JP2013090921A - Radiography apparatus and image processing method - Google Patents

Radiography apparatus and image processing method Download PDF

Info

Publication number
JP2013090921A
JP2013090921A JP2012223096A JP2012223096A JP2013090921A JP 2013090921 A JP2013090921 A JP 2013090921A JP 2012223096 A JP2012223096 A JP 2012223096A JP 2012223096 A JP2012223096 A JP 2012223096A JP 2013090921 A JP2013090921 A JP 2013090921A
Authority
JP
Japan
Prior art keywords
image
subject
grating
differential image
phase differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012223096A
Other languages
Japanese (ja)
Inventor
Takuji Tada
拓司 多田
Atsuyuki Hashimoto
温之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012223096A priority Critical patent/JP2013090921A/en
Publication of JP2013090921A publication Critical patent/JP2013090921A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a noiseless and fine phase differential image.SOLUTION: A radiography apparatus includes: an X-ray detector 13 which generates image data by detecting X-rays emitted from an X-ray source and transmitted through a subject H; a grating unit 12 which is arranged between the X-ray source and the X-ray detector; a phase differential image generating unit 40 which generates the phase differential image on the basis of the image data 51 and 52 obtained by the X-ray detector; an unwrapping processing unit 41 which applies unwrapping processing to the phase differential image; a trend removing unit 101 which removes predetermined frequency components from an offset image and a subject image by setting the unwrapping-processed phase differential image, obtained in the state of the presence of the subject, as the offset image and setting the unwrapping-processed phase differential image, obtained by photographing the subject, as the subject image; and an offset removal unit 102 which removes noises except the predetermined frequency components by taking the difference between the offset image and the subject image, from which the predetermined frequency components are removed by the trend removing unit 101.

Description

本発明は、被検体による放射線の位相変化に基づく画像を検出する放射線撮影装置及びこれに用いられる画像処理方法に関する。   The present invention relates to a radiation imaging apparatus for detecting an image based on a phase change of radiation by a subject and an image processing method used therefor.

放射線、例えばX線は、物質を構成する元素の重さ(原子番号)と物質の密度及び厚さとに依存して吸収され減衰するといった特性を有する。この特性に着目し、医療診断や非破壊検査等の分野において、被検体の内部を透視するためのプローブとしてX線が利用されている。   Radiation, such as X-rays, has a characteristic that it is absorbed and attenuated depending on the weight (atomic number) of the elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.

一般的なX線撮影装置では、X線を放射するX線源と、X線を検出するX線画像検出器との間に被検体を配置して、被検体を透過したX線の撮影を行う。この場合、X線源からX線画像検出器に向けて放射されたX線は、被検体を透過する際に吸収され減衰した後、X線画像検出器に入射する。この結果、被検体によるX線の強度変化に基づく画像がX線画像検出器により検出される。   In a general X-ray imaging apparatus, an object is placed between an X-ray source that emits X-rays and an X-ray image detector that detects X-rays, and X-rays transmitted through the object are imaged. Do. In this case, X-rays emitted from the X-ray source toward the X-ray image detector are absorbed and attenuated when passing through the subject, and then enter the X-ray image detector. As a result, an image based on an X-ray intensity change by the subject is detected by the X-ray image detector.

X線吸収能は、原子番号が小さい元素ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線の強度変化が小さく、画像に十分なコントラストが得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線吸収能の差が小さいため、コントラストが得られにくい。   Since the X-ray absorptivity becomes lower with an element having a smaller atomic number, there is a problem that a change in X-ray intensity is small and sufficient contrast cannot be obtained in a soft tissue or soft material. For example, most of the components of the cartilage portion constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the X-ray absorption capacity between them is small, so that it is difficult to obtain contrast.

このような問題を背景に、被検体によるX線の強度変化に代えて、被検体によるX線の位相変化に基づいた画像を得るX線位相イメージングの研究が近年盛んに行われている。X線位相イメージングは、被検体に入射したX線の位相変化が強度変化より大きいことに基づき、X線の位相変化を画像化する方法であり、X線吸収能が低い被検体に対しても高コントラストの画像を得ることができる。X線位相イメージングの一種として、2枚の回折格子とX線画像検出器とを用いてX線タルボ干渉計を構成することにより、X線の位相変化を検出するX線撮影装置が知られている(例えば、特許文献1参照)。   Against this background, research on X-ray phase imaging that obtains an image based on the phase change of the X-ray by the subject instead of the change in the intensity of the X-ray by the subject has been actively conducted in recent years. X-ray phase imaging is a method of imaging the X-ray phase change based on the fact that the phase change of the X-ray incident on the subject is larger than the intensity change. A high-contrast image can be obtained. As one type of X-ray phase imaging, an X-ray imaging apparatus that detects an X-ray phase change by configuring an X-ray Talbot interferometer using two diffraction gratings and an X-ray image detector is known. (For example, refer to Patent Document 1).

このX線撮影装置は、X線源から見て被検体の背後に第1の回折格子を配置し、第1の回折格子からタルボ距離だけ離れた位置に第2の回折格子を配置し、その背後にX線画像検出器を配置したものである。タルボ距離は、第1の回折格子を通過したX線が、タルボ効果によって第1の回折格子の自己像(縞画像)を形成する距離であり、第1の回折格子の格子ピッチとX線波長とに依存する。この自己像は、被検体でのX線の位相変化で屈折が生じることにより変調される。この変調量を検出することにより、X線の位相変化が画像化される。   In this X-ray imaging apparatus, the first diffraction grating is disposed behind the subject as viewed from the X-ray source, and the second diffraction grating is disposed at a position separated from the first diffraction grating by the Talbot distance. An X-ray image detector is arranged behind. The Talbot distance is the distance at which the X-rays that have passed through the first diffraction grating form a self-image (striped image) of the first diffraction grating due to the Talbot effect, and the grating pitch of the first diffraction grating and the X-ray wavelength Depends on and. This self-image is modulated by refraction caused by the phase change of X-rays in the subject. By detecting this modulation amount, the phase change of the X-ray is imaged.

上記変調量の検出方法として縞走査法が知られている。縞走査法とは、第1の回折格子に対して第2の回折格子を、第1の回折格子の面に平行でかつ第1の回折格子の格子線方向に垂直な方向に、所定の走査ピッチで並進移動(走査)させながら、各走査位置において、X線源からX線を放射し、被検体、第1及び第2の回折格子を通過したX線をX線画像検出器により撮影する方法である。このX線画像検出器により得られる各画素の画素値の上記走査に対する変化を表す信号(強度変調信号)について位相ズレ量(被検体が存在しない場合の初期位置からの位相差)を算出することにより、上記変調量に関連する画像が得られる。この画像は、被検体の屈折率を反映した画像であり、X線の位相変化(位相シフト)の微分量に対応するため、位相微分画像と呼ばれる。   A fringe scanning method is known as a method for detecting the modulation amount. In the fringe scanning method, the second diffraction grating is scanned with respect to the first diffraction grating in a direction parallel to the plane of the first diffraction grating and perpendicular to the grating line direction of the first diffraction grating. X-rays are radiated from the X-ray source at each scanning position while being translated (scanned) at a pitch, and the X-ray image passing through the subject and the first and second diffraction gratings is imaged by the X-ray image detector. Is the method. Calculating a phase shift amount (phase difference from an initial position when no subject exists) for a signal (intensity modulation signal) representing a change in the pixel value of each pixel obtained by the X-ray image detector with respect to the scanning. Thus, an image related to the modulation amount is obtained. This image is an image reflecting the refractive index of the subject, and corresponds to the differential amount of the X-ray phase change (phase shift), and is called a phase differential image.

特許文献1に示されているように、上記位相ズレ量は、複素数の偏角を抽出する関数(arg[…])や、逆正接関数(tan−1[…])を用いて算出される。このため、位相微分画像は、上記関数の値域(−πから+π、または、−π/2から+π/2)に畳み込まれた(ラップされた)値により表現される。このようにラップされた位相微分画像には、値域の上限から下限に変化する箇所、または下限から上限に変化する箇所で不連続点が生じることがあるため、この不連続点をなくして連続化するようにアンラップ処理を行うことが知られている(例えば、特許文献2参照)。 As shown in Patent Document 1, the phase shift amount is calculated using a function (arg [...]) for extracting a complex argument and an arctangent function (tan -1 [...]). . For this reason, the phase differential image is expressed by a value convolved (wrapped) in the range of the function (−π to + π or −π / 2 to + π / 2). In the phase differential image wrapped in this way, discontinuous points may occur at locations where the upper limit of the range changes to the lower limit or at locations where the lower limit changes to the upper limit. It is known to perform the unwrapping process (see, for example, Patent Document 2).

アンラップ処理は、画像内の所定位置を起点とし、該起点から所定の経路に沿って順に行われる。この経路中に上記不連続点が検出されると、この不連続点以降のデータに、上記関数の値域に相当する値が一律に加算または減算される。これにより、不連続点がなくなり、データが連続化する。   The unwrap process is performed in order along a predetermined path from a predetermined position in the image as a starting point. When the discontinuous point is detected in the path, a value corresponding to the range of the function is uniformly added to or subtracted from data after the discontinuous point. Thereby, discontinuous points are eliminated and data is continuous.

また、位相微分画像にはノイズが重畳され、画像ムラが生じ、被検体の観察の妨げになることがある。こうしたノイズは、例えば、各格子や線源等の配置誤差や撮影時の温度環境等、撮影時状況による様々な原因によって生じるが、配置誤差や温度環境等の撮影時の状況がほぼ同じであれば、被検体の有無に関わらず、同じ態様のノイズとして現れる。このため、被検体を撮影して得られた位相微分画像から、ほぼ同環境で被検体のない状態で撮影して得られた位相微分画像を減算することにより、被検体を撮影して得られた位相微分画像からノイズ成分を除去することが知られている(特許文献1,2参照)。   Further, noise is superimposed on the phase differential image, resulting in image unevenness, which may hinder the observation of the subject. Such noise is caused by various causes depending on the shooting conditions such as the placement error of each grid or radiation source, the temperature environment at the time of shooting, etc., but the situation at the time of shooting such as the placement error and the temperature environment is almost the same. For example, the noise appears in the same manner regardless of the presence or absence of the subject. For this reason, it can be obtained by imaging the subject by subtracting the phase differential image obtained by imaging in the same environment and without the subject from the phase differential image obtained by imaging the subject. It is known to remove noise components from the phase differential image (see Patent Documents 1 and 2).

WO2004/058070号公報WO2004 / 058070 特開2011−045655号公報JP 2011-045655 A

しかしながら、被検体を撮影して得られた位相微分画像から、被検体のない状態で撮影して得られた位相微分画像を減算した後にも、被写体の像とは関連しないノイズ成分(以下、トレンドという)が残存してしまうことがある。トレンドは、撮影のたびに変化する点が、前述の被検体のない状態で撮影した位相微分画像の減算により除去されるノイズ成分と異なるが、トレンドも前述のノイズ成分と同様に被検体の観察の妨げになるので、トレンドをも確実に除去することのが望まれている。   However, even after subtracting the phase differential image obtained by imaging in the absence of the subject from the phase differential image obtained by imaging the subject, noise components that are not related to the subject image (hereinafter referred to as trend) May remain). Although the trend changes with each imaging, the trend is different from the noise component removed by subtraction of the phase differential image captured in the absence of the subject, but the trend is also similar to the noise component described above. Therefore, it is desirable to remove the trend without fail.

本発明は上述の点に鑑みてなされたものであり、被検体のない状態で撮影した位相微分画像の減算により除去されるノイズ成分だけでなく、トレンドも残存しない精細な位相微分画像が得られる放射線撮影装置を提供することを目的とする。また、トレンドのない位相微分画像を得るための画像処理方法を提供することを目的とする。   The present invention has been made in view of the above-described points, and not only a noise component removed by subtraction of a phase differential image photographed in a state where there is no subject, but also a fine phase differential image in which no trend remains is obtained. An object is to provide a radiation imaging apparatus. It is another object of the present invention to provide an image processing method for obtaining a phase differential image having no trend.

本発明の放射線撮影装置は、被検体に向けて放射線を射出する放射線源と、放射線源から射出された放射線を検出して画像データを生成する放射線検出器と、前記放射線源と前記放射線検出器との間に配置された格子部と、前記放射線検出器により得られた画像データに基づいて、位相微分画像を生成する位相微分画像生成部と、前記位相微分画像にアンラップ処理を施し、アンラップ処理済み位相微分画像を生成するアンラップ処理部と、被検体がない状態で得られた前記アンラップ処理済み位相微分画像をオフセット画像、被検体を撮影して得られた前記アンラップ処理済み位相微分画像を被検体画像とし、前記オフセット画像及び前記被検体画像から所定周波数成分を除去する第1ノイズ除去部と、前記第1ノイズ除去部により、前記所定周波数成分が除去された前記オフセット画像及び前記被検体画像の差分をとることにより、前記所定周波数成分以外のノイズを除去する第2ノイズ除去部と、を備えることを特徴とする放射線撮影装置。   The radiation imaging apparatus of the present invention includes a radiation source that emits radiation toward a subject, a radiation detector that detects radiation emitted from the radiation source and generates image data, and the radiation source and the radiation detector. A phase differential image generation unit that generates a phase differential image based on image data obtained by the radiation detector, an unwrap process performed on the phase differential image, and an unwrap process An unwrap processing unit that generates a completed phase differential image, an offset image of the unwrapped phase differential image obtained without a subject, and an unwrapped phase differential image obtained by photographing the subject. A first noise removing unit that removes a predetermined frequency component from the offset image and the subject image as a specimen image; and By taking the difference between the offset image and the subject image which the constant frequency component is removed, the radiation imaging apparatus, characterized by comprising a second noise removing unit for removing noise other than the predetermined frequency component.

前記第1ノイズ除去部は、前記オフセット画像及び前記被検体画像をフーリエ変換して前記所定周波数成分を除去することが好ましい。   The first noise removing unit preferably removes the predetermined frequency component by performing a Fourier transform on the offset image and the subject image.

前記第1ノイズ除去部は、前記所定周波数成分として前記所定周波数以下の成分を除去することが好ましい。   The first noise removing unit preferably removes a component having the predetermined frequency or less as the predetermined frequency component.

前記放射線検出器により得られた画像データに基づいて吸収微分画像を生成する吸収微分画像生成部を備え、前記第1ノイズ除去部は、前記位相微分画像にあり、前記吸収微分画像にない周波数成分を前記所定周波数成分として、前記被検体画像及び前記オフセット画像から除去することが好ましい。   An absorption differential image generation unit that generates an absorption differential image based on image data obtained by the radiation detector, wherein the first noise removal unit is in the phase differential image and is not in the absorption differential image. Is preferably removed from the subject image and the offset image as the predetermined frequency component.

前記吸収微分画像生成部は、前記被検体がない状態で得られた前記画像データに基づいて第1吸収微分画像を、前記被検体を撮影して得られた前記画像データに基づいて第2吸収微分画像をそれぞれ生成し、前記第1ノイズ除去部は、前記オフセット画像にあり、前記第1吸収微分画像にない周波数成分を前記オフセット画像から除去し、前記被検体画像にあり、前記第2吸収微分画像にない周波数成分を前記被検体画像から除去することが好ましい。   The absorption differential image generation unit obtains a first absorption differential image based on the image data obtained without the subject, and a second absorption based on the image data obtained by imaging the subject. Each differential image is generated, and the first noise removing unit removes a frequency component that is present in the offset image and is not present in the first absorption differential image from the offset image, and is present in the subject image, and the second absorption It is preferable to remove frequency components that are not in the differential image from the subject image.

前記吸収微分画像生成部は、前記被検体がない状態で得られた前記画像データに基づいて第1吸収微分画像を生成し、前記第1ノイズ除去部は、前記オフセット画像にあり、前記第1吸収微分画像にない周波数成分を前記所定周波数成分として、前記オフセット画像と前記被検体画像からそれぞれ除去することが好ましい。   The absorption differential image generation unit generates a first absorption differential image based on the image data obtained without the subject, and the first noise removal unit is in the offset image, It is preferable that a frequency component not included in the absorption differential image is removed from the offset image and the subject image as the predetermined frequency component.

前記吸収微分画像は、前記被検体を撮影して得られた前記画像データに基づいて第2吸収微分画像を生成し、前記第1ノイズ除去部は、前記被検体画像にあり、前記第2吸収微分画像にない周波数成分を前記所定周波数として、前記被検体画像と前記オフセット画像からそれぞれ除去することが好ましい。   The absorption differential image generates a second absorption differential image based on the image data obtained by imaging the subject, and the first noise removal unit is in the subject image, and the second absorption image It is preferable that a frequency component not included in the differential image is removed from the subject image and the offset image as the predetermined frequency.

前記格子部は、放射線源からの放射線を通過させて第1の周期パターン像を生成する第1の格子と、前記第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2の格子と有し、前記放射線画像検出器は、前記第2の周期パターン像を検出して画像データを生成することが好ましい。   The grating unit partially shields the first periodic pattern image by passing the radiation from the radiation source to generate the first periodic pattern image, and displays the second periodic pattern image. It is preferable that the radiographic image detector generates the image data by detecting the second periodic pattern image.

前記格子部は、前記第1の格子または第2の格子を所定の走査ピッチで移動させ、複数の走査位置に順に設定する走査機構を備え、前記放射線画像検出器は、前記各走査位置で前記第2の周期パターン像を検出して画像データを生成し、前記位相微分画像生成部は、前記放射線画像検出器により生成される複数の画像データに基づいて位相微分画像を生成することが好ましい。   The grating unit includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets a plurality of scanning positions, and the radiological image detector includes the scanning mechanism at each scanning position. Preferably, the second periodic pattern image is detected to generate image data, and the phase differential image generation unit generates a phase differential image based on a plurality of image data generated by the radiation image detector.

前記走査機構は、前記第1の格子または第2の格子を、格子線に直交する方向に移動させることが好ましい。   The scanning mechanism preferably moves the first grating or the second grating in a direction perpendicular to the grating lines.

前記走査機構は、前記第1の格子または第2の格子を、格子線に対して傾斜する方向に移動させることが好ましい。   The scanning mechanism preferably moves the first grating or the second grating in a direction inclined with respect to the grating line.

前記位相微分画像生成部は、前記放射線検出器により得られる単一の画像データに基づいて前記位相微分画像を生成することが好ましい。   Preferably, the phase differential image generation unit generates the phase differential image based on single image data obtained by the radiation detector.

前記第1の格子は、吸収型格子であり、入射した放射線を幾何光学的に投影することにより前記第1の周期パターン像を生成することが好ましい。   Preferably, the first grating is an absorption grating, and the first periodic pattern image is generated by geometrically optically projecting incident radiation.

前記第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ効果を生じさせて前記第1の周期パターン像を生成することが好ましい。   It is preferable that the first grating is an absorption grating or a phase grating, and generates the first periodic pattern image by causing a Talbot effect to incident radiation.

前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットを備えることが好ましい。   It is preferable to provide a multi slit that partially blocks the radiation emitted from the radiation source and disperses the focal point.

本発明の画像処理方法は、放射線源と放射線検出器との間に格子部を配置して被検体のない状態で撮影を行うことにより得られる画像データに基づいて位相微分画像を生成し、アンラップ処理を施すことによりオフセット画像を生成するオフセット画像生成ステップと、前記オフセット画像から所定周波数成分を除去する第1ノイズ除去ステップと、放射線源と放射線検出器との間に格子部を配置して被検体の撮影を行うことにより得られる画像データに基づいて位相微分画像を生成し、アンラップ処理を施すことによって被検体画像を生成する被検体画像生成ステップと、前記被検体画像から前記所定周波数成分を除去する第2ノイズ除去ステップと、前記所定周波数成分が除去された前記オフセット画像と前記被検体画像の差分を取ることにより、前記所定周波数以外のノイズを除去する第3ノイズ除去ステップと、
を備えることを特徴とする。
The image processing method of the present invention generates a phase differential image based on image data obtained by arranging a grating portion between a radiation source and a radiation detector and performing imaging without a subject, and unwraps the image. An offset image generating step for generating an offset image by performing processing, a first noise removing step for removing a predetermined frequency component from the offset image, and a grating portion disposed between the radiation source and the radiation detector. A phase differential image is generated based on image data obtained by imaging the specimen, and a subject image generation step for generating a subject image by performing an unwrap process; and the predetermined frequency component from the subject image A second noise removing step to remove; and taking a difference between the offset image from which the predetermined frequency component has been removed and the subject image. Accordingly, a third noise removal step of removing noise other than the predetermined frequency,
It is characterized by providing.

本発明によれば、被検体のない状態で撮影した位相微分画像の減算により除去されるノイズ成分だけでなく、トレンドもない精細な位相微分画像を得られる放射線撮影装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the radiography apparatus which can obtain not only the noise component removed by the subtraction of the phase differential image image | photographed in the state without the subject but the fine phase differential image without a trend can be provided.

X線撮影装置の構成を示すブロック図である。It is a block diagram which shows the structure of an X-ray imaging apparatus. X線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of a X-ray image detector. 第1及び第2の格子の構成を説明する説明図である。It is explanatory drawing explaining the structure of the 1st and 2nd grating | lattice. 強度変調信号を示すグラフである。It is a graph which shows an intensity | strength modulation signal. 画像処理部の構成を示すブロック図である。It is a block diagram which shows the structure of an image process part. アンラップ処理の態様を示す説明図である。It is explanatory drawing which shows the aspect of an unwrap process. プレ撮影時の動作態様を示すフローチャートである。It is a flowchart which shows the operation | movement aspect at the time of pre imaging | photography. 本撮影時の動作態様を示すフローチャートである。It is a flowchart which shows the operation | movement aspect at the time of this imaging | photography. プレ撮影画像データにモアレが生じる様子を示す説明図である。It is explanatory drawing which shows a mode that a moire arises in pre imaging | photography image data. モアレが位相微分画像中にノイズとして現れる態様を示す説明図である。It is explanatory drawing which shows the aspect in which a moire appears as noise in a phase differential image. オフセットノイズの態様を示す説明図である。It is explanatory drawing which shows the aspect of offset noise. 本撮影時に生成される各種画像の態様を示す説明図である。It is explanatory drawing which shows the aspect of the various images produced | generated at the time of this imaging | photography. オフセット画像の減算によりトレンドが残存する態様を示す説明図である。It is explanatory drawing which shows the aspect in which a trend remains by the subtraction of an offset image. トレンドの横方向成分を検出する態様を示す説明図である。It is explanatory drawing which shows the aspect which detects the horizontal direction component of a trend. 横方向トレンド画像の例を示す説明図である。It is explanatory drawing which shows the example of a horizontal direction trend image. トレンドの横方向成分を除去する様子を示す説明図である。It is explanatory drawing which shows a mode that the horizontal direction component of a trend is removed. トレンドの縦方向成分を検出する態様を示す説明図である。It is explanatory drawing which shows the aspect which detects the vertical direction component of a trend. 縦方向トレンド画像の例を示す説明図である。It is explanatory drawing which shows the example of a vertical direction trend image. トレンドの縦方向成分を除去する様子を示す説明図である。It is explanatory drawing which shows a mode that the vertical direction component of a trend is removed. 全体に被検体が写し出された位相微分画像の例を示す図である。It is a figure which shows the example of the phase differential image in which the subject was projected on the whole. 周期的な特徴を有するトレンドを示す説明図である。It is explanatory drawing which shows the trend which has a periodic characteristic. 被検体の配置を制限するための指標の例を示す図である。It is a figure which shows the example of the parameter | index for restrict | limiting the arrangement | positioning of a subject. 素抜け領域に擬似吸収体を設ける例を示す説明図である。It is explanatory drawing which shows the example which provides a pseudo | simulation absorber in an element | child omission region. 第2実施形態のノイズ除去部43の態様を示すブロック図である。It is a block diagram which shows the aspect of the noise removal part 43 of 2nd Embodiment. 第2実施形態のプレ撮影の態様を示すフローチャートである。It is a flowchart which shows the aspect of the pre imaging | photography of 2nd Embodiment. 第2実施形態の本撮影の態様を示すフローチャートである。It is a flowchart which shows the aspect of the main imaging | photography of 2nd Embodiment. 第3実施形態の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of 3rd Embodiment. 第3実施形態のトレンド検出方法を示す説明図である。It is explanatory drawing which shows the trend detection method of 3rd Embodiment. 第3実施形態の構成の他の例を示すブロック図である。It is a block diagram which shows the other example of a structure of 3rd Embodiment. マルチスリットを有するX線撮影装置を説明する説明図である。It is explanatory drawing explaining the X-ray imaging apparatus which has a multi slit.

[第1実施形態]
図1において、X線撮影装置10は、X線源11、格子部12、X線画像検出器13、メモリ14、画像処理部15、画像記録部16、撮影制御部17、コンソール18、及びシステム制御部19を備える。X線源11は、例えば、回転陽極型のX線管と、X線の照射野を制限するコリメータとを有し、撮影制御部17の制御に基づき、被検体Hに向けてX線を放射する。
[First Embodiment]
In FIG. 1, an X-ray imaging apparatus 10 includes an X-ray source 11, a grating unit 12, an X-ray image detector 13, a memory 14, an image processing unit 15, an image recording unit 16, an imaging control unit 17, a console 18, and a system. A control unit 19 is provided. The X-ray source 11 includes, for example, a rotary anode type X-ray tube and a collimator that limits the X-ray irradiation field, and emits X-rays toward the subject H based on the control of the imaging control unit 17. To do.

格子部12は、第1の格子21、第2の格子22、及び走査機構23を備える。第1及び第2の格子21,22は、X線照射方向であるZ方向に関してX線源11に対向配置されている。X線源11と第1の格子21との間には、被検体Hが配置可能な間隔が設けられている。X線画像検出器13は、例えば、半導体回路を用いたフラットパネル検出器であり、第2の格子22の背後に、検出面13aがZ方向に直交するように配置されている。   The grating unit 12 includes a first grating 21, a second grating 22, and a scanning mechanism 23. The first and second gratings 21 and 22 are disposed to face the X-ray source 11 in the Z direction, which is the X-ray irradiation direction. A space is provided between the X-ray source 11 and the first grating 21 so that the subject H can be arranged. The X-ray image detector 13 is, for example, a flat panel detector using a semiconductor circuit, and is disposed behind the second grating 22 so that the detection surface 13a is orthogonal to the Z direction.

第1の格子21は、Z方向に直交する格子面内の一方向であるY方向に延伸された複数のX線吸収部21a及びX線透過部21bを備えた吸収型格子である。X線吸収部21a及びX線透過部21bは、Z方向及びY方向に直交するX方向に交互に配列されており、縞状のパターンを形成している。第2の格子22は、第1の格子21と同様にY方向に延伸され、かつX方向に交互に配列された複数のX線吸収部22a及びX線透過部22bを備えた吸収型格子である。X線吸収部21a,22aは、金(Au)、白金(Pt)等のX線吸収性を有する材料により形成されている。X線透過部21b,22bは、シリコン(Si)や樹脂等のX線透過性を有する材料や空隙により形成されている。   The 1st grating | lattice 21 is an absorption type grating | lattice provided with the some X-ray absorption part 21a and X-ray transmission part 21b extended | stretched in the Y direction which is one direction in the lattice plane orthogonal to a Z direction. The X-ray absorption part 21a and the X-ray transmission part 21b are alternately arranged in the X direction orthogonal to the Z direction and the Y direction, and form a striped pattern. The second grating 22 is an absorption type grating having a plurality of X-ray absorbing portions 22 a and X-ray transmitting portions 22 b that are extended in the Y direction and alternately arranged in the X direction, like the first grating 21. is there. The X-ray absorbing portions 21a and 22a are formed of a material having X-ray absorption properties such as gold (Au) and platinum (Pt). The X-ray transmissive portions 21b and 22b are formed of a material having X-ray permeability such as silicon (Si) or resin or a gap.

第1の格子21は、X線源11から放射されたX線を部分的に通過させて第1の周期パターン像(以下、G1像という)を生成する。第2の格子22は、第1の格子21により生成されたG1像を部分的に透過させて第2の周期パターン像(以下、G2像という)を生成する。被検体Hが配置されていない場合において、G1像は、第2の格子22の格子パターンとほぼ一致する。   The first grating 21 partially passes X-rays emitted from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as G1 image). The second grating 22 partially transmits the G1 image generated by the first grating 21 to generate a second periodic pattern image (hereinafter referred to as G2 image). When the subject H is not arranged, the G1 image substantially matches the lattice pattern of the second lattice 22.

X線画像検出器13は、G2像を検出して画像データを生成する。メモリ14は、X線画像検出器13から読み出された画像データを一時的に記憶する。画像処理部15は、メモリ14に記憶された画像データに基づいて位相微分画像を生成し、この位相微分画像に基づいて位相コントラスト画像を生成する。画像記録部16は、位相微分画像と位相コントラスト画像とを記録する。   The X-ray image detector 13 detects the G2 image and generates image data. The memory 14 temporarily stores the image data read from the X-ray image detector 13. The image processing unit 15 generates a phase differential image based on the image data stored in the memory 14, and generates a phase contrast image based on the phase differential image. The image recording unit 16 records a phase differential image and a phase contrast image.

走査機構23は、第2の格子22をX方向に並進移動させ、第1の格子21に対する第2の格子22の相対位置を順次に変更する。走査機構23は、圧電アクチュエータや静電アクチュエータにより構成され、後述する縞走査を実行するために、撮影制御部17の制御に基づいて駆動される。メモリ14には、縞走査の各走査位置でX線画像検出器13により得られる画像データが一括して記憶される。   The scanning mechanism 23 translates the second grating 22 in the X direction, and sequentially changes the relative position of the second grating 22 with respect to the first grating 21. The scanning mechanism 23 is configured by a piezoelectric actuator or an electrostatic actuator, and is driven based on the control of the imaging control unit 17 in order to execute a fringe scanning described later. The memory 14 collectively stores image data obtained by the X-ray image detector 13 at each scanning position of fringe scanning.

コンソール18は、操作部18a及びモニタ18bを備えている。操作部18aは、キーボードやマウス等により構成され、X線源11の管電圧、管電流、照射時間等の撮影条件の設定や、本撮影またはプレ撮影のモード選択、撮影実行指示等の操作入力を可能とする。本撮影とは、X線源11と第1の格子21との間に被検体Hを配置した状態で行う撮影モードである。プレ撮影とは、X線源11と第1の格子21との間に被検体Hを配置せずに行う撮影モードである。詳しくは後述するが、プレ撮影は、第1及び第2の格子21,22の製造誤差や配置誤差等により生じるバックグランド成分をオフセット画像として取得するために用いられる。   The console 18 includes an operation unit 18a and a monitor 18b. The operation unit 18a includes a keyboard, a mouse, and the like, and sets operation conditions such as setting of imaging conditions such as tube voltage, tube current, and irradiation time of the X-ray source 11, mode selection for main imaging or pre-imaging, and imaging execution instruction. Is possible. The main imaging is an imaging mode performed with the subject H placed between the X-ray source 11 and the first grating 21. Pre-imaging is an imaging mode performed without placing the subject H between the X-ray source 11 and the first grating 21. As will be described in detail later, the pre-photographing is used to acquire a background component caused by a manufacturing error or an arrangement error of the first and second gratings 21 and 22 as an offset image.

モニタ18bは、撮影条件等の撮影情報や、画像記録部16に記録された位相微分画像及び位相コントラスト画像の表示を行う。システム制御部19は、操作部18aから入力される信号に応じて各部を統括的に制御する。   The monitor 18b displays photographing information such as photographing conditions and a phase differential image and a phase contrast image recorded in the image recording unit 16. The system control unit 19 comprehensively controls each unit according to a signal input from the operation unit 18a.

図2において、X線画像検出器13は、入射X線により半導体膜(図示せず)に生じた電荷を収集する画素電極31と、画素電極31によって収集された電荷を読み出すためのTFT(Thin Film Transistor)32とを備えた画素部30が2次元状に多数配列されたものである。半導体膜は、例えば、アモルファスセレンにより形成されている。   In FIG. 2, an X-ray image detector 13 includes a pixel electrode 31 that collects charges generated in a semiconductor film (not shown) by incident X-rays, and a TFT (Thin for reading charges collected by the pixel electrode 31). A plurality of pixel portions 30 having a film transistor (32) are arranged in a two-dimensional manner. The semiconductor film is made of amorphous selenium, for example.

また、X線画像検出器13は、ゲート走査線33、走査回路34、信号線35、及び読み出し回路36を備える。ゲート走査線33は、画素部30の行ごとに設けられている。走査回路34は、TFT32をオン/オフするための走査信号を各ゲート走査線33に付与する。信号線35は、画素部30の列ごとに設けられている。読み出し回路36は、各信号線35を介して画素部30から電荷を読み出し、画像データに変換して出力する。各画素部30の詳細な層構成については、例えば、特開2002−26300号公報に記載されている層構成と同様である。   The X-ray image detector 13 includes a gate scanning line 33, a scanning circuit 34, a signal line 35, and a readout circuit 36. The gate scanning line 33 is provided for each row of the pixel unit 30. The scanning circuit 34 applies a scanning signal for turning on / off the TFT 32 to each gate scanning line 33. The signal line 35 is provided for each column of the pixel unit 30. The readout circuit 36 reads out electric charges from the pixel unit 30 through the signal lines 35, converts them into image data, and outputs them. The detailed layer configuration of each pixel unit 30 is the same as the layer configuration described in JP-A-2002-26300, for example.

読み出し回路36は、積分アンプ、A/D変換器、補正回路(いずれも図示せず)等を備える。積分アンプは、各画素部30から信号線35を介して出力された電荷を積分して画像信号を生成する。A/D変換器は、積分アンプにより生成された画像信号を、デジタル形式の画像データに変換する。補正回路は、画像データに対して、暗電流補正、ゲイン補正、リニアリティ補正等を行う。この補正後の画像データがメモリ14に記憶される。   The readout circuit 36 includes an integration amplifier, an A / D converter, a correction circuit (none of which is shown), and the like. The integrating amplifier integrates the charges output from each pixel unit 30 via the signal line 35 to generate an image signal. The A / D converter converts the image signal generated by the integrating amplifier into digital image data. The correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data. The corrected image data is stored in the memory 14.

X線画像検出器13は、入射X線を半導体膜で直接電荷に変換する直接変換型に限られず、ヨウ化セシウム(CsI)やガドリウムオキシサルファイド(GOS)等のシンチレータで入射X線を可視光に変換し、可視光をフォトダイオードで電荷に変換する間接変換型であってもよい。さらに、X線画像検出器13を、シンチレータとCMOSセンサを組み合わせて構成してもよい。   The X-ray image detector 13 is not limited to the direct conversion type in which incident X-rays are directly converted into electric charges with a semiconductor film, and the incident X-rays are visible with a scintillator such as cesium iodide (CsI) or gadolinium oxysulfide (GOS). It may be an indirect conversion type that converts light into light and converts visible light into electric charge with a photodiode. Further, the X-ray image detector 13 may be configured by combining a scintillator and a CMOS sensor.

図3において、X線源11から照射されるX線は、X線焦点11aを発光点としたコーンビームである。第1の格子21は、タルボ効果が生じず、X線透過部21bを通過したX線を幾何光学的に投影するように構成される。具体的には、X方向へのX線透過部21bの幅を、X線源11から照射されるX線のピーク波長より十分大きな値とし、X線の大部分がX線透過部21bで回折しないようにすることで実現される。X線源11の回転陽極としてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は約0.4Åである。この場合には、X線透過部21bの幅を1〜10μm程度とすればよい。   In FIG. 3, the X-rays emitted from the X-ray source 11 are cone beams having the X-ray focal point 11a as a light emission point. The 1st grating | lattice 21 is comprised so that the Talbot effect may not arise and the X-rays which passed X-ray transmissive part 21b may be projected geometrically. Specifically, the width of the X-ray transmission part 21b in the X direction is set to a value sufficiently larger than the peak wavelength of X-rays irradiated from the X-ray source 11, and most of the X-rays are diffracted by the X-ray transmission part 21b. It is realized by not doing. When tungsten is used as the rotating anode of the X-ray source 11 and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, the width of the X-ray transmission part 21b may be about 1 to 10 μm.

これにより、G1像は、第1の格子21からZ方向下流への距離に依らず、常に第1の格子21の自己像となる。G1像は、X線焦点11aからZ方向下流への距離に比例して拡大される。   As a result, the G1 image is always a self-image of the first grating 21 regardless of the distance from the first grating 21 downstream in the Z direction. The G1 image is enlarged in proportion to the distance from the X-ray focal point 11a to the downstream in the Z direction.

第2の格子22の格子ピッチpは、前述のように、第2の格子22の格子パターンが第2の格子22の位置におけるG1像に一致するように設定されている。具体的には、第2の格子22の格子ピッチpは、第1の格子21の格子ピッチp、X線焦点11aと第1の格子21との間の距離L、第1の格子21と第2の格子22との間の距離Lと、下式(1)をほぼ満たすように設定されている。以下、X,Y,Z方向の座標を、x,y,zとする。 As described above, the grating pitch p 2 of the second grating 22 is set so that the grating pattern of the second grating 22 matches the G1 image at the position of the second grating 22. Specifically, the grating pitch p 2 of the second grating 22, the distance L 1 between the grating pitch p 1, X-ray focal point 11a and the first grating 21 of the first grating 21, the first grating 21 and the distance L 2 between the second grating 22, is set following equation (1) so as to satisfy substantially. Hereinafter, the coordinates in the X, Y, and Z directions are x, y, and z.

G1像は、被検体HでX線に位相変化が生じて屈折することにより変調される。この変調量には、被検体HでのX線の屈折角φ(x)が反映される。同図には、被検体HでのX線の位相変化を表す位相シフト分布Φ(x)に応じて屈折するX線の経路が例示されている。符号X1は、被検体Hが存在しない場合にX線が直進する経路を示し、符号X2は、被検体Hにより屈折したX線の経路を示している。   The G1 image is modulated by being refracted by a phase change in the X-ray at the subject H. This modulation amount reflects the X-ray refraction angle φ (x) of the subject H. The figure illustrates an X-ray path that is refracted in accordance with a phase shift distribution Φ (x) representing a phase change of the X-ray in the subject H. Reference numeral X1 indicates a path along which the X-ray goes straight when the subject H does not exist, and reference numeral X2 indicates an X-ray path refracted by the subject H.

位相シフト分布Φ(x)は、X線の波長をλ、被検体Hの屈折率分布をn(x,z)として、下式(2)で表される。   The phase shift distribution Φ (x) is expressed by the following equation (2), where X-ray wavelength is λ and the refractive index distribution of the subject H is n (x, z).

屈折角φ(x)は、位相シフト分布Φ(x)と、下式(3)の関係にある。   The refraction angle φ (x) is in the relationship of the phase shift distribution Φ (x) and the following equation (3).

第2の格子22の位置において、X線は、屈折角φ(x)に応じた量だけX方向に変位する。この変位量Δxは、X線の屈折角φ(x)が微小であることに基づいて、近似的に下式(4)で表される。   At the position of the second grating 22, the X-ray is displaced in the X direction by an amount corresponding to the refraction angle φ (x). This displacement amount Δx is approximately expressed by the following equation (4) based on the fact that the X-ray refraction angle φ (x) is very small.

このように、変位量Δxは、位相シフト分布Φ(x)の微分値に比例する。したがって、変位量Δxを後述する縞走査により検出することにより、位相シフト分布Φ(x)の微分値が得られ、位相微分画像が生成される。   Thus, the displacement amount Δx is proportional to the differential value of the phase shift distribution Φ (x). Therefore, by detecting the displacement amount Δx by fringe scanning, which will be described later, a differential value of the phase shift distribution Φ (x) is obtained, and a phase differential image is generated.

縞走査は、格子ピッチpをM個に分割した値(p/M)を走査ピッチとし、走査機構23により、この走査ピッチで第2の格子22を並進移動させ、第2の格子22を並進移動させるたびに、X線源11からX線を放射してG2像をX線画像検出器13により撮影することにより行われる。Mは3以上の整数であり、例えば、M=5であることが好ましい。 In the fringe scanning, a value obtained by dividing the grating pitch p 2 into M pieces (p 2 / M) is used as a scanning pitch, and the second grating 22 is translated by the scanning mechanism 23 at this scanning pitch. Each time the image is translated, X-rays are emitted from the X-ray source 11 and a G2 image is captured by the X-ray image detector 13. M is an integer greater than or equal to 3, for example, it is preferable that M = 5.

上式(1)を僅かに満たさない場合や、第1の格子21と第2の格子22との間にZ方向周りの回転や、XY平面に対する傾斜が僅かに生じている場合には、G2像にはモアレ縞が生じる。このモアレ縞は、第2の格子22の並進移動に伴って移動し、X方向への移動距離が格子ピッチpに達すると元のモアレ縞に一致する。このモアレ縞の移動を確認することで、第2の格子22の並進移動量を検証することができる。 If the above equation (1) is not satisfied slightly, or if the rotation around the Z direction or slight inclination with respect to the XY plane occurs between the first grating 21 and the second grating 22, G2 Moire fringes appear in the image. The moire fringes are moved along with the translational movement of the second grating 22, the movement distance in the X-direction coincides with the original moiré fringe reaches the grating pitch p 2. By confirming the movement of the moire fringes, the translational movement amount of the second grating 22 can be verified.

上記縞走査により、X線画像検出器13の各画素部30について、M個の画素値が得られる。図4に示すように、M個の画素値Iは、第2の格子22の走査位置kに対して周期的に変化する。走査位置kは、第2の格子22を一周期分並進移動させた場合の走査ピッチ(p/M)ごとの各位置である。走査位置kに対する画素値Iの変化を表す信号を強度変調信号と呼ぶ。 M pixel values are obtained for each pixel unit 30 of the X-ray image detector 13 by the fringe scanning. As shown in FIG. 4, the M pixel values I k periodically change with respect to the scanning position k of the second grating 22. The scanning position k is each position for each scanning pitch (p 2 / M) when the second grating 22 is translated by one period. A signal indicating a change in the pixel value I k with respect to the scanning position k is referred to as an intensity modulation signal.

同図中の破線は、被検体Hを配置しない状態で得られる強度変調信号を示している。これに対して、実線は、被検体Hを配置した状態で、被検体Hにより位相ズレ量ψ(x)が生じた強度変調信号を示している。この位相ズレ量ψ(x)は、上記変位量Δxと下式(5)の関係にある。   A broken line in the figure indicates an intensity modulation signal obtained in a state where the subject H is not arranged. On the other hand, a solid line indicates an intensity modulation signal in which the phase difference amount ψ (x) is generated by the subject H in a state where the subject H is arranged. This phase shift amount ψ (x) is in the relationship of the displacement amount Δx and the following equation (5).

したがって、各画素部30について、縞走査で得られるM個の画素値Iに基づき、強度変調信号の位相ズレ量ψ(x)を求めることにより、位相微分画像が得られる。 Therefore, for each pixel unit 30, a phase differential image is obtained by obtaining the phase shift amount ψ (x) of the intensity modulation signal based on the M pixel values I k obtained by the fringe scanning.

次に、位相ズレ量ψ(x)の算出方法について説明する。強度変調信号は、一般に下式(6)で表される。   Next, a method for calculating the phase shift amount ψ (x) will be described. The intensity modulation signal is generally expressed by the following formula (6).

ここで、Aは入射X線の平均強度を表し、Aは強度変調信号の振幅を表す。nは正の整数、iは虚数単位である。なお、図4に示すように、強度変調信号が正弦波を描く場合には、n=1である。 Here, A 0 represents the average intensity of the incident X-ray, A n represents the amplitude of the intensity-modulated signal. n is a positive integer and i is an imaginary unit. As shown in FIG. 4, when the intensity modulation signal draws a sine wave, n = 1.

本実施形態では、走査ピッチ(p/M)が一定であるため、下式(7)が成立する。 In the present embodiment, since the scanning pitch (p 2 / M) is constant, the following expression (7) is established.

上式(7)を上式(6)に適用すると、位相ズレ量ψ(x)は、下式(8)で表される。   When the above equation (7) is applied to the above equation (6), the phase shift amount ψ (x) is expressed by the following equation (8).

ここで、arg[…]は、複素数の偏角を抽出する関数である。また、位相ズレ量ψ(x)は、逆正接関数を用いて下式(9)のように表すことも可能である。   Here, arg [...] is a function for extracting the argument of a complex number. Further, the phase shift amount ψ (x) can also be expressed by the following equation (9) using an arctangent function.

複素数の偏角は、値域が−πから+πの範囲であるため、上式(8)に基づいて位相ズレ量ψ(x)を算出した場合には、位相ズレ量ψ(x)は、−πから+πの範囲に畳み込まれた(ラップされた)値を取る。これに対して、逆正接関数は、通常、値域が−π/2から+π/2の範囲であるため、上式(9)に基づいて位相ズレ量ψ(x)を算出した場合には、位相ズレ量ψ(x)は、−π/2から+π/2の範囲に畳み込まれた値を取る。なお、上式(9)において、逆正接関数内の分母及び分子の正負を判別することにより、値域を−πから+πとすることができるため、−πから+πの範囲で位相ズレ量ψ(x)を算出することも可能である。   Since the declination angle of the complex number ranges from −π to + π, when the phase shift amount ψ (x) is calculated based on the above equation (8), the phase shift amount ψ (x) is − Take a value that is convolved (wrapped) in the range of π to + π. On the other hand, the arc tangent function usually has a range of −π / 2 to + π / 2. Therefore, when the phase shift amount ψ (x) is calculated based on the above equation (9), The phase shift amount ψ (x) takes a value convoluted in a range of −π / 2 to + π / 2. In the above formula (9), by determining the denominator and the sign of the numerator in the arctangent function, the value range can be changed from −π to + π, and therefore the phase shift amount ψ ( It is also possible to calculate x).

本実施形態では、各画素部30について算出された位相ズレ量ψ(x)を画素値とするデータを位相微分画像という。なお、位相ズレ量ψ(x)に定数を乗じたり加算したりしたデータで表される画像を位相微分画像としてもよい。以下、位相微分画像の画素値は、幅αを有する所定の値域(例えば0からαの範囲)にラップされているとする。   In the present embodiment, data in which the phase shift amount ψ (x) calculated for each pixel unit 30 is a pixel value is referred to as a phase differential image. Note that an image represented by data obtained by multiplying or adding a phase shift amount ψ (x) by a constant may be a phase differential image. Hereinafter, it is assumed that the pixel values of the phase differential image are wrapped in a predetermined value range having a width α (for example, a range from 0 to α).

図5に示すように、画像処理部15は、位相微分画像生成部40、アンラップ処理部41、オフセット画像記憶部42、ノイズ除去部43、位相コントラスト画像生成部44等を備える。   As shown in FIG. 5, the image processing unit 15 includes a phase differential image generation unit 40, an unwrap processing unit 41, an offset image storage unit 42, a noise removal unit 43, a phase contrast image generation unit 44, and the like.

位相微分画像生成部40は、プレ撮影の縞走査でX線画像検出器13により得られるM枚分の画像データ(プレ撮影画像データ)51を用い、上式(8)または上式(9)に基づいて演算を行うことにより、位相微分画像を生成する。同様に、位相微分画像生成部40は、本撮影の縞走査でX線画像検出器13により得られるM枚分の画像データ(本撮影画像データ)52に基づいて位相微分画像を生成する。位相微分画像生成部40で生成された位相微分画像は、アンラップ処理部41に入力される。   The phase differential image generation unit 40 uses the M image data (pre-photographed image data) 51 obtained by the X-ray image detector 13 in the pre-photographing fringe scanning, and uses the above equation (8) or the above equation (9). A phase differential image is generated by performing an operation based on the above. Similarly, the phase differential image generation unit 40 generates a phase differential image based on the M pieces of image data (main captured image data) 52 obtained by the X-ray image detector 13 by the main scanning fringe scanning. The phase differential image generated by the phase differential image generation unit 40 is input to the unwrap processing unit 41.

アンラップ処理部41は、位相微分画像生成部40から入力される位相微分画像にアンラップ処理を施す。アンラップ処理は、図6に示すように、所定の経路に沿って、位相微分画像の画素値が所定の値域にラップされていることにより大きく変化(いわゆる位相飛び)する点を不連続点DPとして検出し、検出した不連続点DP以降の画素値に値域の幅αを加算または減算することで不連続点DPをなくし、画素値の変化をほぼ連続化する処理である。不連続点DPの検出は、画素値の変化量が所定量(例えば、α/2)以上である箇所を求めることにより行われる。   The unwrap processing unit 41 performs unwrap processing on the phase differential image input from the phase differential image generation unit 40. As shown in FIG. 6, in the unwrap processing, a point where the pixel value of the phase differential image is largely changed (so-called phase jump) along a predetermined path is wrapped as a discontinuous point DP. This is a process for eliminating the discontinuous point DP by adding or subtracting the value range width α to the pixel values after the detected discontinuous point DP and making the change in the pixel value almost continuous. The detection of the discontinuous point DP is performed by obtaining a location where the change amount of the pixel value is a predetermined amount (for example, α / 2) or more.

また、アンラップ処理部41は、位相微分画像の各行または各列の端部に位置する画素に起点を複数設定し、ある起点から所定の経路(例えば、行または列に沿った直線経路)に沿ってアンラップ処理を行った後、ここでアンラップ処理を行った起点と隣接する起点のアンラップ処理を行い、隣接する起点から経路に沿ってアンラップ処理を行うという処理を、起点及び経路を変更しながら順に繰り返すことにより、位相微分画像の全体にアンラップ処理を施す。   The unwrap processing unit 41 sets a plurality of starting points for pixels located at the end of each row or each column of the phase differential image, and follows a predetermined path (for example, a straight path along the row or column) from a certain starting point. The unwrap processing is performed, and then the unwrap processing of the starting point adjacent to the starting point where the unwrapping processing is performed is performed, and the unwrap processing is performed along the route from the adjacent starting point in order while changing the starting point and the route. By repeating, the whole phase differential image is unwrapped.

アンラップ処理部41は、プレ撮影時には、プレ撮影画像データ51から生成された位相微分画像にアンラップ処理を施すと、これをオフセット画像として、オフセット画像記憶部43に記憶させる。オフセット画像には、第1の格子21や第2の格子22の歪や僅かな位置ずれ(回転や傾斜を含む)、第2の格子22を走査したときに生じる僅かな配置誤差等によって発生するノイズ成分(以下、オフセットノイズという)が写し出される。本撮影時点において撮影時のX線源11の温度環境、撮影回数や被検体との接触状況に応じたX線検出器13の温度環境等がプレ撮影時とほぼ同じであれば、本撮影時に得られる位相微分画像にもオフセット画像に写し出されるオフセットノイズとほぼ同じノイズ成分が重畳される。なお、オフセット画像記憶部43は、新たにプレ撮影を行って新たなオフセット画像が入力された場合には、既に記憶されているオフセット画像を消去した後、新たに入力されたオフセット画像を記憶する。また、本撮影時には、アンラップ処理部41は、本撮影画像データ52から生成された位相微分画像にアンラップ処理を施し、ノイズ除去部43に入力する。   When the unwrap processing unit 41 performs an unwrap process on the phase differential image generated from the pre-captured image data 51 at the time of pre-photographing, the unwrap processing unit 41 stores this in the offset image storage unit 43 as an offset image. The offset image is generated due to distortion of the first grating 21 or the second grating 22, a slight positional deviation (including rotation or inclination), a slight arrangement error that occurs when the second grating 22 is scanned, and the like. A noise component (hereinafter referred to as offset noise) is projected. If the temperature environment of the X-ray source 11 at the time of actual imaging, the temperature environment of the X-ray detector 13 according to the number of times of imaging and the contact state with the subject are substantially the same as those at the time of pre-imaging, Almost the same noise component as the offset noise projected on the offset image is also superimposed on the obtained phase differential image. The offset image storage unit 43 stores the newly input offset image after erasing the already stored offset image when a new pre-photographing is performed and a new offset image is input. . In addition, at the time of actual photographing, the unwrap processing unit 41 performs unwrap processing on the phase differential image generated from the main captured image data 52 and inputs the processed image to the noise removing unit 43.

ノイズ除去部43は、本撮影時に得られた位相微分画像からノイズを除去する。ノイズ除去部43は、オフセット除去部46、トレンド検出部47、トレンド除去部48を備える。   The noise removing unit 43 removes noise from the phase differential image obtained at the time of actual photographing. The noise removing unit 43 includes an offset removing unit 46, a trend detecting unit 47, and a trend removing unit 48.

オフセット除去部46は、本撮影時に得られる位相微分画像からオフセットノイズを除去する。より具体的には、オフセット除去部46は、本撮影時にアンラップ処理部41から位相微分画像が入力されると、オフセット画像記憶部42からオフセット画像を取得する。そして、入力された位相微分画像からオフセット画像を減算することにより、オフセットノイズが除去された位相微分画像を生成する。オフセットノイズが除去された位相微分画像は、トレンド検出部47に入力される。   The offset removing unit 46 removes offset noise from the phase differential image obtained during the main photographing. More specifically, the offset removing unit 46 acquires an offset image from the offset image storage unit 42 when a phase differential image is input from the unwrap processing unit 41 during the main photographing. Then, a phase differential image from which offset noise has been removed is generated by subtracting the offset image from the input phase differential image. The phase differential image from which the offset noise has been removed is input to the trend detection unit 47.

トレンド検出部47とトレンド除去部48は、オフセットノイズが除去された位相微分画像から、残存するトレンドを検出して除去するトレンド検出除去手段を構成する。トレンド検出部47は、オフセットノイズが除去された位相微分画像から所定方向のノイズ成分を検出し、トレンド除去部48はトレンド検出部で検出されたトレンドを表すトレンド画像を生成する。そして、トレンド除去部48は、オフセットノイズが除去された位相微分画像からトレンド画像を減算することにより、トレンドが除去された位相微分画像を生成し、位相コントラスト画像生成部44に入力する。   The trend detection unit 47 and the trend removal unit 48 constitute a trend detection removal unit that detects and removes the remaining trend from the phase differential image from which the offset noise has been removed. The trend detection unit 47 detects a noise component in a predetermined direction from the phase differential image from which the offset noise has been removed, and the trend removal unit 48 generates a trend image representing the trend detected by the trend detection unit. Then, the trend removing unit 48 generates a phase differential image from which the trend is removed by subtracting the trend image from the phase differential image from which the offset noise has been removed, and inputs the phase differential image to the phase contrast image generating unit 44.

より具体的には、トレンド検出部47は、位相微分画像が入力されると、位相微分画像の第1方向(例えば、位相微分画像の横方向(X方向))に重畳されたノイズ成分を検出する。トレンド除去部48は、第1方向のノイズ成分を、第1方向に直交する第2方向(例えば、位相微分画像の縦方向(Y方向))に一様に並べた第1トレンド画像を生成し、位相微分画像から減算する。これにより、位相微分画像からトレンドの第1方向成分が除去される。   More specifically, when the phase differential image is input, the trend detection unit 47 detects a noise component superimposed in the first direction of the phase differential image (for example, the horizontal direction (X direction) of the phase differential image). To do. The trend removing unit 48 generates a first trend image in which noise components in the first direction are uniformly arranged in a second direction (for example, the vertical direction (Y direction) of the phase differential image) orthogonal to the first direction. Subtract from the phase differential image. Thereby, the first direction component of the trend is removed from the phase differential image.

次いで、トレンド検出部47は、トレンドの第1方向成分が除去された位相微分画像の第2方向に重畳されたノイズ成分を検出する。そして、トレンド除去部48は、第2方向のノイズ成分を、第1方向に一様に並べた第2トレンド画像を生成し、トレンドの第1方向成分が除去された位相微分画像からさらに減算する。これにより、位相微分画像からトレンドが除去される。   Next, the trend detection unit 47 detects a noise component superimposed in the second direction of the phase differential image from which the first direction component of the trend has been removed. Then, the trend removal unit 48 generates a second trend image in which the noise components in the second direction are uniformly arranged in the first direction, and further subtracts the phase trend image from which the first direction component of the trend has been removed. . Thereby, the trend is removed from the phase differential image.

位相コントラスト画像生成部44は、ノイズ除去部43でオフセットノイズ及びトレンドが除去された位相微分画像をX方向に沿って積分処理することにより、位相シフト分布を表す位相コントラスト画像を生成する。トレンドが除去された位相微分画像と、位相コントラスト画像は、画像記録部16に記録される。   The phase contrast image generation unit 44 generates a phase contrast image representing the phase shift distribution by integrating the phase differential image from which the offset noise and the trend have been removed by the noise removal unit 43 along the X direction. The phase differential image from which the trend is removed and the phase contrast image are recorded in the image recording unit 16.

以下、X線撮影装置10の作用を説明する。X線撮影装置10を用いて被検体Hの撮影を行う場合、図7に示すように、被検体Hの撮影の前に、プレ撮影を行う。操作部18aを用いて撮影モードとしてプレ撮影モードが選択されると(ステップS10)、撮影指示の入力待機状態となる(ステップS11)。その後、操作部18aを用いて撮影指示が入力されると、走査機構23により第2の格子22が所定の走査ピッチずつ並進移動されながら、各走査位置kにおいて、X線源11によるX線照射及びX線画像検出器13によるG2像の検出が行われる(ステップS12)。この縞走査の結果、M枚のプレ撮影画像データ51が生成され、メモリ14に格納される。   Hereinafter, the operation of the X-ray imaging apparatus 10 will be described. When imaging the subject H using the X-ray imaging apparatus 10, pre-imaging is performed before imaging the subject H as shown in FIG. When the pre-shooting mode is selected as the shooting mode using the operation unit 18a (step S10), the camera enters a shooting instruction input standby state (step S11). Thereafter, when an imaging instruction is input using the operation unit 18a, the X-ray irradiation by the X-ray source 11 is performed at each scanning position k while the second grating 22 is translated by a predetermined scanning pitch by the scanning mechanism 23. Then, the G2 image is detected by the X-ray image detector 13 (step S12). As a result of the fringe scanning, M pieces of pre-captured image data 51 are generated and stored in the memory 14.

プレ撮影画像データ51は、画像処理部15に読み出される。画像処理部15内では、位相微分画像生成部40によってプレ撮影画像データ51から位相微分画像が生成される(ステップS13)。この位相微分画像は、アンラップ処理部41によってアンラップ処理が施された後(ステップS14)、オフセット画像としてオフセット画像記憶部42に記憶される。プレ撮影動作は、以上で終了する。なお、このプレ撮影は、X線撮影装置10の立ち上げ時等に被検体Hを配置しない状態で少なくとも一度行われればよく、本撮影の前に毎回行われる必要はない。また、ここでは本撮影の前に予めオフセット画像を生成しておくためにプレ撮影を行う例を説明したが、本撮影後にオフセット画像を生成するための撮影を行っても良い。   The pre-captured image data 51 is read out to the image processing unit 15. In the image processing unit 15, a phase differential image is generated from the pre-captured image data 51 by the phase differential image generation unit 40 (step S13). This phase differential image is unwrapped by the unwrap processing unit 41 (step S14) and then stored in the offset image storage unit 42 as an offset image. The pre-photographing operation ends here. Note that this pre-imaging may be performed at least once in a state in which the subject H is not disposed when the X-ray imaging apparatus 10 is started up, and need not be performed every time before the main imaging. In addition, although an example in which pre-photographing is performed in order to generate an offset image in advance before main photographing has been described here, photographing for generating an offset image may be performed after main photographing.

次に、図8に示すように、被検体Hを配置し、本撮影を行う。本撮影を行う場合、操作部18aを用いて撮影モードとして本撮影モードが選択される(ステップS20)。本撮影モードが選択されると、撮影指示の待受状態となる(ステップS21)。操作部18aを用いて撮影指示がなされると、縞走査が行われ(ステップS22)、メモリ14にM枚の本撮影画像データ52が格納される。   Next, as shown in FIG. 8, the subject H is arranged and the main imaging is performed. When performing the main shooting, the main shooting mode is selected as the shooting mode using the operation unit 18a (step S20). When the main shooting mode is selected, a shooting instruction standby state is set (step S21). When a shooting instruction is given using the operation unit 18a, stripe scanning is performed (step S22), and M main captured image data 52 are stored in the memory 14.

その後、本撮影画像データ52は、画像処理部15に読み出される。画像処理部15内では、位相微分画像生成部40によって本撮影画像データ52から位相微分画像が生成され(ステップS23)、アンラップ処理部41によってアンラップ処理が施される(ステップS24)。   Thereafter, the actual captured image data 52 is read by the image processing unit 15. In the image processing unit 15, a phase differential image is generated from the actual captured image data 52 by the phase differential image generation unit 40 (step S23), and unwrap processing is performed by the unwrap processing unit 41 (step S24).

アンラップ処理が施された位相微分画像はノイズ除去部43に入力される。ノイズ除去部43では、まず、オフセット除去部46において位相微分画像からオフセット画像を減算することにより、オフセットノイズが除去される(ステップS25)。   The phase differential image subjected to the unwrapping process is input to the noise removing unit 43. In the noise removing unit 43, first, the offset noise is removed by subtracting the offset image from the phase differential image in the offset removing unit 46 (step S25).

次いで、トレンド検出部47によってさらに残存するノイズ成分としてトレンドが検出され(ステップS26)、トレンド除去部48によってトレンドが除去される(ステップS27)。   Next, the trend is detected as a remaining noise component by the trend detection unit 47 (step S26), and the trend is removed by the trend removal unit 48 (step S27).

なお、図8では、簡単のために、トレンドの検出(ステップS28)とトレンドの除去(ステップ27)を1度ずつ行うかのように記載しているが、トレンドの検出及び除去は、トレンドが除去されるまで必要に応じて複数回行われる。例えば、X線撮影装置10は、トレンドの検出及び除去を少なくとも2回に分けて行う。具体的には、X線撮影装置10は、トレンドのX方向成分を検出及び除去し、その後、トレンドのY方向成分を検出及び除去する。   In FIG. 8, for the sake of simplicity, the trend detection (step S28) and the trend removal (step 27) are described as being performed once. Multiple times as needed until removed. For example, the X-ray imaging apparatus 10 performs trend detection and removal at least twice. Specifically, the X-ray imaging apparatus 10 detects and removes the trend X-direction component, and then detects and removes the trend Y-direction component.

こうしてオフセットノイズ及びトレンドが除去された位相微分画像は、画像記録部16に記録される。同時に、位相コントラスト画像生成部44においてオフセットノイズ及びトレンドが除去された位相微分画像に積分処理が施され、位相シフト分布を表す位相コントラスト画像が生成され(ステップS28)、画像記録部16に記録される。その後、オフセットノイズ及びトレンドが除去された位相微分画像や位相コントラスト画像は、モニタ18bに画像表示される(ステップS29)。   The phase differential image from which the offset noise and trend have been removed is recorded in the image recording unit 16. At the same time, the phase contrast image generation unit 44 integrates the phase differential image from which the offset noise and the trend are removed to generate a phase contrast image representing the phase shift distribution (step S28), and is recorded in the image recording unit 16. The Thereafter, the phase differential image and the phase contrast image from which the offset noise and the trend have been removed are displayed on the monitor 18b (step S29).

以上のように、X線撮影装置10は、本撮影において生成した位相微分画像からオフセット画像を減算することによりオフセットノイズを除去するとともに、オフセットノイズ除去後に残存するノイズ成分であるトレンドをさらに検出し除去する。このため、X線撮影装置10によれば、単にオフセットノイズを除去する場合よりも、よりノイズが低減された精細な位相微分画像を得ることができる。また、精細な位相微分画像が得られるので、位相微分画像に積分処理をして得られる位相コントラスト画像も低ノイズである。   As described above, the X-ray imaging apparatus 10 removes the offset noise by subtracting the offset image from the phase differential image generated in the main imaging, and further detects a trend that is a noise component remaining after the offset noise is removed. Remove. For this reason, according to the X-ray imaging apparatus 10, it is possible to obtain a fine phase differential image in which noise is further reduced as compared with the case where offset noise is simply removed. Further, since a fine phase differential image is obtained, the phase contrast image obtained by integrating the phase differential image is also low noise.

以下、トレンドの発生原因やトレンドを除去するための処理態様をより具体的に説明する。まず、プレ撮影を行うとプレ撮影画像データ51が得られるが、プレ撮影は被検体Hがない状態で行う撮影であるため、本来であればプレ撮影画像データ51にはほぼ何も写し出されていない画像データである。しかし、例えば、図9に示すように、プレ撮影画像データ51にモアレ56が発生することがある。モアレ56は、例えば、プレ撮影画像データ51上に破線で示すライン上の画素値Iを抜き出してみれば、X方向に周期的に増減する縞状のノイズである。また、縞走査によるM枚のプレ撮影画像データ51を比較すると、モアレ56は走査位置「k」に応じてX方向に徐々に移動する。 Hereinafter, the processing mode for removing the cause of the trend and the trend will be described more specifically. First, pre-photographed image data 51 is obtained when pre-photographing is performed. However, since pre-photographing is performed in the absence of the subject H, almost nothing is projected in the pre-photographed image data 51 originally. There is no image data. However, for example, as shown in FIG. 9, moire 56 may occur in the pre-captured image data 51. Moire 56, for example, Come to extract the pixel value I k on line indicated by a broken line on the pre-photographed image data 51, a striped noise increases and decreases periodically in the X-direction. Further, when comparing the M pre-captured image data 51 by the stripe scanning, the moire 56 gradually moves in the X direction according to the scanning position “k”.

モアレ56は、第1の格子21や第2の格子22の歪や僅かな位置ずれ(回転や傾斜を含む)、第2の格子22を走査したときに生じる僅かな配置誤差によって発生する。第1の格子21や第2の格子22の歪や僅かな位置ずれは、撮影回数や被検体との接触状況に応じた温度環境によっても変化することがあり、第1の格子21や第2の格子22の温度変化による膨張/収縮により、同様のモアレ56が生じることがある。   The moiré 56 is generated by distortion of the first grating 21 or the second grating 22, a slight misalignment (including rotation or inclination), and a slight arrangement error that occurs when the second grating 22 is scanned. The distortion and slight misalignment of the first grating 21 and the second grating 22 may change depending on the temperature environment according to the number of imaging and the contact state with the subject. Similar moire 56 may occur due to expansion / contraction of the lattice 22 due to temperature changes.

図10に示すように、モアレ56が発生したプレ撮影画像データ51に基づいて位相微分画像57を生成すると、モアレ56は、元のプレ撮影画像データ51上のモアレ周期の例えば1/2倍の周期を持ったノイズ58に変換される。このモアレ56に起因するノイズ58は、値域の幅αを上限/下限とした、いわゆるのこぎり波状である。位相微分画像57にアンラップ処理を施すと、のこぎり波状のノイズ58は、図11に示すように、X方向に画素値ψが単調増加するオフセットノイズ61となってオフセット画像59に重畳される。なお、ノイズ58の周期がモアレ周期の1/2倍となるのは、上式(9)で表される値域が−π/2から+π/2の逆正接関数を用いて位相微分画像57を生成した場合である。一方、上式(8)で表される値域が−πから+πの偏角抽出関数を用いた場合や、逆正接関数の値域を−πから+πに拡張した場合には、位相微分画像57のノイズ58の周期は、モアレ周期と同一である。   As shown in FIG. 10, when the phase differential image 57 is generated based on the pre-captured image data 51 in which the moiré 56 is generated, the moiré 56 is, for example, ½ times the moire cycle on the original pre-captured image data 51. It is converted into noise 58 having a period. The noise 58 caused by the moire 56 is a so-called sawtooth wave having the range width α as the upper limit / lower limit. When the phase differential image 57 is unwrapped, the sawtooth noise 58 is superimposed on the offset image 59 as an offset noise 61 in which the pixel value ψ monotonously increases in the X direction, as shown in FIG. It should be noted that the period of the noise 58 is ½ times the moire period because the phase differential image 57 is obtained by using an arctangent function whose value range represented by the above equation (9) is −π / 2 to + π / 2. This is the case. On the other hand, when a declination extraction function having a range represented by the above equation (8) of −π to + π is used, or when the range of the arctangent function is expanded from −π to + π, the phase differential image 57 The period of the noise 58 is the same as the moire period.

同様に、図12(A)に示すように、本撮影を行って得られる本撮影画像データ52には、被検体Hが写し出されると同時に、モアレ62が重畳されることがある。このようにモアレ62が発生した本撮影画像データ52に基づいて位相微分画像を生成すると、モアレ62は、図12(B)に示す位相微分画像63のように1/2倍の周期ののこぎり波状のノイズ64となり、さらにアンラップ処理を施すことによって図12(C)に示す位相微分画像65(被検体画像)のようにオフセットノイズ66となる。   Similarly, as shown in FIG. 12A, moire 62 may be superimposed at the same time that the subject H is projected on the main captured image data 52 obtained by performing the main imaging. When a phase differential image is generated based on the actual captured image data 52 in which the moire 62 is generated in this way, the moire 62 is a sawtooth wave having a period of ½ times as in the phase differential image 63 shown in FIG. When the unwrap processing is further performed, the noise 64 becomes the offset noise 66 as shown in the phase differential image 65 (subject image) shown in FIG.

プレ撮影時と本撮影時とで、第1の格子21や第2の格子22の歪や僅かな位置ずれ等がほぼ同じ状態であれば、オフセット画像59上のオフセットノイズ61と、本撮影時に得た位相微分画像65上のオフセットノイズ66は大局的にはほぼ同じ態様の像となっている。このため、位相微分画像65からオフセット画像59を減算すれば、位相微分画像65からオフセットノイズ66が除去される。   If the distortion and slight positional deviation of the first grating 21 and the second grating 22 are substantially the same during pre-photographing and actual photographing, the offset noise 61 on the offset image 59 and the actual photographing are The offset noise 66 on the obtained phase differential image 65 is roughly the same image. For this reason, if the offset image 59 is subtracted from the phase differential image 65, the offset noise 66 is removed from the phase differential image 65.

しかし、プレ撮影時と本撮影時とで第1の格子21や第2の格子22の歪や僅かな位置ずれ等が厳密に同じ状態となることは殆どなく、プレ撮影時のモアレ56と本撮影時のモアレ62とを比較すると、周期や画像内での傾き等が若干異なっていることが通常である。したがって、モアレ56,62が反映されたオフセットノイズ61,66には若干の差異がある。このため、図13に示すように、本撮影時に得られた位相微分画像56からオフセット画像59を減算して得られる位相微分画像71には、プレ撮影時のオフセットノイズ61と本撮影時のオフセットノイズ66の差異によるノイズ成分がトレンド72として残存する。図13では、便宜上、オフセットノイズ61,66を示す濃淡と、トレンド72を示す濃淡とが同程度に描いているが、トレンド72は、例えばオフセットノイズ61,66の1/10程度の大きさのノイズ成分である。   However, the distortion and slight misalignment of the first grating 21 and the second grating 22 are hardly the same in pre-shooting and main shooting, and the moire 56 and the book in pre-shooting are almost the same. When compared with the moire 62 at the time of shooting, it is normal that the period, the inclination in the image, etc. are slightly different. Therefore, there is a slight difference between the offset noises 61 and 66 in which the moires 56 and 62 are reflected. For this reason, as shown in FIG. 13, the phase differential image 71 obtained by subtracting the offset image 59 from the phase differential image 56 obtained at the time of the main shooting includes the offset noise 61 at the time of the pre-shooting and the offset at the time of the main shooting. A noise component due to the difference in the noise 66 remains as the trend 72. In FIG. 13, for the sake of convenience, the shading indicating the offset noises 61 and 66 and the shading showing the trend 72 are drawn to the same extent, but the trend 72 has a size of about 1/10 of the offset noises 61 and 66, for example. It is a noise component.

トレンド検出部47及びトレンド除去部48は、以下に説明するように、トレンド72が残存する位相微分画像71からトレンド72を検出し、除去する。   The trend detection unit 47 and the trend removal unit 48 detect and remove the trend 72 from the phase differential image 71 in which the trend 72 remains, as will be described below.

トレンド検出部47は、オフセット除去部46から位相微分画像71が入力されると、トレンド72の横方向(X方向)成分を検出する。具体的には、図14に示すように、トレンド検出部47は、位相微分画像71の画素値ψを行毎に抽出する。例えば、破線で示す行の画素値ψは、例えば被検体Hがある領域(以下、被検体領域という)E1では被検体Hの構造に応じて画素値ψが変化するが、被検体Hがない領域(以下、素抜け領域という)E2a,E2bでは、トレンド72を反映してほぼ一様に変化する。このため、トレンド検出部47は、抽出した画素値ψを平滑化する。これにより、素抜けの領域E2a,E2bは平滑化前に比べてほぼ変化しないが、被検体領域E1は、平滑化により、破線で示すようにトレンド72の傾向とほぼ一致するデータとなり、行全体として一様に変化するトレンド72の横方向成分となる。   When the phase differential image 71 is input from the offset removal unit 46, the trend detection unit 47 detects a horizontal direction (X direction) component of the trend 72. Specifically, as illustrated in FIG. 14, the trend detection unit 47 extracts the pixel value ψ of the phase differential image 71 for each row. For example, the pixel value ψ in the row indicated by the broken line changes in the pixel value ψ according to the structure of the subject H in the region where the subject H is present (hereinafter referred to as subject region) E1, for example, but there is no subject H. In the areas (hereinafter referred to as “prime-missing areas”) E2a and E2b, the trend 72 is reflected to change almost uniformly. For this reason, the trend detection unit 47 smoothes the extracted pixel value ψ. As a result, the regions E2a and E2b that are unclear are not substantially changed as compared with those before the smoothing, but the subject region E1 is data that substantially matches the tendency of the trend 72 as shown by the broken line by the smoothing. As a horizontal component of the trend 72 that changes uniformly.

トレンド検出部47は、上述のように各行の画素値ψを抽出し、平滑化することによって各行におけるトレンド72の横方向成分を生成すると、各行におけるトレンドの横方向成分を平均したデータ(以下、横方向トレンドデータという)を生成する。トレンド検出部47は、この横方向トレンドデータをトレンド72の横方向成分として検出し、位相微分画像71とともにトレンド除去部48に入力する。   When the trend detection unit 47 generates the horizontal component of the trend 72 in each row by extracting and smoothing the pixel value ψ of each row as described above, the trend detection unit 47 averages the horizontal component of the trend in each row (hereinafter, referred to as “trend”). Horizontal direction trend data). The trend detection unit 47 detects the horizontal trend data as a horizontal component of the trend 72 and inputs it to the trend removal unit 48 together with the phase differential image 71.

図15に示すように、トレンド除去部48は、トレンド検出部47で検出された横方向トレンドデータ72を縦方向(Y方向)に並べた画像76(以下、横方向トレンド画像という)を生成する。次いで、図16に示すように、元の位相微分画像71から横方向トレンド画像76を減算し、トレンド72の横方向成分を除去した位相微分画像77を生成する。この位相微分画像77には、依然としてトレンド78が重畳されている。トレンド78は、元の位相微分画像71のトレンド72から横方向成分が除去されたものなので、トレンド72の縦方向(Y方向)成分である。こうしてトレンド72の横方向成分を除去した位相微分画像77を生成すると、トレンド除去部48は生成した位相微分画像77をトレンド検出部47に再び入力する。   As shown in FIG. 15, the trend removing unit 48 generates an image 76 (hereinafter referred to as a horizontal trend image) in which the horizontal trend data 72 detected by the trend detecting unit 47 is arranged in the vertical direction (Y direction). . Next, as shown in FIG. 16, the horizontal trend image 76 is subtracted from the original phase differential image 71 to generate a phase differential image 77 from which the horizontal component of the trend 72 is removed. The trend 78 is still superimposed on the phase differential image 77. The trend 78 is a vertical direction (Y direction) component of the trend 72 because the horizontal direction component is removed from the trend 72 of the original phase differential image 71. When the phase differential image 77 from which the horizontal component of the trend 72 is removed is generated in this manner, the trend removal unit 48 inputs the generated phase differential image 77 to the trend detection unit 47 again.

トレンド検出部47は、トレンド除去部48から位相微分画像77が入力されると、位相微分画像77からトレンド78(トレンド72の縦方向成分)を検出する。具体的には、まず、図17に示すように、位相微分画像77の各列の画素値ψを抽出し、各列のトレンド78を検出する。例えば、図17(A)に示すように、「a」列のように素抜け領域の列の画素値ψを抽出すると、抽出した画素値ψはほぼトレンド78そのものである。一方、図17(B)に示すように、「b」列のように被検体H上の列の画素値ψを抽出すると、トレンド78と被写体Hが重畳されているので、抽出した画素値ψはトレンド78を反映した一定の傾向があるが、被検体Hを反映して変化する。   When the phase differential image 77 is input from the trend removal unit 48, the trend detection unit 47 detects a trend 78 (vertical component of the trend 72) from the phase differential image 77. Specifically, first, as shown in FIG. 17, the pixel value ψ of each column of the phase differential image 77 is extracted, and the trend 78 of each column is detected. For example, as illustrated in FIG. 17A, when the pixel value ψ of the column of the blank region is extracted as the “a” column, the extracted pixel value ψ is almost the trend 78 itself. On the other hand, as shown in FIG. 17B, when the pixel value ψ of the column on the subject H as shown in the “b” column is extracted, the trend 78 and the subject H are superimposed, so the extracted pixel value ψ Has a certain tendency reflecting the trend 78, but changes reflecting the subject H.

こうしたことから、トレンド検出部47は、抽出した列上に被写体Hがあるか否かによらず、データを平滑化する。こうして各列の画素値ψを各々平滑化すると、「a」列のように素抜け領域の場合には、平滑化処理の前後でデータの態様はほぼ変化しないが、「b」列のように被検体Hがある列では、被検体Hの情報がほぼ消失(低減)し、一点鎖線で示すようにトレンド78とほぼ同様の傾向を有するデータとなる。   For this reason, the trend detection unit 47 smoothes the data regardless of whether or not the subject H is on the extracted column. When the pixel values ψ in each column are each smoothed in this way, in the case of a missing region as in the “a” column, the data mode does not change substantially before and after the smoothing process, but as in the “b” column. In a column where the subject H is present, the information of the subject H is almost lost (reduced), and the data has a tendency similar to the trend 78 as indicated by a one-dot chain line.

トレンド検出部47は、このように列毎に検出したトレンド78を全列について平均したデータ(以下、縦方向トレンドデータという)を生成する。トレンド検出部47は、この縦方向トレンドデータを元のトレンド72の縦方向成分として検出し、トレンド除去部48に入力する。   The trend detection unit 47 generates data (hereinafter, referred to as “vertical trend data”) obtained by averaging the trend 78 detected for each column in all columns. The trend detection unit 47 detects this vertical trend data as the vertical component of the original trend 72 and inputs it to the trend removal unit 48.

図18に示すように、トレンド除去部48は、トレンド検出部78から入力された縦方向トレンドデータを横方向に並べた画像(以下、縦方向トレンド画像という)を生成する。次いで、図19に示すように、トレンド除去部48は、位相微分画像77から縦方向トレンド画像81を減算することにより、位相微分画像83を生成する。こうして生成された位相微分画像83は、位相微分画像71からトレンド72の横方向成分と縦方向成分がともに除去されたことにより、トレンドが全て除去された位相微分画像である。   As shown in FIG. 18, the trend removing unit 48 generates an image in which the vertical trend data input from the trend detecting unit 78 is arranged in the horizontal direction (hereinafter referred to as a vertical trend image). Next, as shown in FIG. 19, the trend removing unit 48 generates a phase differential image 83 by subtracting the vertical direction trend image 81 from the phase differential image 77. The phase differential image 83 generated in this way is a phase differential image from which all the trends have been removed by removing both the horizontal direction component and the vertical direction component of the trend 72 from the phase differential image 71.

X線撮影装置10では、こうしてトレンドが全て除去された位相微分画像83を画像記録部16に記録する。また、位相コントラスト画像生成部44では、位相微分画像83から位相コントラスト画像を生成する。   In the X-ray imaging apparatus 10, the phase differential image 83 from which all the trends have been removed is recorded in the image recording unit 16. The phase contrast image generation unit 44 generates a phase contrast image from the phase differential image 83.

なお、上述の第1実施形態では、位相微分画像71の中央部分に、部分的に被検体Hが写し出されているが、図20に示すように、位相微分画像71のほぼ全体に被検体Hが写し出されている場合にも、X線撮影装置10は、トレンド72を好適に検出,除去することができる。これは、トレンド72の各方向成分を検出,除去するときに、各行(列)毎に検出したトレンド72の各方向成分を平均化したデータをトレンド72の各方向成分として検出するので、被検体Hがあることによる影響を受け難いからである。図20は、被検体Hが骨部20a,20bと、軟部組織20cとからなり、位相微分画像71の左上領域はほぼ骨部20aに、右下領域はほぼ骨部20bに占められ、これらの骨部20a,20b間は軟部組織20cであり、位相微分画像71に素抜け領域がない例を示している。   In the first embodiment described above, the subject H is partially projected in the central portion of the phase differential image 71. However, as shown in FIG. Even when is projected, the X-ray imaging apparatus 10 can detect and remove the trend 72 suitably. This is because, when each direction component of the trend 72 is detected and removed, data obtained by averaging each direction component of the trend 72 detected for each row (column) is detected as each direction component of the trend 72. This is because it is difficult to be affected by the presence of H. In FIG. 20, the subject H is composed of bone parts 20a and 20b and soft tissue 20c, and the upper left area of the phase differential image 71 is substantially occupied by the bone part 20a, and the lower right area is substantially occupied by the bone part 20b. A portion between the bone portions 20a and 20b is the soft tissue 20c, and an example in which the phase differential image 71 does not have a blank region is shown.

なお、上述の第1実施形態では、オフセットノイズ66の除去後、トレンド72の横方向成分を検出及び除去し、その後、トレンド72の縦方向成分を検出及び除去しているが、トレンド72の検出除去態様はこれに限らない。例えば、先にトレンド72の縦方向成分を検出,除去した後に、トレンド72の横方向成分を検出,除去しても良い。   In the first embodiment described above, after the offset noise 66 is removed, the horizontal component of the trend 72 is detected and removed, and thereafter the vertical component of the trend 72 is detected and removed. The removal mode is not limited to this. For example, after the vertical component of the trend 72 is first detected and removed, the horizontal component of the trend 72 may be detected and removed.

また、上述の第1実施形態では、トレンド72を検出及び除去するときに、縦方向成分と横方向成分に分けて検出及び除去しているが、トレンド72を検出及び除去することができれば、この態様に限らない。例えば、位相微分画像71の縦横の辺に対して所定角度傾斜した斜め方向を第1方向とし、この第1方向に垂直な方向を第2方向として、トレンド72の第1方向成分及び第2方向成分を検出及び除去しても良い。この場合も、トレンド72を上述の第1実施形態と同様にトレンド72が除去された位相微分画像83を得ることができる。   In the first embodiment described above, when detecting and removing the trend 72, the vertical component and the horizontal component are detected and removed separately. However, if the trend 72 can be detected and removed, It is not restricted to an aspect. For example, the first direction component of the trend 72 and the second direction are defined as an oblique direction inclined by a predetermined angle with respect to the vertical and horizontal sides of the phase differential image 71 as a first direction and a direction perpendicular to the first direction as a second direction. Components may be detected and removed. Also in this case, the phase differential image 83 from which the trend 72 is removed can be obtained as in the first embodiment described above.

さらに、トレンド72を検出及び除去するときに、位相微分画像71の縦横以外の2方向に分けて検出及び除去するときには、ノイズ除去部43にさらに被検体検出部(図示しない)を設け、被検体Hが写し出された領域を検出し、この被検体Hの領域に方向性がある場合には、被検体Hの領域の方向に沿った方向を第1方向、これに垂直な方向を第2方向としても良い。   Furthermore, when detecting and removing the trend 72, when detecting and removing separately in two directions other than the vertical and horizontal directions of the phase differential image 71, the noise removing unit 43 is further provided with a subject detection unit (not shown), When the region where H is projected is detected and the region of the subject H has directionality, the direction along the direction of the region of the subject H is the first direction, and the direction perpendicular thereto is the second direction. It is also good.

例えば、位相微分画像の斜め45度方向に被検体Hが写し出されている場合に、被検体Hに垂直な斜め135度方向を第1方向とし、被検体Hに沿った斜め45度方向を第2方向とする。こうすると、少なくとも一つの方向(第2方向)において、被検体Hに重ならないようにトレンド72の成分を検出する行が多くなるので、この方向(第2方向)におけるトレンド72の検出精度がより向上する。また、上述の位相微分画像71では、位相微分画像71のほぼ中央に、被検体Hが縦方向に沿って写し出されているが、この場合は、横方向が第1方向であり、縦方向が第2方向である。前述の通り、縦方向の成分を検出する場合(図17参照)は、素抜け領域で縦方向に沿って抽出した画素値ψは、トレンド78そのものであるため、どの列も被検体Hを横切ってしまう横方向成分を検出及び除去する場合よりも、縦方向成分の検出及び除去はより正確である。このようにトレンド成分の検出方向を選択する態様は、トレンド72の各方向成分を検出するときに、被検体Hがある箇所のデータを除いてトレンド72の各方向成分を検出する場合に特に好適である。   For example, when the subject H is projected in an oblique 45 degree direction of the phase differential image, the oblique 135 degree direction perpendicular to the subject H is the first direction, and the oblique 45 degree direction along the subject H is the first direction. Two directions are assumed. This increases the number of rows that detect the component of the trend 72 so that it does not overlap the subject H in at least one direction (second direction), so that the detection accuracy of the trend 72 in this direction (second direction) is higher. improves. Further, in the above-described phase differential image 71, the subject H is projected along the vertical direction at approximately the center of the phase differential image 71. In this case, the horizontal direction is the first direction, and the vertical direction is The second direction. As described above, when a vertical component is detected (see FIG. 17), the pixel value ψ extracted along the vertical direction in the missing region is the trend 78 itself, so that every column crosses the subject H. The detection and removal of the vertical component is more accurate than the case of detecting and removing the horizontal component. In this way, the aspect of selecting the trend component detection direction is particularly suitable for detecting each direction component of the trend 72 except for data of a location where the subject H exists when detecting each direction component of the trend 72. It is.

なお、上述の第1実施形態では、トレンド72の縦横の各方向成分を検出する場合に、抽出した画素値ψを平滑化することにより、被検体Hの有無に関わらず、トレンド72の各方向の成分を検出しているが、被検体領域のデータ(例えば、図14における領域E1のデータ)を除き、素抜け領域のデータ(例えば、図14における領域E2a,E2b)に基づいてトレンド72の各方向成分を検出しても良い。このとき、除いた被検体領域部分のデータを算出する方法は任意である。単に被検体領域と素抜け領域の境界点(例えば、図14における領域E1と領域E2a,E2bの境界点)を直線で結ぶデータを算出しても良いし、任意の直線やスプライン、その他曲線等で、補間,外挿,フィッティング等により算出しても良い。また、被検体領域の検出は、被検体領域を検出するための被検体領域検出部をノイズ除去部43に設けておいても良いし、トレンド検出部47で被検体領域を検出するようにしても良い。被検体領域の検出は、例えば、画素値ψの変化量等に基づいて検出することができる。   In the first embodiment described above, each direction of the trend 72 is detected regardless of the presence or absence of the subject H by smoothing the extracted pixel value ψ when the vertical and horizontal direction components of the trend 72 are detected. However, except for data on the subject area (for example, data on the area E1 in FIG. 14), the trend 72 is detected based on the data on the missing areas (for example, areas E2a and E2b in FIG. 14). Each direction component may be detected. At this time, the method of calculating the data of the removed subject region portion is arbitrary. Data that simply connects the boundary point between the subject region and the missing region (for example, the boundary point between the region E1 and the regions E2a and E2b in FIG. 14) with a straight line may be calculated, or an arbitrary straight line, spline, other curve, etc. Thus, it may be calculated by interpolation, extrapolation, fitting, or the like. The subject region may be detected by providing a subject region detecting unit for detecting the subject region in the noise removing unit 43, or by detecting the subject region with the trend detecting unit 47. Also good. The subject area can be detected based on, for example, the amount of change in the pixel value ψ.

なお、上述の第1実施形態では、簡単のために、トレンド72が位相微分画像71内で直線的に増大(減少)する傾向を有する例を説明したが、図21に示すトレンド86のように、周期的な特徴を有することがある。X線撮影装置10はこうした場合にも好適にトレンドを検出,除去することができる。但し、前述のように被検体領域E1のデータを除き、素抜け領域E2a,E2bのデータに基づく補間,外挿,フィッティング等によりトレンドを検出する場合には、三角関数等を用いた曲線を用いて補間,外挿,フィッティング等をする必要がある。   In the first embodiment described above, for the sake of simplicity, an example has been described in which the trend 72 has a tendency to increase (decrease) linearly in the phase differential image 71. However, like the trend 86 shown in FIG. , May have periodic features. Even in such a case, the X-ray imaging apparatus 10 can suitably detect and remove the trend. However, when the trend is detected by interpolation, extrapolation, fitting, or the like based on the data of the missing regions E2a and E2b except for the data of the subject region E1 as described above, a curve using a trigonometric function or the like is used. It is necessary to perform interpolation, extrapolation, fitting, etc.

なお、前述の変形例のように、トレンド72を検出するときに、被検体領域をまたがない素抜け領域だけのデータを用いることができる場合には、トレンド72の検出精度がより向上する。このため、位相微分画像71に素抜け領域ができやすくすることが好ましい。   Note that, when the trend 72 is detected as in the above-described modification, if only data of a missing region that does not cross the subject region can be used, the detection accuracy of the trend 72 is further improved. For this reason, it is preferable to make it easy to create a blank area in the phase differential image 71.

位相微分画像71に素抜け領域ができやすくするためには、以下のようにすれば良い。例えば、図22に示すように、第1,第2の格子21,22やX線画像検出器13が収められた筐体91の前面91a(図23参照)に、被検体Hを配置する推奨範囲を示す指標92を設ける。また、指標92の示す推奨範囲は、X線検出器13の検出面13aのサイズよりも小さくしておく。この場合、指標92にしたがって、被検体Hが指標92内に配置されれば、検出面13aと指標92との差分領域が素抜け領域になる。また、被検体Hの大きさが指標92が示す範囲を超える場合であっても、検出面13aと指標92との差分領域に素抜け領域ができやすい。図22では、検出面13aの中央に指標92が設けられているが、指標92は検出面13aに対して上下左右のどの方向に偏って設けても良い。   In order to make it easy to create a blank region in the phase differential image 71, the following may be performed. For example, as shown in FIG. 22, it is recommended to place the subject H on the front surface 91a (see FIG. 23) of the housing 91 in which the first and second gratings 21 and 22 and the X-ray image detector 13 are housed. An index 92 indicating the range is provided. The recommended range indicated by the index 92 is set smaller than the size of the detection surface 13a of the X-ray detector 13. In this case, if the subject H is arranged in the index 92 according to the index 92, the difference area between the detection surface 13a and the index 92 becomes a blank area. In addition, even when the size of the subject H exceeds the range indicated by the index 92, it is easy to create a blank area in the difference area between the detection surface 13a and the index 92. In FIG. 22, the index 92 is provided at the center of the detection surface 13a. However, the index 92 may be provided so as to be biased in any direction, up, down, left, or right with respect to the detection surface 13a.

また、上述のように、位相微分画像71に素抜け領域ができやすくするために、指標92によって被検体Hの配置を制限する場合には、素抜け領域に被検体Hと同程度のX線吸収率を持つ擬似吸収体を配置しておくことが好ましい。例えば、図23に示すように、素抜け領域F2a,F2bに対応する検出面13aの前面に、擬似吸収体96を配置する。こうすると、素抜け領域F2a,F2bに対応する画素値ψが飽和して、トレンド72の検出ができなくなってしまうことを防止することができる。なお、図23では、X線検出器13内に擬似吸収体96を配置しているが、素抜け領域F2a,F2bに対応する位置に配置されていれば、擬似吸収体96の配置は任意である。また、擬似吸収体96は、例えば第2の格子22とX線検出パネル13の間や第1,第2の格子21,22の間に設けても良い。さらに、筐体92の前面92a(あるいは前面92aの筐体92内部側)に、指標92の外周を取り巻くように擬似吸収体96を配置しても良い。   In addition, as described above, in order to make it easy to form a missing region in the phase differential image 71, when the arrangement of the subject H is limited by the index 92, the same amount of X-rays as the subject H is placed in the missing region. It is preferable to arrange a pseudo-absorber having an absorption rate. For example, as shown in FIG. 23, the pseudo-absorber 96 is disposed on the front surface of the detection surface 13a corresponding to the blank regions F2a and F2b. In this way, it is possible to prevent the pixel values ψ corresponding to the missing areas F2a and F2b from being saturated and the trend 72 from being detected. In FIG. 23, the pseudo absorber 96 is disposed in the X-ray detector 13, but the pseudo absorber 96 may be arbitrarily disposed as long as it is disposed at a position corresponding to the element missing regions F2a and F2b. is there. Further, the pseudo absorber 96 may be provided between the second grating 22 and the X-ray detection panel 13 or between the first and second gratings 21 and 22, for example. Furthermore, the pseudo-absorber 96 may be arranged on the front surface 92a of the housing 92 (or inside the housing 92 of the front surface 92a) so as to surround the outer periphery of the index 92.

なお、上述の第1実施形態では、行毎に位相微分画像の画素値ψを抽出し、各行におけるトレンドの横方向成分を検出し、さらにこれらを平均した横方向トレンドデータを、トレンド72の横方向の成分として検出している。しかし、例えば、ある1行において検出したトレンド72の横方向成分を、位相微分画像全体のトレンド72の横方向成分としても良い。また、位相微分画像の全体ではなく、一部の行で検出したトレンド72の横方向成分を平均化したデータを、トレンド72の横方向成分としても良い。例えば、素抜け領域の行で検出したトレンド72の横方向成分を、位相微分画像全体としてのトレンド72の横方向成分として用いたり、素抜け領域の行で検出したトレンド72の横方向成分だけを平均化したデータを位相微分画像全体としてのトレンド72の横方向成分とすると、被検体領域をまたぐ行において検出したデータを用いる場合よりも、トレンド72の横方向成分の検出精度が向上する。縦方向成分の検出時も同様である。また、前述のように、位相微分画像の辺に非平行な第1方向及び第2方向についてトレンド72の成分を検出する場合も同様である。   In the first embodiment described above, the pixel value ψ of the phase differential image is extracted for each row, the horizontal component of the trend in each row is detected, and the horizontal trend data obtained by averaging these is obtained as the horizontal trend data of the trend 72. It is detected as a direction component. However, for example, the horizontal component of the trend 72 detected in a certain line may be used as the horizontal component of the trend 72 of the entire phase differential image. Further, data obtained by averaging the horizontal components of the trend 72 detected in some rows, not the entire phase differential image, may be used as the horizontal component of the trend 72. For example, the horizontal component of the trend 72 detected in the line of the missing region is used as the horizontal component of the trend 72 as the entire phase differential image, or only the horizontal component of the trend 72 detected in the row of the missing region is used. When the averaged data is used as the horizontal component of the trend 72 as the entire phase differential image, the detection accuracy of the horizontal component of the trend 72 is improved as compared with the case where the data detected in the row across the subject region is used. The same applies to the detection of the vertical component. Further, as described above, the same applies to the case where the trend 72 components are detected in the first direction and the second direction that are not parallel to the sides of the phase differential image.

なお、上述の第1実施形態では、トレンド検出部47は、位相微分画像71の画素値ψを行毎に抽出した後、抽出した画素値ψを平滑化してトレンド72の横方向成分を検出し、さらに各行のトレンドの横方向成分を平均化して1つの横方向トレンドデータを検出するが、抽出した画素値ψの平滑化は省略しても良い。すなわち、トレンド検出部47は、行毎に抽出した画素値ψを平滑化せず、抽出した画素値ψそのものを平均化して横方向トレンドデータにしても良い。これは、各行間の画素値の平均化だけで、被写体Hの信号が鈍ってほぼトレンドだけのデータになる場合に有効である。   In the first embodiment described above, the trend detection unit 47 extracts the pixel value ψ of the phase differential image 71 for each row, and then smoothes the extracted pixel value ψ to detect the lateral component of the trend 72. Further, the horizontal component of the trend in each row is averaged to detect one horizontal trend data, but the smoothing of the extracted pixel value ψ may be omitted. That is, the trend detection unit 47 may average the extracted pixel values ψ themselves to obtain horizontal trend data without smoothing the pixel values ψ extracted for each row. This is effective when the signal of the subject H becomes dull and the data becomes almost trend only by averaging the pixel values between the rows.

また、上述の平滑化のみを行い、各行の横方向成分の平均化を省略しても良い。この場合、例えば、任意の行の画素値ψを平滑化し、この行の平滑化した画素値ψを横方向トレンドデータとしてトレンド除去部48に入力する。これは、画素値ψの平滑化だけで、被写体Hの信号が鈍ってほぼトレンドだけのデータになる場合に有効である。   Further, only the above-described smoothing may be performed, and averaging of the horizontal component of each row may be omitted. In this case, for example, the pixel value ψ of an arbitrary row is smoothed, and the smoothed pixel value ψ of this row is input to the trend removing unit 48 as lateral trend data. This is effective when the signal of the subject H becomes dull and the data becomes almost trend only by smoothing the pixel value ψ.

さらに、上述の平滑化及び平均化を両方とも省略しても良い。例えば、トレンド検出部47は、位相微分画像71の任意の行の画素値ψを抽出し、その行の画素値ψをそのまま横方向トレンドデータとしてトレンド除去部48に入力しても良い。これは、例えば、被写体Hの信号に比べてトレンド72が大きい場合に有効である。   Furthermore, both the above smoothing and averaging may be omitted. For example, the trend detection unit 47 may extract a pixel value ψ of an arbitrary row of the phase differential image 71 and input the pixel value ψ of the row as it is to the trend removal unit 48 as horizontal trend data. This is effective, for example, when the trend 72 is larger than the signal of the subject H.

もちろん、縦方向トレンドデータを検出する場合も、上述のように平滑化または平均化を省略、あるいは平滑化と平均化を両方とも省略して良い。また、後述の各実施形態においても同様である。   Of course, when detecting the vertical trend data, smoothing or averaging may be omitted as described above, or both smoothing and averaging may be omitted. The same applies to each embodiment described later.

なお、上述の第1実施形態では、トレンド検出部47が横方向トレンドデータや縦方向トレンドデータを検出する場合に、画素値ψの大きさを考慮していないが、トレンド検出部47は抽出した行(あるいは列)の画素値ψを所定閾値と比較し、その大小関係に基づいて、画素値ψが所定範囲の部分のみを各方向のトレンドデータの検出に利用するようにすることが好ましい。   In the first embodiment described above, when the trend detection unit 47 detects horizontal trend data or vertical trend data, the trend detection unit 47 does not consider the size of the pixel value ψ. It is preferable to compare the pixel value ψ of the row (or column) with a predetermined threshold value, and based on the magnitude relationship, only the portion where the pixel value ψ is in the predetermined range is used for detecting trend data in each direction.

例えば、擬似吸収体96が配置されていないために画素値ψが飽和してしまった素抜け領域や、被写体Hの固定治具の金属部分が写り込んで画素値が極端に少ない(ほぼ0)の領域では、画素値ψ(位相微分値)は正常な値ではない。このため、これらの画素値ψが極端に大きい領域または画素値ψが極端に小さい領域の画素値ψまで考慮してトレンドデータを検出すると、これらの不適切な値に影響されて、検出されるトレンドデータが誤った値になってしまう場合がある。したがって、利用する画素値ψの下限を決める第1閾値と、利用する画素値ψの上限を決める第2閾値を予め定め、トレンド検出部47では、各行または各列の画素値ψを抽出した後、第1閾値以上第2閾値以下の範囲に収まる範囲のデータのみを用いて各方向のトレンドデータを検出するようにすることが好ましい。   For example, the pixel value is extremely small (nearly 0) due to reflection of a region where the pixel value ψ is saturated because the pseudo-absorber 96 is not disposed and a metal part of the fixing jig of the subject H. In this area, the pixel value ψ (phase differential value) is not a normal value. For this reason, if trend data is detected in consideration of even pixel values ψ in a region where these pixel values ψ are extremely large or regions where pixel values ψ are extremely small, they are detected by being affected by these inappropriate values. Trend data may be incorrect. Accordingly, a first threshold value that determines the lower limit of the pixel value ψ to be used and a second threshold value that determines the upper limit of the pixel value ψ to be used are determined in advance, and the trend detection unit 47 extracts the pixel value ψ of each row or each column. It is preferable that the trend data in each direction is detected using only data in a range that falls within the range from the first threshold value to the second threshold value.

[第2実施形態]
なお、上述の第1実施形態では、オフセットノイズ66の除去後にトレンド72を除去する例を説明したが、オフセットノイズ66やトレンド72を除去する順序はこれに限らない。以下、先にトレンド72を除去した後、オフセットノイズ66を除去する例を第2実施形態として説明する。但し、前述の第1実施形態と共通の部材等の説明や図示や省略する。
[Second Embodiment]
In the first embodiment described above, the example in which the trend 72 is removed after the removal of the offset noise 66 has been described. However, the order in which the offset noise 66 and the trend 72 are removed is not limited to this. Hereinafter, an example in which the offset noise 66 is removed after the trend 72 is removed will be described as a second embodiment. However, descriptions, illustrations, and the like of members common to the first embodiment are omitted.

図24に示すように、トレンド72を先に除去する場合、ノイズ除去部43は、トレンド除去部121(第1ノイズ除去部)とオフセット除去部122(第2ノイズ除去部)で構成する。   As shown in FIG. 24, when removing the trend 72 first, the noise removing unit 43 is configured by a trend removing unit 121 (first noise removing unit) and an offset removing unit 122 (second noise removing unit).

トレンド除去部121は、アンラップ処理が施された位相微分画像がアンラップ処理部41から入力されると、位相微分画像をフーリエ変換し、所定周波数以下の低周波数成分を除去する。その後、逆フーリエ変換を施し、低周波数成分が除去された位相微分画像を生成する。プレ撮影の場合、トレンド除去部121は、低周波数成分を除去した位相微分画像を、オフセット画像としてオフセット画像記憶部42に記憶する。本撮影の場合、トレンド除去部121は、低周波数成分を除去した位相微分画像をオフセット除去部122に入力する。   When the phase differential image on which the unwrap processing has been performed is input from the unwrap processing unit 41, the trend removing unit 121 performs Fourier transform on the phase differential image and removes low frequency components that are equal to or lower than a predetermined frequency. Thereafter, an inverse Fourier transform is performed to generate a phase differential image from which low frequency components are removed. In the case of pre-shooting, the trend removing unit 121 stores the phase differential image from which the low frequency component has been removed in the offset image storage unit 42 as an offset image. In the case of actual photographing, the trend removing unit 121 inputs a phase differential image from which low frequency components are removed to the offset removing unit 122.

オフセット除去部122は、本撮影時に、低周波数成分を除去した位相微分画像が入力されると、オフセット画像記憶部42からオフセット画像を取得する。そして、本撮影による位相微分画像からオフセット画像を減算することにより、位相微分画像からオフセットノイズを除去する。   The offset removing unit 122 acquires an offset image from the offset image storage unit 42 when a phase differential image from which a low frequency component is removed is input during the main photographing. Then, the offset noise is removed from the phase differential image by subtracting the offset image from the phase differential image obtained by the actual photographing.

上述のように構成されるX線撮影装置は、プレ撮影時に図25に示すように動作する。まず、操作部18aを用いて撮影モードとしてプレ撮影モードが選択されると(ステップS50)、撮影指示の入力待機状態となる(ステップS51)。その後、操作部18aを用いて撮影指示が入力されると、走査機構23により第2の格子22が所定の走査ピッチずつ並進移動されながら、各走査位置「k」において、X線源11によるX線照射及びX線画像検出器13によるG2像の検出が行われる(ステップS52)。この縞走査の結果、M枚のプレ撮影画像データ51が生成され、メモリ14に格納される。そして、プレ撮影画像データ51は、画像処理部15に読み出され、位相微分画像生成部40によってプレ撮影画像データ51から位相微分画像が生成されるとともに(ステップS53)、アンラップ処理部41でアンラップ処理が施される(ステップS54)。   The X-ray imaging apparatus configured as described above operates as shown in FIG. 25 during pre-imaging. First, when the pre-shooting mode is selected as the shooting mode using the operation unit 18a (step S50), a shooting instruction input standby state is set (step S51). Thereafter, when an imaging instruction is input using the operation unit 18a, the second grating 22 is translated by a predetermined scanning pitch by the scanning mechanism 23, and at each scanning position “k”, the X-ray from the X-ray source 11 is obtained. The G2 image is detected by the beam irradiation and the X-ray image detector 13 (step S52). As a result of the fringe scanning, M pieces of pre-captured image data 51 are generated and stored in the memory 14. Then, the pre-captured image data 51 is read out to the image processing unit 15, and a phase differential image is generated from the pre-captured image data 51 by the phase differential image generation unit 40 (step S 53) and unwrapped by the unwrap processing unit 41. Processing is performed (step S54).

その後、アンラップ処理が施された位相微分画像は、トレンド除去部121に入力され、フーリエ変換が施され(ステップS55)、所定周波数以下の低周波数成分が除去され(ステップS56)、さらに逆フーリエ変換が施される。これにより、入力された位相微分画像は、所定の低周波数成分が除去された位相微分画像になる。低周波数成分が除去された位相微分画像は、オフセット画像としてオフセット画像記憶部42に記憶され、プレ撮影が完了する。   Thereafter, the unwrapped phase differential image is input to the trend removal unit 121, subjected to Fourier transform (step S55), low frequency components equal to or lower than a predetermined frequency are removed (step S56), and inverse Fourier transform is performed. Is given. Thereby, the inputted phase differential image becomes a phase differential image from which a predetermined low frequency component is removed. The phase differential image from which the low frequency component has been removed is stored in the offset image storage unit 42 as an offset image, and pre-imaging is completed.

図26に示すように、本撮影時には、操作部18aを用いて撮影モードとして本撮影モードが選択される(ステップS70)。本撮影モードが選択されると、撮影指示の待受状態となる(ステップS71)。その後、操作部18aを用いて撮影指示がなされると、縞走査が行われ(ステップS72)、メモリ14にM枚の本撮影画像データ52が格納される。本撮影画像データ52は、画像処理部15に読み出され、位相微分画像生成部40によって位相微分画像が生成されるとともに(ステップS73)、アンラップ処理部41でアンラップ処理が施される(ステップS74)。   As shown in FIG. 26, during the main shooting, the main shooting mode is selected as the shooting mode using the operation unit 18a (step S70). When the main shooting mode is selected, a shooting instruction standby state is set (step S71). Thereafter, when an imaging instruction is given using the operation unit 18a, stripe scanning is performed (step S72), and M main captured image data 52 are stored in the memory 14. The captured image data 52 is read out by the image processing unit 15, a phase differential image is generated by the phase differential image generation unit 40 (step S73), and unwrap processing is performed by the unwrap processing unit 41 (step S74). ).

その後、アンラップ処理が施された位相微分画像は、トレンド除去部121に入力され、フーリエ変換が施され(ステップS75)、所定周波数以下の低周波数成分が除去され(ステップS76)、さらに逆フーリエ変換が施される。これにより、入力された位相微分画像は、所定の低周波数成分が除去された位相微分画像になる。低周波数成分が除去された位相微分画像は、オフセット除去部122に入力され、オフセット画像が減算されることにより、さらにオフセットノイズが除去される(ステップS77)。オフセットノイズが除去された位相微分画像は、画像記録部16に記録される。また、位相コントラスト画像生成部44は、オフセットノイズが除去された位相微分画像から位相コントラスト画像を生成し、画像記録部16に記録する(ステップS78)。こうして生成された、位相微分画像や位相コントラスト画像は、モニタ18bに画像表示される(ステップS79)。   Thereafter, the unwrapped phase differential image is input to the trend removing unit 121, subjected to Fourier transform (step S75), low frequency components equal to or lower than a predetermined frequency are removed (step S76), and inverse Fourier transform is performed. Is given. Thereby, the inputted phase differential image becomes a phase differential image from which a predetermined low frequency component is removed. The phase differential image from which the low-frequency component has been removed is input to the offset removing unit 122, and the offset noise is further removed by subtracting the offset image (step S77). The phase differential image from which the offset noise has been removed is recorded in the image recording unit 16. Further, the phase contrast image generation unit 44 generates a phase contrast image from the phase differential image from which the offset noise has been removed, and records it in the image recording unit 16 (step S78). The phase differential image and phase contrast image generated in this way are displayed on the monitor 18b (step S79).

上述のように、プレ撮影画像データ51や本撮影画像データ52から生成した位相微分画像をフーリエ変換し、所定の低周波数成分を除去すると、位相微分画像からオフセットノイズの低周波数成分が除去される。前述のように、トレンドは、プレ撮影時と本撮影時のオフセットノイズが完全に一致しないために、その差分がオフセット画像を減算したときに残存したものである。このため、上述のように、主としてオフセットノイズである低周波成分を予め除去した位相微分画像とオフセット画像の差分を取る場合には、トレンドは発生しない。上述の第2実施形態によれば、第1実施形態の例よりも簡便にトレンドの発生を抑えることができる。   As described above, when the phase differential image generated from the pre-captured image data 51 and the main captured image data 52 is Fourier transformed to remove a predetermined low frequency component, the low frequency component of offset noise is removed from the phase differential image. . As described above, since the offset noise at the time of pre-photographing and that at the time of main photographing do not completely match, the trend remains when the offset image is subtracted. For this reason, as described above, no trend occurs when the difference between the phase differential image and the offset image from which the low-frequency component, which is mainly offset noise, is previously removed is taken. According to the above-described second embodiment, it is possible to suppress the occurrence of a trend more easily than the example of the first embodiment.

なお、オフセットノイズには高周波成分もある。例えば、X線検出器13の画素欠陥は高周波のオフセットノイズを発生させる。このため、上述の第2実施形態では、単に本撮影時に生成される位相微分画像から低周波成分を除去するだけでなく、オフセット画像も取得し、本撮影時に生成される位相微分画像低周波成分を除去したオフセット画像を減算している。これにより、高周波のオフセットノイズも除去される。X線検出器13に画素欠陥がない場合や、画素欠陥が他の方法(例えば、画素欠陥の位置を予め測定し、本撮影画像データの時点で欠陥画素の画素値を補正する等)で補正される場合には、本撮影による位相微分画像から低周波数成分を除去することにより、オフセットノイズを除去するようにしても良い。これにより、オフセットノイズもトレンドも残存しない位相微分画像を得ることができる。   The offset noise also has a high frequency component. For example, a pixel defect in the X-ray detector 13 generates high-frequency offset noise. For this reason, in the above-described second embodiment, not only the low-frequency component is simply removed from the phase differential image generated at the time of actual imaging, but also an offset image is acquired and the phase differential image low-frequency component generated at the time of actual imaging. Is subtracted from the offset image. Thereby, high-frequency offset noise is also removed. When there is no pixel defect in the X-ray detector 13 or the pixel defect is corrected by another method (for example, by measuring the position of the pixel defect in advance and correcting the pixel value of the defective pixel at the time of the actual captured image data). In such a case, the offset noise may be removed by removing low frequency components from the phase differential image obtained by the actual photographing. Thereby, a phase differential image in which neither offset noise nor trend remains can be obtained.

[第3実施形態]
なお、前述の第1実施形態のようにトレンド72を検出,除去するときに、あるいは上述の第2実施形態のようにトレンド72が発生しないように位相微分画像から低周波成分を除去するときには、以下に第3実施形態として説明するように、吸収微分画像を利用しても良い。
[Third Embodiment]
When the trend 72 is detected and removed as in the first embodiment described above, or when the low frequency component is removed from the phase differential image so that the trend 72 does not occur as in the second embodiment described above, As described below as the third embodiment, an absorption differential image may be used.

まず、前述の第1実施形態のように、トレンド72を検出,除去する場合には、例えば、図27に示すように、画像処理部15に吸収微分画像生成部301を設ける。吸収微分画像生成部301は、まず、縞走査によって得られたM枚の本撮影画像データ52を取得し、これらを平均することによって、吸収画像を生成する。吸収画像は、被写体HのX線吸収率(透過率)がコントラストとして表現された画像である。   First, when the trend 72 is detected and removed as in the first embodiment described above, an absorption differential image generation unit 301 is provided in the image processing unit 15 as shown in FIG. 27, for example. First, the absorption differential image generation unit 301 acquires M main captured image data 52 obtained by the fringe scanning, and generates an absorption image by averaging them. The absorption image is an image in which the X-ray absorption rate (transmittance) of the subject H is expressed as contrast.

各々の本撮影画像データ52には、第1の格子21と第2の格子22による縞が写し出されているが、この縞は第2の格子22の走査位置kに応じて移動し、撮影順にM枚の本撮影画像データ52を比較すれば1周期分移動する。このため、M枚の本撮影画像データ52を平均すると、第1の格子21と第2の格子22による縞は平均化されてほぼ一様なバックグラウンドとなるので、吸収画像には縞はなく、被写体Hの像だけが写し出される。   In each of the actual captured image data 52, fringes by the first grating 21 and the second grating 22 are projected, and the fringes move according to the scanning position k of the second grating 22, and in the order of photographing. If M pieces of actual photographed image data 52 are compared, it moves by one cycle. For this reason, when the M actual captured image data 52 are averaged, the fringes by the first grating 21 and the second grating 22 are averaged to form a substantially uniform background, and thus there is no fringe in the absorption image. Only the image of the subject H is projected.

次に、吸収微分画像生成部301は、吸収画像を微分して吸収微分画像を生成する。吸収画像の微分は、例えば、所定の方向(微分する方向)に1画素ずらした画像との差分を取ることによって行うことができる。こうして吸収微分画像生成部301で生成された吸収微分画像は、トレンド検出部302に入力され、トレンド72の検出に利用される。なお、吸収画像を微分する方向は任意であるが、例えば、格子線に垂直なX方向(図1参照)に行うことが好ましい。   Next, the absorption differential image generation unit 301 generates an absorption differential image by differentiating the absorption image. Differentiation of the absorption image can be performed, for example, by taking a difference from an image shifted by one pixel in a predetermined direction (direction of differentiation). The absorption differential image generated by the absorption differential image generation unit 301 in this manner is input to the trend detection unit 302 and used for detection of the trend 72. In addition, although the direction which differentiates an absorption image is arbitrary, for example, it is preferable to carry out to the X direction (refer FIG. 1) perpendicular | vertical to a grid line.

トレンド検出部302は、第1実施形態のトレンド検出部47と同様に、オフセットノイズが除去された位相微分画像からトレンド72の各方向成分を検出するが、トレンド検出部302は吸収微分画像を参照しながらトレンド72の各方向成分を検出する。   The trend detection unit 302 detects each direction component of the trend 72 from the phase differential image from which the offset noise has been removed, as with the trend detection unit 47 of the first embodiment, but the trend detection unit 302 refers to the absorption differential image. Meanwhile, each direction component of the trend 72 is detected.

図28(A)に示すように、所定の撮影範囲303を撮影し、被写体Hが撮影範囲303の中央にあるとする。また、ここでは簡単のため被写体Hは球形とする。このとき、吸収画像において図28(A)に破線で示す撮影範囲303の中央横方向に対応する画素値を抽出すると、図28(B)に示すように、オフセットノイズがない場合には実線305aのように、素抜け領域304の部分では画素値は平坦であり、被写体Hの部分では被写体HのX線吸収率に応じた曲線等になる。一方、オフセットノイズがある場合には、破線305bで示すように、素抜け領域304ではオフセットノイズを反映して画素値が変化する。また、被写体Hの部分においてもオフセットノイズによって曲線形状が変化する。但し、被写体Hと素抜け領域304の境界位置は、オフセットノイズによって変化しない。   As shown in FIG. 28A, it is assumed that a predetermined shooting range 303 is shot and the subject H is in the center of the shooting range 303. Here, for simplicity, the subject H is spherical. At this time, when a pixel value corresponding to the central horizontal direction of the imaging range 303 indicated by a broken line in FIG. 28A is extracted from the absorption image, a solid line 305a is obtained when there is no offset noise as shown in FIG. As described above, the pixel value is flat in the portion of the background region 304, and a curve corresponding to the X-ray absorption rate of the subject H is formed in the portion of the subject H. On the other hand, when there is offset noise, as indicated by a broken line 305b, the pixel value changes in the background region 304 reflecting the offset noise. Further, the curve shape also changes in the portion of the subject H due to the offset noise. However, the boundary position between the subject H and the blank area 304 is not changed by the offset noise.

したがって、図28(C)の実線306a(オフセットノイズがない場合)及び破線306b(オフセットノイズがある場合)に示すように、吸収微分画像においては、素抜け領域304に対応する領域E2a及び領域E2bでは、オフセットノイズの有無に関わらず、ほぼ平坦なデータとなる。   Therefore, as shown by a solid line 306a (when there is no offset noise) and a broken line 306b (when there is offset noise) in FIG. 28 (C), in the absorption differential image, an area E2a and an area E2b corresponding to the blank area 304 In this case, the data is almost flat regardless of the presence or absence of offset noise.

トレンド検出部302は、上述のように素抜け領域304に対応する領域E2a及び領域E2bのデータを利用してトレンド72の横方向成分を検出する。具体的には、まず、吸収微分画像において、画素値が平坦になる領域E2aまたは領域E2bから少なくとも2点の画素を選出する。ここでは、領域E2aのある画素A1と領域E2bのある画素A2を選出したとするが、領域E2aまたは領域E2bの一方から2点を選出しても良い。また、3点以上の画素を選出しても良く、素抜け領域304に対応して画素値の変化が平坦な領域が3以上ある場合には各領域から各々1点を選出しても良い。   As described above, the trend detection unit 302 detects the horizontal component of the trend 72 using the data of the region E2a and the region E2b corresponding to the blank region 304. Specifically, first, at least two pixels are selected from the region E2a or the region E2b where the pixel value is flat in the absorption differential image. Here, the pixel A1 with the region E2a and the pixel A2 with the region E2b are selected, but two points may be selected from either the region E2a or the region E2b. Also, three or more pixels may be selected, and if there are three or more regions where the change in the pixel value is flat corresponding to the blank region 304, one point may be selected from each region.

こうして、素抜け領域304に対応する画素A1,A2を選出すると、図28(D)に示すように、トレンド検出部302は、オフセット処理済みの位相微分画像から、吸収微分画像で選出した画素A1,A2に対応する画素(画素A1,A2と同位置にある画素)A1’,A2’の画素値を結ぶ直線を算出することにより、トレンド成分307を検出する。なお、3点以上の画素を選出した場合には、フィッティング等により、トレンド成分107を検出する。   When the pixels A1 and A2 corresponding to the background missing region 304 are selected in this way, the trend detection unit 302 selects the pixel A1 selected as the absorption differential image from the phase differential image that has been subjected to the offset processing, as shown in FIG. The trend component 307 is detected by calculating a straight line connecting the pixel values of the pixels A1 ′ and A2 ′ (pixels at the same position as the pixels A1 and A2) corresponding to A2. When three or more pixels are selected, the trend component 107 is detected by fitting or the like.

ここでは、トレンド検出部302によってトレンド72の横方向成分を検出する態様を例にしたが、トレンド72の縦方向成分を検出する場合も同様である。また、トレンド除去部48において、検出したトレンド成分307を用いて位相微分画像からトレンド72を除去する態様は、前述の第1実施形態と同様である。   Here, the aspect in which the trend detection unit 302 detects the horizontal component of the trend 72 is taken as an example, but the same applies to the case where the vertical component of the trend 72 is detected. Moreover, the aspect which removes the trend 72 from a phase differential image using the detected trend component 307 in the trend removal part 48 is the same as that of the above-mentioned 1st Embodiment.

位相微分画像の画素値だけを用いる場合、被写体Hの態様等によっては素抜け領域104の明確な特定が難しいことがあるため、前述の第1実施形態のように抽出した画素値を平滑化する等の処理が必要であるが、上述のように、吸収微分画像を用いれば素抜け領域304の画素A1’,A2’を容易に特定可能であり、トレンド72の各方向成分の検出を容易かつ迅速に行うことができる。   When only the pixel values of the phase differential image are used, it may be difficult to clearly identify the background region 104 depending on the aspect of the subject H, and the extracted pixel values are smoothed as in the first embodiment. However, as described above, if the absorption differential image is used, the pixels A1 ′ and A2 ′ of the unclear region 304 can be easily specified, and each direction component of the trend 72 can be easily and easily detected. Can be done quickly.

なお、ここでは、吸収微分画像生成部301が本撮影画像データ52から吸収微分画像を生成する例を説明したが、吸収微分画像301は、次のように生成することが好ましい。まず、吸収微分画像生成部301は、プレ撮影時にプレ撮影画像データ51から第1吸収画像を生成し、例えばオフセット画像記憶部42等に記憶しておく。次に、本撮影時には、吸収微分画像生成部301は、本撮影画像データ52から第2吸収画像を生成する。そして、第2吸収画像を第1吸収画像で割ることにより、第3吸収画像を生成し、さらに第3吸収画像を微分することによってトレンド検出部302に入力する吸収微分画像を生成する。こうすると、第1の格子21や第2の格子22の透過率のムラによるノイズ成分が低減されるので、トレンド検出部302で素抜け領域304の特定に用いる吸収微分画像としてより好適な画像となる。   Here, an example in which the absorption differential image generation unit 301 generates an absorption differential image from the actual captured image data 52 has been described. However, the absorption differential image 301 is preferably generated as follows. First, the absorption differential image generation unit 301 generates a first absorption image from the pre-photographed image data 51 at the time of pre-photographing, and stores it in the offset image storage unit 42, for example. Next, at the time of actual imaging, the absorption differential image generation unit 301 generates a second absorption image from the actual captured image data 52. Then, a third absorption image is generated by dividing the second absorption image by the first absorption image, and an absorption differential image to be input to the trend detection unit 302 is generated by differentiating the third absorption image. This reduces the noise component due to the uneven transmittance of the first grating 21 and the second grating 22, so that an image more suitable as an absorption differential image used for specifying the missing region 304 in the trend detection unit 302 can be obtained. Become.

なお、ここでは吸収微分画像から素抜け領域304の画素を選出する例を説明したが、トレンド検出部302は、素抜け領域304の画素に限らず、吸収微分画像の全体(被検体Hの領域も含む)から、周辺の画素と画素値がほぼ等しい画素を選出すれば良い。上述の例では被検体Hを球形としたために、被検体H内部では画素値の変化が平坦になる箇所は殆どないが、通常の被写体の場合、被写体Hの内部においても、画素値の変化が殆どなく、周辺の画素と画素値がほぼ等しい領域が発生することがあるからである。周辺の画素と画素値がほぼ等しい画素であれば、被検体H内部の画素であっても、上述の例と同様にトレンドの除去を行うことができる。また、被検体H内の画素を利用可能であることから明らかなように、撮影範囲10の全体に被写体Hがある場合でも、上述の例と同様の方法でトレンドの検出を行うことができる。   Here, an example in which the pixels in the background missing region 304 are selected from the absorption differential image has been described. However, the trend detection unit 302 is not limited to the pixels in the background missing region 304, but the entire absorption differential image (region of the subject H). A pixel having a pixel value substantially equal to that of the surrounding pixels may be selected. In the above example, since the subject H has a spherical shape, there is almost no place where the change in the pixel value becomes flat inside the subject H. However, in the case of a normal subject, the change in the pixel value also occurs inside the subject H. This is because there are almost no areas where pixel values are almost equal to those of the surrounding pixels. If the pixel value is substantially equal to the surrounding pixels, the trend can be removed even in the case of the pixel inside the subject H as in the above example. Further, as apparent from the fact that the pixels in the subject H can be used, even when the subject H is present in the entire imaging range 10, the trend can be detected by the same method as in the above example.

次に、前述の第2実施形態のようにトレンド72が発生しないように位相微分画像から低周波成分を除去する場合には、図29に示すように、画像処理部15に吸収微分画像生成部311を設ける。   Next, when the low frequency component is removed from the phase differential image so that the trend 72 does not occur as in the second embodiment, the absorption differential image generation unit is included in the image processing unit 15 as shown in FIG. 311 is provided.

吸収微分画像生成部311は、プレ撮影で得られたM枚のプレ撮影画像データ52を取得し、これらを平均することによって吸収画像を生成し、これをさらに微分することによって吸収微分画像(以下、プレ撮影吸収微分画像という)を生成する。同様に、吸収微分画像生成部311は、本撮影で得られたM枚の本撮影画像データ52を取得し、これらを平均することによって吸収画像を生成し、これをさらに微分することによって吸収微分画像(以下、本撮影吸収微分画像という)を生成する。プレ撮影吸収微分画像及び本撮影吸収微分画像は、いずれもトレンド除去部312に入力される。   The absorption differential image generation unit 311 acquires M pre-photographed image data 52 obtained by pre-photographing, generates an absorption image by averaging them, and further differentiates this to obtain an absorption differential image (hereinafter referred to as “absorption differential image”). A pre-photographed absorption differential image). Similarly, the absorption differential image generation unit 311 acquires M main captured image data 52 obtained by the main imaging, generates an absorption image by averaging them, and further differentiates the absorption differential An image (hereinafter referred to as a main photographing absorption differential image) is generated. Both the pre-photographed absorption differential image and the main-photographed absorption differential image are input to the trend removing unit 312.

トレンド除去部312には、アンラップ処理部41からアンラップ処理済みの位相微分画像が入力されるとともに、吸収微分画像生成部311から吸収微分画像が入力される。トレンド除去部312は、位相微分画像と吸収微分画像をそれぞれフーリエ変換し、位相微分画像と吸収微分画像の周波数成分を比較して、位相微分画像から所定の低周波数成分を除去する。その後、逆フーリエ変換をし、低周波数成分が除去された位相微分画像を生成する。   The trend removal unit 312 receives the unwrapped phase differential image from the unwrap processing unit 41 and the absorption differential image from the absorption differential image generation unit 311. The trend removal unit 312 performs Fourier transform on the phase differential image and the absorption differential image, compares the frequency components of the phase differential image and the absorption differential image, and removes a predetermined low-frequency component from the phase differential image. Thereafter, an inverse Fourier transform is performed to generate a phase differential image from which low frequency components are removed.

例えば、プレ撮影時には、トレンド除去部312には、プレ撮影画像データ51から生成され、アンラップ処理が施された位相微分画像と、同じプレ撮影画像データ51から生成されたプレ撮影吸収微分画像が入力される。位相微分画像と吸収微分画像が入力されると、トレンド除去部312は、まず、これらの各画像をそれぞれフーリエ変換し、周波数成分を比較する。   For example, at the time of pre-photographing, the trend removing unit 312 receives a phase differential image generated from the pre-photographed image data 51 and subjected to unwrapping processing, and a pre-photographed absorption differential image generated from the same pre-photographed image data 51. Is done. When the phase differential image and the absorption differential image are input, the trend removing unit 312 first performs a Fourier transform on each of these images and compares the frequency components.

前述のように、吸収微分画像においては、被検体H等のエッジ近傍のデータを除き、素抜け領域や被検体Hの内部では、オフセットノイズの有無に関わらず、画素値の変化が殆ど無い平坦なデータとなる。このため、吸収微分画像のフーリエ変換データにおいては、オフセットノイズ(オフセット処理後にトレンドになる成分を含む)を表す周波数成分がない。一方、吸収微分画像において画素値の変化が殆ど無い部分は、位相微分画像においても画素値の変化が殆ど無いはずの部分であるが、位相微分画像ではオフセットノイズが重畳されているので、位相微分画像のフーリエ変換データにおいては、吸収微分画像のフーリエ変換データに無いオフセットノイズを表す周波数成分(主に低周波数成分)が現れる。   As described above, in the differential absorption image, except for the data near the edge of the subject H or the like, the flatness in which there is almost no change in the pixel value regardless of the presence or absence of the offset noise inside the subject missing region or the subject H. Data. For this reason, in the Fourier transform data of the absorption differential image, there is no frequency component representing offset noise (including a component that becomes a trend after the offset process). On the other hand, the part where there is almost no change in the pixel value in the absorption differential image is the part where there should be almost no change in the pixel value in the phase differential image, but since the offset noise is superimposed in the phase differential image, the phase differential In the Fourier transform data of the image, a frequency component (mainly a low frequency component) representing offset noise that does not exist in the Fourier transform data of the absorption differential image appears.

このことに基づいて、トレンド除去部312は、プレ撮影吸収微分画像のフーリエ変換データと、位相微分画像のフーリエ変換データを比較し、位相微分画像のフーリエ変換データにだけ存在し、プレ撮影吸収微分画像のフーリエ変換データに無い所定の周波数成分を、位相微分画像のフーリエ変換データから除去する。これにより、画素値の変化が殆ど無い平坦なデータとなるべき部分に重畳されたオフセットノイズ(あるいはオフセットノイズの一部成分)が位相微分画像から除去される。トレンド除去部312は、こうして所定の周波数成分を除去した位相微分画像のフーリエ変換データを、逆フーリエ変換して位相微分画像を再生成し、これをオフセット画像としてオフセット画像記憶部42に記憶する。   Based on this, the trend removal unit 312 compares the Fourier transform data of the pre-photographed absorption differential image with the Fourier transform data of the phase differential image, and exists only in the Fourier transform data of the phase differential image, A predetermined frequency component not included in the Fourier transform data of the image is removed from the Fourier transform data of the phase differential image. As a result, offset noise (or a partial component of offset noise) superimposed on a portion that should be flat data with almost no change in pixel value is removed from the phase differential image. The trend removing unit 312 performs an inverse Fourier transform on the Fourier transform data of the phase differential image from which the predetermined frequency component has been removed in this manner to regenerate the phase differential image, and stores this as an offset image in the offset image storage unit 42.

同様に、本撮影時には、トレンド除去部312は、本撮影吸収微分画像とアンラップ済み位相微分画像をそれぞれフーリエ変換し、各々の周波数成分を比較する。そして、本撮影吸収微分画像のフーリエ変換データに無く、位相微分画像のフーリエ変換データにだけ存在する周波数成分を位相微分画像のフーリエ変換データから除去し、さらに逆フーリエ変換をして位相微分画像を再生成する。こうして所定の周波数成分が除去された位相微分画像は、オフセット除去部122に入力される。   Similarly, at the time of actual imaging, the trend removing unit 312 performs a Fourier transform on the actual imaging absorption differential image and the unwrapped phase differential image, and compares the respective frequency components. Then, frequency components that are not in the Fourier transform data of the main imaging absorption differential image but are present only in the Fourier transform data of the phase differential image are removed from the Fourier transform data of the phase differential image, and further the inverse Fourier transform is performed to obtain the phase differential image. Regenerate. The phase differential image from which the predetermined frequency component has been removed in this way is input to the offset removal unit 122.

オフセット除去部122は、前述の第2実施形態と同様に、トレンド除去部312によって所定の周波数成分が除去された位相微分画像とオフセット画像の差分を算出することにより、オフセットノイズの高周波成分を除去する。   The offset removing unit 122 removes the high-frequency component of the offset noise by calculating the difference between the phase differential image from which the predetermined frequency component has been removed by the trend removing unit 312 and the offset image, as in the second embodiment. To do.

このように、吸収微分画像を用いて、位相微分画像から除くべき所定周波数成分を定めると、前述の第2実施形態のように除去する周波数成分を決定しておく場合よりも、柔軟にかつ正確に除くべき周波数成分を定め、トレンドの発生を確実に抑えることができる。   Thus, when the predetermined frequency component to be removed from the phase differential image is determined using the absorption differential image, it is more flexible and accurate than when the frequency component to be removed is determined as in the second embodiment described above. The frequency components to be removed can be determined, and the occurrence of trends can be reliably suppressed.

なお、ここでは、プレ撮影画像データ51に基づいて位相微分画像から、プレ撮影吸収微分画像に無い周波数成分を除去した位相微分画像をオフセット画像とする例を説明したが、これに限らない。例えば、プレ撮影時には、吸収微分画像(プレ撮影吸収微分画像)を生成せず、プレ撮影画像データ51に基づいて生成した位相微分画像をオフセット画像として生成,記憶する。そして、本撮影時には、本撮影吸収微分画像に無い周波数成分を、所定周波数成分を除去していないオフセット画像と、本撮影画像データ52に基づいて生成された位相微分画像からそれぞれ除去しても良い。また、プレ撮影時には、プレ撮影吸収微分画像とオフセット画像を生成し、本撮影時には、本撮影吸収微分画像を生成せずに、プレ撮影吸収微分画像に無い周波数成分を本撮影の位相微分画像から除去しても良い。こうすると、オフセット画像と本撮影時の位相微分画像から正確に共通の周波数成分を除去することができるので、オフセット処理後のトレンドの残存をより確実に防止することができる。   Here, an example has been described in which a phase differential image obtained by removing a frequency component not present in the pre-photographed absorption differential image from the phase differential image based on the pre-photographed image data 51 is used as an offset image, but the present invention is not limited thereto. For example, at the time of pre-photographing, an absorption differential image (pre-photographed absorption differential image) is not generated, and a phase differential image generated based on the pre-photographed image data 51 is generated and stored as an offset image. At the time of actual imaging, frequency components that are not present in the actual imaging absorption differential image may be removed from the offset image from which the predetermined frequency component is not removed and the phase differential image generated based on the actual imaging image data 52, respectively. . In addition, a pre-photographed absorption differential image and an offset image are generated at the time of pre-photographing, and a frequency component not included in the pre-photographed absorption differential image is generated from the phase differential image of the main photographing without generating the main photographing absorption differential image at the time of main photographing. It may be removed. In this way, it is possible to accurately remove the common frequency component from the offset image and the phase differential image at the time of actual photographing, so that it is possible to more reliably prevent the trend from remaining after the offset processing.

なお、上記第1〜第3実施形態では、被検体HをX線源11と第1の格子21との間に配置しているが、被検体Hを第1の格子21と第2の格子22との間に配置してもよい。   In the first to third embodiments, the subject H is arranged between the X-ray source 11 and the first grating 21. However, the subject H is arranged with the first grating 21 and the second grating. It may be arranged between the two.

また、上記第1〜第3実施形態では、縞走査時に第2の格子22を格子線に直交する方向(X方向)に移動させているが、本出願人により特願2011−097090号として出願されているように、第2の格子22を格子線に対して傾斜する方向(XY平面内でX方向及びY方向に直交しない方向)に移動させてもよい。この移動方向は、XY平面内で、かつY方向以外であれば、いずれの方向であってもよい。この場合には、第2の格子22の移動のX方向成分に基づいて、走査位置kを設定すればよい。第2の格子22を格子線に対して傾斜する方向に移動させることにより、縞走査の一周期分の走査に要するストローク(移動距離)が長くなるため、移動精度が向上するといった利点がある。   In the first to third embodiments, the second grating 22 is moved in the direction (X direction) perpendicular to the grating lines during fringe scanning. The present applicant filed as Japanese Patent Application No. 2011-097090. As described above, the second grating 22 may be moved in a direction inclined with respect to the grid line (a direction not orthogonal to the X direction and the Y direction in the XY plane). This moving direction may be any direction as long as it is within the XY plane and other than the Y direction. In this case, the scanning position k may be set based on the X-direction component of the movement of the second grating 22. By moving the second grating 22 in a direction inclined with respect to the grating lines, the stroke (movement distance) required for one period of the fringe scanning is increased, and there is an advantage that the movement accuracy is improved.

また、上記第1〜第3実施形態では、縞走査時に第2の格子22を移動させているが、第2の格子22に代えて、第1の格子21を格子線に直交する方向または傾斜する方向に移動させてもよい。   In the first to third embodiments, the second grating 22 is moved at the time of fringe scanning. Instead of the second grating 22, the first grating 21 is in a direction perpendicular to the grating lines or inclined. It may be moved in the direction of

また、上記第1〜第3実施形態では、X線源11から射出されるコーンビーム状のX線を射出するX線源11を用いているが、平行ビーム状のX線を射出するX線源を用いることも可能である。この場合には、上式(1)に代えて、p=pをほぼ満たすように第1及び第2の格子21,22を構成すればよい。 In the first to third embodiments, the X-ray source 11 that emits cone-beam X-rays emitted from the X-ray source 11 is used. However, X-rays that emit parallel-beam X-rays are used. It is also possible to use a source. In this case, instead of the above equation (1), the first and second gratings 21 and 22 may be configured so as to substantially satisfy p 2 = p 1 .

また、上記第1〜第3実施形態では、X線源11から射出されたX線を第1の格子21に入射させており、X線源11は単一焦点であるが、図30に示すように、X線源11の射出側直後に、WO2006/131235号公報等に記されたマルチスリット(線源格子)150を設けることにより、X焦点を分散化してもよい。マルチスリット150の格子線(格子溝)は、Y方向に延伸しており、第1及び第2の格子21,22の少なくとも一方の格子線と平行である。これより、高出力のX線源を用いることが可能となり、X線量が向上するため、位相微分画像の画質が向上する。この場合、マルチスリットのピッチpは、下式(10)を満たす必要がある。ここで、距離Lは、マルチスリットから第1の格子21までの距離を表す。 In the first to third embodiments, X-rays emitted from the X-ray source 11 are incident on the first grating 21, and the X-ray source 11 has a single focal point, as shown in FIG. As described above, the X focus may be dispersed by providing a multi slit (ray source lattice) 150 described in WO 2006/131235 or the like immediately after the exit side of the X-ray source 11. The lattice lines (lattice grooves) of the multi-slit 150 extend in the Y direction and are parallel to at least one of the first and second lattices 21 and 22. As a result, a high-power X-ray source can be used, and the X-ray dose is improved, so that the image quality of the phase differential image is improved. In this case, the pitch p 0 of the multi-slit needs to satisfy the following formula (10). Here, the distance L 1 represents the distance from the multi slit to the first grating 21.

このようにマルチスリット150を設けた場合には、マルチスリット150の位置がX線焦点の位置となるため、上記実施形態の距離L1は、距離L0に置き換えられる。   When the multi-slit 150 is provided in this way, the position of the multi-slit 150 becomes the position of the X-ray focal point, and thus the distance L1 in the above embodiment is replaced with the distance L0.

また、マルチスリットを設けた場合には、マルチスリット150を固定したまま、第1の格子21または第2の格子22を移動させて縞走査を行うことの他に、第1及び第2の格子21,22を固定したまま、マルチスリット150を移動させることにより縞走査を行うことが可能である。この場合、マルチスリット150のピッチpを前述のMで割った値(p/M)を走査ピッチとして、マルチスリット150をX方向に間欠移動させればよい。これにより、第1及び第2の格子21,22に対するマルチスリット150の走査位置「k」は、k=0,1,2,・・・,M−1と順に変更される。 In addition, when the multi-slit is provided, the first and second gratings are used in addition to performing the fringe scanning by moving the first grating 21 or the second grating 22 while the multi-slit 150 is fixed. It is possible to perform fringe scanning by moving the multi slit 150 while 21 and 22 are fixed. In this case, the multi slit 150 may be intermittently moved in the X direction using a value (p 0 / M) obtained by dividing the pitch p 0 of the multi slit 150 by M as described above. Thereby, the scanning position “k” of the multi-slit 150 with respect to the first and second gratings 21 and 22 is sequentially changed to k = 0, 1, 2,..., M−1.

また、上記第1〜第3実施形態では、第1の格子21が入射X線を幾何光学的に投影しているが、WO2004/058070号公報等で知られているように、第1の格子21をタルボ効果が生じる構成としてもよい。第1の格子21でタルボ効果を生じさせるためには、X線の空間干渉性を高めるように、小焦点のX線光源を用いるか、上記マルチスリット150を用いればよい。   In the first to third embodiments, the first grating 21 projects the incident X-ray geometrically, but the first grating 21 is known as disclosed in WO 2004/058070 and the like. 21 may be configured to generate the Talbot effect. In order to generate the Talbot effect in the first grating 21, a small-focus X-ray light source or the multi-slit 150 may be used so as to enhance the spatial coherence of X-rays.

第1の格子21でタルボ効果を生じさせる場合には、第1の格子21を、吸収型格子に代えて、位相型格子とすることも可能である。位相型格子は、吸収型格子のX線吸収部をX線位相形成部に置換することにより構成される。X線位相形成部は、隣接するX線透過部に対して所定の屈折率差を有する材料(空気、樹脂など)により形成される。この位相型格子としては、入射X線にπ/2の位相変調を与えて透過させるものと、入射X線にπの位相変調を与えて透過させるものとが知られている。   When the Talbot effect is generated in the first grating 21, the first grating 21 can be a phase grating instead of the absorption grating. The phase type grating is configured by replacing the X-ray absorption part of the absorption type grating with an X-ray phase forming part. The X-ray phase forming part is formed of a material (air, resin, etc.) having a predetermined refractive index difference with respect to the adjacent X-ray transmitting part. As the phase-type grating, there are known a phase grating that transmits incident X-rays with a phase modulation of π / 2 and a grating that transmits incident X-rays with a phase modulation of π / 2.

第1の格子21でタルボ効果が生じる場合には、第1の格子21の自己像(G1像)が、第1の格子21からZ方向下流にタルボ距離Zだけ離れた位置に生じるため、第1の格子21から第2の格子22までの距離Lをタルボ距離Zとする必要がある。 When the Talbot effect is generated in the first grating 21, the self-image (G1 image) of the first grating 21 is generated at a position away from the first grating 21 by the Talbot distance Z m downstream in the Z direction. the distance L 2 from the first grid 21 to the second grid 22 is required to be Talbot distance Z m.

タルボ距離Zは、第1の格子21の構成とX線のビーム形状とに依存する。第1の格子21が吸収型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、下式(11)で表される。ここで、「m」は、正の整数である。この場合には、格子ピッチp,pは、式(1)をほぼ満たすように設定される(ただし、マルチスリット150を用いる場合には、距離Lは距離Lに置き換えられる)。 Talbot distance Z m is dependent on the beam shape of the structure and the X-ray of the first grating 21. An absorption grating first grating 21, when X-rays emitted from the X-ray source 11 is a cone beam shape, Talbot distance Z m is represented by the following formula (11). Here, “m” is a positive integer. In this case, the grating pitches p 1 and p 2 are set so as to substantially satisfy the expression (1) (however, when the multi slit 150 is used, the distance L 1 is replaced with the distance L 0 ).

また、第1の格子21がX線にπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、下式(12)で表される。ここで、「m」は、「0」または正の整数である。この場合には、格子ピッチp,pは、式(1)をほぼ満たすように設定される(ただし、マルチスリット150を用いる場合には、距離Lは距離Lに置き換えられる)。 Further, when the first grating 21 is a phase-type grating that applies phase modulation of π / 2 to the X-ray, and the X-ray emitted from the X-ray source 11 has a cone beam shape, the Talbot distance Z m is And expressed by the following formula (12). Here, “m” is “0” or a positive integer. In this case, the grating pitches p 1 and p 2 are set so as to substantially satisfy the expression (1) (however, when the multi slit 150 is used, the distance L 1 is replaced with the distance L 0 ).

また、第1の格子21がX線にπの位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、下式(13)で表される。ここで、「m」は「0」または正の整数である。ここで、「m」は、「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、式(14)をほぼ満たすように設定される(ただし、マルチスリット150を用いる場合には、距離Lは距離Lに置き換えられる)。 In addition, when the first grating 21 is a phase-type grating that imparts π phase modulation to X-rays and the X-rays emitted from the X-ray source 11 have a cone beam shape, the Talbot distance Z m is as follows. It is represented by Formula (13). Here, “m” is “0” or a positive integer. Here, “m” is “0” or a positive integer. In this case, since the pattern period of the G1 image is ½ times the grating period of the first grating 21, the grating pitches p 1 and p 2 are set so as to substantially satisfy Expression (14) ( However, in the case of using the multi-slit 150, the distance L 1 is replaced by a distance L 0).

また、第1の格子21が吸収型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(15)で表される。ここで、「m」は、正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。 The first grating 21 is absorption grating, if X-rays emitted from the X-ray source 11 is a parallel beam shape, Talbot distance Z m is represented by the formula (15). Here, “m” is a positive integer. In this case, the lattice pitches p 1 and p 2 are set so as to substantially satisfy the relationship of p 2 = p 1 .

また、第1の格子21がX線にπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(16)で表される。ここで、「m」は、「0」または正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。 Further, when the first grating 21 is a phase-type grating that applies phase modulation of π / 2 to X-rays, and the X-rays emitted from the X-ray source 11 are parallel beams, the Talbot distance Z m is And represented by equation (16). Here, “m” is “0” or a positive integer. In this case, the lattice pitches p 1 and p 2 are set so as to substantially satisfy the relationship of p 2 = p 1 .

そして、第1の格子21がX線にπの位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(17)で表される。ここで、「m」は、「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、p=p/2の関係をほぼ満たすように設定される。 When the first grating 21 is a phase-type grating that applies π phase modulation to X-rays, and the X-rays emitted from the X-ray source 11 are parallel beams, the Talbot distance Z m It is represented by (17). Here, “m” is “0” or a positive integer. In this case, since the pattern period of the G1 image is ½ times the grating period of the first grating 21, the grating pitches p 1 and p 2 almost satisfy the relationship of p 2 = p 1/2. Set to

また、上記第1〜第3実施形態では、格子部12に第1及び第2の格子21,22の2つの格子を設けているが、第2の格子22を省略し、第1の格子21のみとすることも可能である。   In the first to third embodiments, the grating portion 12 is provided with the two gratings of the first and second gratings 21 and 22. However, the second grating 22 is omitted and the first grating 21 is omitted. It is also possible to use only.

例えば、特開平2009−133823号公報に記されたX線画像検出器を用いることにより、第2の格子22を省略し、第1の格子21のみとすることが可能である。このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器であり、各画素の電荷収集電極が複数の線状電極群を備える。1つの線状電極群は、一定の周期で配列された線状電極を互いに電気的に接続したものであり、他の線状電極群と互いに位相が異なるように配置されている。この線状電極群が第2の格子22として機能し、線状電極群が複数存在することにより、一度の撮影で位相の異なる複数のG2像の検出が行われる。したがって、この構成では、走査機構23を省略することが可能である。   For example, by using an X-ray image detector described in Japanese Patent Application Laid-Open No. 2009-133823, the second grating 22 can be omitted and only the first grating 21 can be used. This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges and a charge collection electrode that collects electric charges converted in the conversion layer. The charge collection electrode includes a plurality of linear electrode groups. One linear electrode group is obtained by electrically connecting linear electrodes arranged at a constant period, and is arranged so that the phases thereof are different from those of other linear electrode groups. This linear electrode group functions as the second grating 22, and the presence of a plurality of linear electrode groups allows detection of a plurality of G2 images having different phases in one imaging. Therefore, in this configuration, the scanning mechanism 23 can be omitted.

また、走査機構23を省略し、第1及び第2の格子21,22を介してX線画像検出器13により得られる単一の画像データに基づいて位相微分画像を生成する方法がある。この方法として、本出願人により特願2010−256241号として出願されている画素分割法がある。この画素分割法では、第1の格子21と第2の格子22とを、Z方向の回りに僅かに回転させて、Y方向に周期を有するモアレ縞をG2像に発生させる。X線画像検出器13により得られる単一の画像データを、該モアレ縞に対して互いに位相が異なる画素行(X方向に並ぶ画素)の群に分割し、分割された複数の画像データを、縞走査により互いに異なる複数のG2像に基づくものと見なして、上記縞走査法と同様な手順で位相微分画像を生成する。この画素分割法において、前述の強度変調信号は、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。   Further, there is a method of omitting the scanning mechanism 23 and generating a phase differential image based on single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22. As this method, there is a pixel division method filed as Japanese Patent Application No. 2010-256241 by the present applicant. In this pixel division method, the first grating 21 and the second grating 22 are slightly rotated around the Z direction, and moire fringes having a period in the Y direction are generated in the G2 image. The single image data obtained by the X-ray image detector 13 is divided into groups of pixel rows (pixels arranged in the X direction) having different phases from each other with respect to the moire fringes, and a plurality of divided image data is obtained. A phase differential image is generated in the same procedure as the above-described fringe scanning method, assuming that the images are based on a plurality of different G2 images by fringe scanning. In this pixel division method, the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in single image data.

さらに、画素分割法と同様に、走査機構23を省略し、第1及び第2の格子21,22を介してX線画像検出器13により得られる単一の画像データに基づいて位相微分画像を生成する方法として、WO2010/050483号公報に記載されたフーリエ変換法が知られている。このフーリエ変換法は、上記単一の画像データに対してフーリエ変換を行うことによりフーリエスペクトルを取得し、このフーリエスペクトルからキャリア周波数に対応したスペクトル(位相情報を担うスペクトル)を分離した後、逆フーリエ変換を行なうことにより位相微分画像を生成する方法である。なお、このフーリエ変換法において、前述の強度変調信号は、画素分割法の場合と同様に、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。   Further, similarly to the pixel division method, the scanning mechanism 23 is omitted, and the phase differential image is obtained based on the single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22. As a generation method, a Fourier transform method described in WO2010 / 050484 is known. This Fourier transform method obtains a Fourier spectrum by performing a Fourier transform on the single image data, separates a spectrum corresponding to a carrier frequency (a spectrum carrying phase information) from the Fourier spectrum, and then reverses the spectrum. This is a method of generating a phase differential image by performing Fourier transform. In this Fourier transform method, the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in a single image data, as in the case of the pixel division method.

本発明は、医療診断用の放射線撮影装置の他に、工業用の放射線撮影装置等に適用することが可能である。また、放射線は、X線以外に、ガンマ線等を用いることも可能である。   The present invention can be applied to an industrial radiography apparatus and the like in addition to a radiography apparatus for medical diagnosis. In addition to X-rays, gamma rays or the like can be used as radiation.

10 X線撮影装置
12 格子部
13 X線画像検出器
21 第1の格子
21a X線吸収部
21b X線透過部
22 第2の格子
22a X線吸収部
22b X線透過部
30 画素部
31 画素電極
33 ゲート走査線
35 信号線
DESCRIPTION OF SYMBOLS 10 X-ray imaging apparatus 12 Lattice part 13 X-ray image detector 21 1st grating | lattice 21a X-ray absorption part 21b X-ray transmission part 22 2nd grating | lattice 22a X-ray absorption part 22b X-ray transmission part 30 Pixel part 31 Pixel electrode 33 Gate scanning line 35 Signal line

Claims (16)

被検体に向けて放射線を射出する放射線源と、
前記放射線源から射出された放射線を検出して画像データを生成する放射線検出器と、
前記放射線源と前記放射線検出器との間に配置された格子部と、
前記放射線検出器により得られた画像データに基づいて、位相微分画像を生成する位相微分画像生成部と、
前記位相微分画像にアンラップ処理を施し、アンラップ処理済み位相微分画像を生成するアンラップ処理部と、
被検体がない状態で得られた前記アンラップ処理済み位相微分画像をオフセット画像、被検体を撮影して得られた前記アンラップ処理済み位相微分画像を被検体画像とし、前記オフセット画像及び前記被検体画像から所定周波数成分を除去する第1ノイズ除去部と、
前記第1ノイズ除去部により、前記所定周波数成分が除去された前記オフセット画像及び前記被検体画像の差分をとることにより、前記所定周波数成分以外のノイズを除去する第2ノイズ除去部と、
を備えることを特徴とする放射線撮影装置。
A radiation source that emits radiation toward the subject;
A radiation detector that detects radiation emitted from the radiation source and generates image data;
A grating portion disposed between the radiation source and the radiation detector;
Based on the image data obtained by the radiation detector, a phase differential image generation unit that generates a phase differential image,
An unwrap processing unit that performs unwrap processing on the phase differential image and generates an unwrapped phase differential image;
The unwrapped phase differential image obtained in the absence of the subject is an offset image, the unwrapped phase differential image obtained by photographing the subject is a subject image, and the offset image and the subject image A first noise removing unit for removing a predetermined frequency component from
A second noise removing unit for removing noise other than the predetermined frequency component by taking a difference between the offset image from which the predetermined frequency component has been removed and the subject image by the first noise removing unit;
A radiation imaging apparatus comprising:
前記第1ノイズ除去部は、前記オフセット画像及び前記被検体画像をフーリエ変換して前記所定周波数成分を除去することを特徴とする請求項1記載の放射線撮影装置。   The radiation imaging apparatus according to claim 1, wherein the first noise removing unit removes the predetermined frequency component by performing Fourier transform on the offset image and the subject image. 前記第1ノイズ除去部は、前記所定周波数成分として前記所定周波数以下の成分を除去することを特徴とする請求項1または2記載の放射線撮影装置。   The radiation imaging apparatus according to claim 1, wherein the first noise removing unit removes a component equal to or lower than the predetermined frequency as the predetermined frequency component. 前記放射線検出器により得られた画像データに基づいて吸収微分画像を生成する吸収微分画像生成部を備え、
前記第1ノイズ除去部は、前記位相微分画像にあり、前記吸収微分画像にない周波数成分を前記所定周波数成分として、前記被検体画像及び前記オフセット画像から除去することを特徴とする請求項1または2に記載の放射線撮影装置。
An absorption differential image generation unit that generates an absorption differential image based on image data obtained by the radiation detector,
The first noise removing unit removes, from the subject image and the offset image, a frequency component that is present in the phase differential image and that is not present in the absorption differential image as the predetermined frequency component. The radiation imaging apparatus according to 2.
前記吸収微分画像生成部は、前記被検体がない状態で得られた前記画像データに基づいて第1吸収微分画像を、前記被検体を撮影して得られた前記画像データに基づいて第2吸収微分画像をそれぞれ生成し、
前記第1ノイズ除去部は、前記オフセット画像にあり、前記第1吸収微分画像にない周波数成分を前記オフセット画像から除去し、前記被検体画像にあり、前記第2吸収微分画像にない周波数成分を前記被検体画像から除去することを特徴とする請求項4記載の放射線撮影装置。
The absorption differential image generation unit obtains a first absorption differential image based on the image data obtained without the subject, and a second absorption based on the image data obtained by imaging the subject. Generate differential images,
The first noise removing unit removes frequency components that are present in the offset image and are not present in the first absorption differential image from the offset image, and frequency components that are present in the subject image and are not present in the second absorption differential image. The radiation imaging apparatus according to claim 4, wherein the radiation imaging apparatus is removed from the subject image.
前記吸収微分画像生成部は、前記被検体がない状態で得られた前記画像データに基づいて第1吸収微分画像を生成し、
前記第1ノイズ除去部は、前記オフセット画像にあり、前記第1吸収微分画像にない周波数成分を前記所定周波数成分として、前記オフセット画像と前記被検体画像からそれぞれ除去することを特徴とする請求項4記載の放射線撮影装置。
The absorption differential image generation unit generates a first absorption differential image based on the image data obtained without the subject,
The first noise removing unit removes, from the offset image and the subject image, a frequency component that is present in the offset image and is not present in the first absorption differential image as the predetermined frequency component, respectively. 4. The radiographic apparatus according to 4.
前記吸収微分画像は、前記被検体を撮影して得られた前記画像データに基づいて第2吸収微分画像を生成し、
前記第1ノイズ除去部は、前記被検体画像にあり、前記第2吸収微分画像にない周波数成分を前記所定周波数として、前記被検体画像と前記オフセット画像からそれぞれ除去することを特徴とする請求項4記載の放射線撮影装置。
The absorption differential image generates a second absorption differential image based on the image data obtained by imaging the subject,
The said 1st noise removal part removes from the said subject image and the said offset image by making into a predetermined frequency the frequency component which is in the said subject image and is not in the said 2nd absorption differential image, respectively. 4. The radiographic apparatus according to 4.
前記格子部は、放射線源からの放射線を通過させて第1の周期パターン像を生成する第1の格子と、前記第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2の格子と有し、
前記放射線画像検出器は、前記第2の周期パターン像を検出して画像データを生成することを特徴とする請求項1〜7のいずれか1項に記載の放射線撮影装置。
The grating unit partially shields the first periodic pattern image by passing the radiation from the radiation source to generate the first periodic pattern image, and displays the second periodic pattern image. A second grid to generate,
The radiation imaging apparatus according to claim 1, wherein the radiation image detector detects the second periodic pattern image to generate image data.
前記格子部は、前記第1の格子または第2の格子を所定の走査ピッチで移動させ、複数の走査位置に順に設定する走査機構を備え、
前記放射線画像検出器は、前記各走査位置で前記第2の周期パターン像を検出して画像データを生成し、
前記位相微分画像生成部は、前記放射線画像検出器により生成される複数の画像データに基づいて位相微分画像を生成することを特徴とする請求項8記載の放射線撮影装置。
The grating unit includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets a plurality of scanning positions.
The radiation image detector detects the second periodic pattern image at each scanning position to generate image data;
The radiographic apparatus according to claim 8, wherein the phase differential image generation unit generates a phase differential image based on a plurality of image data generated by the radiological image detector.
前記走査機構は、前記第1の格子または第2の格子を、格子線に直交する方向に移動させることを特徴とする請求項9記載の放射線撮影装置。   The radiation imaging apparatus according to claim 9, wherein the scanning mechanism moves the first grating or the second grating in a direction orthogonal to the grating lines. 前記走査機構は、前記第1の格子または第2の格子を、格子線に対して傾斜する方向に移動させることを特徴とする請求項9記載の放射線撮影装置。   The radiation imaging apparatus according to claim 9, wherein the scanning mechanism moves the first grating or the second grating in a direction inclined with respect to a grating line. 前記位相微分画像生成部は、前記放射線検出器により得られる単一の画像データに基づいて前記位相微分画像を生成することを特徴とする請求項8記載の放射線撮影装置。   The radiographic apparatus according to claim 8, wherein the phase differential image generation unit generates the phase differential image based on single image data obtained by the radiation detector. 前記第1の格子は、吸収型格子であり、入射した放射線を幾何光学的に投影することにより前記第1の周期パターン像を生成することを特徴とする請求項8〜12のいずれか1項に記載の放射線撮影装置。   The said 1st grating | lattice is an absorption type grating | lattice, The said 1st periodic pattern image is produced | generated by projecting the incident radiation geometrically optically, The any one of Claims 8-12 characterized by the above-mentioned. The radiation imaging apparatus described in 1. 前記第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ効果を生じさせて前記第1の周期パターン像を生成することを特徴とする請求項8〜12のいずれか1項に記載の放射線撮影装置。   The said 1st grating | lattice is an absorption-type grating | lattice or a phase-type grating | lattice, The Talbot effect is produced in the incident radiation, The said 1st periodic pattern image is produced | generated, The one of Claims 8-12 characterized by the above-mentioned. The radiation imaging apparatus according to item 1. 前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットを備えることを特徴とする請求項1〜14のいずれか1項に記載の放射線撮影装置。   The radiation imaging apparatus according to claim 1, further comprising a multi-slit that partially blocks the radiation emitted from the radiation source and disperses the focal point. 放射線源と放射線検出器との間に格子部を配置して被検体のない状態で撮影を行うことにより得られる画像データに基づいて位相微分画像を生成し、アンラップ処理を施すことによりオフセット画像を生成するオフセット画像生成ステップと、
前記オフセット画像から所定周波数成分を除去する第1ノイズ除去ステップと、
放射線源と放射線検出器との間に格子部を配置して被検体の撮影を行うことにより得られる画像データに基づいて位相微分画像を生成し、アンラップ処理を施すことによって被検体画像を生成する被検体画像生成ステップと、
前記被検体画像から前記所定周波数成分を除去する第2ノイズ除去ステップと、
前記所定周波数成分が除去された前記オフセット画像と前記被検体画像の差分を取ることにより、前記所定周波数以外のノイズを除去する第3ノイズ除去ステップと、
を備えることを特徴とする画像処理方法。
A phase differential image is generated on the basis of image data obtained by performing imaging in a state where there is no subject by placing a grating portion between the radiation source and the radiation detector, and an offset image is obtained by performing unwrap processing. An offset image generation step to generate;
A first noise removing step of removing a predetermined frequency component from the offset image;
A phase differential image is generated based on image data obtained by imaging a subject by arranging a grating portion between the radiation source and the radiation detector, and a subject image is generated by performing an unwrap process. A subject image generation step;
A second noise removing step for removing the predetermined frequency component from the subject image;
A third noise removing step for removing noise other than the predetermined frequency by taking a difference between the offset image from which the predetermined frequency component has been removed and the subject image;
An image processing method comprising:
JP2012223096A 2011-10-06 2012-10-05 Radiography apparatus and image processing method Pending JP2013090921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223096A JP2013090921A (en) 2011-10-06 2012-10-05 Radiography apparatus and image processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011222238 2011-10-06
JP2011222238 2011-10-06
JP2012223096A JP2013090921A (en) 2011-10-06 2012-10-05 Radiography apparatus and image processing method

Publications (1)

Publication Number Publication Date
JP2013090921A true JP2013090921A (en) 2013-05-16

Family

ID=48614528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223096A Pending JP2013090921A (en) 2011-10-06 2012-10-05 Radiography apparatus and image processing method

Country Status (1)

Country Link
JP (1) JP2013090921A (en)

Similar Documents

Publication Publication Date Title
JP5475737B2 (en) Radiation imaging apparatus and image processing method
JP5731214B2 (en) Radiation imaging system and image processing method thereof
JP5378335B2 (en) Radiography system
JP2012090944A (en) Radiographic system and radiographic method
JP2011224329A (en) Radiation imaging system and method
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP5204857B2 (en) Radiation imaging system and control method thereof
JP5783987B2 (en) Radiography equipment
JP2012125343A (en) Radiographic system and image processing method
JP2012200567A (en) Radiographic system and radiographic method
JP2011224330A (en) Radiation imaging system and offset correction method therefor
JP2013116313A (en) Radiographic imaging method and device
JP2011206490A (en) Radiographic system and radiographic method
JP2013146537A (en) Radiographic apparatus and method for processing image
JP2014012029A (en) Radiographic system and image processing method
JP2013042788A (en) Radiographic apparatus and unwrapping processing method
WO2013038881A1 (en) Radiography device and image processing method
JP5635169B2 (en) Radiography system
JP5610480B2 (en) Radiation image processing apparatus and method
WO2013051647A1 (en) Radiography device and image processing method
JP2013063166A (en) Radiographic apparatus and image processing method
WO2013027519A1 (en) Radiography device and unwrapping method
JP2013063098A (en) Radiographic apparatus and image processing method
WO2013099467A1 (en) Radiographic method and apparatus
WO2013027536A1 (en) Radiography device and radiography method