high frequency plasma CVD method using a high frequency discharge, a direct current plasma CVD method using a direct current discharge, or a microwave plasma CVD method using a microwave discharge. Preferably, by using a low temperature plasma CVD method at 200 ° C. or lower, a beautiful step structure such as nickel layer (Hv500) → hard chromium layer (Hv1000) → amorphous carbon film (Hv1500) can be obtained.

中でも、後述する一連の検証に示すとおり、特に高圧パルスプラズマCVD法が好ましく用いられる。
高圧パルスプラズマCVD法が好ましい理由は、パルス周波数の増減により電源のDuty比を2%〜10%まで制御可能であることを主とし、他成膜方法に比して成膜温度をより低温にて制御しやすく、可能な限り等間隔の硬度傾斜層を構成可能とし、併せて、熱を可能な限り基材に加えないことで多層膜間の熱線膨張係数の違いによる密着不良を抑制し、また炭素イオン等を高圧にて基材に注入可能で、低温であってもより基材との密着が取りやすい炭素膜の成膜方式であるためである。
Among these, as shown in a series of verifications described later, a high-pressure pulse plasma CVD method is particularly preferably used.
The reason why the high-pressure pulse plasma CVD method is preferable is that the duty ratio of the power source can be controlled from 2% to 10% by increasing / decreasing the pulse frequency, and the film forming temperature is lower than other film forming methods. It is easy to control, and it is possible to configure an evenly spaced hardness gradient layer as much as possible, and to suppress poor adhesion due to differences in the coefficient of thermal expansion between multilayer films by not applying heat to the substrate as much as possible, In addition, carbon ions can be injected into the substrate at a high pressure, and this is because the carbon film is formed more easily, even at low temperatures.

形成される非晶質炭素膜又はシリコンを含む非晶質炭素膜の厚さは、基材の用途・用法によって多様であり、特に限定する必要はないが、通常は10nm〜10μmであり、好ましくは0.1μm〜3μmある。
また、硬質クロムめっき層と非晶質炭素膜の密着性をより向上させるために、中間層としてシリコンを含有する非晶質炭素膜を用いることもできる。その場合、この中間層の厚さは、基材の用途・用法によって多様であり、特に限定する必要はないが、通常は10nm〜1μmであり、好ましくは0.1μm〜0.5μmである。
The thickness of the amorphous carbon film to be formed or the amorphous carbon film containing silicon varies depending on the use and usage of the substrate, and is not particularly limited, but is usually 10 nm to 10 μm, preferably Is 0.1 μm to 3 μm.
In order to further improve the adhesion between the hard chromium plating layer and the amorphous carbon film, an amorphous carbon film containing silicon can be used as the intermediate layer. In this case, the thickness of the intermediate layer varies depending on the use and usage of the substrate, and is not particularly limited, but is usually 10 nm to 1 μm, preferably 0.1 μm to 0.5 μm.

非晶質炭素膜形成用の反応ガスには、メタン、アセチレン、ベンゼン等の炭化水素ガスが用いられ、シリコンを含有する非晶質炭素膜形成用の反応ガスには、さらに、Si(CH、SiH等の珪素化合物ガスを用いればよく、この際、通常、キャリアガスにはアルゴンガスが用いられる。炭化水素ガスと混合しても用いることが可能である。 A hydrocarbon gas such as methane, acetylene, or benzene is used as the reaction gas for forming the amorphous carbon film, and Si (CH 3) is further used as the reaction gas for forming the amorphous carbon film containing silicon. 4 ) Si compound gas such as SiH 4 may be used. In this case, argon gas is usually used as the carrier gas. It can be used even if mixed with hydrocarbon gas.

以下、本発明について、実験例等を用いて説明するが、本発明はこれらに限定されるものではない。
まず、テスト用の板状基材として、30mm角、板厚1mmの5000系のアルミニウム合金基材(5052材)を準備し、摺動性、耐磨耗性改善のテストを行った。
Hereinafter, although this invention is demonstrated using an experiment example etc., this invention is not limited to these.
First, as a plate-like substrate for testing, a 5000 series aluminum alloy substrate (5052 material) having a 30 mm square and a plate thickness of 1 mm was prepared, and a test for improving sliding property and wear resistance was performed.

1.試験基材の準備
以下の1)〜5)の基材を準備した。
1)Al(5052材)無処理の板状基材

2)非晶質炭素膜を直接成膜したAl(5052材)基材
炭素膜の成膜条件は、高圧パルスプラズマCVD装置にて、アルゴンガスプラズマで基材を約5分クリーニングした後、シリコンを含む中間層を形成し、原料ガスにアセチレンを使用し、印加電圧−5kV、パルス周波数10kHz、ガス流量40SCCM、ガス圧2Paにて中間層を形成する工程含め約25分炭素膜を成膜した。炭素膜の厚さは0.5μm、硬度はHv1500を得た。

3)アルミニウム合金基材へ亜鉛置換層の形成した後無電解Ni−Pめっきした基材
まず、テスト基材を弱アルカリの溶液に浸漬して、70℃で脱脂し、70℃の硫酸溶液
に浸漬し基材表面をエッチィングした。
さらに室温にて、50%の硝酸で基材を酸浸漬し、NaOHを主成分とする強アルカリの亜鉛置換液にて室温で亜鉛置換層を析出させ、スマットを落とすため、50%の硝酸に室温で浸漬し、さらに、前液と同じ亜鉛置換液にて亜鉛置換を計2回行った。
基材がアルマイト層を形成したアルミ、またはアルミニウム合金である場合、上記処理の硝酸による酸浸漬や、強アルカリ溶液を使用する亜鉛置換処理にて、10マイクロ厚位のアルマイト層であれば1〜3分間も浸漬すれば容易に溶解してしまい、アルマイト処理済アルミニウム、アルミニウム合金の再表面処理としても有効である。
上記、亜鉛置換層を形成した後の基材に、無電解Ni―Pめっき層を5μの厚さで析出させた。

4)前記の無電解Ni−Pメッキを5μm成膜した基板の上層に、炭素膜を成膜した基材
炭素膜の成膜条件は、高圧パルスプラズマCVD装置にて、アルゴンガスプラズマで基材を約5分クリーニングした後、シリコンを含む中間層を形成し、原料ガスにアセチレンを使用し、印加電圧−5kV、パルス周波数10kHz、ガス流量40SCCM、ガス圧2Paにて中間層を形成する工程含め約25分炭素膜を析出させた。炭素膜の厚さは0.5μ、硬度はHv1500を得た。成膜終了時の成膜室の温度は97℃であった。
1. Preparation of test base materials The following base materials 1) to 5) were prepared.
1) Al (5052 material) untreated plate-like substrate

2) Al (5052 material) base material on which an amorphous carbon film was directly formed Carbon film was formed by cleaning the base material with argon gas plasma for about 5 minutes using a high-pressure pulse plasma CVD apparatus, and then silicon. A carbon film was formed for about 25 minutes including the step of forming the intermediate layer using acetylene as the source gas and applying the voltage of -5 kV, the pulse frequency of 10 kHz, the gas flow rate of 40 SCCM, and the gas pressure of 2 Pa. . The carbon film had a thickness of 0.5 μm and a hardness of Hv1500.

3) Substrates electroless Ni-P plated after forming a zinc substitution layer on an aluminum alloy substrate First, the test substrate is immersed in a weakly alkaline solution, degreased at 70 ° C., and then into a 70 ° C. sulfuric acid solution. The substrate surface was immersed and etched.
Furthermore, the substrate is acid-immersed with 50% nitric acid at room temperature, and a zinc-substituted layer is deposited at room temperature with a strong alkaline zinc-substituting solution mainly composed of NaOH. It was immersed at room temperature and further zinc substitution was performed twice with the same zinc substitution solution as the previous solution.
When the base material is aluminum with an alumite layer or an aluminum alloy, 1 to 10 μm thick alumite layer is obtained by acid immersion with nitric acid in the above treatment or zinc substitution treatment using a strong alkaline solution. If it is immersed for 3 minutes, it dissolves easily and is effective as a resurface treatment of anodized aluminum and aluminum alloy.
An electroless Ni—P plating layer was deposited to a thickness of 5 μm on the base material after the zinc-substituted layer was formed.

4) A base material in which a carbon film is formed on an upper layer of a substrate on which the electroless Ni-P plating is formed to have a thickness of 5 .mu.m. The carbon film is formed by argon gas plasma in a high-pressure pulse plasma CVD apparatus. In this process, an intermediate layer containing silicon is formed, acetylene is used as a source gas, and an intermediate layer is formed at an applied voltage of -5 kV, a pulse frequency of 10 kHz, a gas flow rate of 40 SCCM, and a gas pressure of 2 Pa. A carbon film was deposited for about 25 minutes. The carbon film had a thickness of 0.5 μm and a hardness of Hv1500. The temperature of the film formation chamber at the end of film formation was 97 ° C.

2.ボールオンディスク法(以下、「BOD法」)による摩擦磨耗試験
図1〜4は、上記1)〜4)の試験結果を示すものである。
1)の基板は、試験開始直後に柔らかい基材表面は破壊され、摩擦係数が大きく上昇しているのが解る(図2参照)。
また、2)の基板は、摩擦、磨耗性は飛躍的に改善し、4000回転までは摩擦係数は安定して0.2以下を示したが、4000回転弱で、突然基材が破壊され、摩擦係数が急上昇している(図3参照)。これは、BOD法のボール付加荷重により基材が変形したためと推測できる。
3)の基板は、摩擦係数は、試験開始早々大きく0.8に上昇し、その後も0.4から0.8までの高い数値を示した。摩擦係数の改善が不十分であることが確認できた(図4参照)。
4)の基板は、摩擦係数、耐久性ともに非常に良い結果が得られる複合膜が出来たことが確認できた(図5参照)。
しかし、このニッケルめっきまで行い、最上部に炭素膜を成膜したものを、後日、局面状を有する5000系のアルミニウム合金基材に行ったところ、局面部分で最上部の炭素膜が剥離する現象が確認され、本件複合膜に密着性、特に成膜時のヒートサイクルによる剥離に大きな課題があることが確認できた。
2. Friction and abrasion test by ball-on-disk method (hereinafter referred to as “BOD method”) FIGS. 1 to 4 show the test results of the above 1) to 4).
As for the board | substrate of 1), the soft base-material surface is destroyed immediately after a test start, and it turns out that a friction coefficient raises large (refer FIG. 2).
In addition, the substrate of 2) has drastically improved friction and wear properties, and the coefficient of friction was stable up to 4000 revolutions and showed 0.2 or less, but the substrate was suddenly destroyed at less than 4000 revolutions, The coefficient of friction has increased rapidly (see FIG. 3). This can be presumed to be because the base material was deformed by the BOD method applied ball load.
The substrate of 3) had a coefficient of friction that greatly increased to 0.8 as soon as the test was started, and then showed a high value from 0.4 to 0.8. It was confirmed that the friction coefficient was insufficiently improved (see FIG. 4).
It was confirmed that the substrate of 4) was able to produce a composite film that gave very good results in both friction coefficient and durability (see FIG. 5).
However, when this nickel plating was performed and a carbon film was formed on the uppermost part, it was performed on a 5000 series aluminum alloy base material having a phase shape at a later date. As a result, it was confirmed that the present composite film had a major problem in adhesion, particularly peeling due to heat cycle during film formation.

3.基材密着性試験
膜の密着性を評価するため、5000系のアルミニウム合金基材(5052材)の材質で、直径φ10mmで高さ10mmの比較的短い回転半径、急局面を持つ円筒形の基材を用意した。
密着試験に円筒形の基材を使用するのは、基材表面が急な局面を示しており、平板と比較して、表面処理した膜の応力による剥離の影響をより受けやすいからである。
テスト基材を弱アルカリの溶液に浸漬して、70℃で脱脂し、70℃の硫酸溶液に浸漬し基材表面をエッチィングした。さらに室温にて、50%の硝酸で基材を酸浸漬し、NaOHを主成分とする強アルカリの亜鉛置換液にて室温で亜鉛置換層を析出させ、スマットを落とすため、50%の硝酸に室温で浸漬し、さらに、前液と同じ亜鉛置換液にて亜鉛置換を計2回行った。
3. Base material adhesion test In order to evaluate film adhesion, a cylindrical base having a relatively short turning radius and a steep aspect of a diameter of 10 mm and a height of 10 mm made of a 5000 series aluminum alloy base material (5052 material). Materials were prepared.
The reason why the cylindrical base material is used for the adhesion test is that the surface of the base material shows a steep situation and is more susceptible to peeling due to the stress of the surface-treated film than the flat plate.
The test substrate was immersed in a weak alkaline solution, degreased at 70 ° C., and immersed in a sulfuric acid solution at 70 ° C. to etch the substrate surface. Furthermore, the substrate is acid-immersed with 50% nitric acid at room temperature, and a zinc-substituted layer is deposited at room temperature with a strong alkaline zinc-substituting solution mainly composed of NaOH. It was immersed at room temperature and further zinc substitution was performed twice with the same zinc substitution solution as the previous solution.

1)上記、亜鉛置換層を形成した後の円筒基材に、
テストサンプル1(1):無電解Ni−Pメッキ層を5μm厚成膜した上に、非晶質炭素
膜(シリコンを含む中間層0.09μmを含む)を0.4μm厚
で成膜したもの
1(2)非晶質炭素膜(同中間層含む)を0.8μm厚で成膜したもの
1(3)非晶質炭素膜(同中間層含む)を1.6μm厚で成膜したもの
テストサンプル2(1)無電解Ni−Pメッキ層を5μm成膜し、その上層部に硬質クロ
ムメッキ層を5μmの厚さで成膜し、炭素膜(中間層含む)を
0.4μm厚で成膜したもの
2(2)非晶質炭素膜(同中間層含む)を0.8μm厚で成膜したもの
2(3)非晶質炭素膜(同中間層含む)を1.6μm厚で成膜したもの
テストサンプル3(1)電解Niメッキ層を5μ成膜し、非晶質炭素膜(同中間層含む)
を0.4μm厚で成膜したもの
3(2)非晶質炭素膜(同中間層含む)を0.8μm厚で成膜したもの
3(3)非晶質炭素膜(同中間層含む)を1.6μm厚で成膜したもの
テストサンプル4(1)アルミ5000系円筒基材上に直接炭素膜(中間層含む)を0
.4μm厚で成膜したもの
4(2)非晶質炭素膜(同中間層含む)を0.8μm厚で成膜したもの
4(3)非晶質炭素膜(同中間層含む)を1.6μm厚で成膜したもの
を準備した。
1) On the cylindrical base material after forming the zinc-substituted layer,
Test sample 1 (1): An electroless Ni—P plating layer was formed to a thickness of 5 μm, and then amorphous carbon
0.4μm thick film (including 0.09μm intermediate layer containing silicon)
Filmed with
1 (2) Amorphous carbon film (including the same intermediate layer) formed to a thickness of 0.8 μm
1 (3) Amorphous carbon film (including the same intermediate layer) formed to a thickness of 1.6 μm Test sample 2 (1) An electroless Ni—P plating layer was formed to a thickness of 5 μm, and a hard chrome film was formed on the upper layer.
A plating layer with a thickness of 5 μm is formed and a carbon film (including an intermediate layer) is formed.
Film formed with a thickness of 0.4 μm
2 (2) Amorphous carbon film (including the same intermediate layer) formed to a thickness of 0.8 μm
2 (3) Amorphous carbon film (including the same intermediate layer) with a thickness of 1.6 μm Test sample 3 (1) 5 μm of electrolytic Ni plating layer was formed, and the amorphous carbon film (the same intermediate layer) Including)
Film with a thickness of 0.4μm
3 (2) Amorphous carbon film (including the same intermediate layer) formed to a thickness of 0.8 μm
3 (3) Amorphous carbon film (including the intermediate layer) with a thickness of 1.6 μm Test sample 4 (1) Carbon film (including the intermediate layer) directly on the aluminum 5000 series cylindrical substrate
. 4 μm thick film
4 (2) Amorphous carbon film (including the same intermediate layer) formed to a thickness of 0.8 μm
4 (3) An amorphous carbon film (including the same intermediate layer) having a thickness of 1.6 μm was prepared.

非晶質炭素膜の成膜条件は、高圧パルスプラズマCVD装置にて、アルゴンガスプラズマで基材を約5分クリーニングした後、シリコンを含む中間層を形成し、原料ガスにアセチレンを使用し、印加電圧−5kV、パルス周波数10kHz、ガス流量40SCCM、ガス圧2Paにて中間層を形成する工程含め各々の膜厚となるように成膜時間を調整した。また、非晶質炭素膜厚0.8μmのものと1.6μmのものは同じ炭素膜中間層の厚みとなるように、成膜時間を調整した。なお、成膜終了時の成膜室の各温度は双方とも160℃未満であった。
よって、非晶質炭素膜厚が1.6μmのものが一番内部応力の大きい最外層を持つことになる。
The film formation conditions for the amorphous carbon film were as follows: the substrate was cleaned with argon gas plasma for about 5 minutes in a high-pressure pulse plasma CVD apparatus, an intermediate layer containing silicon was formed, and acetylene was used as the source gas. The film formation time was adjusted so as to obtain each film thickness including the step of forming the intermediate layer at an applied voltage of −5 kV, a pulse frequency of 10 kHz, a gas flow rate of 40 SCCM, and a gas pressure of 2 Pa. In addition, the film formation time was adjusted so that the amorphous carbon film thickness of 0.8 μm and 1.6 μm had the same carbon film intermediate layer thickness. Note that each temperature in the film formation chamber at the end of film formation was less than 160 ° C.
Therefore, the amorphous carbon film thickness of 1.6 μm has the outermost layer having the largest internal stress.

2)非晶質炭素膜成膜直後の現象
非晶質炭素膜の成膜後、基材冷却用のガスを導入せず、自然降温させ、成膜室の内部外周に取り付けた温度計が60℃を示した時点で、成膜室から各基材を取り出した。
この成膜後の状態で、サンプル1(1)(無電解Ni−P)、2(電解Ni)の全てにて非晶質炭素膜の基材から、特に、成膜条件状、同一サンプル内の炭素膜の厚い部位からの剥離が進行していることが確認された。
しかし、アルミ5000番系基材に置換析出させた亜鉛層の剥離は、全てのサンプルで確認されなかった。
また、硬質クロムめっき層を成膜したものも全て、非晶質炭素膜の剥離を確認することができなかった。
2) Phenomenon immediately after film formation of amorphous carbon film After the film formation of the amorphous carbon film, a thermometer attached to the inner periphery of the film formation chamber is allowed to cool naturally without introducing a gas for cooling the substrate. When the temperature was shown, each substrate was taken out from the film forming chamber.
In this state after film formation, all of Samples 1 (1) (electroless Ni-P) and 2 (electrolytic Ni) are formed from the amorphous carbon film substrate, in particular, in the same film formation conditions. It was confirmed that peeling from the thick part of the carbon film was progressing.
However, exfoliation of the zinc layer deposited by substitution on the aluminum base No. 5000 was not confirmed in all samples.
Moreover, it was not possible to confirm the peeling of the amorphous carbon film in all of the films formed with the hard chromium plating layer.

3)ヒートサイクルによる、基材密着力の比較検証
Al(5052材)製円柱(直径:10mm、高さ:10mm)の試料基材を準備し、下地処理として
(1)亜鉛置換層+Ni−P(5μm)+硬質クロムメッキ(5μm)
(2)亜鉛置換層+Ni−P(5μm)+硬質クロムメッキ(05μm)
(3)比較対象として、未処理品
を行い、それぞれの基材を真空装置に入れ、高圧パルスプラズマCVD装置にて、印加電圧−5kV、パルス周波数10kHz、ガス流量40SCCM、ガス圧2Paにてアルゴンプラズマによる表面クリーニングを10分行った後、一般的に密着を向上させるために実施されているシリコンを含む非晶質炭素膜を中間層として10分形成し、アセチレンを原料とする非晶質炭素膜を30分間成膜する工程を2回行い、中間層(0.4μm)を含む非晶質炭素膜1.2μm、Hv1500を各機材試料上に成膜した。成膜終了時の成膜室の温度は125℃であった。
成膜後、ヒートサイクルによる密着力の比較試験として、成膜後の各試料をホットプレートにて260℃まで昇温後、10分保持し、17℃の水に浸漬させ急冷するサイクルにて、膜の剥離状態を観察する試験を行った。
結果は、(3)は3サイクル目で基材からシリコンを含む非晶質炭素膜の部分剥離が観察され、他は、10サイクル目でも剥離は全く観察されなかった。
本件にて、アルミニウム基材と亜鉛置換層とNi−P(5μm)と硬質クロムメッキ(5μm)と非晶質炭素膜の全ての層の密着状態が、従来実施されている、アルミニウム、アルミニウム合金系基材上にシリコンを含む非晶質炭素膜を中間層として形成した上に形成される非晶質炭素膜の密着力より格段に優れていることが確認できた。
3) Comparative verification of base material adhesion by heat cycle Prepare a sample base material of Al (5052 material) cylinder (diameter: 10 mm, height: 10 mm) as a base treatment (1) Zinc replacement layer + Ni-P (5μm) + Hard chrome plating (5μm)
(2) Zinc replacement layer + Ni-P (5 μm) + Hard chrome plating (05 μm)
(3) As an object to be compared, an untreated product is placed, each substrate is put in a vacuum apparatus, and argon is applied at a high voltage pulse plasma CVD apparatus at an applied voltage of -5 kV, a pulse frequency of 10 kHz, a gas flow rate of 40 SCCM, and a gas pressure of 2 Pa After performing surface cleaning by plasma for 10 minutes, an amorphous carbon film containing silicon, which is generally used to improve adhesion, is formed as an intermediate layer for 10 minutes, and amorphous carbon using acetylene as a raw material The step of forming a film for 30 minutes was performed twice, and an amorphous carbon film including an intermediate layer (0.4 μm) of 1.2 μm and Hv 1500 was formed on each equipment sample. The temperature of the film formation chamber at the end of film formation was 125 ° C.
After film formation, as a comparative test of adhesion by heat cycle, each sample after film formation was heated to 260 ° C. on a hot plate, held for 10 minutes, immersed in water at 17 ° C. and rapidly cooled, A test was conducted to observe the peeled state of the film.
As a result, in (3), partial peeling of the amorphous carbon film containing silicon from the substrate was observed at the third cycle, and no peeling was observed at the 10th cycle.
In this case, the adhesion state of all the layers of the aluminum base material, the zinc-substituted layer, Ni-P (5 μm), hard chrome plating (5 μm), and the amorphous carbon film is conventionally implemented. It was confirmed that the amorphous carbon film containing silicon was formed as an intermediate layer on the system base material, which was far superior to the adhesion of the amorphous carbon film formed.

4.各種基材の摩擦磨耗試験
1)試験試料の準備
下記の各試験試料1〜4(100mm×40mm、1mm厚)を準備し、摩擦磨耗試験機(JIS K 7218、ボール直径2mm、超硬球 押し込み荷重 500g〜700gに往復毎に変化)にて摩擦磨耗試験を行った。
(試料1)
アルミニウム合金5052材基材を弱アルカリの溶液に浸漬して、70℃で脱脂し、70℃の硫酸溶液に浸漬し基材表面をエッチィングした。さらに室温にて、50%の硝酸で基材を酸浸漬し、NaOHを主成分とする強アルカリの亜鉛置換液にて室温で亜鉛置換層を析出させ、スマットを落とすため、50%の硝酸に室温で浸漬し、さらに、前液と同じ亜鉛置換液にて亜鉛置換を計2回行った。
上記、亜鉛置換層を形成した後の基材に、無電解Ni−Pめっき層を20分間行い10μの厚さで析出させた。さらにその上層に電解めっきにより硬質クロムめっき層を35分間行い10μの厚さで成膜したものを、超音波洗浄後、高圧パルスプラズマCVD装置に投入して1×10−3Paまで減圧し、アルゴンガスプラズマで基材を約5分クリーニングした後、シリコンを含む中間層を形成し、原料ガスにアセチレンを使用し、印加電圧−5kV、パルス周波数10kHz、ガス流量40SCCM、ガス圧2Paにて中間層を形成する工程含め約20分炭素膜を析出させた。
炭素膜の厚さは0.4μ、硬度はHv1500を得た。成膜終了時の成膜室の温度は86℃であった。
(試料2)
アルミニウム合金5052材基材を、多層構造とせず、上記試料1の基材上に直接炭素膜を成膜したもの。中間層、炭素膜とも厚みは上記試料1と同じとした。
(試料3)
超硬合金(タングステン・カーバイド)H1(住友電工ハードメタル製)
(試料4)
SUS420J2
4). Friction and abrasion test of various substrates 1) Preparation of test samples The following test samples 1 to 4 (100 mm × 40 mm, 1 mm thickness) were prepared, and friction abrasion tester (JIS K 7218, ball diameter 2 mm, super hard ball indentation load) The frictional wear test was performed at 500 g to 700 g (changed every reciprocation).
(Sample 1)
The aluminum alloy 5052 base material was immersed in a weak alkaline solution, degreased at 70 ° C., and immersed in a sulfuric acid solution at 70 ° C. to etch the base material surface. Furthermore, the substrate is acid-immersed with 50% nitric acid at room temperature, and a zinc-substituted layer is deposited at room temperature with a strong alkaline zinc-substituting solution mainly composed of NaOH. It was immersed at room temperature and further zinc substitution was performed twice with the same zinc substitution solution as the previous solution.
The electroless Ni-P plating layer was deposited on the base material after the zinc-substituted layer was formed for 20 minutes and deposited to a thickness of 10 μm. Further, a hard chromium plating layer formed on the upper layer by electroplating for 35 minutes and formed into a film having a thickness of 10 μm is subjected to ultrasonic cleaning, and then put into a high-pressure pulse plasma CVD apparatus to reduce the pressure to 1 × 10 −3 Pa. After cleaning the substrate with argon gas plasma for about 5 minutes, an intermediate layer containing silicon is formed, acetylene is used as the source gas, and an intermediate is applied at an applied voltage of -5 kV, a pulse frequency of 10 kHz, a gas flow rate of 40 SCCM, and a gas pressure of 2 Pa. A carbon film was deposited for about 20 minutes including the step of forming a layer.
The carbon film had a thickness of 0.4 μm and a hardness of Hv1500. The temperature of the film formation chamber at the end of film formation was 86 ° C.
(Sample 2)
The aluminum alloy 5052 material base material does not have a multilayer structure, and a carbon film is formed directly on the base material of the sample 1 described above. The thickness of both the intermediate layer and the carbon film was the same as that of Sample 1.
(Sample 3)
Cemented carbide (tungsten carbide) H1 (Sumitomo Electric Hardmetal)
(Sample 4)
SUS420J2

2)評価結果
(試料1)
図6は摩擦係数グラフ、図7はボール軌跡部分の写真である。
試料1(本発明の、アルミニウム合金基材上に多層膜を成膜したもの)は、ボール100往復終了後も摩擦係数は非常に低く、安定しており、ボールの軌跡写真も軌跡が殆ど見分けられない程良好な耐摩擦磨耗性を示した。
(試料2)
図8は摩擦係数グラフであり、図9はボール軌跡部分の写真である。
試料2(アルミニウム合金基材上に炭素膜のみを成膜したもの)は、ボールの2往復目で摩擦係数が急上昇しており、8往復目で試験中止した時点のボールの軌跡写真(b)から、高圧加圧に対してアルミニウム基材自体が大きく抉れて破壊されている様子が確認できる。
(試料3)
図10は摩擦係数グラフであり、図11は100往復終了時のボール軌跡部分の写真である。
試料3(超硬合金)は、10往復後系数が急上昇し20往復で破壊されたと考えられる。
(試料4)
図12は摩擦係数グラフであり、図13は100往復終了時のボール軌跡部分の写真である。
試料4(SUS420J2)は、20往復後系数が急上昇し、40往復時で破壊されたと考えられる。
2) Evaluation result (sample 1)
FIG. 6 is a friction coefficient graph, and FIG. 7 is a photograph of a ball locus portion.
Sample 1 (a multi-layer film formed on an aluminum alloy substrate of the present invention) has a very low coefficient of friction even after the end of reciprocation of the ball 100 and is stable. The frictional wear resistance was so good that it could not be achieved.
(Sample 2)
FIG. 8 is a friction coefficient graph, and FIG. 9 is a photograph of a ball locus portion.
Sample 2 (with only a carbon film formed on an aluminum alloy substrate) has a sharp increase in the coefficient of friction at the second round-trip of the ball, and the trajectory photograph of the ball when the test was stopped at the eighth round-trip (b) From this, it can be confirmed that the aluminum base material itself is greatly drowned and broken with respect to high pressure.
(Sample 3)
FIG. 10 is a friction coefficient graph, and FIG. 11 is a photograph of the ball locus portion at the end of 100 reciprocations.
In Sample 3 (hard metal), the number of systems rapidly increased after 10 reciprocations, and was considered to have been destroyed in 20 reciprocations.
(Sample 4)
FIG. 12 is a friction coefficient graph, and FIG. 13 is a photograph of a ball locus portion at the end of 100 reciprocations.
In Sample 4 (SUS420J2), the number of systems rapidly increased after 20 reciprocations, and it was considered that the sample 4 was destroyed after 40 reciprocations.

今回の評価を通じて、柔らかく加工性に富み、軽量でもあり、比較的安価に入手可能なアルミにウム合金の加工品等に本発明の多層膜を成膜することにより、大きな耐摩耗性を付与することが可能となり、部品や設備の軽量化、低価格化など技術、経済的な効果は大きいことが示された。   Through this evaluation, the multilayer film of the present invention is formed on a processed product of um alloy on aluminum, which is soft, rich in workability, lightweight, and available at a relatively low cost, thereby providing great wear resistance. It has been shown that the technology and economic effects such as weight reduction and price reduction of parts and facilities are great.

Claims (5)

アルミニウム又はアルミニウム合金からなる基材上に、亜鉛置換層、無電解ニッケルめっき層、硬質クロムめっき層、及び非晶質炭素膜又はシリコン含有非晶質炭素膜がこの順に、又はさらに前記硬質クロムめっき層上に中間接着層を介してこの順に形成されていることを特徴とする多層膜構造体。   On a substrate made of aluminum or an aluminum alloy, a zinc substitution layer, an electroless nickel plating layer, a hard chromium plating layer, and an amorphous carbon film or a silicon-containing amorphous carbon film in this order, or further, the hard chromium plating A multilayer film structure, wherein the multilayer film structure is formed on the layer in this order via an intermediate adhesive layer. 硬度の傾斜構造を有していることを特徴とする、請求項1に記載の多層膜構造体。   The multilayer structure according to claim 1, wherein the multilayer structure has a gradient structure of hardness. アルミニウム又はアルミニウム合金からなる基材表面に亜鉛置換層を形成し、該亜鉛置換層をプライマー層として無電解めっき法によりニッケル層を形成し、次いで、めっき法により硬質クロム層を形成し、この上に又は中間接着層を介して、350℃以下の条件下で非晶質炭素膜又はシリコン含有非晶質炭素膜を形成することを特徴とするアルミニウム又はアルミニウム合金からなる基板への多層膜積層方法。   A zinc-substituted layer is formed on the surface of a substrate made of aluminum or an aluminum alloy, a nickel layer is formed by an electroless plating method using the zinc-substituted layer as a primer layer, and then a hard chromium layer is formed by a plating method. A method for laminating a multilayer film on a substrate made of aluminum or an aluminum alloy, characterized in that an amorphous carbon film or a silicon-containing amorphous carbon film is formed under conditions of 350 ° C. or less via an intermediate adhesive layer . 前記非晶質炭素膜又はシリコン含有非晶質炭素膜を、プラズマCVD法で形成することを特徴とする、請求項3に記載のアルミニウム又はアルミニウム合金からなる基板への多層膜積層方法。   4. The method of laminating a multilayer film on a substrate made of aluminum or an aluminum alloy according to claim 3, wherein the amorphous carbon film or the silicon-containing amorphous carbon film is formed by a plasma CVD method. 前記プラズマCVD法が、DCパルスプラズマCVD法であることを特徴とする、請求項4に記載の多層膜積層方法。   The multilayer film stacking method according to claim 4, wherein the plasma CVD method is a DC pulse plasma CVD method.
JP2010037580A 2010-02-23 2010-02-23 Multilayer film laminate using aluminum or aluminum alloy as substrate and lamination method therefor Pending JP2013091811A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010037580A JP2013091811A (en) 2010-02-23 2010-02-23 Multilayer film laminate using aluminum or aluminum alloy as substrate and lamination method therefor
TW100106068A TW201142083A (en) 2010-02-23 2011-02-23 Multilayer film laminate using aluminum or aluminum alloy as substrate, and lamination method therefor
PCT/JP2011/053902 WO2011105392A1 (en) 2010-02-23 2011-02-23 Multilayer film laminate using aluminum or aluminum alloy as substrate, and lamination method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037580A JP2013091811A (en) 2010-02-23 2010-02-23 Multilayer film laminate using aluminum or aluminum alloy as substrate and lamination method therefor

Publications (1)

Publication Number Publication Date
JP2013091811A true JP2013091811A (en) 2013-05-16

Family

ID=44506798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037580A Pending JP2013091811A (en) 2010-02-23 2010-02-23 Multilayer film laminate using aluminum or aluminum alloy as substrate and lamination method therefor

Country Status (3)

Country Link
JP (1) JP2013091811A (en)
TW (1) TW201142083A (en)
WO (1) WO2011105392A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101674465B1 (en) * 2016-04-01 2016-11-22 주식회사 엘씨엠에스티 Chromium plating method of aluminum
CN106661749A (en) * 2014-07-11 2017-05-10 萨夫罗克有限公司 A chromium-containing coating, a method for its production and a coated object
WO2018209374A1 (en) * 2017-05-19 2018-11-22 High Tech Coatings Gmbh Method for improving the wear resistance of a component
JP2019039434A (en) * 2018-11-19 2019-03-14 三菱重工業株式会社 Laminate member, and impeller, compressor, and engine using the same
US10443142B2 (en) 2014-01-15 2019-10-15 Savroc Ltd Method for producing chromium-containing multilayer coating and a coated object
US10443143B2 (en) 2014-01-15 2019-10-15 Savroc Ltd Method for producing a chromium coating and a coated object

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111616A1 (en) * 2013-01-15 2014-07-24 Savroc Ltd Method for producing a chromium coating on a metal substrate
MX2015015990A (en) * 2013-05-31 2017-01-11 Honda Motor Co Ltd Carbon-coated member and production method therefor.
TWI738581B (en) * 2020-12-03 2021-09-01 國立臺灣師範大學 Plate type alumina gas chromatography pipe column and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114683A (en) * 1980-12-29 1982-07-16 Seiko Epson Corp External part for portable watch and its production
JP2934263B2 (en) * 1989-10-18 1999-08-16 電気興業株式会社 Aluminum material and method of manufacturing the same
JP2003184743A (en) * 2001-12-12 2003-07-03 Toyota Industries Corp Shoe for swash plate type compressor and swash type compressor provided therewith
JP4242185B2 (en) * 2003-03-25 2009-03-18 日本ニュークローム株式会社 Pre-plating method, plating method and plated product of aluminum or aluminum alloy
JP2004346353A (en) * 2003-05-21 2004-12-09 Hitachi Ltd Method of forming amorphous carbon film
JP4848545B2 (en) * 2005-09-30 2011-12-28 Dowaサーモテック株式会社 Hard coating member and method for producing the same
JP2009149955A (en) * 2007-12-21 2009-07-09 Sanden Corp Surface structure of sliding member
EP2243858B1 (en) * 2008-02-12 2015-04-29 iMott Inc. Diamond-like carbon film forming apparatus and method for forming diamond-like carbon film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443142B2 (en) 2014-01-15 2019-10-15 Savroc Ltd Method for producing chromium-containing multilayer coating and a coated object
US10443143B2 (en) 2014-01-15 2019-10-15 Savroc Ltd Method for producing a chromium coating and a coated object
CN106661749A (en) * 2014-07-11 2017-05-10 萨夫罗克有限公司 A chromium-containing coating, a method for its production and a coated object
US10487412B2 (en) 2014-07-11 2019-11-26 Savroc Ltd Chromium-containing coating, a method for its production and a coated object
KR101674465B1 (en) * 2016-04-01 2016-11-22 주식회사 엘씨엠에스티 Chromium plating method of aluminum
WO2018209374A1 (en) * 2017-05-19 2018-11-22 High Tech Coatings Gmbh Method for improving the wear resistance of a component
JP2019039434A (en) * 2018-11-19 2019-03-14 三菱重工業株式会社 Laminate member, and impeller, compressor, and engine using the same

Also Published As

Publication number Publication date
WO2011105392A1 (en) 2011-09-01
TW201142083A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP2013091811A (en) Multilayer film laminate using aluminum or aluminum alloy as substrate and lamination method therefor
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
JP6267730B2 (en) Hard film-coated member coated with hard film and method for producing the same
EP2576871B1 (en) Method of plating stainless steel and plated material
CN104995339B (en) Method for producing a chromium coating on a metal substrate
EP2014792A1 (en) Corrosion and wear resistant coating for magnetic steel
Zou et al. Ultrasonic-assisted electroless Ni-P plating on dual phase Mg-Li alloy
CN110894605A (en) Corrosion resistant carbon based coatings
CN105568335B (en) A kind of technique that steel substrate surface prepares FeNiCoCuCr high entropy alloy coating
JP5403816B2 (en) DLC film coated member and method for manufacturing the same
CN113151826B (en) Corrosion-resistant coating process and corrosion-resistant coating prepared by same
WO2013111744A1 (en) Coated member and method for producing same
JP2009001854A (en) Steel sheet for vessel
JP2015024625A (en) Molding die for production method thereof
KR20160146471A (en) Film-forming structure on work and film-forming method on work
TWI568870B (en) Tubular target comprising a protective device
JP4990959B2 (en) Thick film DLC coated member and method for manufacturing the same
CN113481473B (en) Titanium alloy bearing seat, preparation method thereof and aviation component
CN112941463B (en) Nano multilayer oxynitride corrosion-resistant protective coating and preparation method and application thereof
RU2428516C2 (en) Procedure for production of nano structured gradient oxide coating of catalytic material by method of magnetron sputtering
JP2004346353A (en) Method of forming amorphous carbon film
KR100671422B1 (en) Forming method of Aluminum coatings by sputtering
JP5245103B2 (en) Thick film DLC coated member and method for manufacturing the same
JP5205606B2 (en) DLC film coated member and method for manufacturing the same
JP6719514B2 (en) Deposition of structurally hard wear resistant metal coatings on substrates