JP2013083281A - Cross shaft joint and manufacturing method of the same - Google Patents

Cross shaft joint and manufacturing method of the same Download PDF

Info

Publication number
JP2013083281A
JP2013083281A JP2011221823A JP2011221823A JP2013083281A JP 2013083281 A JP2013083281 A JP 2013083281A JP 2011221823 A JP2011221823 A JP 2011221823A JP 2011221823 A JP2011221823 A JP 2011221823A JP 2013083281 A JP2013083281 A JP 2013083281A
Authority
JP
Japan
Prior art keywords
cross
driven
shaft
drive
side shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011221823A
Other languages
Japanese (ja)
Inventor
Akio Suzuki
昭夫 鈴木
Satoshi Araki
聡 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011221823A priority Critical patent/JP2013083281A/en
Publication of JP2013083281A publication Critical patent/JP2013083281A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cross shaft joint capable of preventing the fluctuation of strength of a cross shaft member and securing stable strength of the cross shaft member and the method for manufacturing the same.SOLUTION: Discriminating elements 60 capable of discriminating the direction of fiber flow 100 is arranged in the cross shaft member 30. The cross shaft member 30 is attached to a driving side yoke 10 and a driven side yoke 20 such that the fiber flow 100 connects a driving side shaft part 32A and a driven side shaft part 33B adjacent to an opposite side of a torque load direction to the driving side shaft part 32A and the fiber flow 100 connects a driving side shaft part 34A and a driven side shaft part 35B adjacent to an opposite side of the torque load direction to the driving shaft part 34A based on the discriminating elements 60.

Description

本発明は、一対のヨーク部材を十字軸部材により連結して構成される十字軸継手およびその製造方法に関するものである。   The present invention relates to a cruciform joint formed by connecting a pair of yoke members with a cruciform member, and a method of manufacturing the same.

十字軸継手は、一対のヨーク部材とそれらを連結する十字軸部材とを備えて構成される。十字軸部材は、胴部と該胴部からから十字状に配置された4つの軸部とを備える。この十字軸部材は、例えば特開平9−151955号公報(特許文献1)に記載されているように、鍛造により形成される。   The cruciform joint includes a pair of yoke members and a cruciform shaft member that connects them. The cross shaft member includes a body portion and four shaft portions arranged in a cross shape from the body portion. This cross shaft member is formed by forging as described in, for example, Japanese Patent Laid-Open No. 9-151955 (Patent Document 1).

ところで、鍛造により形成される製品には、ファイバーフロー(メタルフロー、鍛流線とも称される)という金属組織の流れが生じる。ファイバーフローについては、例えば、特開2008−36710号公報(特許文献2)に記載されている。   By the way, in a product formed by forging, a flow of metal structure called fiber flow (also called metal flow or forged streamline) is generated. About fiber flow, it describes in Unexamined-Japanese-Patent No. 2008-36710 (patent document 2), for example.

特開平9−151955号公報JP-A-9-151955 特開2008−36710号公報JP 2008-36710 A

ところで、十字軸継手において、十字軸部材の強度にばらつきが生じていた。
本発明は、このような事情に鑑みてなされたものであり、十字軸部材の強度のばらつきを防止し、十字軸部材の安定した強度を確保できる十字軸継手およびその製造方法を提供することを目的とする。
By the way, in the cross shaft joint, the strength of the cross shaft member varies.
The present invention has been made in view of such circumstances, and provides a cross joint and a method for manufacturing the same, which can prevent variation in strength of the cross shaft member and ensure stable strength of the cross shaft member. Objective.

そこで、本発明者は、鋭意研究を重ね、十字軸部材の強度のばらつきとファイバーフローとの関係に着目し、本発明を発明するに至った。すなわち、ファイバーフローの方向と伝達トルクの方向との関係を統一することとした。本発明に係る十字軸継手およびその製造方法は、以下の通りである。   Therefore, the present inventor has conducted extensive research and has invented the present invention by paying attention to the relationship between the variation in strength of the cross shaft member and the fiber flow. That is, the relationship between the direction of fiber flow and the direction of transmission torque was unified. The cross joint and the manufacturing method thereof according to the present invention are as follows.

(十字軸継手)
(請求項1)本発明に係る十字軸継手は、胴部と該胴部から十字状に配置された4つの軸部とを備える十字軸部材と、4つの前記軸部のうち同軸状の2つの駆動側軸部に取り付けられ、回転駆動力を前記駆動側軸部に伝達する駆動側ヨークと、4つの前記軸部のうち残りの2つの従動側軸部に取り付けられ、前記従動側軸部から回転駆動力が伝達される従動側ヨークと、を備え、前記十字軸部材には、鍛造形成によって、一方の前記駆動側軸部とそれに隣り合う前記従動側軸部とをつなぐと共に、他方の前記駆動側軸部とそれに隣り合う前記従動側軸部とをつなぐようにファイバーフローが形成され、前記十字軸部材には、前記ファイバーフローの方向を識別可能な識別子が設けられ、前記駆動側軸部が前記駆動側ヨークから受ける伝達トルクの方向をトルク負荷方向と定義し、前記識別子に基づいて前記駆動側軸部と該駆動側軸部に対して前記トルク負荷方向の反対側に隣り合う前記従動側軸部とを前記ファイバーフローがつなぐように、前記十字軸部材が前記駆動側ヨークおよび前記従動側ヨークに取り付けられている。
(Cross shaft joint)
(Claim 1) A cross shaft joint according to the present invention includes a cross shaft member including a body portion and four shaft portions arranged in a cross shape from the body portion, and a coaxial two of the four shaft portions. A drive-side yoke that is attached to one drive-side shaft portion and transmits a rotational driving force to the drive-side shaft portion, and is attached to the remaining two driven-side shaft portions of the four shaft portions, and the driven-side shaft portion A driven-side yoke to which a rotational driving force is transmitted from, and the cross shaft member is connected to one driven-side shaft portion and the driven-side shaft portion adjacent thereto by forging, and the other A fiber flow is formed so as to connect the driving side shaft portion and the driven side shaft portion adjacent thereto, and the cross shaft member is provided with an identifier capable of identifying the direction of the fiber flow, and the driving side shaft Transmission torque received from the drive side yoke Is defined as a torque load direction, and based on the identifier, the fiber flow includes the drive side shaft portion and the driven side shaft portion adjacent to the drive side shaft portion on the opposite side of the torque load direction. The cross shaft member is attached to the drive side yoke and the driven side yoke so as to be connected.

(請求項2)また、前記十字軸継手は、最大トルクがかかる主回転方向と該主回転方向の反対方向である副回転方向とに回転可能であり、前記識別子に基づいて前記駆動側軸部と該駆動側軸部に対して前記副回転方向に隣り合う前記従動側軸部とを前記ファイバーフローがつなぐように、前記十字軸部材が前記駆動側ヨークおよび前記従動側ヨークに取り付けられているとしてもよい。
(請求項3)また、前記十字軸継手は、車両の動力伝達装置に適用され、前記主回転方向は、車両の前進時の前記十字軸継手の回転方向としてもよい。
(Claim 2) Further, the cross shaft joint is rotatable in a main rotation direction where the maximum torque is applied and a sub rotation direction which is opposite to the main rotation direction, and based on the identifier, the driving side shaft portion The cross shaft member is attached to the driving side yoke and the driven side yoke so that the fiber flow connects the driven side shaft portion adjacent to the driving side shaft portion in the sub rotation direction. It is good.
(Claim 3) The cross shaft joint may be applied to a power transmission device of a vehicle, and the main rotation direction may be a rotation direction of the cross shaft joint when the vehicle moves forward.

(十字軸継手の製造方法)
(請求項4)本発明に係る十字軸継手の製造方法は、以下の通りである。前記十字軸継手は、胴部と該胴部から十字状に配置された4つの軸部とを備える十字軸部材と、4つの前記軸部のうち同軸状の2つの駆動側軸部に取り付けられ、回転駆動力を前記駆動側軸部に伝達する駆動側ヨークと、4つの前記軸部のうち残りの2つの従動側軸部に取り付けられ、前記従動側軸部から回転駆動力が伝達される従動側ヨークと、を備え、前記十字軸部材には、鍛造形成によって、一方の前記駆動側軸部とそれに隣り合う前記従動側軸部とをつなぐと共に、他方の前記駆動側軸部とそれに隣り合う前記従動側軸部とをつなぐようにファイバーフローが形成され、前記十字軸部材には、前記ファイバーフローの方向を識別可能な識別子が設けられる。駆動側軸部が前記駆動側ヨークから受ける伝達トルクの方向をトルク負荷方向と定義する。そして、前記識別子に基づいて前記駆動側軸部と該駆動側軸部に対して前記トルク負荷方向の反対側に隣り合う前記従動側軸部とを前記ファイバーフローがつなぐように、前記十字軸部材を前記駆動側ヨークおよび前記従動側ヨークに取り付ける。
(Cross shaft joint manufacturing method)
(Claim 4) The method of manufacturing the cross joint according to the present invention is as follows. The cross shaft joint is attached to a cross shaft member including a body portion and four shaft portions arranged in a cross shape from the body portion, and two drive side shaft portions that are coaxial among the four shaft portions. The drive side yoke that transmits the rotational drive force to the drive side shaft portion and the remaining two driven side shaft portions of the four shaft portions are attached, and the rotational drive force is transmitted from the driven side shaft portion. A driven-side yoke, and the cross shaft member is connected to one of the driving-side shafts and the driven-side shaft adjacent thereto by forging, and the other driving-side shaft is adjacent to the driven-side shaft. A fiber flow is formed so as to connect the corresponding driven shaft portions, and an identifier capable of identifying the direction of the fiber flow is provided on the cross shaft member. The direction of the transmission torque that the drive side shaft receives from the drive side yoke is defined as the torque load direction. The cross shaft member connects the drive-side shaft portion and the driven-side shaft portion adjacent to the opposite side of the torque load direction with respect to the drive-side shaft portion based on the identifier. Are attached to the drive side yoke and the driven side yoke.

(請求項1)本発明によれば、駆動側軸部と該駆動側軸部に対してトルク負荷方向の反対側に隣り合う従動側軸部とをファイバーフローがつなぐように、十字軸部材が駆動側ヨークおよび従動側ヨークに取り付けられている。このような取付を行うために、識別子に基づいて行われる。   (Claim 1) According to the present invention, the cross shaft member is connected so that the fiber flow connects the driving side shaft portion and the driven side shaft portion adjacent to the driving side shaft portion on the opposite side of the torque load direction. It is attached to the drive side yoke and the driven side yoke. In order to perform such attachment, it is performed based on the identifier.

十字軸部材にかかる力について説明する。十字軸部材は、駆動側ヨークから回転駆動力が伝達されて、従動側ヨークへ回転駆動力を伝達する。そのため、十字軸部材における隣り合う軸部同士は、周方向に遠ざかるように変形する場合と、周方向近づくように変形する場合とがある。具体的には、ある駆動側軸部と該駆動側軸部に対してトルク負荷方向に隣り合う従動側軸部とは、周方向に近づくように変形する。一方、ある駆動側軸部と該駆動側軸部に対してトルク負荷方向の反対側に隣り合う従動側軸部とは、周方向に遠ざかるように変形する。   The force applied to the cross shaft member will be described. The cross shaft member receives the rotational driving force from the driving side yoke and transmits the rotational driving force to the driven side yoke. Therefore, the adjacent shaft portions in the cross shaft member may be deformed so as to move away from each other in the circumferential direction, or may be deformed so as to approach the circumferential direction. Specifically, a certain driving side shaft portion and a driven side shaft portion adjacent to the driving side shaft portion in the torque load direction are deformed so as to approach the circumferential direction. On the other hand, a certain drive-side shaft portion and a driven-side shaft portion adjacent to the opposite side of the torque load direction with respect to the drive-side shaft portion are deformed to move away from the circumferential direction.

ここで、ファイバーフローの方向と強度との関係について説明する。ファイバーフローの延びている方向に対して直交する方向のせん断力に対して、大きな強度を有する。一方、ファイバーフローの延びている方向に平行な方向のせん断力に対しては、相対的に強度が低下する。本発明によれば、ファイバーフローは、駆動側軸部と該駆動側軸部に対してトルク負荷方向の反対側に隣り合う従動側軸部とをつなぐように流れている。つまり、ファイバーフローによりつながれている駆動側軸部と従動側軸部とが遠ざかるように変形する。そうすると、当該駆動側軸部と当該従動側軸部との間には、せん断力が作用する。   Here, the relationship between the direction of fiber flow and strength will be described. High strength against shearing force in a direction perpendicular to the direction in which the fiber flow extends. On the other hand, the strength is relatively reduced with respect to a shearing force in a direction parallel to the direction in which the fiber flow extends. According to the present invention, the fiber flow flows so as to connect the driving side shaft portion and the driven side shaft portion adjacent to the driving side shaft portion on the opposite side in the torque load direction. In other words, the driving side shaft portion and the driven side shaft portion connected by the fiber flow are deformed so as to move away from each other. Then, a shearing force acts between the driving side shaft portion and the driven side shaft portion.

しかしながら、当該軸部同士は、ファイバーフローによりつながれているため、せん断力に対して高い強度を有する。従って、常に、駆動側軸部と該駆動側軸部に対してトルク負荷方向の反対側に隣り合う従動側軸部とをファイバーフローがつなぐように、十字軸部材が駆動側ヨークおよび従動側ヨークに取り付けることで、強度のばらつきを防止して、強度の安定化を図ることができる。   However, since the shaft portions are connected by the fiber flow, the shaft portions have high strength against shearing force. Therefore, the cross shaft member is always connected to the drive side yoke and the driven side yoke so that the fiber flow connects the drive side shaft portion and the driven side shaft portion adjacent to the drive side shaft portion on the opposite side of the torque load direction. By attaching to, strength variation can be prevented and strength can be stabilized.

そして、常に上記のように取り付けるために、十字軸部材に設けられている識別子を用いている。この識別子は、十字軸部材に設けられ、ファイバーフローの方向を識別可能な識別子である。つまり、識別子に基づいて、十字軸部材を駆動側ヨークおよび従動側ヨークに取り付けることで、確実にばらつきを防止でき、強度の安定化を図ることができる。   And in order to always attach as mentioned above, the identifier provided in the cross shaft member is used. This identifier is provided on the cross shaft member and is an identifier that can identify the direction of the fiber flow. That is, by attaching the cross shaft member to the drive side yoke and the driven side yoke based on the identifier, it is possible to surely prevent variations and to stabilize the strength.

(請求項2)十字軸継手が両方向に回転する場合であって、最大トルクに差があることが一般的である。そこで、最大トルクが大きい方を主回転方向とし、最大トルクが小さい方を副回転方向とする。この場合に、識別子に基づいて駆動側軸部と該駆動側軸部に対して副回転方向に隣り合う従動側軸部とをファイバーフローがつなぐようにすることで、主回転方向に十字軸継手が回転する場合に高い強度にできる。
(請求項3)車両の動力伝達装置に十字軸継手を適用する場合には、車両の前進時における十字軸継手の回転方向の場合に最大トルクが生じる。そこで、主回転方向を、車両の前進時の十字軸継手の回転方向とすることで、確実に上記効果を奏する。
(Claim 2) When the cross shaft joint rotates in both directions, there is generally a difference in the maximum torque. Therefore, the direction with the largest maximum torque is set as the main rotation direction, and the direction with the small maximum torque is set as the sub rotation direction. In this case, the cross flow joint is formed in the main rotational direction by connecting the drive side shaft portion and the driven side shaft portion adjacent to the drive side shaft portion in the sub rotation direction based on the identifier. High strength when rotating.
(Claim 3) When the cross shaft joint is applied to the power transmission device of the vehicle, the maximum torque is generated in the rotational direction of the cross shaft joint when the vehicle moves forward. Then, the said effect is show | played reliably by making the main rotation direction into the rotation direction of the cross-shaft coupling at the time of vehicle advance.

(請求項4)上記においては、本発明を十字軸継手として捉えたが、本発明は、十字軸継手の製造方法として捉えることもできる。そこで、本発明に係る十字軸継手の製造方法によれば、上記の十字軸継手による効果を奏する。   (Claim 4) In the above description, the present invention is regarded as a cross joint, but the present invention can also be regarded as a method for manufacturing a cross joint. Then, according to the manufacturing method of the cross shaft coupling which concerns on this invention, there exists an effect by said cross shaft coupling.

本実施形態における十字軸継手の全体図である。It is a general view of a cross joint in this embodiment. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 本実施形態における十字軸継手の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the cross joint in this embodiment. 図2の十字軸部材のファイバーフローを示す模式図であり、二点鎖線にて変形後の十字軸部材の形状を示す。It is a schematic diagram which shows the fiber flow of the cross shaft member of FIG. 2, and shows the shape of the cross shaft member after a deformation | transformation with a dashed-two dotted line. 比較例としての十字軸部材のファイバーフローを示す模式図であり、二点鎖線にて変形後の十字軸部材の形状を示す。It is a schematic diagram which shows the fiber flow of the cross shaft member as a comparative example, and shows the shape of the cross shaft member after deformation | transformation with a dashed-two dotted line.

(十字軸継手の構成)
本実施形態の十字軸継手の構成について、図1および図2を参照して説明する。十字軸継手は、例えば、車両の動力伝達装置を構成するプロペラシャフトとして適用される。なお、本発明の十字軸継手は、プロペラシャフトに限られるものではなく、他の回転駆動力を伝達する装置に適用可能である。ただし、以下において、プロペラシャフトに適用した場合における十字軸継手について説明する。
(Cross shaft joint configuration)
The structure of the cross shaft coupling of this embodiment is demonstrated with reference to FIG. 1 and FIG. The cross shaft joint is applied as, for example, a propeller shaft constituting a power transmission device of a vehicle. The cross joint of the present invention is not limited to the propeller shaft, and can be applied to other devices that transmit rotational driving force. However, the cross shaft joint when applied to a propeller shaft will be described below.

十字軸継手1の概要について、図1を参照して説明する。十字軸継手1は、2つのシャフト2,3を連結しており、両シャフト2,3を傾けた状態で回転駆動力を一方のシャフト2から他方のシャフト3へ伝達する。ここで、一方のシャフト2は、エンジンなどの駆動源(図示せず)から回転駆動力を伝達されたシャフトであり、以下、駆動側シャフトと称する。従動側シャフト3は、ディファレンシャル装置(図示せず)側に連結され、駆動側シャフト2から十字軸継手1を介して伝達された回転駆動力をディファレンシャル装置へ伝達する。   An outline of the cross joint 1 will be described with reference to FIG. The cross joint 1 connects two shafts 2 and 3, and transmits a rotational driving force from one shaft 2 to the other shaft 3 in a state where both shafts 2 and 3 are inclined. Here, one shaft 2 is a shaft to which a rotational driving force is transmitted from a driving source (not shown) such as an engine, and is hereinafter referred to as a driving side shaft. The driven side shaft 3 is connected to a differential device (not shown), and transmits the rotational driving force transmitted from the drive side shaft 2 via the cross joint 1 to the differential device.

ここで、車両の前進時におけるプロペラシャフトの回転方向を図1の回転矢印にて示す。車両前進時の回転方向を主回転方向とする。一方、車両の後進時におけるプロペラシャフトの回転方向は、図1の回転矢印とは反対方向となる。車両後進時の回転方向を副回転方向とする。一般に、主回転方向は、副回転方向に比べて、最大トルクが大きく、かつ、使用頻度が高い。   Here, the direction of rotation of the propeller shaft when the vehicle is moving forward is indicated by a rotation arrow in FIG. The rotation direction when the vehicle moves forward is the main rotation direction. On the other hand, the rotation direction of the propeller shaft when the vehicle is moving backward is opposite to the rotation arrow in FIG. The direction of rotation when the vehicle is moving backward is the sub-rotation direction. In general, the main rotation direction has a larger maximum torque and a higher use frequency than the sub rotation direction.

次に、十字軸継手1の詳細構成について図1および図2を参照して説明する。十字軸継手1は、駆動側ヨーク10と、従動側ヨーク20と、十字軸部材30と、キャップユニット40と、スナップリング50とを備えて構成される。また、図2において、車両前進時である正回転方向を時計回りとする。   Next, a detailed configuration of the cross joint 1 will be described with reference to FIGS. 1 and 2. The cross shaft joint 1 includes a drive side yoke 10, a driven side yoke 20, a cross shaft member 30, a cap unit 40, and a snap ring 50. In FIG. 2, the forward rotation direction when the vehicle moves forward is clockwise.

駆動側ヨーク10は、駆動側シャフト2の一端に設けられ、駆動側シャフト2の軸方向外方に開口するU字形状状に形成されている。この駆動側ヨーク10の対向面には、駆動側シャフト2の軸方向に直交する軸に同軸状となるように貫通孔11,11が形成されている。   The drive-side yoke 10 is provided at one end of the drive-side shaft 2 and is formed in a U shape that opens outward in the axial direction of the drive-side shaft 2. Through holes 11, 11 are formed on the opposing surface of the drive side yoke 10 so as to be coaxial with an axis orthogonal to the axial direction of the drive side shaft 2.

従動側ヨーク20は、従動側シャフト3の一端に設けられ、従動側シャフト3の軸方向外方に開口するU字形状状に形成されている。この従動側ヨーク20の対向面には、従動側シャフト3の軸方向に直交する軸に同軸状となるように貫通孔21,21が形成されている。そして、駆動側ヨーク10のU字形状の開口側と従動側ヨーク20のU字形状の開口側とが向かい合うように、両ヨーク10,20が配置される。   The driven-side yoke 20 is provided at one end of the driven-side shaft 3 and is formed in a U-shape that opens outward in the axial direction of the driven-side shaft 3. Through holes 21 and 21 are formed on the opposing surface of the driven side yoke 20 so as to be coaxial with an axis orthogonal to the axial direction of the driven side shaft 3. The two yokes 10 and 20 are arranged so that the U-shaped opening side of the drive side yoke 10 and the U-shaped opening side of the driven side yoke 20 face each other.

十字軸部材30は、駆動側ヨーク10および従動側ヨーク20に連結され、駆動側ヨーク10から従動側ヨーク20へ回転駆動力トルクを伝達する。十字軸部材30は、図2に示すように、胴部31と、該胴部31から十字状に配置された4つの軸部32A,33B,34A,35Bとを備え、これらを一体的に形成されている。   The cross shaft member 30 is connected to the drive side yoke 10 and the driven side yoke 20, and transmits rotational driving force torque from the drive side yoke 10 to the driven side yoke 20. As shown in FIG. 2, the cross shaft member 30 includes a body portion 31 and four shaft portions 32A, 33B, 34A, and 35B arranged in a cross shape from the body portion 31, and these are integrally formed. Has been.

4つの軸部32A,33B,34A,35Bのうち2つの軸部32A,34Aは、ほぼ円柱状に形成され、かつ同軸状に設けられている。2つの軸部32A,34Aは、駆動側ヨーク10の貫通孔11,11にそれぞれ挿入されて取り付けられ、駆動側ヨーク10から回転駆動力が伝達される。そこで、以下、当該2つの軸部32A,34Aを、駆動側軸部32A,34Aと称する。   Of the four shaft portions 32A, 33B, 34A, 35B, the two shaft portions 32A, 34A are formed in a substantially cylindrical shape and are provided coaxially. The two shaft portions 32 </ b> A and 34 </ b> A are inserted and attached to the through holes 11 and 11 of the driving side yoke 10, respectively, and a rotational driving force is transmitted from the driving side yoke 10. Therefore, hereinafter, the two shaft portions 32A and 34A are referred to as drive-side shaft portions 32A and 34A.

また、残りの2つの軸部33B,35Bは、ほぼ円柱状に形成され、かつ同軸状に設けられている。そして、当該2つの軸部33B,35Bは、駆動側軸部32A,34Aに対して、90度の角度をなしている。2つの軸部33B,35Bは、従動側ヨーク20の貫通孔21,21にそれぞれ挿入されて取り付けられ、従動側ヨーク20へ回転駆動力を伝達する。そこで、以下、当該2つの軸部33B,35Bを、従動側軸部33B,35Bと称する。   The remaining two shaft portions 33B and 35B are formed in a substantially cylindrical shape and are provided coaxially. The two shaft portions 33B and 35B form an angle of 90 degrees with respect to the drive side shaft portions 32A and 34A. The two shaft portions 33 </ b> B and 35 </ b> B are inserted and attached to the through holes 21 and 21 of the driven side yoke 20, respectively, and transmit rotational driving force to the driven side yoke 20. Therefore, hereinafter, the two shaft portions 33B and 35B are referred to as driven-side shaft portions 33B and 35B.

さらに、胴部31には、駆動側軸部32A,34Aと従動側軸部33B,35Bとを識別可能となるように識別子60が設けられている。図2においては、例えば、識別子60は、駆動側軸部32A,34Aに近い位置に、焼き付けなどによる刻印を付している。この他に、駆動側軸部32A,34Aと従動側軸部33B,35Bとを識別可能であれば、識別子60は、刻印に限られず、凹状の穴などを形成してもよい。   Further, the body portion 31 is provided with an identifier 60 so that the drive side shaft portions 32A and 34A and the driven side shaft portions 33B and 35B can be identified. In FIG. 2, for example, the identifier 60 is marked by printing or the like at a position close to the drive side shaft portions 32A and 34A. In addition to this, the identifier 60 is not limited to engraving and may form a concave hole or the like as long as the driving side shaft portions 32A and 34A and the driven side shaft portions 33B and 35B can be identified.

キャップユニット40は、有底筒状に形成されており、それぞれの軸部32A,33B,34A,35Bに被せられ、それぞれの軸回りに相対回転可能に設けられている。さらに、キャップユニット40は、それぞれのヨーク10,20の貫通孔11,12に嵌め込まれている。このキャップユニット40は、カップ部41と、転動体42と、シール部材43とを備えて構成される。   The cap unit 40 is formed in a bottomed cylindrical shape, is placed on the respective shaft portions 32A, 33B, 34A, and 35B, and is provided so as to be relatively rotatable around the respective shafts. Further, the cap unit 40 is fitted into the through holes 11 and 12 of the respective yokes 10 and 20. The cap unit 40 includes a cup portion 41, rolling elements 42, and a seal member 43.

カップ部41は、有底円筒状に形成されており、各軸部32A,33B,34A,35Bを収容する。さらに、カップ部41は、各ヨーク10,20の各貫通孔11,12に嵌め込まれる。このカップ部41の外周面には、軸方向中央部に環状溝41aが形成されている。転動体42は、各カップ部41の内周面と各軸部32A,33B,34A,35Bの外周面との間に、周方向に沿って複数配置されている。つまり、転動体42は、各カップ部41と各軸部32A,33B,34A,35Bとが各軸回りに回転可能に支持する。シール部材43は、カップ部41の内周面の開口端側に固定され、各軸部32A,33B,34A,35Bの外周面の根元側に当接する。つまり、シール部材43は、外部からカップ部41の内部に塵埃が侵入することを防止する。   The cup part 41 is formed in a bottomed cylindrical shape and accommodates the shaft parts 32A, 33B, 34A, and 35B. Furthermore, the cup portion 41 is fitted into the through holes 11 and 12 of the yokes 10 and 20. On the outer peripheral surface of the cup portion 41, an annular groove 41a is formed in the central portion in the axial direction. A plurality of rolling elements 42 are arranged along the circumferential direction between the inner peripheral surface of each cup portion 41 and the outer peripheral surface of each shaft portion 32A, 33B, 34A, 35B. That is, the rolling element 42 supports each cup part 41 and each shaft part 32A, 33B, 34A, 35B so that rotation is possible around each axis. The seal member 43 is fixed to the opening end side of the inner peripheral surface of the cup portion 41 and abuts on the base side of the outer peripheral surface of each shaft portion 32A, 33B, 34A, 35B. That is, the seal member 43 prevents dust from entering the inside of the cup portion 41 from the outside.

スナップリング50は、各カップ部41の環状溝41aに装着され、各ヨーク10,20の貫通孔11,12の内側開口縁に対して係合する。つまり、スナップリング50は、各カップ部41が、各ヨーク10,20から径方向外方に離脱することを防止している。   The snap ring 50 is mounted in the annular groove 41 a of each cup portion 41 and engages with the inner opening edges of the through holes 11 and 12 of the yokes 10 and 20. In other words, the snap ring 50 prevents the cup portions 41 from detaching radially outward from the yokes 10 and 20.

(十字軸継手の製造方法)
上述した十字軸継手1の製造方法について、図3を参照して説明する。図3に示すように、キャップユニット40の組み付けを行う(S1)。すなわち、カップ部41、転動体42およびシール部材43を組み付ける。続いて、識別子60を確認しながら、識別子60が付されている側に位置する駆動側軸部32A,34Aを駆動側ヨーク10の貫通孔11,11に挿入する(S2)。続いて、キャップユニット40を、貫通孔11,11の外方から嵌め入れながら、駆動側軸部32A,34Aに装着する(S3)。続いて、スナップリング50を、駆動側軸部32A,34Aに装着したカップ部41の環状溝41aに装着する(S4)。このようにして、駆動側軸部32A,34Aは、キャップユニット40を介して、駆動側ヨーク10に取り付けられる。
(Cross shaft joint manufacturing method)
The manufacturing method of the cross joint 1 mentioned above is demonstrated with reference to FIG. As shown in FIG. 3, the cap unit 40 is assembled (S1). That is, the cup part 41, the rolling element 42, and the seal member 43 are assembled. Subsequently, while confirming the identifier 60, the drive side shaft portions 32A and 34A located on the side to which the identifier 60 is attached are inserted into the through holes 11 and 11 of the drive side yoke 10 (S2). Subsequently, the cap unit 40 is mounted on the drive side shaft portions 32A and 34A while being fitted from the outside of the through holes 11 and 11 (S3). Subsequently, the snap ring 50 is attached to the annular groove 41a of the cup portion 41 attached to the drive side shaft portions 32A and 34A (S4). In this manner, the drive side shaft portions 32A and 34A are attached to the drive side yoke 10 via the cap unit 40.

さらに続いて、識別子60が付されていない側に位置する従動側軸部33B,35Bを従動側ヨーク20の貫通孔21,21に挿入する(S5)。続いて、キャップユニット40を、貫通孔21,21の外方から嵌め入れながら、従動側軸部33B,35Bに装着する(S6)。続いて、スナップリング50を、従動側軸部33B,35Bに装着したカップ部41の環状溝41aに装着する(S7)。このようにして、従動側軸部33B,35Bは、キャップユニット40を介して、従動側ヨーク20に取り付けられる。   Subsequently, the driven side shaft portions 33B and 35B located on the side not provided with the identifier 60 are inserted into the through holes 21 and 21 of the driven side yoke 20 (S5). Subsequently, the cap unit 40 is mounted on the driven side shaft portions 33B and 35B while being fitted from the outside of the through holes 21 and 21 (S6). Subsequently, the snap ring 50 is attached to the annular groove 41a of the cup portion 41 attached to the driven side shaft portions 33B and 35B (S7). In this way, the driven side shaft portions 33B and 35B are attached to the driven side yoke 20 via the cap unit 40.

(十字軸部材のファイバーフロー)
次に、十字軸部材30のファイバーフロー100について、図4を参照して説明する。十字軸部材30は、鋼材またはアルミニウムなどの金属塊を、鍛造により形成する。例えば、特開平9−151955号公報に記載されている製造方法により、十字軸部材30は形成される。
(Cross shaft fiber flow)
Next, the fiber flow 100 of the cross shaft member 30 will be described with reference to FIG. The cross shaft member 30 is formed by forging a metal lump such as steel or aluminum. For example, the cross shaft member 30 is formed by the manufacturing method described in JP-A-9-151955.

鍛造により形成される製品には、ファイバーフロー100という金属組織の流れが生じる。十字軸部材30は、金属塊から、各軸部32A,33B,34A,35Bを引き延ばすように形成される。そうすると、図4の細線にて示すようなファイバーフロー100が、十字軸部材30に形成される。   In a product formed by forging, a flow of metal structure called fiber flow 100 is generated. The cross shaft member 30 is formed so as to extend the shaft portions 32A, 33B, 34A, and 35B from the metal block. Then, a fiber flow 100 as shown by the thin line in FIG. 4 is formed on the cross shaft member 30.

十字軸部材30におけるファイバーフロー100の詳細について説明する。図4に示すように、ファイバーフロー100は、各軸部32A,33B,34A,35Bの部分においては、各軸方向に平行ではないが、各軸方向成分が大きくなる方向に向かって延びるように形成されている。そして、ファイバーフロー100は、一方の駆動側軸部32Aとそれに隣り合う従動側軸部35Bとをつなぐと共に、他方の駆動側軸部34Aとそれに隣り合う従動側軸部33Bとをつなぐように形成されている。そのため、一方の駆動側軸部32Aと他方の従動側軸部33B、および、他方の駆動側軸部34Aと一方の従動側軸部35Bは、ファイバーフロー100によりつながれていない。   Details of the fiber flow 100 in the cross shaft member 30 will be described. As shown in FIG. 4, the fiber flow 100 is not parallel to each axial direction in each of the shaft portions 32A, 33B, 34A, and 35B, but extends in a direction in which each axial component increases. Is formed. The fiber flow 100 is formed so as to connect the one driving side shaft portion 32A and the driven side shaft portion 35B adjacent thereto, and to connect the other driving side shaft portion 34A and the driven side shaft portion 33B adjacent thereto. Has been. Therefore, one drive side shaft portion 32A and the other driven side shaft portion 33B, and the other drive side shaft portion 34A and one driven side shaft portion 35B are not connected by the fiber flow 100.

ここで、図4においては、識別子60を図示している。そして、上記製造方法にて説明したように、識別子60を確認しながら、十字軸部材30を各ヨーク10,20に取り付けている。そのため、ファイバーフロー100は、駆動側軸部32Aと該駆動側軸部32Aに対して正回転方向の反対側(反時計回り)に隣り合う従動側軸部33Bとをつなぐように流れており、かつ、駆動側軸部34Aと該駆動側軸部34Aに対して正回転方向の反対側(反時計回り)に隣り合う従動側軸部35Bとをつなぐように流れている。   Here, in FIG. 4, the identifier 60 is illustrated. Then, as described in the above manufacturing method, the cross shaft member 30 is attached to each of the yokes 10 and 20 while confirming the identifier 60. Therefore, the fiber flow 100 flows so as to connect the driving side shaft portion 32A and the driven side shaft portion 33B adjacent to the driving side shaft portion 32A on the opposite side (counterclockwise direction) in the forward rotation direction. And it flows so as to connect the drive side shaft portion 34A and the driven side shaft portion 35B adjacent to the drive side shaft portion 34A on the opposite side (counterclockwise) in the forward rotation direction.

(実施形態:トルク負荷時の十字軸部材)
次に、図4を参照して、本実施形態において、十字軸部材30がトルク負荷時に受ける力とファイバーフロー100との関係について説明する。図4に示すように、時計回りが車両前進時の正回転方向である。このとき、駆動側軸部32A(図4の上部)は、駆動側ヨーク10によって主回転方向へのトルクTinを受ける。また、駆動側軸部34A(図4の下部)も、駆動側ヨーク10によって主回転方向へのトルクTinを受ける。つまり、駆動側軸部32A,34Aが駆動側ヨーク10から受けるトルク負荷方向は、車両前進時の正回転方向となる。駆動側軸部32A,34Aが当該トルクを受けることによって、図4の二点鎖線にて示すように、先端側が正回転方向に撓むように変形する。
(Embodiment: Cross shaft member at torque load)
Next, with reference to FIG. 4, the relationship between the force that the cross shaft member 30 receives during torque load and the fiber flow 100 in the present embodiment will be described. As shown in FIG. 4, the clockwise direction is the forward rotation direction when the vehicle moves forward. At this time, the drive side shaft portion 32 </ b> A (upper part in FIG. 4) receives torque Tin in the main rotation direction by the drive side yoke 10. Further, the drive side shaft portion 34 </ b> A (lower part in FIG. 4) also receives the torque Tin in the main rotation direction by the drive side yoke 10. That is, the torque load direction that the drive side shaft portions 32A and 34A receive from the drive side yoke 10 is the forward rotation direction when the vehicle moves forward. When the driving side shaft portions 32A and 34A receive the torque, as shown by a two-dot chain line in FIG. 4, the tip end side is deformed so as to bend in the forward rotation direction.

一方、従動側軸部33B(図4の左部)は、従動側ヨーク20へ正回転方向の回転駆動力を伝達するため、作用反作用の関係により、従動側ヨーク20によって副回転方向(正回転方向の反対方向)へのトルクToutを受ける。また、従動側軸部33B(図4の右部)も、従動側ヨーク20によって副回転方向へのトルクToutを受ける。つまり、従動側軸部33B,35Bが従動側ヨーク20から受けるトルク負荷方向は、車両前進時の副回転方向となる。従動側軸部33B,35Bが当該トルクを受けることによって、図4の二点鎖線にて示すように、先端側が副回転方向に撓むように変形する。   On the other hand, the driven-side shaft portion 33B (left portion in FIG. 4) transmits the rotational driving force in the forward rotation direction to the driven-side yoke 20, so that the driven-side yoke 20 causes the secondary rotation direction (forward rotation) due to the action-reaction relationship. The torque Tout in the opposite direction) is received. Further, the driven side shaft portion 33 </ b> B (right portion in FIG. 4) also receives the torque Tout in the sub rotation direction by the driven side yoke 20. That is, the torque load direction that the driven side shaft portions 33B and 35B receive from the driven side yoke 20 is the sub rotation direction when the vehicle moves forward. When the driven side shaft portions 33B and 35B receive the torque, as shown by a two-dot chain line in FIG. 4, the tip end side is deformed so as to bend in the sub rotation direction.

そうすると、一方の駆動側軸部32Aと一方の従動側軸部33Bとは、相互に周方向に遠ざかるように変形する。また、他方の駆動側軸部34Aと他方の従動側軸部35Bとは、相互に周方向に遠ざかるように変形する。そのため、駆動側軸部32Aと従動側軸部33Bとの間、および、駆動側軸部34Aと従動側軸部35Bとの間に、十字軸部材30の径方向に向かうせん断力τaが発生する。   Then, the one driving side shaft portion 32A and the one driven side shaft portion 33B are deformed so as to move away from each other in the circumferential direction. The other driving side shaft portion 34A and the other driven side shaft portion 35B are deformed so as to be away from each other in the circumferential direction. Therefore, a shearing force τa in the radial direction of the cross shaft member 30 is generated between the driving side shaft portion 32A and the driven side shaft portion 33B and between the driving side shaft portion 34A and the driven side shaft portion 35B. .

一方、駆動側軸部32Aと従動側軸部35B、および、駆動側軸部34Aと従動側軸部33Bとは、それぞれ、相互に周方向に近づくように変形する。そのため、駆動側軸部32Aと従動側軸部35Bとの間、および、駆動側軸部34Aと従動側軸部33Bとの間には、十字軸部材30の径方向に向かうせん断力が発生しない。   On the other hand, the driving side shaft portion 32A and the driven side shaft portion 35B, and the driving side shaft portion 34A and the driven side shaft portion 33B are deformed so as to approach each other in the circumferential direction. Therefore, no shear force is generated in the radial direction of the cross shaft member 30 between the driving side shaft portion 32A and the driven side shaft portion 35B and between the driving side shaft portion 34A and the driven side shaft portion 33B. .

ここで、ファイバーフロー100の方向と強度との関係について説明する。ファイバーフロー100の延びている方向に対して直交する方向のせん断力に対して、大きな強度を有する。一方、ファイバーフロー100の延びている方向に平行な方向のせん断力に対しては、相対的に強度が低下する。本実施形態によれば、ファイバーフロー100は、駆動側軸部32Aと該駆動側軸部32Aに対して副回転方向に隣り合う従動側軸部33Bとをつなぐように流れており、かつ、駆動側軸部34Aと該駆動側軸部34Aに対して副回転方向に隣り合う従動側軸部35Bとをつなぐように流れている。   Here, the relationship between the direction of the fiber flow 100 and the strength will be described. It has a large strength against a shearing force in a direction perpendicular to the direction in which the fiber flow 100 extends. On the other hand, the strength is relatively reduced with respect to a shearing force in a direction parallel to the direction in which the fiber flow 100 extends. According to the present embodiment, the fiber flow 100 flows so as to connect the driving side shaft portion 32A and the driven side shaft portion 33B adjacent to the driving side shaft portion 32A in the sub-rotation direction, and driving. It flows so as to connect the side shaft portion 34A and the driven side shaft portion 35B adjacent to the drive side shaft portion 34A in the sub rotation direction.

つまり、せん断力τaが作用する部分を跨ぐ軸部同士は、ファイバーフロー100によりつながれている。そのため、せん断力τaに対して高い強度を有する。従って、常に、駆動側軸部32Aと副回転方向に隣り合う従動側軸部33Bとをファイバーフロー100がつなぐように、かつ、駆動側軸部34Aと副回転方向に隣り合う従動側軸部35Bとをファイバーフロー100がつなぐように、十字軸部材30が駆動側ヨーク10および従動側ヨーク20に取り付けることで、強度のばらつきを防止して、強度の安定化を図ることができる。   That is, the shaft portions straddling the portion where the shearing force τa acts are connected by the fiber flow 100. Therefore, it has high strength against the shearing force τa. Therefore, the driven side shaft portion 35B is always adjacent to the drive side shaft portion 34A in the sub rotation direction so that the fiber flow 100 connects the drive side shaft portion 32A and the driven side shaft portion 33B adjacent in the sub rotation direction. By attaching the cross shaft member 30 to the drive side yoke 10 and the driven side yoke 20 so that the fiber flow 100 is connected to each other, variation in strength can be prevented and strength can be stabilized.

ここで、十字軸部材30に設けられている識別子60によって、十字軸部材30を駆動側ヨーク10および従動側ヨーク20に取り付けることで、常に上記のように取り付けることができる。   Here, by attaching the cross shaft member 30 to the drive side yoke 10 and the driven side yoke 20 by the identifier 60 provided on the cross shaft member 30, it can be always attached as described above.

(比較例:トルク負荷時の十字軸部材)
比較例として、駆動側軸部32Aと正回転方向に隣り合う従動側軸部35B、かつ、駆動側軸部34Aと従動側軸部33Bとをファイバーフロー200がつなぐように、十字軸部材130が駆動側ヨーク10および従動側ヨーク20に取り付けられた場合について、図5を参照して説明する。
(Comparative example: cross shaft member under torque load)
As a comparative example, the cross shaft member 130 is connected so that the fiber flow 200 connects the driven side shaft portion 35B adjacent to the drive side shaft portion 32A in the positive rotation direction, and the drive side shaft portion 34A and the driven side shaft portion 33B. The case where it is attached to the drive side yoke 10 and the driven side yoke 20 will be described with reference to FIG.

この場合、図4と同様に、駆動側軸部32Aと従動側軸部33Bとの間、および、駆動側軸部34Aと従動側軸部35Bとの間に、十字軸部材30の径方向に向かうせん断力τbが発生する。つまり、せん断力τbが作用する部分を跨ぐ軸部同士は、ファイバーフロー200によりつながれている。従って、ファイバーフロー200の延びている方向に平行な方向にせん断力τbが発生する。そのため、せん断力τbに対して強度が低くなる。   In this case, similarly to FIG. 4, the radial direction of the cross shaft member 30 is between the driving side shaft portion 32A and the driven side shaft portion 33B and between the driving side shaft portion 34A and the driven side shaft portion 35B. A heading shear force τb is generated. That is, the shaft portions straddling the portion on which the shearing force τb acts are connected by the fiber flow 200. Accordingly, a shearing force τb is generated in a direction parallel to the direction in which the fiber flow 200 extends. Therefore, the strength is low with respect to the shearing force τb.

しかし、本実施形態によれば、識別子60を確認しながら、駆動側軸部32Aと副回転方向に隣り合う従動側軸部33Bとをファイバーフロー100がつなぐように、かつ、駆動側軸部34Aと副回転方向に隣り合う従動側軸部35Bとをファイバーフロー100がつなぐようにできる。従って、図5に示すような状態になることを防止できる。   However, according to the present embodiment, while confirming the identifier 60, the fiber flow 100 connects the drive side shaft portion 32A and the driven side shaft portion 33B adjacent in the sub rotation direction, and the drive side shaft portion 34A. And the driven-side shaft portion 35B adjacent to each other in the sub rotation direction can be connected by the fiber flow 100. Therefore, it is possible to prevent the state as shown in FIG.

1:十字軸継手、 2:駆動側シャフト、 3:従動側シャフト、 10:駆動側ヨーク、 20:従動側ヨーク、 30,130:十字軸部材、 31:胴部、 32A,34A:駆動側軸部、 33B,35B:従動側軸部、 40:キャップユニット、 60:識別子、 100,200:ファイバーフロー
1: Cross shaft joint, 2: Drive side shaft, 3: Drive side shaft, 10: Drive side yoke, 20: Drive side yoke, 30, 130: Cross shaft member, 31: Body, 32A, 34A: Drive side shaft Part, 33B, 35B: driven shaft part, 40: cap unit, 60: identifier, 100, 200: fiber flow

Claims (4)

胴部と該胴部から十字状に配置された4つの軸部とを備える十字軸部材と、
4つの前記軸部のうち同軸状の2つの駆動側軸部に取り付けられ、回転駆動力を前記駆動側軸部に伝達する駆動側ヨークと、
4つの前記軸部のうち残りの2つの従動側軸部に取り付けられ、前記従動側軸部から回転駆動力が伝達される従動側ヨークと、
を備え、
前記十字軸部材には、鍛造形成によって、一方の前記駆動側軸部とそれに隣り合う前記従動側軸部とをつなぐと共に、他方の前記駆動側軸部とそれに隣り合う前記従動側軸部とをつなぐようにファイバーフローが形成され、
前記十字軸部材には、前記ファイバーフローの方向を識別可能な識別子が設けられ、
前記駆動側軸部が前記駆動側ヨークから受ける伝達トルクの方向をトルク負荷方向と定義し、
前記識別子に基づいて前記駆動側軸部と該駆動側軸部に対して前記トルク負荷方向の反対側に隣り合う前記従動側軸部とを前記ファイバーフローがつなぐように、前記十字軸部材が前記駆動側ヨークおよび前記従動側ヨークに取り付けられている十字軸継手。
A cross shaft member comprising a body portion and four shaft portions arranged in a cross shape from the body portion;
A drive-side yoke that is attached to two coaxial drive-side shafts among the four shafts, and that transmits a rotational driving force to the drive-side shafts;
A driven yoke that is attached to the remaining two driven shafts of the four shafts, and that receives a rotational driving force from the driven shafts;
With
The cross shaft member is connected to one drive side shaft portion and the driven side shaft portion adjacent thereto by forging, and the other drive side shaft portion and the driven side shaft portion adjacent to the other drive side shaft portion. Fiber flow is formed to connect,
The cross shaft member is provided with an identifier capable of identifying the direction of the fiber flow,
The direction of the transmission torque that the drive side shaft receives from the drive side yoke is defined as the torque load direction,
Based on the identifier, the cross shaft member is connected to the drive side shaft and the driven side shaft adjacent to the opposite side of the torque load direction with respect to the drive side shaft. A cross joint coupled to the drive side yoke and the driven side yoke.
請求項1において、
前記十字軸継手は、最大トルクがかかる主回転方向と該主回転方向の反対方向である副回転方向とに回転可能であり、
前記識別子に基づいて前記駆動側軸部と該駆動側軸部に対して前記副回転方向に隣り合う前記従動側軸部とを前記ファイバーフローがつなぐように、前記十字軸部材が前記駆動側ヨークおよび前記従動側ヨークに取り付けられている十字軸継手。
In claim 1,
The cross joint is rotatable in a main rotation direction in which maximum torque is applied and a sub-rotation direction opposite to the main rotation direction,
Based on the identifier, the cross shaft member is connected to the drive side yoke so that the fiber flow connects the drive side shaft and the driven side shaft adjacent to the drive side shaft in the sub rotation direction. And a cross joint attached to the driven yoke.
請求項2において、
前記十字軸継手は、車両の動力伝達装置に適用され、
前記主回転方向は、車両の前進時の前記十字軸継手の回転方向である十字軸継手。
In claim 2,
The cross shaft joint is applied to a power transmission device of a vehicle,
The main shaft rotation direction is a cross shaft joint which is a rotation direction of the cross shaft joint when the vehicle moves forward.
十字軸継手の製造方法であって、
前記十字軸継手は、
胴部と該胴部から十字状に配置された4つの軸部とを備える十字軸部材と、
4つの前記軸部のうち同軸状の2つの駆動側軸部に取り付けられ、回転駆動力を前記駆動側軸部に伝達する駆動側ヨークと、
4つの前記軸部のうち残りの2つの従動側軸部に取り付けられ、前記従動側軸部から回転駆動力が伝達される従動側ヨークと、
を備え、
前記十字軸部材には、鍛造形成によって、一方の前記駆動側軸部とそれに隣り合う前記従動側軸部とをつなぐと共に、他方の前記駆動側軸部とそれに隣り合う前記従動側軸部とをつなぐようにファイバーフローが形成され、
前記十字軸部材には、前記ファイバーフローの方向を識別可能な識別子が設けられ、
前記駆動側軸部が前記駆動側ヨークから受ける伝達トルクの方向をトルク負荷方向と定義し、
前記識別子に基づいて前記駆動側軸部と該駆動側軸部に対して前記トルク負荷方向の反対側に隣り合う前記従動側軸部とを前記ファイバーフローがつなぐように、前記十字軸部材を前記駆動側ヨークおよび前記従動側ヨークに取り付ける十字軸継手の製造方法。
A method of manufacturing a cross joint,
The cross joint is
A cross shaft member comprising a body portion and four shaft portions arranged in a cross shape from the body portion;
A drive-side yoke that is attached to two coaxial drive-side shafts among the four shafts, and that transmits a rotational driving force to the drive-side shafts;
A driven yoke that is attached to the remaining two driven shafts of the four shafts, and that receives a rotational driving force from the driven shafts;
With
The cross shaft member is connected to one drive side shaft portion and the driven side shaft portion adjacent thereto by forging, and the other drive side shaft portion and the driven side shaft portion adjacent to the other drive side shaft portion. Fiber flow is formed to connect,
The cross shaft member is provided with an identifier capable of identifying the direction of the fiber flow,
The direction of the transmission torque that the drive side shaft receives from the drive side yoke is defined as the torque load direction,
Based on the identifier, the cross shaft member is connected so that the fiber flow connects the driving side shaft portion and the driven side shaft portion adjacent to the driving side shaft portion on the opposite side of the torque load direction. A method of manufacturing a cross joint that is attached to the drive side yoke and the driven side yoke.
JP2011221823A 2011-10-06 2011-10-06 Cross shaft joint and manufacturing method of the same Pending JP2013083281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221823A JP2013083281A (en) 2011-10-06 2011-10-06 Cross shaft joint and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221823A JP2013083281A (en) 2011-10-06 2011-10-06 Cross shaft joint and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013083281A true JP2013083281A (en) 2013-05-09

Family

ID=48528672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221823A Pending JP2013083281A (en) 2011-10-06 2011-10-06 Cross shaft joint and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013083281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945202A (en) * 2016-06-20 2016-09-21 安徽省瑞杰锻造有限责任公司 All fiber forging technology of cross shaft forging piece
CN109759777A (en) * 2017-11-09 2019-05-17 王海艳 A kind of differential spider processing technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945202A (en) * 2016-06-20 2016-09-21 安徽省瑞杰锻造有限责任公司 All fiber forging technology of cross shaft forging piece
CN109759777A (en) * 2017-11-09 2019-05-17 王海艳 A kind of differential spider processing technology

Similar Documents

Publication Publication Date Title
CN103322076A (en) Propeller shaft and constant velocity universal joint used therein
WO2014136626A1 (en) Propeller shaft and adapter member for propeller shaft
US20160356372A1 (en) Differential assembly with single weld joint connecting two-piece differential case and ring gear
US10962063B2 (en) Fixed constant velocity universal joint
EP3321531A1 (en) Fixed-type constant velocity universal joint
JP2013083281A (en) Cross shaft joint and manufacturing method of the same
US20160123405A1 (en) Tube yoke assembly and driveshaft assembly formed therewith
EP2128466B1 (en) Fixed constant velocity universal joint
JP5016528B2 (en) Propeller shaft
EP3343055A1 (en) Power transmission device
JP6050043B2 (en) Constant velocity universal joint
CN211951230U (en) Semi-axis assembly, transmission system and vehicle
JP2013170695A (en) Cross spider type universal joint and method of manufacturing cross spider for universal joint
JP2009191973A (en) Yoke for universal coupling, and universal coupling
JP2012002267A (en) Drive shaft
US10125824B2 (en) Multi-piece driveshaft assembly
JP2007078081A (en) Sliding type constant velocity universal joint and its manufacturing method
JP2007032645A (en) Sliding type constant velocity universal joint
JP2006234114A (en) Coupling for vehicle
KR102301016B1 (en) Constant velocity joint
WO2023162418A1 (en) Propeller shaft
WO2018132153A2 (en) A coupling assembly having angled fastener holes
KR101073093B1 (en) Coupling structure of propeller shaft in vehicle
JP2008089112A (en) Constant velocity universal joint
JP2011122614A (en) Constant velocity universal joint