JP2013088179A - Antishock bearing mechanism of balance, balance provided with the antishock mechanism, and watch provided with the same - Google Patents

Antishock bearing mechanism of balance, balance provided with the antishock mechanism, and watch provided with the same Download PDF

Info

Publication number
JP2013088179A
JP2013088179A JP2011226910A JP2011226910A JP2013088179A JP 2013088179 A JP2013088179 A JP 2013088179A JP 2011226910 A JP2011226910 A JP 2011226910A JP 2011226910 A JP2011226910 A JP 2011226910A JP 2013088179 A JP2013088179 A JP 2013088179A
Authority
JP
Japan
Prior art keywords
balance
stone
vibration
bearing mechanism
proof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011226910A
Other languages
Japanese (ja)
Inventor
Natsuo Miyoshi
夏生 三好
Yuichi Mori
裕一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011226910A priority Critical patent/JP2013088179A/en
Priority to CH19142012A priority patent/CH705583A2/en
Priority to CN 201210389965 priority patent/CN103048912A/en
Publication of JP2013088179A publication Critical patent/JP2013088179A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • G04B31/04Shock-damping bearings with jewel hole and cap jewel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antishock bearing mechanism capable of minimizing the fluctuation of the operation of a balance due to the fluctuation of a supporting state of a balance staff, a balance provided with the antishock bearing mechanism, and a watch provided with the same.SOLUTION: An antishock bearing mechanism 1 of a balance 3 of a watch 2 includes: a jewel 10 working as a thrust bearing; and a jewel-jewel frame integrated structure 9 provided with a jewel 17 working as a journal bearing and a jewel frame part 20 integral with the jewel part; an antishock seat body 30 supporting the jewel-jewel frame integrated structure 9 and provided with an engagement part at a large diameter opening end side; and a pressure spring 37 which is supported by the engagement part of the antishock seat body 30 at the outer periphery side and elastically presses and holds the jewel to the jewel-jewel integrated structure 9 at the inner periphery side, and is constituted of a convex plane curved in such a manner that a front face 11, opposed to an 45 edge face of a shaft 40 supported by the antishock bearing mechanism 1 among the jewels 10 and contacting the edge face of the shaft, is projected to the outside. The convex plane 11 of the jewel 10 is constituted of a part of spherical face.

Description

本発明はてんぷの耐振軸受機構、これを備えたてんぷ及びこれを備えた時計に係る。   The present invention relates to a vibration-proof bearing mechanism for a balance, a balance equipped with the balance, and a timepiece equipped with the balance.

時計の使用者の手首の急激な動き等により手首にはめられた時計のてんぷに加わる軸方向(てん真の延在方向に平行な方向)ないし横方向(てん真の延在方向に対して直角な方向)の衝撃が緩和されるように、てん真の両端のほぞ部は耐振軸受機構で支持されている。この種の耐振軸受機構として、受石と、穴石と、受穴石を支える穴石枠と、該穴石枠を支える耐振座体と、耐振座体と穴石枠との間において受石を穴石枠に押付ける押さえばねとを有する耐振軸受機構は、知られている(特許文献1や特許文献2)。   Axial direction (direction parallel to the true extension direction) or lateral direction (perpendicular to the true extension direction) applied to the balance of the watch fitted to the wrist due to a sudden movement of the wrist of the watch user. The tenons at both ends of the balance are supported by vibration-proof bearing mechanisms so that the impact in the right direction is reduced. As this type of vibration-proof bearing mechanism, a stone receiving stone, a hole stone, a hole stone frame that supports the hole stone, a vibration-resistant seat body that supports the hole stone frame, and a stone receiving stone between the vibration-resistant seat body and the hole stone frame. A vibration-proof bearing mechanism having a presser spring that presses against a hole stone frame is known (Patent Document 1 and Patent Document 2).

より詳しくは、この種の耐振軸受機構101は、例えば、図10並びに図11の(a)及び(b)に示したような構造であって、スラスト軸受として働く受石110と、ジャーナル軸受として働く穴石117と、筒状部121及びその開口端121a側の拡径部122を備え拡径部122において受石110を支えると共に筒状部121内で穴石117を支える穴石枠120と、該穴石枠120を支える耐振座体130と、耐振座体130と穴石枠120との間に配置されて受石110を穴石枠120の筒状部121の開口端部121aに押付ける耐振押さえばね137とを有する。   More specifically, this type of vibration-resistant bearing mechanism 101 has, for example, a structure as shown in FIGS. 10 and 11 (a) and 11 (b), and a stone 110 that functions as a thrust bearing, and a journal bearing. A working hole stone 117, a cylindrical portion 121, and an enlarged diameter portion 122 on the opening end 121 a side thereof, and the stone diameter 120 that supports the stone 110 in the cylindrical portion 121 while supporting the stone 110 in the enlarged diameter portion 122, The vibration-resistant seat body 130 that supports the hole stone frame 120 and the vibration-receiving seat body 130 that is disposed between the hole stone frame 120 and the stone holder 110 are pressed against the opening end 121 a of the cylindrical portion 121 of the hole stone frame 120. And an anti-vibration spring 137 to be attached.

より詳しくは、真鍮やステンレス鋼の如き金属製の耐振座体130は、内周側に傾斜面部135a,135bを有する。この傾斜面部135a,135bは、全体として一つの仮想円錐台の周面を形成し、例えば、傾斜面部135a,135bの部分は図10の断面で見た場合概ね一列に並んでいる。また、真鍮やステンレス鋼の如き金属製の穴石枠120も、外周面に傾斜面部126a,126bを有する。この傾斜面部126a,126bも、傾斜面部135a,135bと同様に、全体として一つの仮想円錐台の周面を形成し、例えば、傾斜面部126a,126bの部分は図10の断面で見た場合概ね一列に並んでいる。穴石枠120を耐振座体130の所定位置に配置した状態では、穴石枠120の傾斜面部126a,126bが耐振座体130の傾斜面部135a,135bに丁度当接する。   More specifically, the vibration-proof seat body 130 made of metal such as brass or stainless steel has inclined surface portions 135a and 135b on the inner peripheral side. The inclined surface portions 135a and 135b form a peripheral surface of one virtual truncated cone as a whole. For example, the inclined surface portions 135a and 135b are arranged in a line when viewed in the cross section of FIG. The perforated frame 120 made of metal such as brass or stainless steel also has inclined surface portions 126a and 126b on the outer peripheral surface. The inclined surface portions 126a and 126b also form a peripheral surface of one virtual truncated cone as a whole in the same manner as the inclined surface portions 135a and 135b. For example, the inclined surface portions 126a and 126b are generally viewed in the cross section of FIG. It is in a line. In a state where the hole stone frame 120 is disposed at a predetermined position of the vibration-proof seat body 130, the inclined surface portions 126a and 126b of the hole stone frame 120 just abut on the inclined surface portions 135a and 135b of the vibration-resistant seat body 130.

耐振座体130は、耐振押さえばね137や耐振受石110や耐振穴石枠120などの部品全体を保持する。より詳しくは、耐振押さえばね137が耐振受石110及び耐振穴石枠120を保持しててんぷ103への衝撃力を吸収し、衝撃を受けた際の受石110及び穴石枠120の移動(変位)及び元の位置の方への復元を助ける。耐振受石110は、てんぷ103のてん真140の中心軸線Cの延在方向(軸方向)A1,A2の力に抗しててん真140を支える。   The anti-vibration seat body 130 holds the entire components such as the anti-vibration holding spring 137, the anti-vibration stone 110, and the anti-vibration hole stone frame 120. More specifically, the vibration-resistant presser spring 137 holds the vibration-resistant receiving stone 110 and the vibration-resistant hole stone frame 120 to absorb the impact force to the balance 103, and the movement of the stone receiving stone 110 and the hole stone frame 120 when the shock is received ( Displacement) and help restore to the original position. The anti-vibration stone 110 supports the balance stem 140 against the forces in the extending directions (axial directions) A1 and A2 of the central axis C of the balance stem 140 of the balance 103.

耐振穴石枠120は、押さえばね137によって、傾斜面部126a,126bにおいて耐振座体130の傾斜面部135a,135bに弾性的に押付けられ衝撃等を受けた際には耐振座体に対して摺動する。このとき、金属製の耐振枠体130の傾斜面部135a,135bに対して金属製の耐振穴石枠120が傾斜面部126a,126bで相対変位され、例えばB方向の衝撃に伴う外力がなくなると、抑えばね137のばね力により概ねもとの位置に戻る。   The rock-resistant hole stone frame 120 slides against the vibration-resistant seat body when it is elastically pressed against the inclined surface portions 135a and 135b of the vibration-resistant seat body 130 by the presser spring 137 on the inclined surface portions 126a and 126b. To do. At this time, when the metal vibration-resistant hole stone frame 120 is relatively displaced by the inclined surface portions 126a and 126b with respect to the inclined surface portions 135a and 135b of the metal vibration-resistant frame body 130, for example, when there is no external force due to an impact in the B direction, The spring returns to its original position by the spring force of the holding spring 137.

但し、耐振座体130と耐振穴石枠120との傾斜面部135a,126aおよび135b,126bにおける変位は金属間の接触面に沿った変位(摺動)であるから、摩擦抵抗が大きいために、衝撃を受けた耐振座体が元の位置に確実には戻り難い。その結果、穴石117が中心からずれててんぷ103の回転中心軸線が中心からずれたままになる虞れがある。しかも、耐振座体130の傾斜面部135aの傾斜角度及び傾斜面部135aの傾斜角度を相互に同一にし且つ耐振穴石枠120の傾斜面部126aの傾斜角度及び傾斜面部126bの傾斜角度と同一にすることは容易でなく実際には多少なりともずれる虞れが高いので耐振座体130と耐振穴石枠120との傾斜面部135a,126aおよび135b,126bの間の実効的な摩擦抵抗が大きくなり元の位置に戻りにくくなる虞れがある。   However, since the displacement at the inclined surface portions 135a, 126a and 135b, 126b between the vibration-resistant seat body 130 and the vibration-resistant hole stone frame 120 is displacement (sliding) along the contact surface between the metals, the frictional resistance is large. It is difficult for the vibration-resistant seat body that has received the impact to reliably return to its original position. As a result, the hole stone 117 may be displaced from the center, and the rotation center axis of the balance 103 may remain displaced from the center. In addition, the inclination angle of the inclined surface portion 135a and the inclination angle of the inclined surface portion 135a of the vibration-proof seat 130 are made the same, and the inclination angle of the inclined surface portion 126a and the inclination angle of the inclined surface portion 126b of the vibration-proof hole stone frame 120 are made the same. Since it is not easy and there is a high possibility that it actually shifts somewhat, the effective frictional resistance between the inclined surface portions 135a, 126a and 135b, 126b between the vibration-proof seat 130 and the vibration-proof hole stone frame 120 is increased, and the original There is a risk that it will be difficult to return to the position.

この耐振軸受機構101は、機械式時計102のてんぷ103のてん真140の両端の小径ほぞ部141F,141Rにおいててん真140を支える。以下では、耐振軸受機構101F及び101R並びにその部品ないし要素について、同一の符号の後に添字F又はRを付して示す。両者を区別しないとき又は総称するときは添字FやRを省く。   The vibration-proof bearing mechanism 101 supports the balance stem 140 at the small diameter tenon portions 141F and 141R at both ends of the balance stem 140 of the balance 103 of the mechanical timepiece 102. In the following description, the vibration-resistant bearing mechanisms 101F and 101R and their components or elements are indicated by adding the suffix F or R after the same reference numerals. When the two are not distinguished or collectively referred to, the subscripts F and R are omitted.

受石110F,110Rのほぞ受面ないしスラスト軸受面111F,111Rは平面になっている。時計102の裏蓋側ないしてんぷ受側にあるてん真140のほぞ部141Fを支える耐振軸受機構(いわゆるてんぷ上軸受)101F及び時計102の文字板側にあるてん真140のほぞ部141Rを支える耐振軸受機構(いわゆるてんぷ下軸受)101Rは、実際上同様に構成されている。   The tenon receiving surfaces or thrust bearing surfaces 111F and 111R of the stones 110F and 110R are flat. Anti-vibration bearing mechanism (so-called balance wheel upper bearing) 101F supporting the tenon portion 141F of the balance stem 140 on the back cover side of the watch 102 and the balance receiving portion 101R and the tenon portion 141R of the balance stem 140 on the dial side of the watch 102. The bearing mechanism (the so-called balance balance bearing) 101R is actually configured in the same manner.

ここで、てんぷ103は、耐振軸受機構101の形態の上下の耐振軸受101F,101Rに加えて、てん真140やてんわ150やひげぜんまい155を備え、裏蓋側の耐振軸受101Fにおいててんぷ受105に取付けられている。なお、てんぷ受105及び文字板側の耐振軸受101Rは、夫々、地板108に取付けられている。ひげぜんまい155は、てん真140の中心軸線Cのまわりの渦巻の形態を備え、うずまきの内周側端部でひげ玉143に取付けられうずまきの外周側端部でひげ持(図示せず)に取付けられていて、緩急針(図示せず)によりその渦巻(ばね)の実効長が調整される。   Here, in addition to the upper and lower vibration-resistant bearings 101F and 101R in the form of the vibration-resistant bearing mechanism 101, the balance 103 includes a balance stem 140, a balance 150, and a hairspring 155. The balance receiver 105F on the back cover side has a balance 105. Installed on. The balance holder 105 and the vibration-proof bearing 101R on the dial side are attached to the main plate 108, respectively. The hairspring 155 has a spiral shape around the central axis C of the balance stem 140 and is attached to the whisker ball 143 at the inner peripheral end of the spiral spring, and has a whisker (not shown) at the outer peripheral end of the spiral spring. It is attached and the effective length of the spiral (spring) is adjusted by a slow and quick needle (not shown).

てんぷ103を含む調速脱進機104は、てんぷ103に加えて地板108で支持されたアンクル106及びがんぎ車107を有する。アンクル106は、ハコ先161で振り座の振り石144に係合され、入りつめ石及び出つめ石(図示せず)でがんぎ車107のがんぎ歯162に係合される。がんぎ車107はかな部164で四番車170に噛合されている。ぜんまい(図示せず)の動力で調速脱進機104を動作させる四番車170は、てんぷ103により規定された速度で間欠回転されるがんぎ車107により所定の回転速度で間欠回転される。   The controlled escapement 104 including the balance 103 includes an ankle 106 and a escape wheel 107 supported by the main plate 108 in addition to the balance 103. The ankle 106 is engaged with the swing stone 144 of the swing seat at the hook tip 161, and is engaged with the escape tooth 162 of the escape wheel 107 with an entering pallet and an exit pallet (not shown). The escape wheel & pinion 107 is meshed with the fourth wheel & pinion 170 at the kana portion 164. A fourth wheel & pinion 170 that operates the governor escapement 104 with the power of the mainspring (not shown) is intermittently rotated at a predetermined rotation speed by a escape wheel & pinion 107 that is intermittently rotated at a speed defined by the balance 103. The

以上の如く構成された従来の耐振軸受機構101F,101Rを備えた従来のてんぷ103を有する従来の時計102では、図13の(a)及び(b)に示したようにてんぷ103が適切な状態PS0にある場合、時計2は適切な動作をする。すなわち、受石110F,110Rの平面状のほぞ受面111F,111Rがてん真140の中心軸線Cに対して垂直になるように裏蓋側及び文字板側の耐振軸受機構101F,101R及び該機構101F,101Rの受石110F,110Rが配置され且つてん真140の中心軸線Cが実際上傾いていない場合、裏蓋側の耐振軸受機構101Fが文字板側の耐振軸受機構101Rの上に位置する平姿勢PP1を採っても、文字板側の耐振軸受機構101Rが裏蓋側の耐振軸受機構101Fの上に位置する裏平姿勢PP2を採っても、てん真140は、下側に位置するほぞ部141R,141Fの端面145R,145Fのうち実際上中心軸線Cの通る位置C0R,C0Fにおいてその下側に位置する文字板側又は裏蓋側の耐振軸受機構101R,101Fの受石110R,110Fのほぞ受面111R,111Fと当接し、該位置C0R,C0Fを中心に回転されることになる。従って、てんぷ103は、時計102の姿勢PP1,PP2によらず、実際上同様に動作し得、姿勢差が最低限に抑えられ得る。   In the conventional timepiece 102 having the conventional balance 103 having the conventional vibration-proof bearing mechanisms 101F and 101R configured as described above, the balance 103 is in an appropriate state as shown in FIGS. 13 (a) and 13 (b). When in PS0, watch 2 operates appropriately. That is, the anti-vibration bearing mechanisms 101F and 101R on the back cover side and the dial side and the mechanisms so that the flat tenon receiving surfaces 111F and 111R of the stones 110F and 110R are perpendicular to the central axis C of the balance stem 140. When the receiving stones 110F and 110R of 101F and 101R are arranged and the central axis C of the balance stem 140 is not actually inclined, the vibration-proof bearing mechanism 101F on the back cover side is positioned on the vibration-proof bearing mechanism 101R on the dial side. Even if the flat posture PP1 is adopted, even if the dial-side vibration-proof bearing mechanism 101R adopts the back-flat posture PP2 in which the dial-side vibration-proof bearing mechanism 101R is positioned on the back cover-side vibration-proof bearing mechanism 101F, the balance stem 140 is located on the lower side. Anti-vibration bearing mechanism 1 on the dial side or back cover side located below the positions C0R and C0F through which the center axis C actually passes among the end surfaces 145R and 145F of the portions 141R and 141F. 1R, 101F of endstone 110R, tenon 110F receiving surface 111R, 111F abuts, is to be rotated the position C0R, the C0F the center. Therefore, the balance with hairspring 103 can actually operate in the same manner regardless of the postures PP1 and PP2 of the timepiece 102, and the difference in posture can be minimized.

しかしながら、従来の耐振軸受機構101F,101Rを備えた従来のてんぷ103を有する従来の時計102において、裏蓋側の耐振軸受機構101Fが文字板側の耐振軸受機構101Rの上に位置する向きすなわち姿勢(以下では、「平姿勢」ともいう)PP1に時計102が配置されている場合と文字板側の耐振軸受機構101Rが裏蓋側の耐振軸受機構101Fの上に位置する向きすなわち姿勢(以下では、「裏平姿勢」ともいう)PP2に時計102が配置されている場合とでは、てんぷ103の状態が異なる状況が生じ得る。   However, in the conventional timepiece 102 having the conventional balance 103 having the conventional vibration-resistant bearing mechanisms 101F and 101R, the orientation or posture in which the vibration-resistant bearing mechanism 101F on the back cover side is positioned on the vibration-resistant bearing mechanism 101R on the dial side. (Hereinafter, also referred to as “flat posture”) When the watch 102 is disposed on the PP1 and in the orientation or posture in which the anti-vibration bearing mechanism 101R on the dial side is positioned on the anti-vibration bearing mechanism 101F on the back cover side (hereinafter, The balance of the balance 103 may be different from the case where the timepiece 102 is disposed on the PP2.

例えば、図14の(a)及び(b)に示したように、てんぷ受105側ないし裏蓋側の受石110Fが少し(例えば1度程度)傾いた状態で押さえばね137Fによって穴石枠120Fに取付けられた状態PS1では、図14の(a)に示した通り裏蓋側の耐振軸受機構101Fが文字板側の耐振軸受機構101Rの上に位置する平姿勢PP1に時計102が配置されている場合と、図14の(b)に示した通り文字板側の耐振軸受機構101Rが裏蓋側の耐振軸受機構101Fの上に位置する裏平姿勢PP2に時計102が配置されている場合とでは、てんぷ103の状態が異なる状況になる。なお、受石110Fの傾きは、典型的には、穴石枠120Fが耐振座体130Fに対して傾いた場合に生じる。   For example, as shown in FIGS. 14 (a) and 14 (b), the stone holder 110F on the balance holder side or the back cover side is tilted slightly (for example, about 1 degree) by the presser spring 137F and the hole stone frame 120F. In the state PS1 attached to the watch, as shown in FIG. 14A, the timepiece 102 is arranged in a flat posture PP1 in which the vibration-proof bearing mechanism 101F on the back cover side is positioned on the vibration-proof bearing mechanism 101R on the dial side. And the case where the timepiece 102 is arranged in the back flat posture PP2 where the vibration-proof bearing mechanism 101R on the dial side is positioned on the vibration-proof bearing mechanism 101F on the back cover side as shown in FIG. Now, the balance 103 is in a different state. The inclination of the stone 110F typically occurs when the hole stone frame 120F is inclined with respect to the vibration-proof seat body 130F.

てんぷ受105側の受石110Fが傾いて取付けられた状態PS1にある場合において図14の(a)に示したように文字板側の耐振軸受機構101Rが下側に位置していて文字板側の受石110Rがそのほぞ受面111Rでてん真140のほぞ141Rの端面を受ける平姿勢PP1では、図13の(a)や(b)の場合と実際上同様に、てん真140は、下側に位置するほぞ部141Rの端面145Rのうち実際上中心軸線Cの通る位置C0Rにおいてその下側に位置する文字板側の耐振軸受機構101Rの受石110Rのほぞ受面111Rと当接し、該位置C0Rを中心に回転されることになる。   In the state PS1 in which the balance stone 110F on the balance holder 105 side is tilted and attached, the vibration-proof bearing mechanism 101R on the dial side is positioned on the lower side as shown in FIG. In the flat posture PP1 in which the mortar 110R receives the end face of the tenon 141R of the balance stem 140 at its tenon receiving surface 111R, the balance stem 140 is the same as in FIGS. 13 (a) and 13 (b). The tenon face 111R of the stone 110R of the anti-vibration bearing mechanism 101R on the dial plate side located below the end face 145R of the tenon part 141R located on the side at the position C0R that actually passes through the center axis C, It is rotated around the position C0R.

これに対して、時計102が反転されて、図14の(b)に示したようにてんぷ受105側(裏蓋側)の耐振軸受機構101Fが下側に位置していててんぷ受105側の受石110Fがそのほぞ受面111Fでてん真140のほぞ141Fの端面を受ける姿勢PP2では、図13の(a)や(b)の場合や図14の(a)の場合と異なり、てん真140は、中心軸線Cから離れていて、下側に位置するほぞ部141Fの端面145Fのうち受石110の傾斜方向と一致する側の端縁CaFにおいてその下側に位置するてんぷ受105側の耐振軸受機構101Fの受石110Fのほぞ受面111Fと当接する。従って、てん真140の回転中心CaFは、該てん真140の中心軸線Cとは異なり該中心軸線CからΔpr(ほぞ部141の半径に相当する大きさで、数10μm程度である)離れた点CaF(Ca)になり、回転軸が安定しない。   On the other hand, the timepiece 102 is inverted, and the anti-vibration bearing mechanism 101F on the balance 105 side (back cover side) is positioned on the lower side as shown in FIG. In the posture PP2 in which the mortar 110F receives the end surface of the tenon 141F of the balance stem 140 at the tenon receiving surface 111F, unlike the cases of FIGS. 13 (a) and 13 (b) and FIG. 140 is apart from the central axis C, and on the side of the balance 105 located on the lower end edge CaF of the end surface 145F of the tenon portion 141F located on the lower side, which coincides with the inclination direction of the stone 110. It contacts with the tenon receiving surface 111F of the stone 110F of the vibration-proof bearing mechanism 101F. Therefore, the rotation center CaF of the balance stem 140 is different from the center axis C of the balance stem 140 at a point away from the center axis C by Δpr (a size corresponding to the radius of the tenon portion 141 and about several tens of μm). It becomes CaF (Ca) and the rotation axis is not stable.

従って、この状態PS1にある場合、時計102が平姿勢PP1を採るときと裏平姿勢PP2を採るときとで、てんぷ103の動作が異なり、相当程度の歩度の差が生じるのを避け難い。   Therefore, in this state PS1, it is difficult to avoid a considerable difference in rate due to the operation of the balance with hairspring 103 being different when the timepiece 102 takes the flat posture PP1 and when the watch 102 takes the flat posture PP2.

また、例えば、図15の(a)及び(b)(特に図15の(b))に示したように、裏平姿勢PP2において、てん真140の中心軸線Cが傾いている場合PS2も、図14の(a)及び(b)の場合PS1と同様に、てん真140は、中心軸線Cから離れていて、下側に位置するほぞ部141Fの端面145Fのうちてん真140の中心軸線Cの傾斜方向と一致する側の端縁CaFにおいてその下側に位置するてんぷ受105側の耐振軸受機構101Fの受石110Fのほぞ受面111Fと当接する。従って、てん真140の回転中心CaFは、該てん真140の中心軸線Cとは異なり該中心軸線CからΔpr(ほぞ部141の半径に相当する大きさで、数10μm程度である)離れた点CaF(Ca)になり、回転軸が安定しない。   Further, for example, as shown in FIGS. 15A and 15B (particularly FIG. 15B), PS2 when the central axis C of the balance stem 140 is inclined in the back flat posture PP2, 14A and 14B, as with PS1, the balance stem 140 is separated from the central axis C, and the central axis C of the balance stem 140 of the end surface 145F of the tenon portion 141F located on the lower side is located. At the edge CaF on the side that coincides with the inclination direction, the tenon receiving surface 111F of the stone 110F of the anti-vibration bearing mechanism 101F on the balance 105 side located below the edge CaF. Therefore, the rotation center CaF of the balance stem 140 is different from the center axis C of the balance stem 140 at a point away from the center axis C by Δpr (a size corresponding to the radius of the tenon portion 141 and about several tens of μm). It becomes CaF (Ca) and the rotation axis is not stable.

この状態PS2にある場合にも、時計102が平姿勢PP1を採るときと裏平姿勢PP2を採るときとで、てんぷ103の動作が異なり、相当程度の歩度の差が生じるのを避け難い。   Even in this state PS2, it is difficult to avoid a significant difference in rate due to the difference in the operation of the balance with the balance 102 when the watch 102 takes the flat posture PP1 and when the watch 102 takes the flat posture PP2.

なお、てん真140の中心軸線Cが傾くのは、例えば、てんわ150の周方向の重量バランスがずれている場合に生じ得る。なお、厳密に言えば、例えば、渦巻きばねの形態のひげぜんまい155の巻上げ動作やほどけ動作の際にひげ玉143を介しててん真140にトルクが加えられることに応じててん真140の中心軸線Cは多少なりとも傾いたり該傾きが多少なりとも変動する。   The central axis C of the balance stem 140 may be inclined when, for example, the balance of the weight of the balance 150 in the circumferential direction is deviated. Strictly speaking, for example, the center axis of the balance stem 140 according to the torque being applied to the balance stem 140 via the hair ball 143 during the winding operation or unwinding operation of the spiral spring 155 in the form of a spiral spring. C tilts somewhat or fluctuates slightly.

更に、図16の(a)及び(b)に示したように、てんぷ受105側のほぞ141Fの端面145Fがてん真140の中心軸線Cに対して傾斜している状態PS3の場合も、裏平姿勢PP2において、端面145Fのうち傾斜に伴って突出した端縁CaFがその下側に位置するてんぷ受105側の耐振軸受機構101Fの受石110Fのほぞ受面111Fと当接する。従って、てん真140の回転中心CaFは、該てん真140の中心軸線Cとは異なり該中心軸線CからΔpr(ほぞ部141の半径に相当する大きさで、数10μm程度である)離れた点CaF(Ca)になり、回転軸が安定しない。   Further, as shown in FIGS. 16A and 16B, in the case of the state PS3 in which the end surface 145F of the tenon 141F on the balance 105 side is inclined with respect to the central axis C of the balance stem 140, In the flat posture PP2, the end edge CaF of the end face 145F that protrudes with the inclination comes into contact with the tenon receiving face 111F of the stone holder 110F of the vibration-proof bearing mechanism 101F on the balance holder 105 side located below the end edge CaF. Therefore, the rotation center CaF of the balance stem 140 is different from the center axis C of the balance stem 140 at a point away from the center axis C by Δpr (a size corresponding to the radius of the tenon portion 141 and about several tens of μm). It becomes CaF (Ca) and the rotation axis is not stable.

この状態PS3にある場合にも、時計102が平姿勢PP1を採るときと裏平姿勢PP2を採るときとで、てんぷ103の動作が異なり、相当程度の歩度の差が生じるのを避け難い。   Even in this state PS3, it is difficult to avoid a considerable difference in rate due to the operation of the balance with hairspring 103 being different when the timepiece 102 takes the flat posture PP1 and when the watch 102 takes the flat posture PP2.

一方、時計102が平姿勢PP1を採る場合と裏平姿勢PP2を採る場合とで上述のような種々の理由で歩度に差異が生じる虞れが高くなるのを避けるべく、てん真140のほぞ141F,141Rの端面145F,145Rを平面状にしておく代わりに、該端面ないしほぞ先145F,145Rを凸状に湾曲させることも提案されている。   On the other hand, the tenon 141F of the balance stem 140 is to avoid an increase in the possibility of a difference in rate for various reasons as described above between when the watch 102 takes the flat posture PP1 and when the watch 102 takes the flat posture PP2. , 141R, instead of keeping the end surfaces 145F and 145R flat, it is also proposed to curve the end surfaces or tenons 145F and 145R in a convex shape.

しかしながら、ほぞ141F,141Rの直径は通常高々0.1mm程度であるので、凸状湾曲面の形状の寸法精度を高く保ち難く、凸状湾曲面の形状のバラツキに伴ってほぞ丈のバラツキ換言すればてん真140の長さのバラツキが大きくなると、平姿勢PP1と裏平姿勢PP2とでひげぜんまい155の形状に差異が生じる虞れが高くなる。従って、本来はてん真140の中心軸線Cに対して垂直な平面内で渦巻状に延在すべきひげぜんまい155が、例えば、時計が平姿勢PP1にある場合又は裏平姿勢PP2にある場合において多少なりともロート状になってそのばね特性が変動し、歩度差を生じさせる虞れが高くなるのを避け難い。   However, since the diameters of the tenons 141F and 141R are usually about 0.1 mm at most, it is difficult to keep the dimensional accuracy of the shape of the convex curved surface high. In other words, the tenon length varies with the variation in the shape of the convex curved surface. When the variation in the length of the balance stem 140 is increased, there is a high possibility that the shape of the hairspring 155 is different between the flat posture PP1 and the back flat posture PP2. Accordingly, in the case where the balance spring 155 which should originally extend in a spiral shape in a plane perpendicular to the central axis C of the balance stem 140 is, for example, when the watch is in the flat posture PP1 or in the reverse flat posture PP2. It is difficult to avoid the possibility that the shape of the spring becomes fluctuated to some extent and the spring characteristics fluctuate and a difference in yield occurs.

特開2009-139180号公報JP 2009-139180 A 特許第4598701号公報Japanese Patent No. 4598701

本発明は、前記諸点に鑑みなされたものであって、その目的とするところは、てん真の支持状態の変動によるてんぷの動作の変動が最低限に抑えられ得るてんぷの耐振軸受機構、これを備えたてんぷ及びこれを備えた時計を提供することにある。   The present invention has been made in view of the above-described points, and an object of the present invention is to provide a vibration-proof bearing mechanism for a balance capable of minimizing fluctuations in the operation of the balance due to fluctuations in the support state of the balance. The object is to provide a balance with a balance and a watch with the balance.

本発明のてんぷの耐振軸受機構は、前記目的を達成すべく、スラスト軸受として働く受石と、ジャーナル軸受として働く穴石部及び該穴石部と一体の穴石枠部を備えた穴石・穴石枠一体構造体と、該穴石・穴石枠一体構造体を支えると共に大径の開口端側に係合部を備える耐振座体と、外周側において耐振座体の係合部で支持され内周側において受石を穴石・穴石枠一体構造体に弾性的に押付けて保持する押さえばねとを有するてんぷの耐振軸受機構であって、受石のうち耐振軸受機構により支えられる軸の端面に対面し該軸の端面に当接する表面が外に突出するように湾曲した凸面からなる。   In order to achieve the above object, the vibration-proof bearing mechanism of the balance of the present invention includes a stone that works as a thrust bearing, a cobblestone portion that works as a journal bearing, and a cobblestone / cavestone that is integrated with the cobblestone portion. A frame-integrated structure, a vibration-resistant seat body that supports the cobblestone / holestone frame-integrated structure and has an engagement portion on the large-diameter opening end side, and an inner periphery that is supported by the engagement portion of the vibration-resistant seat body. An anti-vibration bearing mechanism for a balance with a holding spring that elastically presses and holds the jewel on the hole stone / hole stone frame integrated structure on the circumferential side, and the end face of the shaft that is supported by the vibration-proof bearing mechanism in the jewel And a convex surface that is curved so that the surface that contacts the end surface of the shaft protrudes outward.

本発明のてんぷの耐振軸受機構では、「受石のうち耐振軸受機構により支えられる軸の端面に対面し該軸の端面に当接する表面が外に突出するように湾曲した凸面からなる」ので、穴石枠と押さえばねとで保持される受石が傾いたり、軸の中心軸線(重心線)が傾いたり、軸の端面が傾いたりしても、「受石のうち耐振軸受機構により支えられる軸の端面に対面し該軸の端面に当接する表面」が「平面」である場合と比較して、これらの傾斜に伴う回転支持部の位置ズレが最低限に抑えられる。従って、例えば、時計の姿勢が歩度に与える影響を最低限に抑えることも可能になる。また、「受石の表面(ほぞ受面)が外に突出するように湾曲した凸面である」ので、回転支持されるべき軸の端面に対して実際上一点で当接して支持し得るから、軸の回転が安定し易い。なお、この場合、てんぷの耐振軸受機構によって支持されるべき軸(てん真)の端部の端面ないし該端部(ほぞ部)の先端(ほぞ先)を平面状にし得るので、軸(てん真)の長さのバラツキを最低限に抑え得る。   In the vibration-proof bearing mechanism of the balance of the present invention, `` consisting of a convex surface curved so that the surface facing the end surface of the shaft supported by the vibration-resistant bearing mechanism of the stone and contacting the end surface of the shaft protrudes outside. '' Even if the stone supported by the hole stone frame and the holding spring is tilted, the center axis (center of gravity) of the shaft is tilted, or the end surface of the shaft is tilted, As compared with the case where the “surface facing the end surface of the shaft and abutting against the end surface of the shaft” is a “plane”, the positional deviation of the rotation support portion due to the inclination is minimized. Therefore, for example, the influence of the watch posture on the rate can be minimized. Moreover, since “the surface of the stone (tenon receiving surface) is a convex surface curved so as to protrude outward”, it can be supported by actually contacting the end surface of the shaft to be rotated and supported at one point. Shaft rotation is easy to stabilize. In this case, since the end surface of the end of the shaft (balance) or the tip (tenon) of the end (tenon) to be supported by the vibration-proof bearing mechanism of the balance can be made flat, ) Can be minimized.

また、本発明のてんぷの耐振軸受機構では、「ジャーナル軸受として働く穴石部及び該穴石部と一体の穴石枠部を備えた穴石・穴石枠一体構造体」が設けられ、穴石部と穴石枠部とが一体的に構成され一体形成されているので部品点数が低減され得、「外周側において耐振座体の係合部で支持された押さえばねが内周側において受石を穴石・穴石枠一体構造体に弾性的に押付けて保持する」ので、受石を穴石枠を介して位置決めするのではなくて穴石に対して直接位置決めし得るから、受石の位置決めないし位置出しが容易且つ確実に行われ得る。   Further, in the vibration-proof bearing mechanism of the balance of the present invention, there is provided a “hole stone / hole stone frame integrated structure including a hole stone portion that functions as a journal bearing and a hole stone frame portion integrated with the hole stone portion”, Since the hole stone frame portion is integrally formed and integrally formed, the number of parts can be reduced. “On the outer peripheral side, the holding spring supported by the engaging portion of the vibration-resistant seat body has the hole on the inner peripheral side. `` Because it is elastically pressed and held on the stone / hole stone frame integrated structure '', the stone can be positioned directly with respect to the hole stone, not through the hole stone frame. Positioning can be performed easily and reliably.

加えて、本発明のてんぷの耐振軸受機構では、「ジャーナル軸受として働く穴石部及び該穴石部と一体の穴石枠部を備えた穴石・穴石枠一体構造体」が設けられ、「耐振座体が穴石・穴石枠一体構造体を支える」ように構成されるので、通常金属製である耐振座体が通常金属製である穴石枠ではなくて石(広義のセラミック)製である穴石・穴石枠一体構造体に当接してこれを支えることになるから、従来のてんぷの耐振軸受機構の場合と異なり(耐振座体と穴石枠との間における)「金属・金属」間の摺動ではなくて、(耐振座体と穴石・穴石枠一体構造体との間における)「金属・セラミック」間の摺動になることから、摩擦抵抗が低減され得る。従って、衝撃(外力)により受石の位置がずれても、衝撃(外力)がなくなると受石が元の正規の位置に戻り易く、軸受機構が最適な状態で動作され易い。本発明のてんぷの耐振軸受機構では、典型的には、穴石・穴石枠一体構造体が広義のセラミック製で、耐振座体が金属製である。   In addition, the vibration-proof bearing mechanism of the balance of the present invention is provided with a “hole stone / hole stone frame integrated structure including a hole stone portion serving as a journal bearing and a hole stone frame portion integrated with the hole stone portion”. Since the seat is configured to support the cave stone and cave stone frame integrated structure, the vibration-resistant seat, which is usually made of metal, is made of stone (broadly defined ceramic) rather than the cobblestone frame that is usually made of metal. Unlike a conventional balance with anti-vibration bearing mechanism for balances, it is in contact with and supports a certain hole stone / hole stone frame integrated structure (between the vibration-resistant seat body and hole stone frame). Friction resistance can be reduced because the sliding is between the “metal and ceramic” (between the vibration-proof seat and the integrated stone / hole stone frame structure). Therefore, even if the position of the stone is shifted due to an impact (external force), if the impact (external force) is lost, the stone is likely to return to the original normal position, and the bearing mechanism is easily operated in an optimum state. In the vibration-proof bearing mechanism of the balance of the present invention, typically, the cobblestone / cavestone frame integrated structure is made of ceramic in a broad sense, and the vibration-proof seat is made of metal.

本発明のてんぷの耐振軸受機構では、典型的には、受石の凸面が球面の一部からなる。   In the vibration-proof bearing mechanism of the balance of the present invention, typically, the convex surface of the stone is made of a part of a spherical surface.

その場合、受石の凸面が正確に乃至高精度に形成され易い。なお、凸面は、広義にみて球面を含む回転楕円体面であれば、所望ならば、他の形状でもよい。凸面が外向きに凸の滑らかに湾曲した形状であれば、凸面に回転対称性がなくてもよい。但し、受石の傾きの如きてん真の支持状態の変動が歩度の如きてんぷの動作に与える影響(動作の変動)を最低限に抑えるためには、部分球状面(球面の一部)であることが好ましい。   In that case, the convex surface of the stone is easily formed with high accuracy. Note that the convex surface may have another shape if desired as long as it is a spheroid surface including a spherical surface in a broad sense. If the convex surface is an outwardly convex and smoothly curved shape, the convex surface may not have rotational symmetry. However, a partial spherical surface (part of a spherical surface) is used in order to minimize the influence (variation of movement) that the variation of the true support state such as the inclination of the stone receives on the movement of the balance such as the rate. It is preferable.

本発明のてんぷの耐振軸受機構では、典型的には、受石が凸レンズ様の形状を有し、穴石・穴石枠一体構造体が円錐台状部を備え、該円錐台状部の大径端部のところで受石を支えるように構成され、押さえばねが、外周側において耐振座体の係合部で支持され内周側において穴石・穴石枠一体構造体の大径端部のところに受石を弾性的に押付けて保持するように構成される。   In the vibration-proof bearing mechanism of the balance of the present invention, typically, the jewel has a convex lens-like shape, the cobble stone / cave stone frame integrated structure includes a truncated cone-shaped portion, and the large size of the truncated cone-shaped portion. The holding spring is supported by the engaging portion of the vibration-proof seat body on the outer peripheral side, and the large-diameter end of the hole stone / hole stone frame integrated structure on the inner peripheral side. However, it is configured to elastically press and hold the stone.

その場合、耐振軸受機構の厚さを最低限に抑えた状態で、且つ該軸受機構に対面する軸の端面が平面であっても、てん真の支持状態の変動によるてんぷの動作の変動が最低限に抑えられ得、平姿勢や裏平姿勢の如き姿勢差による動作の変動も最低限に抑えられ得る。   In such a case, even if the thickness of the vibration-proof bearing mechanism is minimized and the end face of the shaft facing the bearing mechanism is flat, fluctuations in the balance of the balance due to fluctuations in the true support state are minimized. The movement variation due to the posture difference such as the flat posture and the back flat posture can be suppressed to the minimum.

本発明のてんぷの耐振軸受機構の別の典型的な例では、受石が球体からなる。   In another typical example of the vibration-proof bearing mechanism of the balance of the present invention, the stone is made of a sphere.

その場合、受石が高寸法精度で形成され、てんぷの動作変動も最低限に抑えられ得る。   In this case, the stone is formed with high dimensional accuracy, and the fluctuation of the balance of the balance can be suppressed to the minimum.

また、この別の典型的な例の場合、球状の受石が穴石・穴石枠一体構造体の穴石部に当接可能に穴石・穴石枠一体構造体の穴石枠部の円筒状領域内に配置され、押さえばねが、外周側において耐振座体の係合部で支持され内周側において穴石・穴石枠一体構造体の穴石枠部の円筒状領域内で穴石部の対向端面に受石を押付けることにより、受石を弾性的に保持するように構成されている。   In the case of this other typical example, the spherical stones can come into contact with the cobblestones of the cobblestone / cavestone frame integrated structure, and the cobblestone / cavestone frame integrated structure The holding spring is arranged in the cylindrical region, and is supported by the engaging portion of the vibration-proof seat on the outer peripheral side, and in the cylindrical region of the hole stone frame portion of the stone stone / hole stone frame integrated structure on the inner peripheral side The stone is configured to be held elastically by pressing the stone against the opposite end surfaces of the stone.

その場合、受石が球体(ボール)の形態であることによる厚さの増大が最低限に抑えられた状態で、受石が球体(ボール)であることの利点が享受され得る。   In that case, the advantage that the stone is a sphere (ball) can be enjoyed in a state where the increase in thickness due to the shape of the jewel is in the form of a sphere (ball) is minimized.

本発明のてんぷの耐振軸受機構では、典型的には、穴石・穴石枠一体構造体の穴石枠部のうち受石のほぞ受面を支える部位が円錐台状である。   In the vibration-proof bearing mechanism of a balance of the present invention, typically, the portion of the cobblestone frame portion of the cobblestone / cavestone frame integrated structure that supports the tenon receiving surface of the crest is a truncated cone.

その場合、てんぷの動作の変動を最低限に抑え得る。円錐台状の代わりに球状でもよい。   In this case, fluctuations in the balance operation can be minimized. A spherical shape may be used instead of the truncated cone shape.

本発明のてんぷは、前記目的を達成すべく、上述のような耐振軸受機構を有する。   The balance with hairspring of the present invention has the vibration-proof bearing mechanism as described above in order to achieve the above object.

本発明のてんぷでは、耐振軸受機構により支えられる軸がてん真からなり、てん真の両端部にあり該てん真の本体部よりも小径のほぞ部の端面が実際上平面状である。   In the balance of the present invention, the shaft supported by the vibration-proof bearing mechanism is made of the balance stem, and the end surface of the tenon portion having a diameter smaller than that of the main body portion of the balance stem is actually planar.

その場合、てん真の長さが高い寸法精度で得られ、その結果、時計が平姿勢であるか裏平姿勢であるかによる歩度の変動が最低限に抑えられ得る。   In this case, the length of the balance can be obtained with high dimensional accuracy, and as a result, fluctuations in the rate depending on whether the watch is in a flat posture or a back flat posture can be minimized.

本発明の時計は、前記目的を達成すべく、上述のような耐振軸受機構又は上述のようなてんぷを有する。   The timepiece of the present invention has the vibration-proof bearing mechanism as described above or the balance with hairspring as described above in order to achieve the object.

本発明の好ましい一実施例の耐振軸受機構を備えた本発明の好ましい一実施例のてんぷを有する本発明の好ましい一実施例の時計の一部を示した断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional explanatory view showing a part of a timepiece according to a preferred embodiment of the present invention having a balance with a vibration resistant bearing mechanism according to a preferred embodiment of the present invention. 図1のてんぷの耐振軸受機構を示したもので、(a)は平面説明図、(b)は断面説明図。The vibration-proof bearing mechanism of the balance of FIG. 1 is shown, (a) is a plane explanatory view, (b) is a cross-sectional explanatory view. 図1のてんぷの耐振軸受機構にてん真のほぞ部を含む一端部が嵌った状態を示した断面説明図。Cross-sectional explanatory drawing which showed the state which the one end part including the tenon part of a true balance was fitted in the vibration-proof bearing mechanism of the balance of FIG. 図1の時計のてんぷの耐振軸受機構においててんぷ受側の受石が傾いた状態にある場合を示したもので、(a)は平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図、(b)は裏平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図。1 shows a case where the balance receiving stone on the balance of the balance of the balance of the timepiece of FIG. 1 is tilted. FIG. 1 (a) shows the balance of the balance of the balance and the balance of the balance in the timepiece in the flat position. The cross-sectional explanatory drawing which showed the both ends containing a part, (b) is the cross-sectional explanatory drawing which showed the both ends containing the vibration-proof bearing mechanism of a balance with a balance tenon in the timepiece in a back flat posture. 図1の時計のてんぷの耐振軸受機構において時計が裏平姿勢を採った際にてん真のほぞ部が傾いた状態になる場合を示したもので、(a)は平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図、(b)は裏平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図。FIG. 1 shows a case where the true tenon portion is tilted when the timepiece is in the back flat position in the vibration-proof bearing mechanism of the timepiece of FIG. 1, wherein (a) is a balance in the timepiece in the flat position. The cross-sectional explanatory drawing which showed the both ends including the tenon part of a vibration-proof bearing mechanism and a balance of a balance of the balance, (b) showed both ends including the vibration-proof bearing mechanism of a balance and the tenon of a balance in a watch in a back-flat position. Cross-sectional explanatory drawing. 図1の時計のてんぷの耐振軸受機構においててん真のほぞ部のうちてんぷ受側のほぞ部の端面が傾いた状態にある場合を示したもので、(a)は平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図、(b)は裏平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図。FIG. 1 shows a case where the end face of the balance receiving side of the balance of the balance of the balance of the balance of the balance of the timepiece of FIG. 1 is in an inclined state. FIG. The cross-sectional explanatory drawing which showed the both ends including the tenon part of a vibration-proof bearing mechanism and a balance of a balance of the balance, (b) showed both ends including the vibration-proof bearing mechanism of a balance and the tenon of a balance in a watch in a back-flat position. Cross-sectional explanatory drawing. 本発明の別の好ましい一実施例の耐振軸受機構を示したもので、(a)は平面説明図、(b)は断面説明図。The vibration-proof bearing mechanism of another preferable one Example of this invention is shown, (a) is plane explanatory drawing, (b) is sectional explanatory drawing. 図7の耐振軸受機構にてん真のほぞ部を含む一端部が嵌った状態を示した本発明の別の好ましい一実施例のてんぷの一部を示した断面説明図。Sectional explanatory drawing which showed a part of balance with another preferable Example of this invention which showed the state which the one end part containing a true tenon part fitted in the vibration-proof bearing mechanism of FIG. 図7の耐振軸受機構を有するてんぷにおいて種々の条件下での回転中心の位置ズレの程度を示したもので、(a)はてん真及び受石が所定の状態にある基準の場合を示した断面説明図、(b)は受石が傾いた状態にある場合を示した断面説明図、(c)はてん真が傾いた状態にある場合を示した断面説明図。FIG. 7 shows the degree of positional deviation of the rotation center under various conditions in the balance with the vibration-proof bearing mechanism of FIG. 7, and (a) shows the reference case in which the balance and the stone are in a predetermined state. Cross-sectional explanatory drawing, (b) is a cross-sectional explanatory view showing the case where the stone is tilted, (c) is a cross-sectional explanatory view showing the case where the balance is tilted. 従来の耐振軸受機構を備えた従来のてんぷを有する従来の時計の一部を示した断面説明図。Cross-sectional explanatory drawing which showed a part of conventional timepiece which has the conventional balance with the conventional vibration-proof bearing mechanism. 図10の時計の従来の耐振軸受機構を示したもので、(a)は平面説明図、(b)は断面説明図。FIG. 11 shows a conventional vibration-proof bearing mechanism of the timepiece of FIG. 10, wherein (a) is a plane explanatory view and (b) is a cross-sectional explanatory view. 図10のてんぷの耐振軸受機構にてん真のほぞ部を含む一端部が嵌った状態を示した断面説明図。Cross-sectional explanatory drawing which showed the state which the one end part containing the tenon part of a true balance was fitted in the vibration-proof bearing mechanism of the balance of FIG. 図10の時計のてんぷの耐振軸受機構が適切に動作し得る場合の状態を示したもので、(a)は平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図、(b)は裏平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図。FIG. 11 shows a state in which the vibration-proof bearing mechanism of the balance of the timepiece of FIG. 10 can operate properly, and (a) shows both ends of the balance with the balance of the balance of the balance and the tenon of the balance in the timepiece in a flat position. FIG. 4B is a cross-sectional explanatory view showing both ends including a vibration-proof bearing mechanism of the balance and the tenon of the balance in a timepiece in a flat back position. 図10の時計のてんぷの耐振軸受機構においててんぷ受側の受石が傾いた状態にある場合を示したもので、(a)は平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図、(b)は裏平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図。10 shows a case where the balance receiving stone on the balance of the balance of the balance of the timepiece of FIG. 10 is tilted. FIG. 10 (a) shows the balance of the balance of the balance and the balance of the balance in the timepiece in the flat position. The cross-sectional explanatory drawing which showed the both ends containing a part, (b) is the cross-sectional explanatory drawing which showed the both ends containing the vibration-proof bearing mechanism of a balance with a balance tenon in the timepiece in a back flat posture. 図10の時計のてんぷの耐振軸受機構において時計が裏平姿勢を採った際にてん真のほぞ部が傾いた状態になる場合を示したもので、(a)は平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図、(b)は裏平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図。FIG. 10 shows a case where the true tenon portion is tilted when the watch is in the back flat position in the vibration-proof bearing mechanism of the timepiece of FIG. 10, and (a) the balance with the balance in the watch in the flat position. The cross-sectional explanatory drawing which showed the both ends including the tenon part of a vibration-proof bearing mechanism and a balance of a balance of the balance, (b) showed both ends including the vibration-proof bearing mechanism of a balance and the tenon of a balance in a watch in a back-flat position. Cross-sectional explanatory drawing. 図10の時計のてんぷの耐振軸受機構においててん真のほぞ部のうちてんぷ受側のほぞ部の端面が傾いた状態にある場合を示したもので、(a)は平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図、(b)は裏平姿勢にある時計においててんぷの耐振軸受機構及びてん真のほぞ部を含む両端部を示した断面説明図。10 shows a case where the end face of the balance portion of the balance of the balance in the balance of the balance of the balance of the balance of the timepiece of FIG. 10 is tilted. FIG. The cross-sectional explanatory drawing which showed the both ends including the tenon part of a vibration-proof bearing mechanism and a balance of a balance of the balance, (b) showed both ends including the vibration-proof bearing mechanism of a balance and the tenon of a balance in a watch in a back-flat position. Cross-sectional explanatory drawing.

本発明の好ましい一実施の形態を添付図面に示した好ましい一実施例に基づいて説明する。   A preferred embodiment of the present invention will be described based on a preferred embodiment shown in the accompanying drawings.

図1には、本発明の好ましい一実施例の耐振軸受機構1を備えた本発明の好ましい一実施例のてんぷ3を有する本発明の好ましい一実施例の時計2の一部が示され、図2の(a)及び(b)には時計2の耐振軸受機構1が拡大して示され、図3には耐振軸受機構1を含むてんぷ3のてん真の一端側部分が拡大して示されている。   FIG. 1 shows a part of a timepiece 2 of a preferred embodiment of the present invention having a balance 3 of a preferred embodiment of the present invention equipped with a vibration-proof bearing mechanism 1 of a preferred embodiment of the present invention. 2 (a) and 2 (b) show an enlarged view of the vibration-proof bearing mechanism 1 of the timepiece 2, and FIG. 3 shows an enlarged one end side portion of the balance of the balance 3 including the vibration-resistant bearing mechanism 1. ing.

機械式時計2では、調速脱進機4はてんぷ3とアンクル6とがんぎ車7とを有する。調速脱進機4を構成するこれらの時計部品3,6,7は地板8によって支持されている。アンクル6は、ハコ先61で振り座の振り石44に係合され、入つめ石及び出つめ石(図示せず)でがんぎ車7のがんぎ歯62に係合される。がんぎ車7はかな部64で四番車70に噛合されている。ぜんまい(図示せず)の動力で調速脱進機4のがんぎ車7を動作させる四番車70は、てんぷ3により規定された速度で間欠回転されるがんぎ車7により所定の回転速度で間欠回転される。   In the mechanical timepiece 2, the speed control escapement 4 includes a balance 3, an ankle 6, and a escape wheel 7. These timepiece parts 3, 6, 7 constituting the governor escapement 4 are supported by a main plate 8. The pallet fork 6 is engaged with the swing stone 44 of the swing seat at the box tip 61, and is engaged with the escape tooth 62 of the escape wheel 7 by an entrance pallet and an exit pallet (not shown). The escape wheel 7 is meshed with the fourth wheel 70 at the kana portion 64. The fourth wheel & pinion 70 for operating the escape wheel 7 of the speed control escapement 4 with the power of the mainspring (not shown) is predetermined by the escape wheel 7 that is intermittently rotated at a speed defined by the balance 3. It is intermittently rotated at the rotation speed.

てんぷ3は、てん真40と、てんわ50と、ひげぜんまい55とを有し、てん真40は上下(裏蓋側及び文字板側)の小径端部であるほぞ部41F,41Rにおいて耐振軸受機構の形態の上下の耐振軸受ないしてんぷ上軸受1F及びてんぷ下軸受1Rにより回転自在に支持されている。ほぞ部41F,41Rの端面45F,45Rは実際上中心軸線Cに対して垂直な平面になっている。従って、ほぞ部の端面ないしほぞ先を凸状に湾曲した面にする場合と比較して、ほぞ丈を正確に形成し得るので、てん真40の長さや形状を正確に形成し易く、ほぞ先の組付け状態のバラツキが最低限に抑えられ得る。   The balance with hairspring 3 has a balance stem 40, a balance 50, and a hairspring 55, and the balance stem 40 is a vibration-proof bearing at tenon portions 41 </ b> F and 41 </ b> R which are small-diameter end portions on the upper and lower sides (back cover side and dial side). The upper and lower vibration-proof bearings in the form of the mechanism are supported rotatably by the balance upper bearing 1F and balance lower bearing 1R. The end faces 45F and 45R of the tenon portions 41F and 41R are actually planes perpendicular to the central axis C. Accordingly, the tenon length can be accurately formed as compared with the case where the end surface or tenon of the tenon is curved in a convex shape. Therefore, it is easy to accurately form the length and shape of the balance 40, and the tenon tip. The variation in the assembled state can be minimized.

なお、以下において、耐振軸受機構1F及び1R並びにその部品ないし要素について、同一の符号の後に添字F又はRを付して示す。両者を区別しないとき又は総称するときは添字FやRを省く。   In the following description, the vibration-resistant bearing mechanisms 1F and 1R and the components and elements thereof are indicated by adding the suffix F or R to the same reference numeral. When the two are not distinguished or collectively referred to, the subscripts F and R are omitted.

てんぷ下軸受すなわち下側ないし文字板側の耐振軸受機構1Rは地板8に取付けられ、てんぷ上軸受すなわち上側ないし裏蓋側の耐振軸受1Fはてんぷ受5を介して地板8に取付けられている。てん真40は、また、ほぞ部41F,41Rよりも中間部側に該ほぞ部41F,41Rよりも大径であるけれどもてん真40の他の部分よりも小径の端部軸部42F,42Rを有する。ひげぜんまい55は、てん真40の中心軸線(重心軸)Cのまわりの渦巻の形態を備え、渦巻の内周側端部においてひげ玉43に取付けられ、渦巻の外周側端部においてひげ持(図示せず)に取付けられていて、緩急針(図示せず)によりその渦巻(ばね)の実効長が調整される。   The balance bearing 1 </ b> R on the lower balance or the dial side is attached to the main plate 8, and the balance bearing 1 </ b> F on the upper or back cover side is attached to the base plate 8 via the balance 5. The balance stem 40 also has end shafts 42F and 42R which are larger in diameter than the tenon portions 41F and 41R but smaller in diameter than the other portions of the balance stem 40 on the intermediate side of the tenon portions 41F and 41R. Have. The hairspring 55 has a spiral shape around the central axis (center of gravity axis) C of the balance stem 40, is attached to the whisker ball 43 at the inner peripheral side end of the spiral, and has a whisker at the outer peripheral side end of the spiral ( The effective length of the spiral (spring) is adjusted by a slow and quick needle (not shown).

上下の耐振軸受1F,1Rは、実際上同一の構造及び形状を有するので、両者を区別する必要がない限り、耐振軸受機構ないし耐振軸受1として説明する。   Since the upper and lower vibration-resistant bearings 1F and 1R have the same structure and shape in practice, the vibration-resistant bearing mechanism or vibration-resistant bearing 1 will be described unless it is necessary to distinguish between the two.

てんぷ軸受一式ないし耐振軸受一式すなわち耐振軸受機構1は、スラスト軸受として働く広義のセラミック製の受石ないし耐振受石10と、広義のセラミック製であってジャーナル軸受として働く穴石部17及び該穴石部17と一体的な穴石枠部20を備えた穴石・穴石枠一体構造体9と、受石10及び穴石・穴石枠一体構造体9を支える金属製の耐振座体30と、押さえばねないし耐振押さえばね37とを有する。ここで、「広義のセラミック」は、ルビー等を含めてアルミナやジルコニアの如き金属酸化物のみならず、窒化物や炭化物も含み、天然石及び人工(合成)セラミックの両方を含むものを指す。   A set of balance bearings or a set of anti-vibration bearings, that is, an anti-vibration bearing mechanism 1 includes a ceramic jewel or anti-vibration jewel 10 in a broad sense that functions as a thrust bearing, a hole portion 17 that is made of ceramic in a broad sense and serves as a journal bearing, and the hole stone portion. A rock stone / hole stone frame integrated structure 9 provided with a hole stone frame part 20 integrated with 17, a metal vibration-proof seat 30 that supports the stone 10 and the hole stone / hole stone frame integrated structure 9; A holding spring or vibration-resistant holding spring 37 is provided. Here, “broadly defined ceramic” refers to those including both natural stones and artificial (synthetic) ceramics including not only metal oxides such as alumina and zirconia, including rubies, but also nitrides and carbides.

耐振軸受機構1は、機械式時計2のてんぷ3のてん真40の両端の小径ほぞ部41F,41Rにおいててん真40を支える。受石10F,10Rのほぞ受面ないしスラスト軸受面11F,11Rは部分球面(半径の大きな球面の一部)になっている。受石10F,10Rのほぞ受面11F,11Rは、外に凸状に滑らかに湾曲した曲面(凸面)で回転対称性がある限り、部分球面(半径の大きな球面の一部)でなくてもよい。   The vibration-resistant bearing mechanism 1 supports the balance stem 40 at the small diameter tenon portions 41F and 41R at both ends of the balance 40 of the balance 3 of the mechanical timepiece 2. The tenon receiving surface or thrust bearing surface 11F, 11R of the stones 10F, 10R is a partial spherical surface (a part of a spherical surface having a large radius). The tenon receiving surfaces 11F and 11R of the stones 10F and 10R need not be partial spherical surfaces (parts of spherical surfaces having large radii) as long as they are curved surfaces (convex surfaces) that are smoothly curved outwardly and have rotational symmetry. Good.

受石10は、上述のような凸レンズのような部分球状の端面11,12を有する。端面11,12の部分球状面が同一である場合、組付けの際に表裏の識別が不要である。但し、端面12は、径の異なる部分球面状であっても、部分球状である代わりに、例えば、平面状等他の形状であってもよい。耐振受石10は、てんぷ3のてん真40の中心軸線Cの延在方向(軸方向)A1,A2(区別しないか総称するときはA方向という)の力を受ける。   The stone 10 has partial spherical end faces 11 and 12 like the convex lens as described above. When the partial spherical surfaces of the end surfaces 11 and 12 are the same, it is not necessary to identify the front and back when assembling. However, the end surface 12 may have a partial spherical shape with different diameters, or may have another shape such as a flat shape instead of the partial spherical shape. The anti-vibration stone 10 receives a force in the extending direction (axial direction) A1, A2 of the central axis C of the balance 40 of the balance 3 (A direction when not distinguished or generically referred to as A direction).

耐振座体30は、小径筒状部31と、大径筒状部32と、てん真40の端部軸部42が遊嵌される端部軸部受容孔33aを備えた端部フランジ状部33と、接続フランジ状部34と、傾斜面部35a,35bと、径方向内向き係合部36とを有する。端部フランジ状部33は小径フランジ状部31の一端に形成され、大径筒状部32は小径筒状部31よりも大径で、その一端側において接続フランジ状部34を介して小径筒状部31の他端につながっている。径方向内向き係合部36は、大径筒状部32の他端側に形成されている。端部軸部受容孔33aは、てん真40の端部軸部42の径よりも多少大きい。傾斜面部35a,35bは、夫々円錐台の外周面の形態であり、典型的には、両傾斜面部35a,35bは、同一の仮想的な円錐台の外周面の一部をなすように同様に且つ直線状に並んで配置されている。傾斜面部35aは端部フランジ状部33の端部軸部受容孔33aの一端に形成され、傾斜面部35bは小径筒状部31のうち接続フランジ状部34の近傍に形成されている。   The anti-vibration seat 30 includes an end flange-like portion including a small-diameter cylindrical portion 31, a large-diameter cylindrical portion 32, and an end-shaft receiving hole 33a into which the end-shaft portion 42 of the balance stem 40 is loosely fitted. 33, a connecting flange-shaped portion 34, inclined surface portions 35a and 35b, and a radially inward engagement portion 36. The end flange-shaped portion 33 is formed at one end of the small-diameter flange-shaped portion 31, and the large-diameter tubular portion 32 has a larger diameter than the small-diameter tubular-shaped portion 31. The other end of the shape portion 31 is connected. The radially inward engagement portion 36 is formed on the other end side of the large diameter cylindrical portion 32. The end shaft receiving hole 33 a is slightly larger than the diameter of the end shaft 42 of the balance 40. The inclined surface portions 35a and 35b are each in the form of an outer peripheral surface of a truncated cone, and typically both inclined surface portions 35a and 35b are similarly formed so as to form a part of the outer peripheral surface of the same virtual truncated cone. And they are arranged in a straight line. The inclined surface portion 35 a is formed at one end of the end shaft receiving hole 33 a of the end flange-shaped portion 33, and the inclined surface portion 35 b is formed in the vicinity of the connecting flange-shaped portion 34 in the small diameter cylindrical portion 31.

穴石・穴石枠一体構造体9は、概ね円錐台状の中空円錐台状体21からなり、この中空円錐台状体21は、円錐台状外周面部22と、小径側端面部23と、大径側円筒状部24と、大径側端面部25と、円錐台状内周面部26と、大径側円筒状内面部27と、ほぞ孔18と、案内凹部19とを有する。   The hole stone / hole stone frame integrated structure 9 includes a substantially truncated cone-shaped hollow truncated cone-shaped body 21, which has a truncated cone-shaped outer peripheral surface portion 22, a small-diameter side end surface portion 23, A large-diameter side cylindrical portion 24, a large-diameter side end surface portion 25, a frustoconical inner peripheral surface portion 26, a large-diameter side cylindrical inner surface portion 27, a mortise 18, and a guide recess 19 are provided.

ほぞ孔18は、円錐台状内周面部26の小径側に位置し、該ほぞ孔18に挿通されるてん真40のほぞ部41を実際上摺動回転自在に支える。すなわち、ほぞ孔18を規定する領域21aは、ジャーナル軸受として機能する穴石部17として働く。小径側端面部23の中心軸線Cのまわりに形成された案内凹部19は、てん真40の端部軸部42よりも十分に大きい。但し、端部軸部42よりも大きく例えば耐振座体30の端部軸部受容孔33aと同程度以上の大きさであって端部軸部42が遊嵌される程度の径であれば、もう少し小さくてもよい。   The mortise 18 is located on the small diameter side of the frustoconical inner peripheral surface portion 26, and supports the mortise portion 41 of the balance stem 40 inserted through the mortise 18 so as to be slidably rotatable. That is, the region 21a that defines the mortise 18 serves as a hole 17 that functions as a journal bearing. The guide recess 19 formed around the central axis C of the small-diameter side end surface portion 23 is sufficiently larger than the end shaft portion 42 of the balance stem 40. However, if the diameter is larger than the end shaft portion 42, for example, the size of the end shaft portion receiving hole 33a of the anti-vibration seat 30 is equal to or larger than the end shaft portion 42, It may be a little smaller.

円錐台状内周面部26は、受石10のほぞ受面11になっている凸レンズのような部分球状の端面11の外側部分11aに当接して該部分球状端面11の外側部分11aで受石10を支える。円錐台状内周面部26は円錐台状外周面部22よりも頂角の大きい円錐の錐台面になっている。   The frustoconical inner peripheral surface portion 26 abuts on the outer portion 11 a of the partial spherical end surface 11 such as a convex lens forming the tenon receiving surface 11 of the stone 10 and receives the stone at the outer portion 11 a of the partial spherical end surface 11. 10 is supported. The frustoconical inner peripheral surface portion 26 is a conical frustum surface having a larger apex angle than the frustoconical outer peripheral surface portion 22.

円錐台状外周面部22は、ひとつの円錐台の外周面部からなり、穴石・穴石枠一体構造体9が耐振座体30内の所定位置に配置された際に、該外周面部の一部をなす傾斜面部22a,22bにおいて耐振座体30の傾斜面部35a,35bに当接する。従って、穴石・穴石枠一体構造体9は、円錐台状外周面部22の傾斜面部22a,22bにおいて耐振座体30の傾斜面部35a,35bに当接して耐振座体30により支えられる。   The frustoconical outer peripheral surface portion 22 is composed of the outer peripheral surface portion of one truncated cone, and a part of the outer peripheral surface portion is formed when the cobblestone / holestone frame integrated structure 9 is disposed at a predetermined position in the vibration-proof seat body 30. The inclined surface portions 22a and 22b forming the contact with the inclined surface portions 35a and 35b of the vibration-proof seat body 30 are in contact with each other. Therefore, the cobblestone / cavestone frame integrated structure 9 is supported by the vibration-resistant seat body 30 by contacting the inclined surface portions 35 a and 35 b of the vibration-resistant seat body 30 at the inclined surface portions 22 a and 22 b of the frustoconical outer peripheral surface portion 22.

以上において、穴石枠部20は、円錐台状外周面部22及び円錐台状内周面部26を含む領域21bであって、穴石部17を形成する領域21aにつながった領域からなる。   In the above, the hole stone frame portion 20 is a region 21b including the frustoconical outer peripheral surface portion 22 and the frustoconical inner peripheral surface portion 26, and is composed of a region connected to the region 21a forming the hole stone portion 17.

耐振押さえばね37は、三つ葉のクローバーの如き形状であって、大径部38から突出した係合部38a,38a,38aで耐振座体30の径方向内向き係合部36に係合され、径方向内向きに延びたU字状係合部39,39,39で受石10の外側端面12に係合して、該受石10を穴石・穴石枠一体構造体9(又は該構造体の穴石枠部20)の円錐台状内周面部26に押付ける。これにより、受石10を介して穴石・穴石枠一体構造体9が円錐台状外周面部22の傾斜面部22a,22bにおいて耐振座体30の傾斜面部35a,35bに押付けられる。なお、耐振押さえばね37は、受石10を押え得る限り、三つ葉のクローバーの如き形状の代わりに他の形状でもよい。   The anti-vibration spring 37 has a shape like a three-leaf clover, and is engaged with the radially inward engaging portion 36 of the anti-vibration seat 30 by engaging portions 38 a, 38 a, 38 a protruding from the large-diameter portion 38. The U-shaped engaging portions 39, 39, 39 extending inward in the radial direction are engaged with the outer end face 12 of the stone 10 so that the stone 10 is integrated with the stone / hole stone frame integrated structure 9 (or the It is pressed against the frustoconical inner peripheral surface portion 26 of the hole stone frame portion 20) of the structure. Accordingly, the cobblestone / cavestone frame integrated structure 9 is pressed against the inclined surface portions 35 a and 35 b of the vibration-proof seat 30 at the inclined surface portions 22 a and 22 b of the frustoconical outer peripheral surface portion 22 through the stone 10. In addition, as long as the anti-shock spring 37 can hold the stone 10, another shape may be used instead of a shape like a three-leaf clover.

従って、耐振押さえばね37は耐振受石10及び穴石・穴石枠一体構造体9を弾性的に保持しててんぷ3の本体への衝撃力を吸収し、衝撃を受けた際の受石10及び穴石・穴石枠一体構造体9の移動及び復元を可能にする。腕時計の形態の時計2を使用者が手首にはめた状態で使用者の手首の急激な動きにより軸方向の衝撃がてん真40にかかると、てん真40に働く軸方向力(衝撃)により受石10がほぞ受面11でほぞ41の端面(ほぞ先)45からA方向の力を受け、受石10のA方向変位を許容して衝撃を吸収してほぞ部41を保護する。また、使用者の手首の急激な動きにより横方向(軸方向に対して直角な方向)の衝撃がてん真40にかかっててん真40が中心軸線Cに対して直角な向きに力(衝撃)を受けると、ほぞ部41からほぞ孔18に当該向きの力が働くので、押さえばね37のばね力に抗して穴石・穴石枠一体構造体9が該穴石・穴石枠一体構造体9の円錐台状外周面部22の斜面部22a,22bと耐振座体30の斜面部35a,35bとの係合面に沿って変位されて、衝撃が吸収されてほぞ部41が保護される。いずれの場合も、衝撃がなくなると、押さえばねの力により多少なりとも元の位置に戻る。   Therefore, the vibration-proof presser spring 37 elastically holds the vibration-resistant stone 10 and the cobblestone / holestone frame integrated structure 9 to absorb the impact force to the main body of the balance 3, and the stone 10 when the shock is received. Further, it is possible to move and restore the hole stone / hole stone frame integrated structure 9. When an impact in the axial direction is applied to the balance stem 40 due to a sudden movement of the wrist of the user while the watch 2 in the form of a wrist watch is worn on the wrist, the axial force (impact) acting on the balance stem 40 is received. The stone 10 receives the force in the A direction from the end face (tenon tip) 45 of the tenon 41 at the tenon receiving surface 11 and allows the stone 10 to be displaced in the A direction to absorb the impact and protect the tenon portion 41. In addition, the impact in the lateral direction (perpendicular to the axial direction) is applied to the balance 40 by the sudden movement of the wrist of the user, and the force (impact) in the direction in which the balance 40 is perpendicular to the central axis C. Then, the force in the direction acts from the tenon portion 41 to the tenon hole 18, so that the cobblestone / cavestone frame integrated structure 9 resists the spring force of the holding spring 37. It is displaced along the engagement surface between the inclined surface portions 22a and 22b of the truncated cone-shaped outer peripheral surface portion 22 of the body 9 and the inclined surface portions 35a and 35b of the vibration-proof seat 30, so that the impact is absorbed and the tenon portion 41 is protected. . In either case, when the impact disappears, the original position is restored to some extent by the force of the holding spring.

以上の如く構成されたてんぷ3の耐振軸受機構1では、ジャーナル軸受として働く穴石部17及び該穴石部17と一体の穴石枠部20を備えた穴石・穴石枠一体構造体9が設けられ、穴石部17と穴石枠部20とが一体的に構成され一体形成されているので部品点数が低減され得るだけでなく、外周側において耐振座体30の係合部36で支持された押さえばね37が内周側において受石10を穴石・穴石枠一体構造体9の円錐台状内周面部26に弾性的に押付けて保持するので、図10〜図12等に示した従来の耐振軸受機構101の場合のように受石110を穴石117とは別体の別体の穴石枠120を介して位置決めするのではなくて、受石10を穴石部17に対して直接位置決めし得るから、受石10の位置決めないし位置出しが容易且つ確実に行われ得る。すなわち、この耐振軸受機構1では、ほぞ部41の外周面を穴石部17で支える穴石・穴石枠一体構造体9に対して受石10が直接的に当接せしめられてほぞ部41の端面を支えるので、ほぞ部41の外周面および端面を支える軸受部分17,10の位置決めが正確に行われ得る。   In the vibration-proof bearing mechanism 1 of the balance 3 configured as described above, a cobblestone / cavestone frame integrated structure 9 including a cobblestone portion 17 serving as a journal bearing and a cobblestone frame portion 20 integrated with the cobblestone portion 17 is provided. Since the hole stone portion 17 and the hole stone frame portion 20 are integrally configured and integrally formed, not only the number of parts can be reduced, but also the outer periphery is supported by the engaging portion 36 of the vibration-proof seat 30. Since the holding spring 37 elastically presses and holds the stone 10 on the inner peripheral surface 26 of the truncated stone / hole stone frame integrated structure 9 on the inner peripheral side, the conventional method shown in FIGS. Instead of positioning the receiving stone 110 via a separate hole stone frame 120 separate from the hole stone 117 as in the case of the vibration-proof bearing mechanism 101 of FIG. Since positioning is possible, positioning or positioning of the stone 10 is easy. And it may be reliably performed. That is, in this vibration-resistant bearing mechanism 1, the stone 10 is directly brought into contact with the cobblestone / cavestone frame integrated structure 9 that supports the outer peripheral surface of the mortise portion 41 with the cobblestone portion 17. Since the end surface is supported, the outer peripheral surface of the tenon portion 41 and the bearing portions 17 and 10 that support the end surface can be accurately positioned.

また、この耐振軸受機構1では、ジャーナル軸受として働く穴石部17及び該穴石部と一体の穴石枠部20を備えた穴石・穴石枠一体構造体9が設けられ、耐振座体30が穴石・穴石枠一体構造体9を支えるに構成されるので、通常金属製である耐振座体30が通常金属製である従来の穴石枠ではなくて石(広義のセラミック)製である穴石・穴石枠一体構造体9に当接してこれを支えることになるから、図10〜図12に示したような従来の耐振軸受機構101の場合のような耐振座体130と穴石枠120との間における「金属・金属」間の摺動ではなくて、耐振座体30と穴石・穴石枠一体構造体9との間における「金属・セラミック」間の摺動になることから、摩擦抵抗が低減され得る。従って、衝撃(外力)により受石の位置がずれても、衝撃(外力)がなくなると受石が元の正規の位置に戻り易く、軸受機構が最適な状態で動作され易い。   Further, in this vibration-resistant bearing mechanism 1, a cobblestone / cavestone frame integrated structure 9 including a cobblestone portion 17 that functions as a journal bearing and a cobblestone frame portion 20 that is integral with the cobblestone portion is provided. Since it is configured to support the cave stone / cave stone frame integrated structure 9, the vibration-proof seat body 30, which is usually made of metal, is made of stone (ceramic in a broad sense) instead of the conventional cobblestone frame that is usually made of metal. Since the rock stone / hole stone frame integrated structure 9 is abutted and supported, the vibration-proof seat 130 and the rock stone as in the case of the conventional vibration-proof bearing mechanism 101 as shown in FIGS. Instead of sliding between the “metal and metal” between the frame 120 and the “metal / ceramic” between the vibration-proof seat 30 and the hole stone / hole stone frame integrated structure 9. From this, the frictional resistance can be reduced. Therefore, even if the position of the stone is shifted due to an impact (external force), if the impact (external force) is lost, the stone is likely to return to the original normal position, and the bearing mechanism is easily operated in an optimum state.

なお、以上の如く構成された本発明の好ましい一実施例の耐振軸受機構1F,1Rを備えた本発明の好ましい一実施例のてんぷ3を有する本発明の好ましい一実施例の機械式時計2において、種々の条件下で、裏蓋側の耐振軸受機構1Fが文字板側の耐振軸受機構1Rの上に位置する「平姿勢」P1に時計2が配置されている場合と文字板側の耐振軸受機構1Rが裏蓋側の耐振軸受機構1Fの上に位置する「裏平姿勢」P2に時計2が配置されている場合との差異の有無ないし差異の程度について、図4の(a)及び(b)、図5の(a)及び(b)、並びに図6の(a)及び(b)を参照しつつ詳しく説明する。   In the mechanical timepiece 2 of the preferred embodiment of the present invention having the balance 3 of the preferred embodiment of the present invention having the vibration-proof bearing mechanisms 1F and 1R of the preferred embodiment of the present invention configured as described above. Under various conditions, the case 2 is arranged in the “flat position” P1 where the vibration-proof bearing mechanism 1F on the back cover side is positioned on the vibration-proof bearing mechanism 1R on the dial side, and the vibration-proof bearing on the dial side 4 (a) and 4 (a) and FIG. 4 (b) regarding whether or not there is a difference from the case where the timepiece 2 is disposed in the “back flat posture” P2 where the mechanism 1R is positioned on the vibration-proof bearing mechanism 1F on the back cover side. This will be described in detail with reference to (b), (a) and (b) of FIG. 5, and (a) and (b) of FIG.

受石10F,10Rが、てんぷ3のてん真40の中心軸線Cに対して実際上垂直に配置され、部分球面状の受面11F,11Rが中心軸線Cのまわりで回転対称の状態にある場合、時計2が平姿勢P1を採る場合と裏平姿勢P2を採る場合とでてんぷ3のてん真40の支持状態は実際上同一であるので、平姿勢P1及び裏平姿勢P2で歩度の差異は実際上ないことは、従来通りである。なお、このてんぷ3では、受石10F,10Rのほぞ受面11F,11Rが部分球面状であるので、該ほぞ受面11F,11Rは、てん真40のほぞ部41F,41Rの端面45F,45Rに対して実際上一点で当接するから、てん真40の回転が安定し易い。   When the receiving stones 10F and 10R are arranged substantially perpendicular to the central axis C of the balance 40 of the balance 3 and the partially spherical receiving surfaces 11F and 11R are rotationally symmetrical around the central axis C Since the balance state of the balance 3 of the balance 3 is practically the same when the watch 2 takes the flat posture P1 and when it takes the back flat posture P2, the difference in rate between the flat posture P1 and the back flat posture P2 is as follows. What is not practical is as usual. In the balance 3, the tenon receiving surfaces 11F and 11R of the stones 10F and 10R are partially spherical, and the tenon receiving surfaces 11F and 11R are the end surfaces 45F and 45R of the tenon portions 41F and 41R of the balance stem 40. However, the rotation of the balance stem 40 is likely to be stabilized.

図4の(a)及び(b)に示したように、てんぷ受5側ないし裏蓋側の受石10Fが少し(例えば1度程度)傾いた状態で押さえばね37Fによって穴石・穴石枠一体構造体9Fに取付けられた状態S1では、厳密に言えば、図4の(a)に示したように時計2が平姿勢P1を採る場合と、図4の(b)に示したように時計2が裏平姿勢P2を採る場合とでは、てんぷ3の状態が多少なりとも異なる状況になる。受石10Fの傾きは、典型的には、穴石・穴石枠一体構造体9Fが傾斜面22a,22bにおいて耐振座体30Fの傾斜面35a,35bに対してズレて耐振座体30Fに対して傾いた場合に生じる。なお、このこと(時計が平姿勢を採る場合と裏平姿勢を採る場合とでてんぷの状態が異なること)自体は、従来の耐振軸受機構101F,101Rを備えた従来のてんぷ103を有する従来の時計102について図14の(a)及び(b)に関連して説明したのと同様であるけれども、平姿勢の場合と裏平姿勢の場合とにおけるてんぷの状態の差異の程度が、時計2と従来の時計102とでは異なる。   As shown in FIGS. 4 (a) and 4 (b), the stone holder 10F on the side of the balance 5 or the back cover side is tilted slightly (for example, about 1 degree) by the holding spring 37F, and the stone or hole frame is held by the holding spring 37F. Strictly speaking, in the state S1 attached to the integrated structure 9F, as shown in FIG. 4A, the timepiece 2 takes the flat posture P1, and as shown in FIG. 4B. When the timepiece 2 takes the back flat posture P2, the balance 3 is in a slightly different state. The inclination of the stone 10F is typically such that the cave stone / hole stone frame integrated structure 9F is shifted from the inclined surfaces 35a, 35b of the vibration-resistant seat 30F in the inclined surfaces 22a, 22b with respect to the vibration-resistant seat 30F. It occurs when it is tilted. Note that this (the balance of the balance is different between the case where the watch takes a flat posture and the case where the watch takes a flat back posture) itself is a conventional balance having a conventional balance 103 having vibration-proof bearing mechanisms 101F and 101R. Although the timepiece 102 is the same as that described with reference to FIGS. 14A and 14B, the difference in the balance state between the flat posture and the back flat posture is the same as that of the watch 2. It differs from the conventional watch 102.

すなわち、時計2において、てんぷ受5側の受石10Fが傾いて取付けられた状態S1にある場合において図4の(a)に示したように文字板側の耐振軸受機構1Rが下側に位置していて文字板側の受石10Rがそのほぞ受面11Rでてん真140のほぞ41Rの端面45Rを受ける平姿勢P1では、てん真40が、下側に位置するほぞ部41Rの端面45Rのうち中心軸線Cの通る位置C0Rにおいてその下側に位置する文字板側の耐振軸受機構1Rの受石10Rの部分球面状のほぞ受面11Rに当接し、該当接位置C0Rを中心に中心軸線Cのまわりで回転されることは図14の(a)の場合と実際上同じである。すなわち、この範囲では、てんぷ受5側ないし裏蓋側の受石10Fが少し(例えば1度程度)傾いた状態で押さえばね37Fによって穴石・穴石枠一体構造体9Fに取付けられていることによる影響が現れないことは、図14の(a)の場合と実際上同じである。但し、厳密に言えば、この時計2では受石10Rのほぞ受面11Rが凸状に湾曲しているので、中心軸線Cに一致するところC0Rが確実に回転中心になる点で時計102の場合と異なり得る。   That is, in the timepiece 2, when the stone holder 10F on the balance holder 5 side is in the tilted state S1, the vibration-proof bearing mechanism 1R on the dial side is positioned on the lower side as shown in FIG. In the flat posture P1 in which the receiving stone 10R on the dial side receives the end surface 45R of the tenon 41R of the balance stem 140 at the tenon receiving surface 11R, the balance stem 40 of the end surface 45R of the tenon portion 41R located below is provided. Among them, the center axis C is in contact with the partially spherical tenon receiving surface 11R of the stone 10R of the anti-vibration bearing mechanism 1R on the dial side located at the lower position C0R through which the central axis C passes. Is rotated in the same manner as in FIG. 14A. That is, in this range, the stone holder 10F on the balance holder 5 side or the back cover side is attached to the cobblestone / cavestone frame integrated structure 9F by the holding spring 37F in a state where it is slightly inclined (for example, about 1 degree). It is practically the same as in the case of FIG. Strictly speaking, however, in the timepiece 2, the tenon receiving surface 11R of the stone 10R is curved in a convex shape. Therefore, in the case of the timepiece 102, the C0R surely becomes the center of rotation when it coincides with the central axis C. And can be different.

一方、時計2が反転されて、図4の(b)に示したようにてんぷ受5側(裏蓋側)の耐振軸受機構1Fが下側に位置していててんぷ受5側の受石10Fがそのほぞ受面11Fでてん真40のほぞ41Fの端面45Fを受ける裏平姿勢P2では、中心軸線Cの近傍におけるほぞ受面11Fの輪郭に多少のズレが生じるとしても、図4の(b)において想像線で示した通り、ほぞ受面11Fの輪郭は1度程度の傾きが生じる前と概ね同様になる。特に、受石10Fの概ね1度の傾きに伴いほぞ受面11Fのうち接線が中心軸線Cに対して垂直になる部位CaVは受面11Fが中心軸線Cと交わる位置にほとんど一致する。すなわち、受石10Fの傾きが耐振座体30に対する穴石・穴石枠一体構造体9Fのズレ(面35a,35bに対する面22a,22bのズレ)によって生じるとすると、1度の回転に応じてほぞ受面11Fが1度だけ概ね周方向に回転するとしても、ほぞ受面11Fのうち中心軸線Cが交わる部位C0Fにおける接平面の向きは概ね一定に保たれ得るから、結果的にはほぞ受面11Fのうち接平面が中心軸線Cに対して垂直になる部位CaVは受面11Fが中心軸線Cと交わる位置C0Fからほとんどずれない。従って、てん真40は、下側に位置するほぞ部41Fの端面45Fのうち中心軸線Cの通る位置の近傍の点CaVにおいてその下側に位置する文字板側の耐振軸受機構1Fの受石10Fの部分球面状のほぞ受面11Fと当接し、該位置CaVを中心として中心軸線Cのまわりで回転される。なお、ほぞ受面11Fが穴石・穴石枠一体構造体9Fの円錐台状内周面部26に沿ってずれても状況は同じである。   On the other hand, the timepiece 2 is inverted, and the anti-vibration bearing mechanism 1F on the balance 5 side (back cover side) is positioned on the lower side as shown in FIG. In the back flat posture P2 where the tenon receiving surface 11F receives the end face 45F of the tenon 41F of the balance 40, even if a slight deviation occurs in the outline of the tenon receiving surface 11F in the vicinity of the central axis C, FIG. ), The contour of the tenon receiving surface 11F is substantially the same as before the inclination of about 1 degree occurs. Particularly, a portion CaV in which the tangent line is perpendicular to the central axis C in the tenon receiving surface 11F with the inclination of the receiving stone 10F approximately 1 degree almost coincides with the position where the receiving surface 11F intersects the central axis C. That is, if the inclination of the stone 10F is caused by the shift of the cobblestone / cavestone frame integrated structure 9F with respect to the vibration proof seat 30 (the shift of the surfaces 22a and 22b with respect to the surfaces 35a and 35b), according to one rotation. Even if the tenon receiving surface 11F rotates approximately in the circumferential direction by 1 degree, the direction of the tangential plane at the portion C0F where the central axis C intersects in the tenon receiving surface 11F can be kept substantially constant. A portion CaV of the surface 11F where the tangential plane is perpendicular to the central axis C is hardly displaced from a position C0F where the receiving surface 11F intersects the central axis C. Accordingly, the balance stem 40 has the stone 10F of the vibration-proof bearing mechanism 1F on the dial side located below the point CaV in the vicinity of the position through which the central axis C passes in the end face 45F of the tenon portion 41F located on the lower side. Is contacted with the partially spherical tenon receiving surface 11F and rotated about the center axis C around the position CaV. The situation is the same even if the tenon receiving surface 11F is displaced along the truncated cone-shaped inner peripheral surface portion 26 of the cave stone / cave stone frame integrated structure 9F.

すなわち、部分球状の凸状湾曲ほぞ受面11F,11Rを備えた耐振軸受機構1F,1Rを具備するてんぷ3を有する機械式時計2では、図4の(a)及び(b)に示したように、てんぷ受5側ないし裏蓋側の受石10Fが少し(例えば1度程度)傾いた状態で押さえばね37Fによって穴石・穴石枠一体構造体9Fに取付けられた状態S1では、図4の(a)に示したように時計2が平姿勢P1を採る場合と、図4の(b)に示したように時計2が裏平姿勢P2を採る場合とでは、厳密にはてんぷ3の状態が多少なりとも異なる状況になるけれども、実際には、裏平姿勢P2を採った場合でも、耐振軸受機構1Fの部分球状の凸状湾曲ほぞ受面11Fがてん真40のほぞ部1Fの端面45Fに当接する部位は、概ね中心軸線C上の位置CaVにある。従って、平姿勢P1及び裏平姿勢P2で、てんぷ3は実際上同様に動作し得、歩度の差異が、図14の(a)及び(b)の場合よりもかなり小さくなる。   That is, in the mechanical timepiece 2 having the balance 3 having the vibration-proof bearing mechanisms 1F and 1R having the partially spherical convex curved tenon receiving surfaces 11F and 11R, as shown in FIGS. 4 (a) and 4 (b). Further, in the state S1 in which the stone holder 10F on the balance holder 5 side or the back cover side is slightly inclined (for example, about 1 degree) and is attached to the stone stone / hole stone frame integrated structure 9F by the holding spring 37F, FIG. Strictly speaking, when the watch 2 takes the flat posture P1 as shown in FIG. 4A and when the watch 2 takes the back flat posture P2 as shown in FIG. Although the state is somewhat different, actually, even when the back flat posture P2 is adopted, the partial spherical convex curved tenon receiving surface 11F of the vibration-proof bearing mechanism 1F is the end surface of the tenon portion 1F of the balance stem 40. The part that abuts on 45F is approximately the position Ca on the central axis C. Located in. Therefore, in the flat posture P1 and the back flat posture P2, the balance with hairspring 3 can actually operate in the same manner, and the difference in the rate is considerably smaller than in the cases of (a) and (b) of FIG.

一方、図5の(a)及び(b)(特に図5の(b))に示したように、裏平姿勢P2において、てん真40の中心軸線Cが多少(例えば、0.2度程度)傾く場合S2、てん真40のほぞ部41Fの端面45Fが、てん真40の中心軸線Cから多少離れた部位Cbにおいてその下側に位置するてんぷ受5側の耐振軸受機構1Fの受石10Fのほぞ受面11Fと当接する。ここで、部位Cbは、受石10Fのほぞ受面11Fの接平面が、傾斜した中心軸線Cを有するてん真40のほぞ部41Fの端面45Fと平行になる部位(一致し得る部位)に相当する。   On the other hand, as shown in FIGS. 5A and 5B (particularly, FIG. 5B), the center axis C of the balance stem 40 is slightly (for example, about 0.2 degrees) in the back flat posture P2. ) When tilted S2, the stone 10F of the anti-vibration bearing mechanism 1F on the side of the balance 5 that the end face 45F of the tenon portion 41F of the balance 40 is positioned below the portion Cb slightly away from the central axis C of the balance 40 The tenon receiving surface 11F abuts. Here, the part Cb corresponds to a part where the tangent plane of the tenon receiving surface 11F of the jewel 10F is parallel to the end face 45F of the tenon portion 41F of the balance stem 40 having the inclined central axis C (part that can coincide). To do.

従って、てん真40の回転中心Cbは、該てん真40の中心軸線Cとは異なり該中心軸線Cの通る部位からΔr(ほぞ部41の半径の数分の1で10μm程度である)離れたところに位置し、てん真40は点Cbを中心に回転することになる。   Accordingly, the rotation center Cb of the balance stem 40 is different from the central axis C of the balance stem 40 by Δr (about 10 μm as a fraction of the radius of the tenon portion 41) from the portion through which the center axis C passes. However, the balance stem 40 rotates around the point Cb.

この状態S2にある場合には、時計2が平姿勢P1を採るときと裏平姿勢P2を採るときとで、てんぷ4の動作が実際上異なり、多少の歩度の差が生じるのを避け難い。但し、裏平姿勢P2を採るときの中心位置Cbの中心Cからのズレはてん真40のほぞ部41の半径の数分の1程度になる点で、てん真40のほぞ部41の半径程度のズレが生じる(図15の(b))従来の時計102と比較して、裏平姿勢P2と平姿勢P1との歩度の差異が大幅に低減され得る。   In this state S2, the operation of the balance 4 is actually different between the timepiece 2 taking the flat posture P1 and the back flat posture P2, and it is difficult to avoid a slight difference in rate. However, the deviation from the center C of the center position Cb when taking the back flat posture P2 is about a fraction of the radius of the tenon portion 41 of the balance stem 40, and is about the radius of the tenon portion 41 of the balance stem 40. As compared with the conventional watch 102, the difference in the rate between the back flat posture P2 and the flat posture P1 can be greatly reduced.

なお、てん真40の中心軸線Cが傾くのは、種々の原因がある。すなわち、てん真40の中心軸線Cが傾く現象が生じる場合には、時計2の姿勢にかかわらず、従来の時計102と比較して、歩度に大きな差異が生じる虞れを低減させ得ることになる。そのような例としては、例えば、てんわ50の重量のバランスが崩れていててんわ50が傾く場合がある。また、厳密に言えば、例えば、ひげぜんまい55の渦巻きが巻かれたりほどけたりする際にひげぜんまい55からひげ玉43を介しててん真40にかかる力の故に、てん真40の中心軸線Cの軸が多少なりとも傾くこともあり得る。そのような場合であっても、この耐振軸受機構1,1をてん真40の両端に備えたてんぷ3では、従来のてんぷ102ようにほぞ受面111が平面である場合と異なってほぞ受面11が部分球面であるので、てん真40のほぞ部41の端面45の側縁ではなくて該端面45のうち中心軸線Cの近傍の部位がほぞ受面11の対応する傾斜の接平面の部位と当接し得る。従って、てん真40の回転の中心が中心軸線Cからずれる程度が最低限に抑えられ得る。   The central axis C of the balance stem 40 is inclined for various causes. That is, when a phenomenon occurs in which the central axis C of the balance stem 40 is tilted, it is possible to reduce the possibility of a large difference in rate compared to the conventional timepiece 102 regardless of the position of the timepiece 2. . As such an example, for example, there is a case where the balance of the weight of the balance 50 is broken and the balance 50 is inclined. Strictly speaking, for example, when the spiral of the hairspring 55 is wound or unwound, the force applied to the hairspring 40 from the hairspring 55 through the hairball 43 is caused by the central axis C of the spring 40. The axis can be tilted somewhat. Even in such a case, in the balance 3 provided with the vibration-proof bearing mechanisms 1 and 1 at both ends of the balance stem 40, unlike the conventional balance 102, the tenon receiving surface 111 is a flat tenon receiving surface. Since 11 is a partial spherical surface, a portion in the vicinity of the center axis C of the end surface 45 is not a side edge of the end surface 45 of the tenon portion 41 of the balance 40, but a portion of the tenon receiving surface 11 corresponding to the inclined tangential plane Can abut. Therefore, the extent to which the center of rotation of the balance stem 40 deviates from the central axis C can be minimized.

また、図6の(a)及び(b)に示したように、てんぷ受5側のほぞ41Fの端面45Fがてん真40の中心軸線Cに対して傾斜している状態S3では、裏平姿勢P2において、傾斜した端面45Fは、てんぷ受5側の耐振軸受機構1Fの受石10Fのほぞ受面11Fの傾斜が端面45Fの傾斜に一致する部位Cdで、受石10Fのほぞ受面11Fと当接する。この部位Cdは、図5で示した部位Cbと概ね一致する部位である。   Further, as shown in FIGS. 6A and 6B, in the state S3 where the end face 45F of the tenon 41F on the balance 5 side is inclined with respect to the central axis C of the balance 40, the back flat posture In P2, the inclined end surface 45F is a portion Cd where the inclination of the tenon receiving surface 11F of the stone receiving surface 10F of the vibration-proof bearing mechanism 1F on the balance receiving 5 side coincides with the inclination of the end surface 45F, and the tenon receiving surface 11F of the receiving stone 10F. Abut. This portion Cd is a portion that substantially matches the portion Cb shown in FIG.

すなわち、この状態S3にある場合にも、時計02が平姿勢P1を採るときと裏平姿勢P2を採るときとで、てんぷ103の動作が異なるけれども、その差異は、図5の(a)及び(b)の場合と同様であって、図16の(a)及び(b)に示した従来の時計102と比較して、裏平姿勢P2と平姿勢P1との歩度の差異が大幅に低減され得る。   That is, even in this state S3, the operation of the balance with hairspring 103 is different between the time when the watch 02 takes the flat posture P1 and the time when the watch 02 takes the back flat posture P2. This is the same as in the case of (b), and the rate difference between the back flat posture P2 and the flat posture P1 is significantly reduced as compared with the conventional timepiece 102 shown in FIGS. 16 (a) and 16 (b). Can be done.

従って、てん真40の回転中心Cdは、該てん真40の中心軸線Cとは異なり該中心軸線Cから概ねΔr(ほぞ部41の半径の数分の1で10μm程度である)離れた点Cdを中心に回転することになる。   Therefore, the rotation center Cd of the balance stem 40 is different from the center axis C of the balance stem 40, and is approximately a point Cd away from the center axis C by Δr (a fraction of the radius of the tenon portion 41 is about 10 μm). Will rotate around.

なお、以上の如く、時計2では、受石10の受面11が部分球状に形成されているので、種々の傾き等があっても、回転中心がてん真40の中心Cからズレるズレ量が小さくなるから、平姿勢P1や裏平姿勢P2等の姿勢による時計2の歩度の変動が最低限に抑えられ得る。   As described above, in the timepiece 2, since the receiving surface 11 of the stone 10 is formed in a partial spherical shape, even if there are various inclinations or the like, the amount of deviation in which the center of rotation deviates from the center C of the balance 40 is large. Therefore, the fluctuation in the rate of the timepiece 2 due to the postures such as the flat posture P1 and the back flat posture P2 can be minimized.

また、この時計2では、部分球状に形成されるのは、てん真40のほぞ部41F,41Rの端面45F,45Rではなくて受石10のほぞ受面11F,11Rであってその部分球面の径が大きいから、てん真40の長さその他の量が大きく変動する虞れも少ない。   Further, in this timepiece 2, the part-spherical shape is not the end faces 45F, 45R of the tenon portions 41F, 41R of the balance stem 40 but the tenon-receiving faces 11F, 11R of the stone 10 and the partial spherical surface Since the diameter is large, the length of the balance 40 and other amounts are less likely to vary greatly.

受石が部分球状のほぞ受面を備える代わりに、図7の(a)及び(b)並びに図8に示したように、受石10Aが球体13からなっていてもよい。図7の(a)及び(b)並びに図8に示した耐振軸受構造体1Aを備えたてんぷ3Aにおいて、図1から図3に示した耐振軸受構造体1を備えたてんぷ3の要素と同一の要素には同一の符号が付され、対応するけれども異なるところのある要素には最後に添字Aが付されている。なお、裏蓋側ないしてんぷ受側であることを示す添字「F」及び文字板側であることを示す添字「R」がある場合には、該添字F,Rの前に添字Aが付される。   Instead of the stone receiving surface having a partially spherical tenon receiving surface, the stone receiving stone 10 </ b> A may be composed of a spherical body 13 as shown in FIGS. 7A and 7B and FIG. 8. The balance 3A provided with the vibration-proof bearing structure 1A shown in FIGS. 7A and 7B and FIG. 8 is the same as the elements of the balance 3 provided with the vibration-proof bearing structure 1 shown in FIGS. The same reference numerals are given to the elements of, and the subscript A is attached to the elements that correspond but are different. In addition, when there is a subscript “F” indicating that it is on the back cover side or the hair-sheet receiving side and a subscript “R” indicating that it is on the dial side, the subscript A is added before the subscripts F and R. The

てんぷ3Aの耐振軸受構造体1Aでは、受石10Aが球体13からなるので、受石10Aの寸法精度が高められ易い。また、てんぷ3Aの耐振軸受構造体1Aでは、受石10Aが球体13からなるが故に時計2Aの厚さ方向のサイズが大きくなるので、耐振座体30Aは、耐振座体30の大径筒状部32よりも大きい軸方向長さを備えた大径筒状部32Aを有する点を除いて、耐振座体30と実際上同様に構成されている。   In the vibration-proof bearing structure 1A of the balance with hairspring 3A, the jewel 10A is composed of the spheres 13, so that the dimensional accuracy of the jewel 10A is easily increased. Further, in the vibration-proof bearing structure 1A of the balance with hairspring 3A, the size of the timepiece 2A in the thickness direction is large because the stone 10A is composed of the spherical body 13, so the vibration-proof seat 30A is a large-diameter cylindrical shape of the vibration-proof seat 30. Except for having a large-diameter cylindrical portion 32A having an axial length larger than that of the portion 32, it is configured in substantially the same manner as the vibration-proof seat body 30.

また、耐振軸受構造体1Aでは、受石10Aが球体13からなり、時計2Aの厚さ方向のサイズが大きくなるので、穴石・穴石枠構造体9Aは、穴石・穴石枠構造体9の大径側円筒状内面部27及び円錐台状内周面部26よりも深い(軸方向Aに沿ったサイズの大きい)大径側円筒状内面部27A及び円錐台状内周面部26Aを有する点、並びに受石10Aが球体13からなるが故に径方向サイズが小さくなって内径がより小さくなり穴石・穴石枠構造体9Aの壁部が厚い点を除いて、穴石・穴石枠構造体9と実際上同様に構成されている。   Further, in the vibration-proof bearing structure 1A, the stone 10A is composed of the sphere 13 and the size of the timepiece 2A in the thickness direction is increased. Therefore, the cobblestone / cavestone frame structure 9A is a cobblestone / cavestone frame structure. 9 has a large-diameter cylindrical inner surface portion 27A and a frustoconical inner peripheral surface portion 26A that are deeper (larger in size along the axial direction A) than the large-diameter cylindrical inner surface portion 27 and the frustoconical inner peripheral surface portion 26. Except for the point and the stone 10A consisting of the spheres 13, the radial size is reduced, the inner diameter is smaller, and the wall of the cobblestone / cavestone frame structure 9A is thicker. The structure is substantially the same as that of the structure 9.

なお、押さえばね37Aは外周側係合部38a,38a,38aで耐振座体30Aの係合部36に係合し、内周側のU字状係合部39,39,39で球体13の形態の受石10Aのうちほぞ受面11Aとは直径方向の反対側に位置する領域12Aを押圧する。   The holding spring 37A is engaged with the engaging portion 36 of the vibration-proof seat 30A at the outer peripheral side engaging portions 38a, 38a, 38a, and the spherical body 13 is connected at the inner U-shaped engaging portions 39, 39, 39. The region 12A located on the opposite side of the diametrical direction from the tenon receiving surface 11A of the shaped stone 10A is pressed.

以上の如く構成された耐振軸受構造体1Aでは、図8に示したように、てんぷ3の
てん真40のほぞ部41が穴石17Aのほぞ孔18に嵌合されてジャーナル軸受として働く該ほぞ孔18の周面で支持され、ほぞ部41の端面45が球体13の形態でスラスト軸受けとして働く受石10Aのほぞ受面部11Aに当接して該ほぞ受面部11Aで支持される。
In the vibration-proof bearing structure 1A configured as described above, as shown in FIG. 8, the tenon portion 41 of the balance 40 of the balance 3 is fitted into the tenon hole 18 of the hole 17A and serves as a journal bearing. The end surface 45 of the tenon portion 41 is supported by the peripheral surface of the hole 18 and is in contact with the tenon receiving surface portion 11A of the receiving stone 10A that functions as a thrust bearing in the form of the sphere 13 and is supported by the tenon receiving surface portion 11A.

図9は、図7の耐振軸受機構を有する図8のてんぷにおいて種々の条件下での回転中心の位置ズレの程度を示したものであり、図9の(a)はてん真及び受石が所定の状態にある基準の場合を示したものである。この場合、てん真40のほぞ部41がその端面45の位置C0で球体13の形態の受石10Aのほぞ受面11Aに当接する。この位置は、図4のC0Rに対応する位置であって、てん真40の中心軸線C上にある。   FIG. 9 shows the degree of misalignment of the center of rotation under various conditions in the balance with the vibration-proof bearing mechanism of FIG. 7, and FIG. The case of the reference | standard in a predetermined state is shown. In this case, the tenon portion 41 of the balance stem 40 contacts the tenon receiving surface 11A of the stone 10A in the form of the sphere 13 at the position C0 of the end surface 45 thereof. This position corresponds to C0R in FIG. 4 and is on the central axis C of the balance stem 40.

図9の(b)は受石が傾いた状態にある場合を示したもので、球体13の形態の受石10Aが少し(例えば、1度程度)傾くとしても、受石10Aは球体13の環状領域14で穴石・穴石枠構造体9Aの円錐台状内周面部26Aで支持されているので、当該回転によっては、球体13の形態の受石10Aとてん真40のほぞ部41の端面45との当接位置Cfは変わらず、実際上位置C0に保たれる。従って、受石10Aが傾いても、平姿勢P1であっても裏平姿勢P2であってもてんぷ3Aが実際上同様に動作され得るから、姿勢が歩度に与える影響を最低限に抑え得る。   FIG. 9B shows a case where the stone is tilted. Even if the stone 10A in the form of the sphere 13 is slightly inclined (for example, about 1 degree), the stone 10A is Since the annular region 14 is supported by the frustoconical inner peripheral surface portion 26A of the cobblestone / holestone frame structure 9A, depending on the rotation, the stone 10A in the form of the sphere 13 and the tenon portion 41 of the balance stem 40 The contact position Cf with the end face 45 does not change and is actually maintained at the upper position C0. Therefore, even if the stone 10A is tilted, the balance 3A can be operated in the same manner regardless of whether it is in the flat posture P1 or the back flat posture P2, so that the influence of the posture on the rate can be minimized.

図9の(c)はてん真が傾いた状態にある場合を示したもので、てん真40の傾斜に伴いほぞ部41の端面45が傾く。しかしながら、この耐振軸受機構1Aを備えたてんぷ3Aでは、耐振軸受機構1Aの受石10Aが比較的小径の球体13からなるので、当接位置が中心軸線C上の位置C0からわずかにずれるだけで接平面の傾きが大きく変わるから、多少傾斜したてん真40のほぞ部41の端面45と丁度当接する部位が中心軸線Cから僅かに離れたところCgになる。その結果、てん真40の傾きがてんぷ3Aの回転に与える影響が最低限に抑えられ得る。   FIG. 9C shows the case where the balance stem is tilted, and the end face 45 of the tenon portion 41 is tilted as the balance 40 is tilted. However, in the balance 3A provided with the vibration-resistant bearing mechanism 1A, the stone 10A of the vibration-resistant bearing mechanism 1A is composed of the sphere 13 having a relatively small diameter, so that the contact position is slightly shifted from the position C0 on the central axis C. Since the inclination of the tangential plane changes greatly, the portion that just contacts the end face 45 of the tenon portion 41 of the slightly bent stem 40 becomes Cg when slightly separated from the central axis C. As a result, the influence of the inclination of the balance 40 on the rotation of the balance 3A can be minimized.

以上においては、従来の時計部品との関連がわかり易いように、従来の穴石と穴石枠とが一体成形されたもの9,9Aを穴石・穴石枠一体構造体と称したけれども、その代わりに、以上のすべてにおいて、「穴石・穴石枠一体構造体」と称する代わりに「穴石構造体」と称してもよい。その場合、「穴石構造体」とは、従来の穴石として機能するのみでなく従来の穴石枠としても機能し得るものを指すことになる。   In the above, in order to make it easy to understand the relation with the conventional watch parts, the conventional stone 9 and the stone stone frame 9 and 9A integrally formed are called stone stone and stone stone frame integrated structure. Instead, in all of the above, it may be referred to as a “hole stone structure” instead of a “hole stone / hole stone frame integrated structure”. In that case, the “hole stone structure” refers to one that can function not only as a conventional hole stone but also as a conventional hole stone frame.

1,1A 耐振軸受機構
2,2A 機械式時計
3,3A てんぷ
4 調速脱進機
5 てんぷ受
6 アンクル
7 がんぎ車
8 地板
9,9A 穴石・穴石枠一体構造体
10,10F,10R,10A 耐振受石
11 部分球状端面(ほぞ受面)
11a 側部分
11F,11R,11A ほぞ受面
12 端面
12A 領域
13 球体
14 球状面部
17,17F,17R,17A 穴石部
17a 外周面
18 ほぞ孔
19 案内用凹部
20,20F,20R,20A 穴石枠部
21 中空円錐台状体
21a 領域(穴石部形成領域)
21b 領域(穴石枠部形成領域)
22 円錐台状外周面部
22a,22b 傾斜面部
23 小径側端面部
24 大径側円筒状部
25 大径側端面部
26 円錐台状内周面部
27 大径側円筒状内面部
30,30F,30R,30A 耐振座体
31 小径筒状部
32,32A 大径筒状部
33 端部フランジ状部
33a 端部軸部受容穴
34 接続フランジ状部
35a,35b 傾斜面部
36 径方向内向き係合部
37,37F,37R,37A 耐振押さえばね
38 大径部
38a 係合部
39 U字状係合部
40 てん真
41,41F,41R ほぞ部
42,42F,42R 端部軸部
43 ひげ玉
44 振り石
45,45F,45R 端面
50 てんわ
55 ひげぜんまい
61 ハコ先
62 がんぎ歯
64 かな部
70 四番車
A,A1,A2 方向
C てん真の中心軸線
C0R 接触位置
CaV 受石が傾いた際にほぞ受面が中心軸線に対して垂直になる部位
Cb てん真のほぞ部の端面が耐振軸受機構の受石のほぞ受面と当接する部位(回転中心)
Cd ほぞ部の傾斜した端面が受石のほぞ受面に当接する部位
Cf,Cg 球体の形態の受石がほぞ部の端面と当接する部位
P1 平姿勢
P2 裏平姿勢
S1 てんぷ受側の受石が傾いて取付けられた状態
S2 てん真の中心軸線が傾いた状態
S3 ほぞの端面がてん真の中心軸線に対して傾斜している状態
Δr 中心軸線から回転中心となる部位までの距離
DESCRIPTION OF SYMBOLS 1,1A Anti-vibration bearing mechanism 2,2A Mechanical timepiece 3,3A Balance 4 Control escapement 5 Balance holder 6 Ankle 7 Spur wheel 8 Ground plate 9, 9A Core stone / hole stone frame integrated structure 10, 10F, 10R, 10A Anti-vibration stone 11 Partially spherical end face (tenon receiving face)
11a side portion 11F, 11R, 11A tenon receiving surface 12 end surface 12A region 13 sphere 14 spherical surface portion 17, 17F, 17R, 17A hole stone portion 17a outer peripheral surface 18 tenon hole 19 guiding recess 20, 20F, 20R, 20A hole stone frame portion 21 hollow frustum 21a area (hole formation part)
21b area (hole stone frame forming area)
22 frustoconical outer peripheral surface portions 22a, 22b inclined surface portion 23 small diameter side end surface portion 24 large diameter side cylindrical portion 25 large diameter side end surface portion 26 frustoconical inner peripheral surface portion 27 large diameter side cylindrical inner surface portions 30, 30F, 30R, 30A Vibration-resistant seat body 31 Small-diameter cylindrical portion 32, 32A Large-diameter cylindrical portion 33 End flange-shaped portion 33a End shaft receiving hole 34 Connection flange-shaped portion 35a, 35b Inclined surface portion 36 Radially inward engagement portion 37, 37F, 37R, 37A Anti-vibration holding spring 38 Large-diameter portion 38a Engaging portion 39 U-shaped engaging portion 40 Scale 41, 41F, 41R Tenon portion 42, 42F, 42R End shaft portion 43 Whistle ball 44 Rolling stone 45, 45F, 45R End face 50 Spring 55 Hairspring 61 Scale tip 62 Spigot 64 Pinion portion 70 Second wheel A, A1, A2 Direction C Center axis C0R of the true balance Contact position CaV When the stone is tilted Site faces the end face of the true tenon heaven sites Cb become perpendicular to the central axis is brought into contact with tenon receiving surface of the jewel of the vibration bearing mechanism (rotation center)
Cd Site Cf, Cg where the inclined end surface of the tenon portion contacts the tenon receiving surface of the stone receiving portion C1 Region where the stone receiving stone in the form of a sphere contacts the end surface of the tenon portion P1 Flat posture P2 Back flat posture S1 Stone receiving stone on the balance receiving side Inclined and attached state S2 State in which the central axis of the scale is inclined S3 State in which the end face of the tenon is inclined with respect to the central axis of the truth Δr Distance from the central axis to the portion serving as the center of rotation

Claims (10)

スラスト軸受として働く受石と、ジャーナル軸受として働く穴石部及び該穴石部と一体の穴石枠部を備えた穴石・穴石枠一体構造体と、該穴石・穴石枠一体構造体を支えると共に大径の開口端側に係合部を備える耐振座体と、外周側において耐振座体の係合部で支持され内周側において受石を穴石・穴石枠一体構造体に弾性的に押付けて保持する押さえばねとを有するてんぷの耐振軸受機構であって、
受石のうち耐振軸受機構により支えられる軸の端面に対面し該軸の端面に当接する表面が外に突出するように湾曲した凸面からなるてんぷの耐振軸受機構。
A cobblestone / holestone frame integrated structure including a cobblestone that functions as a thrust bearing, a cobblestone portion that functions as a journal bearing, and a cobblestone frame portion that is integral with the cobblestone portion, and the cobblestone / holestone frame integrated structure A vibration-resistant seat body that has an engagement portion on the opening end side of a large diameter and supports, and is supported by the engagement portion of the vibration-proof seat body on the outer peripheral side and elastically receives the stone on the inner peripheral side to the cave stone / hole stone frame integrated structure A vibration-proof bearing mechanism of a balance with a holding spring that is pressed and held
An anti-vibration bearing mechanism for a balance with a convex surface that is curved so that a surface that faces the end face of the shaft supported by the anti-vibration bearing mechanism and contacts the end face of the shaft protrudes outward.
穴石・穴石枠一体構造体が広義のセラミック製で、耐振座体が金属製である請求項1に記載の耐振軸受機構。   2. The vibration-proof bearing mechanism according to claim 1, wherein the hole stone / hole stone frame integrated structure is made of ceramic in a broad sense, and the vibration-proof seat is made of metal. 受石の凸面が球面の一部からなる請求項1又は2に記載のてんぷの耐振軸受機構。   The vibration-proof bearing mechanism for a balance according to claim 1 or 2, wherein the convex surface of the stone is made of a part of a spherical surface. 受石が凸レンズ様の形状を有し、
穴石・穴石枠一体構造体が円錐台状部を備え、該円錐台状部の大径端部のところで受石を支えるように構成され、
押さえばねが、外周側において耐振座体の係合部で支持され内周側において穴石・穴石枠一体構造体の大径端部のところに受石を弾性的に押付けて保持するように構成されている
請求項1から3までのいずれか一つの項に記載のてんぷの耐振軸受機構。
The stone has a convex lens-like shape,
The hole stone / hole stone frame integrated structure has a truncated cone-shaped portion, and is configured to support the stone at the large-diameter end of the truncated cone-shaped portion,
The holding spring is supported by the engaging portion of the vibration-proof seat on the outer peripheral side, and the holding stone is elastically pressed and held at the large-diameter end of the hole stone / hole stone frame integrated structure on the inner peripheral side. The vibration-proof bearing mechanism for a balance according to any one of claims 1 to 3, which is configured.
受石が球体からなる請求項1から3までのいずれか一つの項に記載のてんぷの耐振軸受機構。   The vibration-proof bearing mechanism for a balance according to any one of claims 1 to 3, wherein the stone is made of a sphere. 球状の受石が穴石・穴石枠一体構造体の穴石部に当接可能に穴石・穴石枠一体構造体の穴石枠部の円筒状領域内に配置され、
押さえばねが、外周側において耐振座体の係合部で支持され内周側において穴石・穴石枠一体構造体の穴石枠部の円筒状領域内で穴石部の対向端面に受石を押付けることにより、受石を弾性的に保持するように構成されている
請求項5に記載のてんぷの耐振軸受機構。
A spherical stone is placed in the cylindrical area of the cobblestone frame part of the cobblestone / cavestone frame integrated structure so that it can come into contact with the cobblestone part of the cobblestone / cavestone frame integrated structure,
A holding spring is supported by the engaging portion of the vibration-proof seat on the outer peripheral side, and a stone is received on the opposite end face of the cobblestone portion in the cylindrical area of the cobblestone frame portion of the cobblestone / holestone frame integrated structure on the inner peripheral side. The balance with vibration resistance of the balance according to claim 5, wherein the balance is elastically held by pressing.
穴石・穴石枠一体構造体の穴石枠部のうち受石のほぞ受面を支える部位が円錐台状である請求項1から6までのいずれか一つの項に記載のてんぷの耐振軸受機構。   The vibration-proof bearing for a balance according to any one of claims 1 to 6, wherein a portion that supports the tenon receiving surface of the stone is a truncated cone shape in the stone stone frame portion of the stone stone / hole stone frame integrated structure. mechanism. 請求項1から7までのいずれか一つの項に記載の耐振軸受機構を有するてんぷ。   A balance with the vibration-proof bearing mechanism according to any one of claims 1 to 7. 耐振軸受機構により支えられる軸がてん真からなり、てん真の両端部にあり該てん真の本体部よりも小径のほぞ部の端面が実際上平面状である請求項7に記載のてんぷ。   8. The balance according to claim 7, wherein the shaft supported by the vibration-proof bearing mechanism is made of a balance stem, and the end surface of the tenon portion having a diameter smaller than that of the main body portion of the balance scale is actually flat. 請求項1から7までのいずれか一つの項に記載の耐振軸受機構又は請求項8若しくは9に記載のてんぷを有する時計。   A timepiece having the vibration-proof bearing mechanism according to any one of claims 1 to 7 or the balance with the balance according to claim 8 or 9.
JP2011226910A 2011-10-14 2011-10-14 Antishock bearing mechanism of balance, balance provided with the antishock mechanism, and watch provided with the same Pending JP2013088179A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011226910A JP2013088179A (en) 2011-10-14 2011-10-14 Antishock bearing mechanism of balance, balance provided with the antishock mechanism, and watch provided with the same
CH19142012A CH705583A2 (en) 2011-10-14 2012-10-10 Damping rod receiving mechanism i.e. shock absorber bearing, for hairspring balance of timepiece, has stone cons pivot whose tenon receiving surface is opposite to end surface of rod supported by mechanism and in contact with end surface
CN 201210389965 CN103048912A (en) 2011-10-14 2012-10-15 Shock resistant bearing mechanism of hair spring balance wheel and hair spring balance wheel and clock with the mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226910A JP2013088179A (en) 2011-10-14 2011-10-14 Antishock bearing mechanism of balance, balance provided with the antishock mechanism, and watch provided with the same

Publications (1)

Publication Number Publication Date
JP2013088179A true JP2013088179A (en) 2013-05-13

Family

ID=48051924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226910A Pending JP2013088179A (en) 2011-10-14 2011-10-14 Antishock bearing mechanism of balance, balance provided with the antishock mechanism, and watch provided with the same

Country Status (3)

Country Link
JP (1) JP2013088179A (en)
CN (1) CN103048912A (en)
CH (1) CH705583A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH708280A2 (en) * 2013-07-10 2015-01-15 Eta Sa Manufacture Horlogère Suisse micrometer mobile watchmaker frolic setting.
JP2017058248A (en) * 2015-09-16 2017-03-23 セイコーインスツル株式会社 Pressing member, antishock bearing, movement, and timepiece
EP3671368B1 (en) 2018-12-20 2022-11-23 The Swatch Group Research and Development Ltd Bearing, in particular shock absorber device, and rotating part of a clock movement
EP3916489A1 (en) 2020-05-29 2021-12-01 Rolex Sa Shock absorber spring, bearing body and bearing for timepiece

Also Published As

Publication number Publication date
CN103048912A (en) 2013-04-17
CH705583A2 (en) 2013-04-15

Similar Documents

Publication Publication Date Title
US8702301B2 (en) Timepiece bearing, movement, and portable timepiece
US7794137B2 (en) Tourbillon for timepiece
US8439555B2 (en) Tourbillon without the weight of the balance
JP2013088179A (en) Antishock bearing mechanism of balance, balance provided with the antishock mechanism, and watch provided with the same
JP5975618B2 (en) Vibration-proof bearing mechanism for balance, balance with balance and watch with the balance
CN101114156B (en) Portable timepiece
CN106896698B (en) Escapement fork, speed-regulating escapement, tourbillon, movement, and timepiece
US9684283B2 (en) Pivot for timepiece mechanism
EP3193216B1 (en) Timepiece mechanism with a tourbillon
US9557712B2 (en) Annular oscillating weight and timepiece comprising such an oscillating weight
JP2015072254A (en) Constant force device, movement, and mechanical timepiece
KR101403280B1 (en) Peripherally guided horological wheel unit
JP5941119B2 (en) Watch ankle lever with optimized squares
JP6537177B2 (en) Watch gears, ankles, balances, watch movements, and mechanical watches
CN104049519A (en) Swing wheels, clock movement and clock
JP2019215259A (en) Barrel assembly, movement and watch
JP5435635B2 (en) Watch bearing unit, movement and portable watch
CN106990700B (en) Tourbillon, movement and timepiece
EP3792701A1 (en) Train wheel setting mechanism, timepiece movement, and timepiece
JP2023532440A (en) clock oscillator with flexible pivot
JP6444059B2 (en) Balance, governor, movement and watch
JP2010145160A (en) Day wheel device and analogue watch having the same
JP5688762B2 (en) Watch bearing unit, movement and portable watch
JP7022183B2 (en) Movable component for timekeepers with elements maintained by friction
JP3230221U (en) Support structure for balance with a mechanical watch

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140117