JP2013083534A - Infrared detecting device - Google Patents

Infrared detecting device Download PDF

Info

Publication number
JP2013083534A
JP2013083534A JP2011223176A JP2011223176A JP2013083534A JP 2013083534 A JP2013083534 A JP 2013083534A JP 2011223176 A JP2011223176 A JP 2011223176A JP 2011223176 A JP2011223176 A JP 2011223176A JP 2013083534 A JP2013083534 A JP 2013083534A
Authority
JP
Japan
Prior art keywords
signal processing
infrared detection
output
infrared
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011223176A
Other languages
Japanese (ja)
Inventor
Hirobumi Morimoto
博文 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2011223176A priority Critical patent/JP2013083534A/en
Publication of JP2013083534A publication Critical patent/JP2013083534A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared imaging device that can remove drifts caused by variations over time and variations in ambient temperature to arise in infrared detecting elements and in signal processing, output stable digital data and can be easily used without requiring any specific know-how.SOLUTION: In an infrared imaging device, against noise arising from temperature drifts in signal processing systems operating in parallel, a built-in CPU 101 reads in outputs from insensitive elements 102 and 104 to process arithmetic operation and figure out correction data, and corrects outputs from infrared detecting elements thereby to supply noise-cleared digital outputs and accordingly to permit easy use without requiring any specific know-how.

Description

本発明は2次元に配置されたアレイ状の赤外線検出装置に関する。   The present invention relates to an array-shaped infrared detector arranged in two dimensions.

従来の2次元に配置されたアレイ状の赤外線検出装置では特開2005−214639の公報の実施例に見られるように、S/N改善のため、赤外線検出素子に最も近い同一半導体チップ内で列ごとに差動積分回路を持ち、感度を持たない参照画素の出力と、感度を持つ検知素子からの出力との差信号を積分し、入力信号に含まれる温度ドリフトとオフセット分布を抑制し、水平走査回路で切り替えて出力をしている。また、実施例では1列に対し1つの積分回路を持っているが、複数列に対し1つの積分回路を持つ場合もある。   In a conventional two-dimensional array of infrared detectors, as can be seen in the example of Japanese Patent Application Laid-Open No. 2005-214939, in order to improve S / N, the array is arranged in the same semiconductor chip closest to the infrared detector. Each has a differential integration circuit, integrates the difference signal between the output of the reference pixel with no sensitivity and the output of the sensing element with sensitivity, suppresses the temperature drift and offset distribution included in the input signal, and level The output is switched by the scanning circuit. In the embodiment, one integration circuit is provided for one column, but there may be one integration circuit for a plurality of columns.

特開2005−214639号JP 2005-214039 A

上記の方法ではセンサ素子からの出力に含まれる温度ドリフトとオフセット分布は取り除くことができるが、差動積分用積分コンデンサ、各差動積分回路用半導体素子の温度ドリフトによって各列に発生する出力信号のドリフトは防ぐことができず、機器に組み込んだ後定期的にシャッタ等で同一の熱源を見せ、後処理の演算で補正をかけ、各列に発生するオフセットノイズを補正する必要があった。また、補正をかけても時間の経過、環境温度変動とともに温度ドリフトによる列ごとの信号差が縦縞状にノイズとなって現れてくる問題があり、このような問題を回避するために補正間隔を長く取ることができない等、使用に際し特殊なノウハウを必要とし、あらゆる機器に簡単に組み込んで使用するには困難な状態であった。   The above method can remove the temperature drift and offset distribution included in the output from the sensor element, but the output signal generated in each column due to the temperature drift of the differential integration integral capacitor and each differential integration circuit semiconductor element However, it was necessary to correct the offset noise generated in each column by showing the same heat source with a shutter or the like periodically after being incorporated in the device, and performing correction in post-processing calculations. In addition, even if correction is performed, there is a problem that the signal difference for each column due to temperature drift appears as noise in the form of vertical stripes with the passage of time and environmental temperature fluctuations.To avoid such problems, the correction interval is set. Special know-how is required for use because it cannot be taken for a long time, and it is difficult to easily incorporate it into any device.

上記の課題を解決するために本発明の赤外線検出装置は、2次元に配列された赤外線検出素子の出力を処理する処理回路で発生するドリフトノイズを補正するためのデータを記憶する不揮発性のメモリを持ち、2次元に配列された赤外線検出素子を選択して信号処理回路へ入力する切り替え回路へのコントロール信号を出し、信号処理回路からの出力をサンプルホールド、A/D変換を行い、得られたデータを不揮発性メモリに演算記憶した補正データ、及び、各信号処理系に対し複数配置した感度を持たない参照画素から得られるデータで求めた補正値で信号処理系の温度変化によるドリフト補正を行い、補正したデジタルデータを出力するCPUを、赤外線検出素子を構築した同一シリコンチップ内に内蔵する。   In order to solve the above-described problems, an infrared detection device according to the present invention is a nonvolatile memory that stores data for correcting drift noise generated in a processing circuit that processes the output of two-dimensionally arranged infrared detection elements. To obtain a control signal to a switching circuit that selects two-dimensionally arranged infrared detection elements and inputs them to the signal processing circuit, samples and holds the output from the signal processing circuit, and performs A / D conversion. Drift correction due to temperature changes in the signal processing system using correction data obtained by computing and storing the stored data in a non-volatile memory and correction values obtained from data obtained from reference pixels that do not have multiple sensitivities for each signal processing system The CPU that outputs the corrected digital data is built in the same silicon chip on which the infrared detection element is constructed.

本発明によれば、時間変化、環境温度変化によって赤外線検出素子及び信号処理で発生するドリフトを除去し安定したデジタルデータを出力し、特殊なノウハウを必要とせず、簡単に使用できる赤外線撮像装置を提供できる。   According to the present invention, there is provided an infrared imaging device that removes a drift caused by an infrared detection element and signal processing due to time change and environmental temperature change, outputs stable digital data, and does not require special know-how and can be used easily. Can be provided.

本発明の実施例1に係る赤外線撮像装置の実施形態を示す図である。It is a figure which shows embodiment of the infrared imaging device which concerns on Example 1 of this invention.

以下、本発明の実施の形態について説明する。
2次元に配列された赤外線検出素子として抵抗変化型のボロメータを使用した赤外線撮像装置の実施例で説明を簡単にするため4×4画素の赤外線検出素子を2系列の信号処理回路で処理した場合を想定する。
Embodiments of the present invention will be described below.
In the case of processing an infrared detection element of 4 × 4 pixels by two series of signal processing circuits in order to simplify the description in the embodiment of the infrared imaging device using a resistance change type bolometer as the two-dimensionally arranged infrared detection elements. Is assumed.

図1では2次元に配列された赤外線検出センサ列103の4列、4行の内、出力B及び出力C、出力D及び出力E、各2列の出力を切り替え1つの信号処理系で信号処理を行うように接続されている。また、各信号処理系108,109に対し感度を持たない参照画素列102からの出力A、参照画素列104からの出力Fが接続されている。    In FIG. 1, the output B and output C, the output D and output E, and the output of each of the two columns of the four rows and four rows of the infrared detection sensor row 103 arranged in two dimensions are switched, and signal processing is performed by one signal processing system. Connected to do. Further, the output A from the reference pixel column 102 and the output F from the reference pixel column 104 which are not sensitive to the signal processing systems 108 and 109 are connected.

工場出荷前に一定常温環境下で、モード切り替え入力信号115を初期設定モードにして赤外線撮像装置に通電を行うと内蔵CPU101は初期設定モードであると判断し、初期設定モードに入る。初期設定モードではCPU101は垂直切り替え回路105に対し垂直方向切り替え信号を、水平切り替え信号108,109に対し水平方向切り替え信号を順次出力し、各画素からの出力を信号処理回路108,109に導き、信号処理、サンプルホールド110でサンプルホールド、A/D変換器112でA/D変換を行い、各画素からの出力変換データをCPU101内蔵の揮発性メモリ114に記憶していく。すべての画素からの信号を変換記憶が終了すると、同様の処理を繰り返し、各画素の変換データと前回記憶した変換データとの差分を取りながら、全画素の差分が設定値以下になるまで同じ処理を繰り返す。各画素の差分がすべて設定値以下になるとCPU101は赤外線撮像装置が熱的に安定な状態になったと判断し、参照画素列102に含まれる4素子の変換データの平均を求め信号処理回路108及び、信号処理回路108で処理される赤外線検出センサ列103の補正データとして不揮発性メモリ114に記憶する。次に、参照画素列104に含まれる4素子の変換データの平均を求め信号処理回路109及び、信号処理回路109で処理される赤外線検出センサ列103の補正データとして不揮発性メモリ114に記憶する。    When the infrared imaging apparatus is energized with the mode switching input signal 115 set to the initial setting mode under a constant room temperature environment before factory shipment, the built-in CPU 101 determines that it is the initial setting mode and enters the initial setting mode. In the initial setting mode, the CPU 101 sequentially outputs a vertical direction switching signal to the vertical switching circuit 105, a horizontal direction switching signal to the horizontal switching signals 108 and 109, and outputs from each pixel to the signal processing circuits 108 and 109, Signal processing, sample hold 110 performs sample hold, A / D converter 112 performs A / D conversion, and output conversion data from each pixel is stored in volatile memory 114 built in CPU 101. When conversion and storage of signals from all pixels is completed, the same processing is repeated, and the same processing is performed until the difference between all the pixels falls below the set value while taking the difference between the conversion data of each pixel and the conversion data stored last time. repeat. When all the differences between the pixels are equal to or less than the set value, the CPU 101 determines that the infrared imaging device is in a thermally stable state, obtains an average of the conversion data of the four elements included in the reference pixel array 102, and the signal processing circuit 108 and The correction data of the infrared detection sensor array 103 processed by the signal processing circuit 108 is stored in the nonvolatile memory 114. Next, the average of the conversion data of the four elements included in the reference pixel column 104 is obtained and stored in the nonvolatile memory 114 as correction data for the signal processing circuit 109 and the infrared detection sensor column 103 processed by the signal processing circuit 109.

工場出荷後赤外線検出装置を機器に組み込んだ場合、モード切り替え信号115は計測モードに固定され、機器に電源が投入されると内臓CPU101は計測モードに入る。計測モードではCPU101は初期設定モードと同様に垂直方向切り替え回路105に対し垂直方向切り替え信号を、水平方向切り替え回路106,107に対し水平方向切り替え信号を順次出力、各画素からの出力を信号処理回路108,109に導き、信号処理回路108,109で信号処理、サンプルホールド回路110、111でサンプルホールド、A/D変換器112でA/D変換を行い、変換データをCPU101内蔵の揮発性メモリに記憶していく。しかし、この時はまだデジタルデータとしては出力しない。この変換データは温度変化によるセンサ素子のドリフト出力と、処理回路108、109による温度ドリフトを含んだ値となっている。そのドリフト値を減算処理するため、すべての画素からの信号の変換記憶が終了するとCPU101は揮発性メモリに記憶したデータの中から参照画素列102に含まれる4画素の変換データの平均を求め、工場出荷前初期設定モードで不揮発性メモリ114に記憶した参照画素列102の平均データとの差分を求める。この差分データはセンサ出力と信号処理回路108の初期設定モード時の温度からの温度差による温度ドリフトの値となっている。その差分を赤外線センサ列103の出力B、出力Cで出力され信号処理回路108で処理記憶した各画素の変換データから減算し補正後のデジタルデータとして出力する。
同様に、CPU101は揮発性メモリに記憶したデータの中から参照画素列104に含まれる4画素の変換データの平均を求め、工場出荷前初期設定モードで不揮発性メモリ114に記憶した参照画素列104の平均データとの差分を求める。この差分データはセンサ出力と信号処理回路109の初期設定モード時の温度からの温度差による温度ドリフトの値となっている。その差分を赤外線センサ列103の出力D、出力Eで出力され信号処理回路109で処理記憶した各画素の変換データから減算し補正後のデジタルデータとして出力する 。
When the infrared detection device is incorporated in the device after shipment from the factory, the mode switching signal 115 is fixed to the measurement mode, and the internal CPU 101 enters the measurement mode when the device is turned on. In the measurement mode, the CPU 101 sequentially outputs a vertical direction switching signal to the vertical direction switching circuit 105, a horizontal direction switching signal to the horizontal direction switching circuits 106 and 107, and an output from each pixel as in the initial setting mode. 108, 109, signal processing by the signal processing circuits 108, 109, sample hold by the sample hold circuits 110, 111, A / D conversion by the A / D converter 112, and conversion data to the volatile memory built in the CPU 101 I will remember it. However, at this time, it is not yet output as digital data. This conversion data is a value including a drift output of the sensor element due to a temperature change and a temperature drift by the processing circuits 108 and 109. In order to subtract the drift value, when the conversion storage of signals from all the pixels is completed, the CPU 101 obtains the average of the conversion data of the four pixels included in the reference pixel row 102 from the data stored in the volatile memory, The difference with the average data of the reference pixel row 102 stored in the nonvolatile memory 114 in the initial setting mode before factory shipment is obtained. This difference data is a value of temperature drift due to a temperature difference from the sensor output and the temperature in the initial setting mode of the signal processing circuit 108. The difference is subtracted from the conversion data of each pixel that is output at the output B and output C of the infrared sensor array 103 and processed and stored in the signal processing circuit 108, and is output as corrected digital data.
Similarly, the CPU 101 obtains the average of the conversion data of the four pixels included in the reference pixel column 104 from the data stored in the volatile memory, and stores the reference pixel column 104 stored in the nonvolatile memory 114 in the pre-factory initial setting mode. Find the difference from the average data. This difference data is a value of temperature drift due to a temperature difference from the sensor output and the temperature in the initial setting mode of the signal processing circuit 109. The difference is subtracted from the conversion data of each pixel output by the output D and output E of the infrared sensor array 103 and processed and stored by the signal processing circuit 109, and is output as corrected digital data.

以上の処理を繰り返すことにより環境温度変化によるセンサ素子出力の温度ドリフト、各信号処理回路の温度ドリフトを補正し、赤外線検出信号を安定したデジタルデータに変換し出力する。    By repeating the above processing, the temperature drift of the sensor element output due to the environmental temperature change and the temperature drift of each signal processing circuit are corrected, and the infrared detection signal is converted into stable digital data and output.

本発明の赤外線検出装置が出力するデジタルデータは環境温度変化によるドリフトを補正したデジタルデータとなるため、機器に組み込んで使用する場合、特別な補正ノウハウを必要とせず使用することができ、あらゆる分野で簡単に使用できる赤外線検出装置を提供できる。    Since the digital data output by the infrared detection device of the present invention is digital data in which drift due to environmental temperature changes is corrected, it can be used without requiring special correction know-how when used in a device. It is possible to provide an infrared detector that can be used easily.

101 補正演算処理用CPU+揮発性メモリ
102 参照画素列
103 赤外線検出センサ列
104 参照画素列
105 垂直方向切り替え回路
106 水平方向切り替え回路
107 水平方向切り替え回路
108 信号処理回路
109 信号処理回路
110 サンプルホールド回路
111 サンプルホールド回路
112 A/D変換器
113 バイアス回路
114 不揮発性メモリ
115 モード切り替え回路
101 CPU for correction calculation + volatile memory 102 Reference pixel array 103 Infrared detection sensor array 104 Reference pixel array 105 Vertical direction switching circuit 106 Horizontal direction switching circuit 107 Horizontal direction switching circuit 108 Signal processing circuit 109 Signal processing circuit 110 Sample hold circuit 111 Sample hold circuit 112 A / D converter 113 Bias circuit 114 Non-volatile memory 115 Mode switching circuit

Claims (4)

2次元に配置されたアレイ状の赤外線検出素子からの出力を並列に配置された複数の信号処理系で処理する場合、その信号処理系の温度ドリフト等で発生するノイズを演算補正除去するためのCPU、各画素から読み込んだデータを格納するための揮発性メモリと、あらかじめ計測した補正データを記憶しておく不揮発性メモリを、赤外線検出素子を構築した同一シリコンチップ内に内蔵することを特徴とする赤外線検出装置。   When processing the output from the two-dimensional array of infrared detection elements by a plurality of signal processing systems arranged in parallel, noise generated due to temperature drift of the signal processing system is corrected and removed. A CPU, a volatile memory for storing data read from each pixel, and a non-volatile memory for storing correction data measured in advance are built in the same silicon chip on which the infrared detection element is built. Infrared detector to do. 数列のセンサ列を切り替え1つの信号処理系で信号処理を行い、その信号処理系を複数持つ場合、それらの信号処理系に対し、信号処理系の温度ドリフトで等で発生するノイズを補正するため、赤外線検出素子とは独立した感度を持たない参照素子を持つことを特徴とする赤外線検出装置。   When several sensor arrays are switched and signal processing is performed by one signal processing system, and there are a plurality of signal processing systems, noise generated due to temperature drift of the signal processing system is corrected for these signal processing systems. An infrared detection apparatus comprising a reference element having no sensitivity independent of the infrared detection element. 内蔵したCPUは2次元配置されたアレイ状の赤外線検出素子からの信号を選択し、並列に配置された信号処理系に出力するコントロール信号を出力することを特徴とする請求項1項に記載の赤外線検出装置。   The built-in CPU selects a signal from the two-dimensionally arranged array of infrared detection elements, and outputs a control signal to be output to a signal processing system arranged in parallel. Infrared detector. 内蔵したCPUは動作モードに初期設定モードと計測モードを持つことを特徴とする請求項1項記載の赤外線検出装置。   The infrared detection apparatus according to claim 1, wherein the built-in CPU has an initial setting mode and a measurement mode as operation modes.
JP2011223176A 2011-10-07 2011-10-07 Infrared detecting device Pending JP2013083534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223176A JP2013083534A (en) 2011-10-07 2011-10-07 Infrared detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223176A JP2013083534A (en) 2011-10-07 2011-10-07 Infrared detecting device

Publications (1)

Publication Number Publication Date
JP2013083534A true JP2013083534A (en) 2013-05-09

Family

ID=48528876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223176A Pending JP2013083534A (en) 2011-10-07 2011-10-07 Infrared detecting device

Country Status (1)

Country Link
JP (1) JP2013083534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528675A (en) * 2013-09-22 2014-01-22 华中科技大学 Wide-illuminance panchromatic imaging detection chip
CN113701891A (en) * 2021-08-25 2021-11-26 西安中科立德红外科技有限公司 Temperature drift suppression model construction method, image processing method, device and equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528675A (en) * 2013-09-22 2014-01-22 华中科技大学 Wide-illuminance panchromatic imaging detection chip
CN113701891A (en) * 2021-08-25 2021-11-26 西安中科立德红外科技有限公司 Temperature drift suppression model construction method, image processing method, device and equipment

Similar Documents

Publication Publication Date Title
US20160041039A1 (en) Sensor calibration method, computer program and computer readable medium
JP5845301B2 (en) Infrared radiation detection device with resistive imaging bolometer and system with an array of such bolometers
CN103776544B (en) A kind of reading circuit of un-cooled infrared focal plane array
US20070273775A1 (en) Image sensor with built-in thermometer for global black level calibration and temperature-dependent color correction
US8754358B2 (en) CMOS sensor array
CN107462345B (en) Temperature measuring device
EP1988704A2 (en) Image capturing system, signal processing circuit, and signal processing method
KR101158259B1 (en) Read out integrated circuit of infrared detection sensor and correcting method thereof
US9894300B2 (en) Image sensing device for measuring temperature without temperature sensor and method for driving the same
US20180084205A1 (en) Infrared imaging device and signal correction method using infrared imaging device
JP2007013292A (en) Imaging apparatus
US9191592B2 (en) Imaging sensor anomalous pixel column detection and calibration
ES2888933T3 (en) Improved imaging method and apparatus
Marcotte et al. Infrared camera NUC and calibration: comparison of advanced methods
EP3447461B1 (en) Infrared imaging element and infrared camera
JPH09168116A (en) Thermal type infrared ray image pickup device
JP2008111754A (en) Thermal-type infrared imaging device and its operating method
JP2008268155A (en) Thermal type infrared solid-state imaging element
US11792536B2 (en) Device and method for parasitic heat compensation in an infrared camera
JP2013083534A (en) Infrared detecting device
JP2011142558A (en) Image sensor and imaging system
CN113837954A (en) Method of processing raw images collected by bolometer detectors and related devices
US11601606B2 (en) Device and method for parasitic heat compensation in an infrared camera
JP2012058064A (en) Method for correcting data of infrared imaging device
KR102015087B1 (en) Pixel array structure for terahertz image sensor, terahertz image sensor, method of manufacturing the same and image apparatus comprising the same