JP2013087332A - Manufacturing method of thin steel sheet of high rigidity and excellent in balance of strength and workability - Google Patents

Manufacturing method of thin steel sheet of high rigidity and excellent in balance of strength and workability Download PDF

Info

Publication number
JP2013087332A
JP2013087332A JP2011229227A JP2011229227A JP2013087332A JP 2013087332 A JP2013087332 A JP 2013087332A JP 2011229227 A JP2011229227 A JP 2011229227A JP 2011229227 A JP2011229227 A JP 2011229227A JP 2013087332 A JP2013087332 A JP 2013087332A
Authority
JP
Japan
Prior art keywords
less
modulus
steel sheet
young
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011229227A
Other languages
Japanese (ja)
Other versions
JP5817425B2 (en
Inventor
Kunihiro Senda
邦浩 千田
Kenji Kawamura
健二 河村
Takeshi Yokota
毅 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011229227A priority Critical patent/JP5817425B2/en
Publication of JP2013087332A publication Critical patent/JP2013087332A/en
Application granted granted Critical
Publication of JP5817425B2 publication Critical patent/JP5817425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin steel sheet which has a sheet thickness of 2.0 mm or less and is excellent in balance of strength and workability, and has a high rigidity such as Young's modulus of 230 GPa or more in a direction orthogonal to a rolling direction and Young's modulus of 215 GPa or more in a 45° direction to the rolling direction.SOLUTION: A steel slab has a composition containing, in mass, C:0.005-0.04%, Si: 0.01-1.5%, Mn: 1.0-3.5%, Ti: 0.02-0.20%, Nb: 0.01-0.20%, P: 0.1% or less, S: 0.01% or less, Al: 1.0% or less and N: 0.01% or less, and Cdefined by a following formula (1): C=[%C]-(12/48)[[%Ti]-(48/14)[%N]-(48/32)[%S]]-(12/93)[%Nb] satisfying a range of -0.03 to -0.0020, and the remainder of Fe and inevitable impurities. The steel slab is hot-rolled and wound up, then cold-rolled at a rolling reduction of 500% or more and subjected to continuous annealing for recrystallization.

Description

本発明は、主として自動車のサイドシルやセンターピラー、サイドフレーム、クロスメンバーなど、剛性が要求される部品を製造するのに適した剛性が高く、かつ強度と加工性のバランスに優れた薄鋼板の製造方法に関するものである。   The present invention mainly produces thin steel sheets with high rigidity suitable for manufacturing parts that require rigidity, such as automobile side sills, center pillars, side frames, and cross members, and excellent balance between strength and workability. It is about the method.

近年、地球環境問題に対する関心の高まりを受けて、自動車でも排ガス規制が行われるなど、自動車における車体の軽量化は極めて重要な課題となっている。車体の軽量化には、鋼板の高強度化により板厚を減少させること(薄肉化)が有効な方法であるが、最近では鋼板の高強度化が顕著に進んだ結果、板厚:2.0 mmを下回るような薄鋼板の使用が増加してきている。   In recent years, in response to growing interest in global environmental problems, the reduction of vehicle body weight in automobiles has become an extremely important issue, for example, exhaust gas regulations have been implemented in automobiles. Reducing the plate thickness by increasing the strength of the steel plate (thinning) is an effective method for reducing the weight of the car body. However, as a result of the remarkable progress in increasing the strength of the steel plate, the plate thickness: 2.0 mm The use of thin steel sheets that are below the limit is increasing.

しかし、さらなる高強度化によって軽量化を図るためには、薄肉化による部品剛性の低下を同時に抑制することが不可欠になってきている。剛性には、車体構造が最も大きな影響を与えるので、構造的に剛性の低下を抑制することが効果的であるが、基本的な構造を変更するのは容易なことではない。また、部材の断面などの形状を変えることも有効ではあるが、設計上の問題やプレス上の問題がある。さらに、スポット溶接がなされている部品に対しては、溶接点を増加するか、あるいはレーザ溶接に切り替えるなどの溶接条件を変更することが有効とされているが、溶接条件の変更にはコストの増加が避けられない。   However, in order to reduce the weight by further increasing the strength, it has become indispensable to simultaneously suppress the reduction in component rigidity due to the thinning. Since the body structure has the greatest influence on the rigidity, it is effective to structurally suppress the decrease in rigidity, but it is not easy to change the basic structure. Although it is also effective to change the shape of the cross section of the member, there are design problems and pressing problems. Furthermore, it is effective to change the welding conditions such as increasing the number of welding points or switching to laser welding for parts that have been spot welded. An increase is inevitable.

この点、部材に使用する鋼板そのものの剛性を高めることができれば、部材形状や溶接条件を変更することなく、部材の剛性を高めることができる可能となる。特に、自動車のコラム状の構造部材に対しては、自動車の走行中に曲げ荷重がかかることから、曲げ剛性を高めることが必要であり、それには鋼板のヤング率を高めることが有効である。   In this regard, if the rigidity of the steel plate itself used for the member can be increased, the rigidity of the member can be increased without changing the member shape and welding conditions. In particular, for columnar structural members of automobiles, a bending load is applied while the automobile is running, so it is necessary to increase the bending rigidity. For this purpose, it is effective to increase the Young's modulus of the steel sheet.

ヤング率は、集合組織に強く支配され、体心立方格子である鋼の場合は、原子の稠密方向である<111>方向が高く、逆に原子密度の小さい<100>方向が低いことが知られている。結晶方位に異方性のない通常の鉄のヤング率は、およそ210GPa程度であることが知られているが、結晶方位に異方性を持たせ、特定方向の原子密度を高めることができれば、その方向のヤング率を高めることが可能となる。
しかし、自動車部品の曲げ剛性を考えた場合には、単純な曲げだけでなくねじり変形に対しても高い剛性が必要であり、このためには一方向だけでなく、特定方向から45°ずれた方向のヤング率も併せて高めるのがよい。
The Young's modulus is strongly governed by the texture, and in the case of steel with a body-centered cubic lattice, the <111> direction, which is the dense direction of atoms, is high, while the <100> direction, where the atomic density is low, is low. It has been. The Young's modulus of normal iron with no crystal orientation anisotropy is known to be about 210 GPa, but if the crystal orientation has anisotropy and the atomic density in a specific direction can be increased, It is possible to increase the Young's modulus in that direction.
However, when considering the bending rigidity of automobile parts, high rigidity is required not only for simple bending but also for torsional deformation. For this purpose, not only in one direction but also 45 ° from a specific direction. The Young's modulus in the direction should also be increased.

鋼板のヤング率に関しては、これまで、集合組織を制御することで特定方向のみのヤング率を高めることが種々検討されてきている。
例えば、特許文献1には、NbまたはTiを添加した極低炭素鋼を用い、熱間圧延時にAr3変態点〜(Ar3変態点+150℃)での圧下率を85%以上とし、未再結晶オーステナイトからのフェライト変態を促進させることで、熱延板段階で{311}<011>方位および{332}<113>方位のフェライトを発達させ、その後の冷間圧延、再結晶焼鈍により{211}<011>方位を発達させることによって、圧延方向に対して直角方向のヤング率を高める技術が開示されている。
Regarding the Young's modulus of a steel sheet, various studies have been made so far to increase the Young's modulus only in a specific direction by controlling the texture.
For example, Patent Document 1 uses an ultra-low carbon steel added with Nb or Ti, has a reduction rate of 85% or more from the Ar 3 transformation point to (Ar 3 transformation point + 150 ° C.) during hot rolling, By promoting the ferrite transformation from crystalline austenite, {311} <011> and {332} <113> oriented ferrite is developed in the hot-rolled sheet stage, and then {211} by cold rolling and recrystallization annealing. } A technique for increasing the Young's modulus in the direction perpendicular to the rolling direction by developing the <011> orientation is disclosed.

特許文献2には、Nbが添加されたC量が0.05質量%以下の低炭素鋼を、950℃以下の仕上圧延開始温度、(Ar3変態点−50℃)〜(Ar3変態点+100℃)の仕上圧延終了温度で熱間圧延し、オーステナイトの再結晶を抑制することで、ヤング率を低下させる{100}の発達を抑制することによって、圧延方向に対して直角方向のヤング率を高めた熱延鋼板の製造方法が開示されている。 In Patent Document 2, a low carbon steel having a C content of 0.05% by mass or less to which Nb is added is applied to a finish rolling start temperature of 950 ° C. or less, (Ar 3 transformation point−50 ° C.) to (Ar 3 transformation point + 100 ° C.). ) By hot rolling at the finish rolling finish temperature and suppressing the recrystallization of austenite, thereby increasing the Young's modulus perpendicular to the rolling direction by suppressing the development of {100}, which lowers the Young's modulus. A method for manufacturing a hot-rolled steel sheet is disclosed.

特許文献3には、SiとAlを添加してAr3変態点を高めたC量が0.05質量%以下の低炭素鋼を、Ar3変態点以下での圧下率を60%以上として熱間圧延し、{211}<110>を発達させることで、圧延方向に対して直角方向のヤング率を高めた熱延鋼板の製造方法が開示されている。 Patent Document 3, hot rolling the C content with enhanced Ar 3 transformation point by adding Si and Al 0.05 wt% or less of low-carbon steel, the rolling reduction below Ar 3 transformation point is 60% or more And the manufacturing method of the hot-rolled steel plate which raised the Young's modulus of the direction orthogonal to a rolling direction by developing {211} <110> is disclosed.

特許文献4には、固溶(C+N)が10ppm以上の鋼を、200〜500℃の温度域で20%以上の圧下率で圧延し、再結晶焼鈍を行うことで、(110)[001]方位を発達させることによって、圧延方向に対して45〜67.5°方向でのヤング率を高める方法が開示されている。   Patent Document 4 discloses that a steel having a solid solution (C + N) of 10 ppm or more is rolled at a reduction rate of 20% or more in a temperature range of 200 to 500 ° C. and subjected to recrystallization annealing, thereby (110) [001] A method for increasing the Young's modulus in the direction of 45 to 67.5 ° with respect to the rolling direction by developing the orientation is disclosed.

特許文献5には、C量が0.01〜0.1質量%の鋼に、Ti,Mo,Wを添加して、10〜30nmの微細な炭化物を析出させた深絞り性に優れた高張力冷延鋼板が開示されている。   Patent Document 5 discloses a high-tensile cold-rolled steel sheet excellent in deep drawability in which fine carbides of 10 to 30 nm are precipitated by adding Ti, Mo, and W to steel having a C content of 0.01 to 0.1% by mass. Is disclosed.

特許文献6には、炭化物として固定されていないC量を0.05%以下とし、さらに面積率で1%以上のマルテンサイトを有する組織とすることで、引張強度:590MPa以上、ヤング率:230GPa以上を満足する鋼板が、また冷延後の焼鈍における500℃以上での昇温速度を1〜30℃/sとし、冷却過程での500℃までの冷却速度を5℃/s以上とする鋼板の製造方法が提案されている。   In Patent Document 6, the amount of C not fixed as carbide is set to 0.05% or less, and a structure having martensite of 1% or more in area ratio is obtained, whereby tensile strength: 590 MPa or more, Young's modulus: 230 GPa or more. Satisfactory steel sheets are manufactured with a heating rate of 1-30 ° C./s at 500 ° C. or higher in annealing after cold rolling and a cooling rate of 5 ° C./s or higher at 500 ° C. in the cooling process. A method has been proposed.

特許文献7には、固溶Cをフリーとし〔C−(12/47.9)×Ti-1≦0とする。ここでTi-1=Ti−(47.9/14)×N−(47.9/32.1)×S〕、さらに冷間圧延後の焼鈍において820〜900℃に滞留する時間を調節することにより、圧延方向(L方向)のヤング率が230GPa以上で、圧延直角方(C方向)と45°方向(D方向)と圧延方向(L方向)の平均のヤング率が215GPa以上の鋼板が開示されている。 In Patent Document 7, solid solution C is free [C− (12 / 47.9) × Ti −1 ≦ 0. Here, Ti- 1 = Ti- (47.9 / 14) * N- (47.9 / 32.1) * S], and further by adjusting the residence time at 820 to 900 [deg.] C. in the annealing after cold rolling, the rolling direction ( A steel sheet having a Young's modulus (L direction) of 230 GPa or more and an average Young's modulus of 215 GPa or more in the direction perpendicular to rolling (C direction), 45 ° direction (D direction), and rolling direction (L direction) is disclosed.

特許文献8には、鋼中の成分とマルテンサイト相の面積率、特定方位のODF強度およびYS/TS比を規定した引張強度:590MPa以上で加工性に優れた高ヤング率の鋼板とその製造方法が示されている。   Patent Document 8 discloses a steel sheet having a high Young's modulus with excellent workability at a tensile strength of 590 MPa or more, which specifies the area ratio of components and martensite phase in steel, ODF strength in a specific orientation, and YS / TS ratio. The method is shown.

特開平5-255804号公報Japanese Patent Laid-Open No. 5-255804 特開平5-247530号公報Japanese Patent Laid-Open No. 5-27530 特開平9-53118号公報JP-A-9-53118 特開昭58-9932号公報JP 58-9932 A 特開2003-321733号公報JP 2003-321733 A 特開2006-183130号公報JP 2006-183130 A 特開2007-92130号公報Japanese Unexamined Patent Publication No. 2007-92130 特開2008-240125号公報JP 2008-240125 A

しかしながら、前述した従来技術にはそれぞれ、以下に述べるような問題があった。
すなわち、特許文献1の技術では、圧延直角方向(C方向)には230GPaを超える高いヤング率と、35%を超える高い伸びが得られているものの、C方向以外のヤング率は215GPa以下と低く、ねじれ変形を考慮すると実部品の剛性向上効果が小さい。また、実施例によれば得られるTSは400MPa程度以下であり、高強度鋼板として十分とはいえない。
However, each of the above-described conventional techniques has the following problems.
That is, in the technique of Patent Document 1, although a high Young's modulus exceeding 230 GPa and a high elongation exceeding 35% are obtained in the direction perpendicular to the rolling direction (C direction), the Young's modulus other than the C direction is as low as 215 GPa or less. Considering torsional deformation, the effect of improving the rigidity of actual parts is small. Further, according to the examples, the TS obtained is about 400 MPa or less, which is not sufficient as a high-strength steel plate.

特許文献2の技術では、熱延鋼板として高いヤング率を有する材料の製造方法が提案されているが、特許文献1同様、一方向のみのヤング率の改善に過ぎず、また熱延鋼板であるので板厚の薄い製品の製造は困難である。   In the technique of Patent Document 2, a method for producing a material having a high Young's modulus as a hot-rolled steel sheet has been proposed. However, as in Patent Document 1, the Young's modulus is improved only in one direction and is a hot-rolled steel sheet. Therefore, it is difficult to manufacture a thin product.

特許文献3の技術では、フェライト域での圧延を行うため結晶粒が粗大化してしまい、加工性が著しく低下する。   In the technique of Patent Literature 3, since rolling is performed in the ferrite region, the crystal grains are coarsened, and workability is remarkably reduced.

特許文献4の技術では、200〜500℃で温間圧延を行う必要があり、また通常の熱間圧延に比べて圧延荷重が非常に大きくなることから、製造コストが増大するという問題がある。   In the technique of Patent Document 4, it is necessary to perform warm rolling at 200 to 500 ° C., and the rolling load becomes very large as compared with normal hot rolling, so that there is a problem that the manufacturing cost increases.

特許文献5の技術では、C添加量が高いと共に析出物が微細なため、冷間圧延時の圧延負荷が高く、操業上の困難を伴うことの他、高ヤング率化の達成も困難である。   In the technique of Patent Document 5, since the amount of C added is high and the precipitates are fine, the rolling load during cold rolling is high, and it is difficult to achieve high Young's modulus in addition to operational difficulties. .

特許文献6の技術では、高いヤング率が得られるのは圧延直角方向のみであり、また伸びは30%以下と加工性が劣っている。   In the technique of Patent Document 6, a high Young's modulus can be obtained only in the direction perpendicular to the rolling direction, and the elongation is 30% or less and the workability is poor.

特許文献7の技術では、D方向のヤング率が210GPa程度以下と必ずしも高くなく、必ずしも実製品の剛性を改善するには十分でない。また、実際に得られている伸びは30%程度以下で加工性が劣っており、32%以上の伸びを必要とするような加工を要する部品には適用できない。   In the technique of Patent Document 7, the Young's modulus in the D direction is not necessarily as high as about 210 GPa or less, and is not necessarily sufficient to improve the rigidity of the actual product. Also, the elongation actually obtained is about 30% or less and the workability is inferior, and it cannot be applied to parts that require machining that requires an elongation of 32% or more.

特許文献8の技術では、高ヤング率と加工性の両立を追求しようとしているものの、Cを0.05%以上含んでいるため、得られる伸びは高々31%である。しかしながら、近年の自動車用鋼板では、従来にも増して過酷な成型を行う部品が増加しており、このような部品に対しては31%程度以下の伸びでは加工性が十分とは言えない。従って、特許文献8の技術は、多くの部品の製造に対応できない場合が多い。   Although the technique of Patent Document 8 seeks to achieve both high Young's modulus and workability, since it contains 0.05% or more of C, the obtained elongation is at most 31%. However, in recent steel plates for automobiles, the number of parts that are subjected to severer molding is increasing compared to conventional steel sheets. For such parts, an elongation of about 31% or less cannot be said to have sufficient workability. Therefore, the technique of Patent Document 8 often cannot cope with the manufacture of many parts.

本発明は、上記の現状に鑑み開発されたもので、引張強度が390〜590MPa程度の使用頻度の高い強度領域の薄鋼板において、高い加工性を維持しつつ、高ヤング率を得ることができる、剛性が高く、かつ強度と加工性のバランスに優れた薄鋼板の製造方法を提案することを目的とする。
本発明において目標とする引張強度は390〜590MPa程度で、伸びは32%以上、そして圧延直角方向(C方向)のヤング率が225GPa以上、圧延直角方向と45°方向(D方向)のヤング率が210GPa以上で、実部品としての剛性に優れると共に、強度と加工性のバランスにも優れるものである。
The present invention was developed in view of the above-mentioned present situation, and in a thin steel sheet having a high usage frequency with a tensile strength of about 390 to 590 MPa, a high Young's modulus can be obtained while maintaining high workability. An object of the present invention is to propose a method for producing a thin steel plate having high rigidity and excellent balance between strength and workability.
The target tensile strength in the present invention is about 390 to 590 MPa, the elongation is 32% or more, the Young's modulus in the direction perpendicular to the rolling (C direction) is 225 GPa or more, and the Young's modulus in the direction perpendicular to the rolling and 45 ° direction (D direction). Is 210GPa or more, and it has excellent rigidity as an actual part, and also has an excellent balance between strength and workability.

さて、発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、高い加工性を得るためにC量を適正に制御し、鋼中の固溶C量を低減すると同時に、Ti,Nbの添加量を適正に制御することによって、引張強度が390〜590MPa程度、伸びが32%以上の冷延鋼板で、圧延直角方向(C方向)のヤング率が225GPa以上、圧延直角方向と45°方向(D方向)のヤング率が210GPa以上という高いヤング率が得られることを見出した。
また、固溶C量に応じてNb添加量を調整したり、冷間圧延後の焼鈍時における昇温速度を低温域と高温域に分けて制御することにより、さらにヤング率が向上するとの知見を得た。
本発明は、上記の知見に立脚するものである。
As a result of intensive studies to solve the above problems, the inventors have appropriately controlled the C amount in order to obtain high workability, and simultaneously reduced the amount of dissolved C in the steel, while Ti, By appropriately controlling the amount of Nb added, it is a cold-rolled steel sheet having a tensile strength of about 390 to 590 MPa and an elongation of 32% or more. The Young's modulus in the direction perpendicular to the rolling direction (C direction) is 225 GPa or more. It has been found that a high Young's modulus with a Young's modulus in the direction (D direction) of 210 GPa or more can be obtained.
The knowledge that Young's modulus is further improved by adjusting the amount of Nb added according to the amount of solute C, or by controlling the rate of temperature rise during annealing after cold rolling separately for the low temperature region and the high temperature region. Got.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.005〜0.04%、Si:0.01〜1.5%、Mn:1.0〜3.5%、Ti:0.02〜0.20%、Nb:0.01〜0.20%、P:0.1%以下、S:0.01%以下、Al:1.0%以下およびN:0.01%以下を含有し、かつ下記(1)式で規定されるC*が−0.03以上−0.0020以下の範囲を満足し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、熱間圧延し、コイル状に巻き取ったのち、50%以上の圧下率にて冷間圧延を行ってから、連続焼鈍を行うことを特徴とする剛性が高く強度と加工性のバランスに優れた薄鋼板の製造方法。

*=[%C]−(12/48)〔[%Ti]−(48/14)[%N]−(48/32)[%S]〕−(12/93)[%Nb] --- (1)
ここで、[%M]はM元素の含有量(質量%)
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.005 to 0.04%, Si: 0.01 to 1.5%, Mn: 1.0 to 3.5%, Ti: 0.02 to 0.20%, Nb: 0.01 to 0.20%, P: 0.1% or less, S: 0.01% or less , Al: 1.0% or less and N: 0.01% or less, and C * defined by the following formula (1) satisfies the range of −0.03 or more and −0.0020 or less, and the balance is the composition of Fe and inevitable impurities The steel slab is made of hot rolled, coiled, and then cold rolled at a reduction rate of 50% or more, followed by continuous annealing. A method for producing thin steel sheets with an excellent balance of properties.
C * = [% C] − (12/48) [[% Ti] − (48/14) [% N] − (48/32) [% S]] − (12/93) [% Nb] --- (1)
Here, [% M] is the content of M element (mass%)

2.質量%で、C量が0.005〜0.015%で、(1)式で規定されるC*が−0.03以上−0.0030以下であることを特徴とする前記1に記載の薄鋼板の製造方法。 2. 2. The method for producing a thin steel sheet according to 1 above, wherein the carbon content is 0.005 to 0.015% by mass, and C * defined by the formula (1) is −0.03 or more and −0.0030 or less.

3.Nb含有量が下記(2)式の関係を満足する前記1または2に記載の薄鋼板の製造方法。

Nb ≧ Nb* --- (2)
ここで、Nb*=−5.0×C*+0.02 --- (3)
3. 3. The method for producing a thin steel sheet according to 1 or 2 above, wherein the Nb content satisfies the relationship of the following formula (2).
Record
Nb ≧ Nb * --- (2)
Here, Nb * = − 5.0 × C * + 0.02 --- (3)

4.前記鋼板が、前記組成に加えて、さらに質量%で、V:0.01〜1.0%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Ni:0.05〜1.0%、B:0.0005〜0.0030%およびCu:0.1〜2.0%のうちから選んだ一種または二種以上を含有することを特徴とする前記1〜3のいずれかに記載の薄鋼板の製造方法。 4). In addition to the above composition, the steel sheet is further in mass%, V: 0.01 to 1.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, Ni: 0.05 to 1.0%, B: 0.0005 to 0.0030% and Cu: The manufacturing method of the thin steel plate in any one of said 1-3 characterized by containing 1 type, or 2 or more types selected from 0.1-2.0%.

5.前記連続焼鈍における均熱温度を750〜900℃とし、この均熱温度に到る昇温工程において200℃から600℃までの平均昇温速度v1を20℃/s以下、600℃から750℃までの平均昇温速度v2を10℃/s以下とすることを特徴とする前記1〜4のいずれかに記載の薄鋼板の製造方法。 5. The soaking temperature in the continuous annealing is set to 750 to 900 ° C., and the average heating rate v 1 from 200 ° C. to 600 ° C. is 20 ° C./s or less, 600 ° C. to 750 ° C. in the heating process to reach the soaking temperature. method for producing a thin steel sheet according to any one of 1 to 4, characterized in that the average heating rate v 2 to less 10 ° C. / s.

6.200℃から600℃までの平均昇温速度v1と600℃から750℃までの平均昇温速度v2とが、下記(4)式の関係を満足することを特徴とする前記5に記載の薄鋼板の製造方法。

2/v1≦0.35 --- (4)
6. The above 5 characterized in that the average heating rate v 1 from 200 ° C. to 600 ° C. and the average heating rate v 2 from 600 ° C. to 750 ° C. satisfy the relationship of the following equation (4): The manufacturing method of the thin steel plate of description.
Record
v 2 / v 1 ≦ 0.35 --- (4)

本発明によれば、引張強度が390〜590MPa程度で伸びが32%以上という強度と加工性のバランスに優れるだけでなく、圧延直角方向(C方向)のヤング率が230GPa以上、圧延直角方向と45°の方向(D方向)のヤング率が215GPa以上という高い剛性を有する薄鋼板を得ることができる。従って、この鋼板から剛性を必要とする方向を鋼板のC方向として実部品を製造した場合、ねじり変形を含めて剛性に優れた部品を製造することが可能となる。   According to the present invention, the tensile strength is about 390 to 590 MPa, the elongation is not less than 32% and the balance between workability and workability is excellent, and the Young's modulus in the perpendicular direction (C direction) is 230 GPa or more, It is possible to obtain a thin steel sheet having a high rigidity with a Young's modulus in the 45 ° direction (D direction) of 215 GPa or more. Therefore, when an actual part is manufactured from this steel sheet with the direction requiring rigidity as the C direction of the steel sheet, it is possible to manufacture a part having excellent rigidity including torsional deformation.

引張強度が390〜590MPa,伸びが32%以上の鋼板について、C方向とD方向のヤング率の平均値〔(EC+ED)/2〕のC*に対する変化を示した図である。Tensile strength 390~590MPa, the elongation is 32% or more of the steel sheet is a diagram showing a change with respect to C * of the average value of the C direction and D direction Young's modulus [(E C + E D) / 2 ].

以下、本発明を具体的に説明する。
まず、本発明において鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、鋼板の成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. In addition, although the unit of element content in the component composition of the steel sheet is “mass%”, hereinafter, it is simply indicated by “%” unless otherwise specified.

C:0.005〜0.04%
Cは、TiやNbと析出物を形成することで、焼鈍時の粒成長を制御して高剛性化に寄与するだけでなく、析出強化によって高強度化にも有効に寄与する。このような効果を得るためには、C量は0.005%以上とする必要がある。一方、C量が多くなると強度が高くなるに応じて伸びが低下するので、Cは0.04%以下に限定する。
C: 0.005-0.04%
C forms precipitates with Ti and Nb, thereby not only controlling grain growth during annealing and contributing to higher rigidity, but also effectively contributing to higher strength by precipitation strengthening. In order to obtain such an effect, the C amount needs to be 0.005% or more. On the other hand, as the amount of C increases, the elongation decreases as the strength increases, so C is limited to 0.04% or less.

Si:0.01〜1.5%
Siは、固溶強化によって高強度化に寄与する元素であり、ヤング率の向上や伸びの向上のためにC量を低下させる場合には適正なSi含有量を確保することが重要であり、少なくとも0.01%を必要とし、さらに高い強度を得ようとする場合には0.2%以上とするのがよい。
また、Si含有量の増加により、鋼板の溶接性が劣化したり、熱延加熱時にスラブ表面でファイヤライトの生成を促進し、いわゆる赤スケールと呼ばれる熱延鋼板の表面欠陥の発生を助長させる。さらに、冷延鋼板として使用される場合には、表面に生成するSi酸化物が化成処理性を劣化させ、溶融亜鉛めっき鋼板として使用される場合には、表面に生成するSi酸化物が不めっきを誘発する。このため、Si量は1.5%以下とする必要があり、望ましくは1.0%とするのがよい。
Si: 0.01-1.5%
Si is an element that contributes to strengthening by solid solution strengthening, and it is important to ensure an appropriate Si content when the C content is reduced to improve Young's modulus and improve elongation. If at least 0.01% is required and higher strength is to be obtained, it should be 0.2% or more.
Further, the increase in the Si content deteriorates the weldability of the steel sheet, promotes the generation of firelite on the slab surface during hot rolling, and promotes the generation of surface defects on the hot-rolled steel sheet called red scale. Furthermore, when used as a cold-rolled steel sheet, the Si oxide produced on the surface deteriorates the chemical conversion property, and when used as a hot-dip galvanized steel sheet, the Si oxide produced on the surface is not plated. To trigger. For this reason, the amount of Si needs to be 1.5% or less, preferably 1.0%.

Mn:1.0〜3.5%
Mnは、固溶強化元素として鋼の高強度化に寄与する。このような効果を得るためには、Mn量を1.0%以上とする必要がある。一方、Mn量が3.5%を超えると鋼板の溶接性が劣化するだけでなく、熱間圧延や冷間圧延時の圧延荷重を増加させて製造コストの上昇を招く。したがって、Mn量は1.0〜3.5%の範囲とする必要がある。
Mn: 1.0-3.5%
Mn contributes to increasing the strength of steel as a solid solution strengthening element. In order to obtain such an effect, the Mn amount needs to be 1.0% or more. On the other hand, if the amount of Mn exceeds 3.5%, not only the weldability of the steel sheet is deteriorated, but also the rolling load at the time of hot rolling or cold rolling is increased, resulting in an increase in manufacturing cost. Therefore, the amount of Mn needs to be in the range of 1.0 to 3.5%.

Ti:0.02〜0.20%
Tiは、従来から知られているように、鋼中で炭化物を形成することによって鋼中の固溶C量を減少させる作用がある。従って、Tiを添加することにより、後述する式(1)で規定される固溶C量を表すC*を低下させることによって、再結晶後にγファイバーと呼ばれる{111}方位を圧延面に集積させる効果がある。このようなこの組織が発達することにより、C方向と共に、D方向、L方向のヤング率が向上する。また、Tiの添加によって、再結晶開始温度が高温側に移動することにより、圧延板で集積度の高い{112}<110>組織が再結晶後にも強くなり、C方向のヤング率が向上する。さらに、鋼中のTiは、析出物を形成して鋼の強度を増加する効果を有する。
これらの効果を得るためには、Ti量は0.02%以上とする必要がある。一方、Ti量が0.20%を超えると、高ヤング率化の効果が飽和すると共に、鋼中の析出物が粗大になり強度がかえって低下するので、Ti量は0.02〜0.20%の範囲とする必要がある。
Ti: 0.02-0.20%
As conventionally known, Ti has the effect of reducing the amount of dissolved C in steel by forming carbides in the steel. Therefore, by adding Ti, by reducing C * representing the amount of solute C defined by the formula (1) described later, {111} orientation called γ fiber is accumulated on the rolling surface after recrystallization. effective. By developing such a structure, the Young's modulus in the D direction and the L direction is improved together with the C direction. In addition, the addition of Ti moves the recrystallization start temperature to the high temperature side, so that the {112} <110> structure having a high degree of integration in the rolled sheet becomes stronger after recrystallization, and the Young's modulus in the C direction is improved. . Furthermore, Ti in steel has the effect of forming precipitates and increasing the strength of the steel.
In order to obtain these effects, the Ti amount needs to be 0.02% or more. On the other hand, if the Ti content exceeds 0.20%, the effect of increasing the Young's modulus is saturated, and precipitates in the steel become coarse and the strength decreases, so the Ti content must be in the range of 0.02 to 0.20%. There is.

Nb:0.01〜0.20%
Nbも、Tiと同様に、鋼中で炭化物を形成することにより固溶C量を減少させて再結晶後にγファイバーを発達させる効果を有する。しかしながら、発明者らが、Nbの効果を詳細に調査したところ、Nbは所定量以上のTiと複合的に添加することにより、γファイバーの中でも特に{111}<112>の集積度を向上させることが分かった。{111}<112>の集積により、C方向、D方向、L方向のヤング率が向上するだけでなく、{111}<112>の近傍にある{112}<110>の集積も増加する。この理由は、{112}<110>は{111}<112>のピークの「すそ野」にあるからと考えられる。これにより、{111}<112>の増加はC方向のヤング率を向上させる。従って、TiとNbを複合して含有させることにより、γファイバー全域と{112}<110>、{111}<112>をバランスよく向上させることができ、C方向とD方向のヤング率の高い鋼板の製造が可能となる。
このような効果を得るためには、Ti含有量0.02〜0.20%を添加した上で、Nbを0.01〜0.20%含有させる必要がある。Nb添加量が低いと上記の効果が得られず、一方Nb添加量が高すぎると粗大なNb析出物を形成することで、強度が低下したり、加工性が劣化したりするので、Nb量は0.01〜0.20%の範囲に限定した。
Nb: 0.01-0.20%
Similarly to Ti, Nb also has the effect of reducing the amount of dissolved C by forming carbides in steel and developing γ fibers after recrystallization. However, the inventors have investigated the effect of Nb in detail, and Nb improves the accumulation degree of {111} <112> among γ fibers by adding it in combination with a predetermined amount or more of Ti. I understood that. Accumulation of {111} <112> not only improves the Young's modulus in the C direction, D direction, and L direction, but also increases the accumulation of {112} <110> in the vicinity of {111} <112>. The reason for this is considered that {112} <110> is in the “bottom” of the peak of {111} <112>. Thereby, the increase of {111} <112> improves the Young's modulus in the C direction. Therefore, by containing Ti and Nb in combination, the entire γ fiber and {112} <110> and {111} <112> can be improved in a well-balanced manner, and the Young's modulus in the C and D directions is high. Steel sheets can be manufactured.
In order to obtain such an effect, it is necessary to add 0.01 to 0.20% of Nb after adding Ti content of 0.02 to 0.20%. If the amount of Nb added is low, the above effect cannot be obtained. On the other hand, if the amount of Nb added is too high, coarse Nb precipitates are formed, resulting in reduced strength or deteriorated workability. Is limited to a range of 0.01 to 0.20%.

P:0.1%以下
Pは、0.1%を超えて含有されると、粒界に偏析して鋼板の延性や靭性を低下させるだけでなく、溶接性を劣化させる。また、本発明の鋼板に合金化溶融亜鉛めっきを施す場合には、Pは合金化速度を遅滞させる。さらに、Siを添加した鋼において赤スケールの発生を抑制する作用も有する。したがって、P量は0.1%以下とする。一方で、Pは、固溶強化元素として高強度化に有効な元素であるので、この効果を積極的に利用しようとする場合には0.03〜0.1%の範囲で含有させることが好ましい。
P: 0.1% or less When P is contained in an amount exceeding 0.1%, it segregates at the grain boundaries and decreases the ductility and toughness of the steel sheet, and also deteriorates the weldability. Moreover, when alloying hot dip galvanizing to the steel plate of this invention, P delays an alloying speed | rate. Furthermore, it has the effect | action which suppresses generation | occurrence | production of red scale in steel which added Si. Therefore, the P content is 0.1% or less. On the other hand, since P is an element effective for increasing the strength as a solid solution strengthening element, it is preferable that P be contained in the range of 0.03 to 0.1% in order to actively utilize this effect.

S:0.01%以下
Sは、0.01%を超えて多量に含有されると、熱間での延性を著しく低下させ、熱間割れを誘発し、鋼板の表面性状を著しく劣化させる。また、強度にほとんど寄与しないばかりか、粗大なMnSとして析出し、穴広げ性等の延性を低下させる。したがって、S量は0.01%以下とする必要がある。なお、S量は少ないほど好ましく、特に穴広げ性をより向上させる観点からは0.005%以下とすることがより好ましい。
S: 0.01% or less When S is contained in a large amount exceeding 0.01%, the hot ductility is remarkably lowered, hot cracking is induced, and the surface properties of the steel sheet are remarkably deteriorated. Moreover, it not only contributes to the strength, but also precipitates as coarse MnS, thereby reducing ductility such as hole expansibility. Therefore, the S amount needs to be 0.01% or less. Note that the smaller the amount of S, the better. In particular, from the viewpoint of further improving the hole expandability, 0.005% or less is more preferable.

Al:1.0%以下
Alは、フェライト安定化元素であり、1.0%を超えて含有されると鋼のAr3変態点を大きく上昇させるため、Ar3変態点以上での圧延を困難にする。したがって、Al量は1.0%以下とする必要がある。一方で、Alは、固溶強化により高強度化に寄与することから、この目的でAlを活用する場合には含有量を0.2〜1.0%とするとよい。
Al: 1.0% or less
Al is a ferrite stabilizing element, and if it is contained in excess of 1.0%, the Ar 3 transformation point of the steel is greatly increased, so that rolling above the Ar 3 transformation point becomes difficult. Therefore, the Al amount needs to be 1.0% or less. On the other hand, Al contributes to high strength by solid solution strengthening. Therefore, when using Al for this purpose, the content is preferably 0.2 to 1.0%.

N:0.01%以下
Nは、0.01%を超えて多量に含有されると、熱間圧延中にスラブ割れを誘発し、鋼板に表面疵が発生するおそれがある。さらに、高温でTiと粗大な窒化物を形成するため、Tiの添加効果を減少させて製造コストの増大を招く。したがって、N量は0.01%以下、好ましくは0.005%以下とする必要がある。
N: 0.01% or less If N is contained in a large amount exceeding 0.01%, slab cracking may be induced during hot rolling, and surface flaws may occur in the steel sheet. Furthermore, since Ti and coarse nitrides are formed at a high temperature, the effect of adding Ti is reduced, resulting in an increase in manufacturing cost. Therefore, the N content needs to be 0.01% or less, preferably 0.005% or less.

以上、本発明の基本組成について説明したが、本発明では、上記の基本組成を単に満足させだけでは不十分で、次式(1)で示されるC*を−0.03以上−0.0020以下の範囲に制御することが重要である。
*=[%C]−(12/48)〔[%Ti]−(48/14)[%N]−(48/32)[%S]〕−(12/93)[%Nb] --- (1)
ここで、[%M]はM元素の含有量(質量%)
The basic composition of the present invention has been described above. However, in the present invention, it is not sufficient to simply satisfy the above basic composition, and the C * represented by the following formula (1) is in the range of −0.03 or more and −0.0020 or less. It is important to control.
C * = [% C] − (12/48) [[% Ti] − (48/14) [% N] − (48/32) [% S]] − (12/93) [% Nb] − -(1)
Here, [% M] is the content of M element (mass%)

このC*は、TiやNbで固定されない固溶C濃度の目安となるもので、このC*を厳密に管理することが重要である。
すなわち、TiやNbを鋼中に添加することで固溶C量を減少させ、冷間圧延、焼鈍時に高剛性化に有利な{111}方位からなるγファイバーを発達させることができることから、固溶C量を表す(1)式で示されるC*を−0.03以上−0.0020%以下の範囲に規制する。
This C * is a measure of the concentration of solute C that is not fixed by Ti or Nb, and it is important to strictly manage this C * .
That is, by adding Ti and Nb to the steel, the amount of dissolved C can be reduced, and a gamma fiber consisting of {111} orientation, which is advantageous for high rigidity during cold rolling and annealing, can be developed. C * shown by the formula (1) representing the amount of dissolved C is restricted to a range of −0.03 to −0.0020%.

また、本発明は、Ti,Nbの両者を適正量添加すると共に、強度確保のためのC添加量とγファイバ発達のためのC*低減とを両立させることが重要であり、C量を0.005〜0.015%にすると共にC*を−0.03以上−0.0030以下とすることによって、特にヤング率の向上を図ることができる。これは、このような条件では再結晶集合組織中のγファイバ発達を阻害する固溶Cの量が最も小さくなるからと考えられる。
ここで、C*がマイナス側となるような場合は、固溶Cそのものの値を示すものではないことは明らかである。鋼中のCは、通常は熱力学的に準安定な状態にあるので、安定状態で炭化物の析出が完了する条件にあったとしても実際には鋼中に固溶Cが残留している。このような場合に炭化物を形成する傾向の強いTi,Nbを過剰に添加し析出の駆動力を高めることで、鋼中の固溶Cが減少してヤング率に有利な集合組織の発達を促すものと考えられる。
In addition, in the present invention, it is important to add both Ti and Nb in appropriate amounts, and to achieve both the addition amount of C for ensuring strength and the reduction of C * for the development of γ fiber. In particular, the Young's modulus can be improved by setting the C * to −0.03 or more and −0.0030 or less in addition to −0.015%. This is presumably because the amount of solute C that inhibits the development of γ fiber in the recrystallized texture becomes the smallest under such conditions.
Here, when C * is on the minus side, it is clear that it does not indicate the value of the solid solution C itself. Since C in steel is usually in a thermodynamically metastable state, solid solution C actually remains in the steel even under conditions where the precipitation of carbides is completed in a stable state. In such a case, excessive addition of Ti and Nb, which have a strong tendency to form carbides, increases the driving force of precipitation, thereby reducing the solid solution C in the steel and promoting the development of a texture that is advantageous for Young's modulus. It is considered a thing.

さらに、本発明において、Nbの効果を強化しようとする場合は、次式(2)を満足するNb含有量とするのが好ましい。(2)式の条件は、C*の減少に従ってNb含有量を増加させるものである。C*の減少に伴ってγファイバが発達するが、これに応じて{111}<112>集積効果を有するNb添加の効果を複合させて、上記機構でC方向の集積度を向上させることができる。
Nb ≧ Nb* --- (2)
ここで、Nb*=−5.0×C*+0.02 --- (3)
Furthermore, in the present invention, when it is intended to enhance the effect of Nb, it is preferable that the Nb content satisfies the following formula (2). The condition of equation (2) is to increase the Nb content as C * decreases. As the C * decreases, the γ fiber develops. In accordance with this, the effect of adding Nb having a {111} <112> accumulation effect is combined to improve the degree of integration in the C direction by the above mechanism. it can.
Nb ≧ Nb * --- (2)
Here, Nb * = − 5.0 × C * + 0.02 --- (3)

また、本発明では、以下に述べる元素を適宜含有させることができる。
V:0.01〜1.0%
Vは、Ti,Nbと同様に、鋼中で炭化物を形成して固溶Cを低下させるのに寄与する。この効果を得るには、V量は0.01〜1.0%とするのがよい。含有量が0.01%を下回るとこの効果が得られず、一方1.0%を超えて含有させると熱間圧延や冷間圧延の際の荷重が過大となる。
Moreover, in this invention, the element described below can be contained suitably.
V: 0.01 to 1.0%
V, like Ti and Nb, contributes to forming carbides in the steel and lowering the solid solution C. In order to obtain this effect, the V amount is preferably 0.01 to 1.0%. If the content is less than 0.01%, this effect cannot be obtained. On the other hand, if the content exceeds 1.0%, the load during hot rolling or cold rolling becomes excessive.

Cr:0.05〜1.0%、Mo:0.05〜1.0%、Ni:0.05〜1.0%、B:0.0005〜0.0030%
Cr,Mo,NiおよびBはいずれも、焼入れ性を高め、組織を細粒化することで高強度に寄与する。このような効果を得るには、Cr量は0.05%以上、Mo量は0.05%以上、Ni量は0.05%以上、B量は0.0005%以上とする必要がある。一方、Cr量が1.0%超、Mo量が1.0%超、Ni量が1.0%超、B量が0.0030%超になると、その効果が飽和するだけでなく、熱間圧延時や冷間圧延時の圧延荷重の増加を招く。したがって、Cr量は0.05〜1.0%、Mo量は0.05〜1.0%、Ni量は0.05〜1.0%、B量は0.0005〜0.0030%の範囲とする必要がある。
Cr: 0.05-1.0%, Mo: 0.05-1.0%, Ni: 0.05-1.0%, B: 0.0005-0.0030%
Cr, Mo, Ni, and B all contribute to high strength by improving hardenability and making the structure finer. In order to obtain such an effect, the Cr content must be 0.05% or more, the Mo content 0.05% or more, the Ni content 0.05% or more, and the B content 0.0005% or more. On the other hand, when the Cr content exceeds 1.0%, the Mo content exceeds 1.0%, the Ni content exceeds 1.0%, and the B content exceeds 0.0030%, not only the effect is saturated, but also during hot rolling and cold rolling. This increases the rolling load. Therefore, it is necessary that the Cr amount is 0.05 to 1.0%, the Mo amount is 0.05 to 1.0%, the Ni amount is 0.05 to 1.0%, and the B amount is 0.0005 to 0.0030%.

Cu:0.1〜2.0%
Cuは、微細な析出物を形成することで高強度化に寄与する。この効果を得るためには、Cu量を0.1%以上とする必要がある。一方、Cu量が2.0%を超えると熱間での延性を低下させて、熱間圧延時の割れに伴う表面欠陥を誘発すると共に、焼入れ性の効果も飽和する。したがって、Cu量は0.1〜2.0%の範囲とする必要がある。なお、Cuを添加する場合、熱間圧延時の割れが発生し易いが、これを防止するためには、前述のNiを合わせて添加することが好ましい。
Cu: 0.1-2.0%
Cu contributes to high strength by forming fine precipitates. In order to acquire this effect, it is necessary to make Cu amount 0.1% or more. On the other hand, if the amount of Cu exceeds 2.0%, the hot ductility is reduced, surface defects accompanying cracks during hot rolling are induced, and the effect of hardenability is saturated. Therefore, the amount of Cu needs to be in the range of 0.1 to 2.0%. In addition, when adding Cu, although the crack at the time of hot rolling tends to generate | occur | produce, in order to prevent this, it is preferable to add together the above-mentioned Ni.

その他の微量元素としては、例えばSb,Sn,Zn,Co等が挙げられるが、これらの元素を微量に含有していても、本願発明の効果が損なわれることはない。なお、これらの微量元素の許容範囲は、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下、Ca:0.01%以下、REM:0.01%以下である。
そして、残部はFeおよび不可避的不純物である。
Examples of other trace elements include Sb, Sn, Zn, Co and the like, but even if these elements are contained in a trace amount, the effect of the present invention is not impaired. The allowable ranges of these trace elements are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: 0.1% or less, Ca: 0.01% or less, and REM: 0.01% or less.
The balance is Fe and inevitable impurities.

次に、本発明鋼板の製造工程について説明する。
本発明の鋼板を製造するに当たっては、上記成分のスラブを鋳造し、熱間圧延を行って熱延鋼板としたのち、コイルに巻取り、酸洗後、冷間圧延を行って冷延鋼板とし、ついで再結晶のための連続焼鈍を施す。以下、製造工程における本発明の要旨を述べる。
Next, the manufacturing process of this invention steel plate is demonstrated.
In producing the steel sheet of the present invention, a slab having the above components is cast and hot-rolled to obtain a hot-rolled steel sheet, and then wound into a coil, pickled, and then cold-rolled to obtain a cold-rolled steel sheet. Then, continuous annealing for recrystallization is performed. Hereinafter, the gist of the present invention in the manufacturing process will be described.

溶製方法は、通常の転炉法、電炉法など適宜適用することができる。また、溶製された鋼は、スラブに鋳造後、そのまま、あるいは一旦冷却してから加熱して、熱間圧延工程に供する。
熱間圧延については、特に制限はなく、従来公知の方法で行えば良いが、熱延終了温度は850〜950℃程度とするのが好適である。
熱間圧延後、コイルに巻き取る。この巻取り温度についても特に制限はなく、従来公知の条件で巻き取れば良いが、550〜700℃程度で巻き取るのが好適である。
As a melting method, a normal converter method, an electric furnace method, or the like can be applied as appropriate. Moreover, the molten steel is cast into a slab and then heated as it is or after being cooled and then subjected to a hot rolling process.
The hot rolling is not particularly limited and may be performed by a conventionally known method, but the hot rolling end temperature is preferably about 850 to 950 ° C.
After hot rolling, it is wound on a coil. The winding temperature is not particularly limited, and may be wound under conventionally known conditions, but is preferably wound at about 550 to 700 ° C.

上記の巻取り後は、酸洗を施した後、冷間圧延工程に供するが、この冷間圧延は圧下率:50%以上で行う必要がある。冷間圧延における圧下率が50%を回ると冷延集合組織の発達が不十分となり、ひいては再結晶集合組織の発達が不十分となる結果、所望のヤング率が得られないからである。   After the above winding, the steel sheet is pickled and then subjected to a cold rolling process. This cold rolling needs to be performed at a reduction ratio of 50% or more. This is because if the rolling reduction in cold rolling exceeds 50%, the development of the cold-rolled texture becomes insufficient, and as a result, the development of the recrystallized texture becomes insufficient. As a result, the desired Young's modulus cannot be obtained.

ついで、再結晶のための連続焼鈍を施す。この連続焼鈍における均熱温度は750〜900℃とすることが好適である。また、この均熱温度での保持時間は30〜180s程度とするのが好適である。
さて、本発明のもう一つの特徴は、冷間圧延後の連続焼鈍において200〜600℃での平均の昇温速度v1を20℃/s以下とし、かつ600〜750℃での平均の昇温速度v2を10℃/s以下とすることにある。
TiおよびNb含有量を適正に制御した上で、焼鈍の昇温過程をこのような条件とすることにより、特に高いヤング率がC方向およびD方向で得られる。この理由は必ずしも明らかでないが、TiとNbを複合的に添加することで再結晶が開始する温度を高温側に移動させると同時に、再結晶の前駆段階の回復が進行する低温域(600℃以下)での昇温速度を一定値以下とすることで、γファイバおよび{111}<112>の核が形成されやすい回復組織が形成され、その上で再結晶が開始する温度域の昇温速度の上限をさらに制限することでヤング率に有利なγファイバおよび{111}<112>の再結晶粒の核の発生頻度が増加すると推定される。このような効果を得るためには、200〜600℃間の昇温速度v1を20℃/s以下とし、かつ600〜750℃間の昇温速度v2を10℃/s以下とするのが好ましい。また、さらに望ましくは、200〜600℃間の昇温速度v1を10℃/s以下とし、600〜750℃間の昇温速度v2を5℃/s以下とすることである。
Next, continuous annealing for recrystallization is performed. The soaking temperature in this continuous annealing is preferably 750 to 900 ° C. The holding time at the soaking temperature is preferably about 30 to 180 seconds.
Another feature of the present invention is that the average temperature increase rate v 1 at 200 to 600 ° C. is 20 ° C./s or less and the average temperature increase at 600 to 750 ° C. in continuous annealing after cold rolling. The temperature rate v 2 is set to 10 ° C./s or less.
A particularly high Young's modulus can be obtained in the C direction and the D direction by appropriately controlling the Ti and Nb contents and setting the annealing temperature raising process to such conditions. The reason for this is not necessarily clear, but by adding Ti and Nb in a complex manner, the temperature at which recrystallization starts is shifted to the high temperature side, and at the same time, the recovery of the precursor stage of recrystallization proceeds (less than 600 ° C) ), The temperature rise rate in the temperature range where the recovery structure where γ fiber and {111} <112> nuclei are easily formed is formed, and then recrystallization starts. By further restricting the upper limit of γ, it is estimated that the occurrence frequency of γ fibers advantageous for Young's modulus and nuclei of recrystallized grains of {111} <112> increases. In order to obtain such an effect, the temperature increase rate v 1 between 200 and 600 ° C. is set to 20 ° C./s or less, and the temperature increase rate v 2 between 600 to 750 ° C. is set to 10 ° C./s or less. Is preferred. More preferably, the temperature increase rate v 1 between 200 and 600 ° C. is 10 ° C./s or less, and the temperature increase rate v 2 between 600 and 750 ° C. is 5 ° C./s or less.

さらに、上記の昇温速度条件を満足した上で、次式(4)に示すように、600〜750℃間の昇温速度v2(℃/s)を200〜600℃間の昇温速度v1(℃/s)の0.35以下とすることにより、さらにヤング率の向上を図ることができる。
2/v1≦0.35 --- (4)
この理由は、回復組織の発達に応じて再結晶が起こる温度域での昇温速度を調整することで、γファイバおよび{111}<112>の集積度向上に有利な結晶方位の選択性が高まるためと考えられる。
Furthermore, after satisfying the above temperature rising rate condition, the temperature rising rate v 2 (° C./s) between 600 to 750 ° C. is set to the temperature rising rate between 200 to 600 ° C. as shown in the following equation (4). By setting v 1 (° C./s) to 0.35 or less, Young's modulus can be further improved.
v 2 / v 1 ≦ 0.35 --- (4)
The reason for this is that by adjusting the rate of temperature rise in the temperature range where recrystallization occurs according to the development of the recovery structure, the selectivity of crystal orientation, which is advantageous for improving the integration degree of γ fiber and {111} <112>, can be obtained. It is thought to increase.

本発明は、冷間圧延後に連続焼鈍と必要に応じてスキンパス圧延を行う冷延鋼板や,冷間圧延後にめっき浴に浸漬する溶融亜鉛めっき鋼板、めっき浴に浸漬した後、合金化のための熱処理を行う合金化溶融亜鉛めっき鋼板、電気めっきを施す電気亜鉛めっき鋼板および電気合金亜鉛めっき鋼板などいずれにも適用可能である。   The present invention is a cold-rolled steel sheet that is subjected to continuous annealing after cold rolling and, if necessary, skin pass rolling, a hot-dip galvanized steel sheet that is immersed in a plating bath after cold rolling, and after being immersed in a plating bath, for alloying The present invention can be applied to any alloyed hot-dip galvanized steel sheet, heat-treated galvanized steel sheet, electrogalvanized steel sheet, and electroalloy galvanized steel sheet.

次に、本発明の実施例について説明する。なお、本発明はこれらの実施例のみに限定されるものではない。
まず、表1に示す成分組成の鋼片(鋼A〜Z6)を、加熱してから、表2に示す板厚に熱間圧延し、酸洗後、表2に示す条件で冷間圧延し、ついで表2に示す条件で昇温してから、均熱温度:840℃、800〜400℃間の冷却速度:10℃/sの条件で連続焼鈍を施したのち、300℃に200秒保持する時効処理を行い、その後圧下率:0.5%のスキンパス圧延を行って冷延板とした。
Next, examples of the present invention will be described. In addition, this invention is not limited only to these Examples.
First, steel pieces (steel A to Z6) having the composition shown in Table 1 are heated, then hot-rolled to the plate thickness shown in Table 2, pickled, and then cold-rolled under the conditions shown in Table 2. Then, after raising the temperature under the conditions shown in Table 2, continuous annealing was performed at a soaking temperature of 840 ° C and a cooling rate of 800-400 ° C: 10 ° C / s, and then held at 300 ° C for 200 seconds. An aging treatment was performed, and then skin pass rolling was performed at a reduction ratio of 0.5% to obtain a cold-rolled sheet.

得られた鋼板からL方向(圧延方向)、D方向(L方向またはC方向から45°の方向)およびC方向(圧延直角方向)を長手方向として10×60mmの試験片を切り出し、横振動型の共振周波数測定装置を用いて、American Society for Testing Materialsの基準(C1259)に従って、各方向のヤング率(EL、ED、EC)を測定した。また、圧延方向に対して直角な方向からJIS5号引張試験片を切り出し、引張速度:10mm/分の条件で引張特性(引張強さTSと伸びEl)を測定した。
上記の測定の結果を表3に示す。
A 10 × 60 mm test piece was cut out from the obtained steel sheet with the L direction (rolling direction), the D direction (45 ° from the L direction or the C direction) and the C direction (the direction perpendicular to the rolling direction) as the longitudinal direction. The Young's modulus (E L , E D , E C ) in each direction was measured according to the American Society for Testing Materials standard (C1259). Further, a JIS No. 5 tensile test piece was cut out from a direction perpendicular to the rolling direction, and tensile properties (tensile strength TS and elongation El) were measured under the condition of a tensile speed of 10 mm / min.
The results of the above measurements are shown in Table 3.

Figure 2013087332
Figure 2013087332

Figure 2013087332
Figure 2013087332

Figure 2013087332
Figure 2013087332

表3に示したとおり、発明例はいずれも、引張強度TSが390〜590MPa、伸びが32%以上であり、また圧延方向に対してC方向のヤング率ECが225GPa以上で、かつ圧延方向に対してD方向のヤング率EDが210GPa以上を満足している。特に、C量が0.005〜0.015%でC*が−0.03以上−0.0030以下を満足する場合には、C方向のヤング率ECが230GPa以上で、かつ圧延方向に対してD方向のヤング率EDが215GPa以上が得られている。
このように、本発明によれば、C方向とD方向のヤング率が高い鋼板が得られており、部品として用いたときに高い剛性が得られる高強度薄鋼板であることが分かる。
As shown in Table 3, all the inventive examples have a tensile strength TS of 390 to 590 MPa, an elongation of 32% or more, a Young's modulus E C in the C direction with respect to the rolling direction of 225 GPa or more, and the rolling direction. In contrast, the Young's modulus E D in the D direction satisfies 210 GPa or more. In particular, when the C amount is 0.005 to 0.015% and C * satisfies −0.03 or more and −0.0030 or less, the Young's modulus E C in the C direction is 230 GPa or more and the Young's modulus E in the D direction with respect to the rolling direction. D is 215 GPa or more.
Thus, according to the present invention, a steel sheet having a high Young's modulus in the C direction and the D direction is obtained, and it can be seen that the steel sheet is a high-strength thin steel sheet that provides high rigidity when used as a part.

また、図1は、引張強度が390〜590MPa,伸びが32%以上の鋼板について、C方向とD方向のヤング率の平均値〔(EC+ED)/2〕のC*に対する変化を示したものであるが、C*の減少に伴い平均のヤング率〔(EC+ED)/2〕が向上する傾向にあることが示されている。そして、以下のような条件で特に高いヤング率が得られることが分かる。
・C*:−0.0020%以下
・C:0.005〜0.015%で、かつC*:−0.03以上−0.0030以下
・Nb添加量:Nb≧Nb*=−5.0×C*+0.02
・連続焼鈍の200℃〜600℃間の平均の昇温速度v1が20℃/s以下で、かつ600〜750℃間の平均の昇温速度v2が10℃/s以下(さらに望ましくはv1≦10℃/s,v2≦5℃/s)
・v2/v1≦0.35
また、Si:0.2〜1.0%またはP:0.04〜0.08%のいずれかの添加により鋼の強度を高めた製品が得られており、ヤング率と強度のバランスが優れた鋼板が得られている。
FIG. 1 shows the change of the average value of Young's modulus in the C direction and D direction [(E C + E D ) / 2] with respect to C * for a steel sheet having a tensile strength of 390 to 590 MPa and an elongation of 32% or more. However, it is shown that the average Young's modulus [(E C + E D ) / 2] tends to improve as C * decreases. It can be seen that a particularly high Young's modulus can be obtained under the following conditions.
・ C * : −0.0020% or less ・ C: 0.005 to 0.015% and C * : −0.03 or more and −0.0030 or less ・ Nb addition amount: Nb ≧ Nb * = − 5.0 × C * + 0.02
・ The average heating rate v 1 between 200 ° C. and 600 ° C. for continuous annealing is 20 ° C./s or less, and the average heating rate v 2 between 600 and 750 ° C. is 10 ° C./s or less (more preferably (v 1 ≦ 10 ° C / s, v 2 ≦ 5 ° C / s)
・ V 2 / v 1 ≦ 0.35
Moreover, the product which raised the intensity | strength of steel by addition of either Si: 0.2-1.0% or P: 0.04-0.08% is obtained, and the steel plate which was excellent in the balance of Young's modulus and intensity | strength is obtained.

本発明によって、引張強度は390〜590MPa程度で、伸びは32%以上、そして圧延直角方向(C方向)のヤング率が230GPa以上、圧延直角方向と45°方向(D方向)のヤング率が215GPa以上で、実部品としての剛性に優れると共に、強度と加工性のバランスにも優れる薄鋼板の提供が可能になる。   According to the present invention, the tensile strength is about 390 to 590 MPa, the elongation is 32% or more, the Young's modulus in the direction perpendicular to the rolling (C direction) is 230 GPa or more, and the Young's modulus in the direction perpendicular to the rolling and 45 ° direction (D direction) is 215 GPa. As described above, it is possible to provide a thin steel plate that is excellent in rigidity as an actual part and also in excellent balance between strength and workability.

Claims (6)

質量%で、C:0.005〜0.04%、Si:0.01〜1.5%、Mn:1.0〜3.5%、Ti:0.02〜0.20%、Nb:0.01〜0.20%、P:0.1%以下、S:0.01%以下、Al:1.0%以下およびN:0.01%以下を含有し、かつ下記(1)式で規定されるC*が−0.03以上−0.0020以下の範囲を満足し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、熱間圧延し、コイル状に巻き取ったのち、50%以上の圧下率にて冷間圧延を行ってから、連続焼鈍を行うことを特徴とする剛性が高く強度と加工性のバランスに優れた薄鋼板の製造方法。

*=[%C]−(12/48)〔[%Ti]−(48/14)[%N]−(48/32)[%S]〕−(12/93)[%Nb] --- (1)
ここで、[%M]はM元素の含有量(質量%)
In mass%, C: 0.005 to 0.04%, Si: 0.01 to 1.5%, Mn: 1.0 to 3.5%, Ti: 0.02 to 0.20%, Nb: 0.01 to 0.20%, P: 0.1% or less, S: 0.01% or less , Al: 1.0% or less and N: 0.01% or less, and C * defined by the following formula (1) satisfies the range of −0.03 or more and −0.0020 or less, and the balance is the composition of Fe and inevitable impurities The steel slab is made of hot rolled, coiled, and then cold rolled at a reduction rate of 50% or more, followed by continuous annealing. A method for producing thin steel sheets with an excellent balance of properties.
C * = [% C] − (12/48) [[% Ti] − (48/14) [% N] − (48/32) [% S]] − (12/93) [% Nb] --- (1)
Here, [% M] is the content of M element (mass%)
質量%で、C量が0.005〜0.015%で、(1)式で規定されるC*が−0.03以上−0.0030以下であることを特徴とする請求項1に記載の薄鋼板の製造方法。 The method for producing a thin steel sheet according to claim 1, wherein the carbon content is 0.005 to 0.015% by mass and C * defined by the formula (1) is not less than -0.03 and not more than -0.0030. Nb含有量が下記(2)式の関係を満足する請求項1または2に記載の薄鋼板の製造方法。

Nb ≧ Nb* --- (2)
ここで、Nb*=−5.0×C*+0.02 --- (3)
The manufacturing method of the thin steel plate of Claim 1 or 2 with which Nb content satisfies the relationship of following (2) Formula.
Record
Nb ≧ Nb * --- (2)
Here, Nb * = − 5.0 × C * + 0.02 --- (3)
前記鋼板が、前記組成に加えて、さらに質量%で、V:0.01〜1.0%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Ni:0.05〜1.0%、B:0.0005〜0.00030%およびCu:0.1〜2.0%のうちから選んだ一種または二種以上を含有することを特徴とする請求項1〜3のいずれかに記載の薄鋼板の製造方法。   In addition to the composition, the steel sheet is further in mass%, V: 0.01 to 1.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, Ni: 0.05 to 1.0%, B: 0.0005 to 0.00030% and The manufacturing method of the thin steel plate in any one of Claims 1-3 containing 1 type, or 2 or more types selected from Cu: 0.1-2.0%. 前記連続焼鈍における均熱温度を750〜900℃とし、この均熱温度に到る昇温工程において200℃から600℃までの平均昇温速度v1を20℃/s以下、600℃から750℃までの平均昇温速度v2を10℃/s以下とすることを特徴とする請求項1〜4のいずれかに記載の薄鋼板の製造方法。 The soaking temperature in the continuous annealing is set to 750 to 900 ° C., and the average heating rate v 1 from 200 ° C. to 600 ° C. is 20 ° C./s or less, 600 ° C. to 750 ° C. in the heating process to reach the soaking temperature. thin steel sheet manufacturing method according to any one of claims 1 to 4, characterized in that the average heating rate v 2 to less 10 ° C. / s. 200℃から600℃までの平均昇温速度v1と600℃から750℃までの平均昇温速度v2とが、下記(4)式の関係を満足することを特徴とする請求項5に記載の薄鋼板の製造方法。

2/v1≦0.35 --- (4)
From 200 ° C. the average heating rate v 1 to 600 ° C. and an average heating rate v 2 from 600 ° C. to 750 ° C. is claimed in claim 5, characterized by satisfying the following relationship (4) Manufacturing method of thin steel sheet.
Record
v 2 / v 1 ≦ 0.35 --- (4)
JP2011229227A 2011-10-18 2011-10-18 Manufacturing method of thin steel plate with high rigidity and excellent balance between strength and workability Active JP5817425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229227A JP5817425B2 (en) 2011-10-18 2011-10-18 Manufacturing method of thin steel plate with high rigidity and excellent balance between strength and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229227A JP5817425B2 (en) 2011-10-18 2011-10-18 Manufacturing method of thin steel plate with high rigidity and excellent balance between strength and workability

Publications (2)

Publication Number Publication Date
JP2013087332A true JP2013087332A (en) 2013-05-13
JP5817425B2 JP5817425B2 (en) 2015-11-18

Family

ID=48531560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229227A Active JP5817425B2 (en) 2011-10-18 2011-10-18 Manufacturing method of thin steel plate with high rigidity and excellent balance between strength and workability

Country Status (1)

Country Link
JP (1) JP5817425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206086A (en) * 2014-04-22 2015-11-19 新日鐵住金株式会社 High young's modulus cold rolled steel, high young's modulus electrogalvanized cold rolled steel, high young's modulus hot-dip galvanized cold rolled steel, high young's modulus hot-dip galvannealed cold rolled steel and production methods for them

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255804A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Cold rolled steel sheet excellent in formability and rigidity and its manufacture
JP2007046146A (en) * 2004-11-15 2007-02-22 Nippon Steel Corp High young's modulus steel plate, hot dip galvanized steel sheet using the same, hot dip galvannealed steel sheet, high young's modulus steel pipe, high young's modulus hot dip galvanized steel pipe, high young's modulus hot dip galvannealed steel pipe, and method for production thereof
JP2007077495A (en) * 2005-08-16 2007-03-29 Jfe Steel Kk High strength cold rolled steel sheet, and method for producing the same
JP2007092130A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and its production method
JP2007146275A (en) * 2005-11-01 2007-06-14 Nippon Steel Corp Low yield ratio type steel sheet with high young's modulus, hot-dip galvanized steel sheet, galvannealed steel sheet and steel tube, and their manufacturing method
JP2011089167A (en) * 2009-10-22 2011-05-06 Nippon Steel Corp Composite panel having excellent stretch rigidity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255804A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Cold rolled steel sheet excellent in formability and rigidity and its manufacture
JP2007046146A (en) * 2004-11-15 2007-02-22 Nippon Steel Corp High young's modulus steel plate, hot dip galvanized steel sheet using the same, hot dip galvannealed steel sheet, high young's modulus steel pipe, high young's modulus hot dip galvanized steel pipe, high young's modulus hot dip galvannealed steel pipe, and method for production thereof
JP2007077495A (en) * 2005-08-16 2007-03-29 Jfe Steel Kk High strength cold rolled steel sheet, and method for producing the same
JP2007092130A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and its production method
JP2007146275A (en) * 2005-11-01 2007-06-14 Nippon Steel Corp Low yield ratio type steel sheet with high young's modulus, hot-dip galvanized steel sheet, galvannealed steel sheet and steel tube, and their manufacturing method
JP2011089167A (en) * 2009-10-22 2011-05-06 Nippon Steel Corp Composite panel having excellent stretch rigidity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206086A (en) * 2014-04-22 2015-11-19 新日鐵住金株式会社 High young's modulus cold rolled steel, high young's modulus electrogalvanized cold rolled steel, high young's modulus hot-dip galvanized cold rolled steel, high young's modulus hot-dip galvannealed cold rolled steel and production methods for them

Also Published As

Publication number Publication date
JP5817425B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP4958182B2 (en) High manganese steel strip for plating, plating steel strip, method for producing high manganese hot rolled steel strip, method for producing high manganese cold rolled steel strip for plating, and method for producing high manganese plated steel strip
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
JP4843982B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP5370620B1 (en) Thin steel plate and manufacturing method thereof
JP5487203B2 (en) High-strength steel sheet and galvanized steel sheet for high processing with excellent surface characteristics and method for producing the same
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4843981B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4665692B2 (en) High-strength steel sheet with excellent bending rigidity and method for producing the same
JP4867256B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP2019524986A (en) Clad steel sheet excellent in strength and formability and method for producing the same
JP4867257B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP5845837B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP4815974B2 (en) Manufacturing method of high strength cold-rolled steel sheet with excellent rigidity
JP4867258B2 (en) High-strength thin steel sheet with excellent rigidity and workability and manufacturing method thereof
JP6044207B2 (en) Manufacturing method of thin steel sheet with excellent rigidity
JP4506439B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP5817425B2 (en) Manufacturing method of thin steel plate with high rigidity and excellent balance between strength and workability
JP4622783B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP4848651B2 (en) High strength thin steel sheet with excellent torsional rigidity and method for producing the same
JP4506438B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4288085B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP4622784B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250