JP2013082599A - Hollow silica nanoparticle complexed with nanoparticle and production method thereof - Google Patents

Hollow silica nanoparticle complexed with nanoparticle and production method thereof Download PDF

Info

Publication number
JP2013082599A
JP2013082599A JP2011225393A JP2011225393A JP2013082599A JP 2013082599 A JP2013082599 A JP 2013082599A JP 2011225393 A JP2011225393 A JP 2011225393A JP 2011225393 A JP2011225393 A JP 2011225393A JP 2013082599 A JP2013082599 A JP 2013082599A
Authority
JP
Japan
Prior art keywords
silica shell
nano
metal
metal oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011225393A
Other languages
Japanese (ja)
Inventor
Masatada Fuji
正督 藤
Fumikazu Kawajiri
史和 河尻
Takashi Shirai
孝 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2011225393A priority Critical patent/JP2013082599A/en
Publication of JP2013082599A publication Critical patent/JP2013082599A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a complexed hollow nanoparticle composed of a silica shell on arbitrary sites of which a metal nanoparticle or a metal oxide nanoparticle is carried; and a method for stably supplying the complexed hollow nanoparticle while maintaining dispersibility of the nanoparticle, and retaining the characteristic possessed by the hollow particle.SOLUTION: The production method of the complexed hollow nanoparticle comprises: producing a hollow nanoparticle composed of silica shells with different average pore diameters; and a metal or a metal oxide is selectively carried on at least one site among a silica shell outer surface, inside silica shell or a silica shell inner surface.

Description

本発明は、光学材料あるいは断熱材料等に利用され得る、シリカ殻とナノ粒子との複合材料に関する。   The present invention relates to a composite material of silica shells and nanoparticles that can be used as an optical material, a heat insulating material, or the like.

中空粒子は中空構造と殻からなり、その構造から、低密度、高比表面積、物質内包能、断熱性、誘電性、光学特性などの特性を持つ。これらは、中空粒子径がナノサイズ領域になると、ミクロンサイズ粒子には現れない特異な性質を発現する。そして、中空構造や粒子径に起因する特性を保ちつつ、新たな機能を付加することを目的とした機能性中空粒子の開発が行われている。中でも、シリカは化学的安定性が高く、人体や環境に対して無害であり、光学的透明性が高く、安価である。シリカ系中空粒子に関して特許文献1、非特許文献1あるいは2に開示されている。 The hollow particles are composed of a hollow structure and a shell, and the structure has characteristics such as low density, high specific surface area, substance inclusion ability, heat insulating properties, dielectric properties, and optical properties. These exhibit unique properties that do not appear in micron-sized particles when the hollow particle diameter is in the nano-sized region. And the functional hollow particle aiming at adding a new function is maintained, maintaining the characteristic resulting from a hollow structure and a particle diameter. Among them, silica has high chemical stability, is harmless to the human body and the environment, has high optical transparency, and is inexpensive. Silica-based hollow particles are disclosed in Patent Document 1, Non-Patent Document 1 or 2.

特許文献1に記載の発明は、シリカ殻を有するナノ中空粒子を減圧雰囲気下で加熱乾燥し、酸化錫前駆体である塩化錫(IV)水溶液を添加することにより、積極的に前記シリカ殻に酸化錫を担持させるという方法である。しかしながら、特許文献1に係る発明は、塩化錫(IV)水溶液の加水分解反応の進行が早いため、シリカ殻への担持より優先的に酸化錫粒子の生成が起こるという問題があった。 In the invention described in Patent Document 1, nano hollow particles having a silica shell are dried by heating in a reduced-pressure atmosphere, and a tin (IV) chloride aqueous solution as a tin oxide precursor is added to the silica shell. This is a method of supporting tin oxide. However, the invention according to Patent Document 1 has a problem that the production of tin oxide particles preferentially occurs over the silica shell because the hydrolysis reaction of the tin (IV) chloride aqueous solution proceeds rapidly.

非特許文献1に記載の発明は、かかる不具合を考慮し、シリカ殻へ酸化錫が担持しやすいよう、約5nmの平均細孔径を有するシリカ殻からなるナノ中空粒子を製造し、アセチルアセトナート塩化錫水溶液を酸化錫前駆体とする方法である。しかしながら、非特許文献1に係る発明は、シリカ殻に存在する平均細孔径が酸化錫前駆体より十分に大きいため前駆体溶液が細孔内にとどまらず溶出してしまい、十分な酸化錫担持量を得ることが困難である。 In view of such problems, the invention described in Non-Patent Document 1 produces nano hollow particles made of silica shells having an average pore diameter of about 5 nm so that tin oxide can be easily supported on the silica shells, and acetylacetonate chloride In this method, a tin aqueous solution is used as a tin oxide precursor. However, in the invention according to Non-Patent Document 1, since the average pore diameter present in the silica shell is sufficiently larger than that of the tin oxide precursor, the precursor solution does not stay in the pores, and a sufficient amount of tin oxide is supported. Is difficult to get.

非特許文献2に記載の発明は、1nm程度の細孔径を有するシリカ殻からなるナノ中空粒子を製造し、アセチルアセトナート塩化錫水溶液を酸化錫前駆体とし、シリカ殻へ酸化錫を担持するという方法である。非特許文献2に係る発明は、大きな構造を持つアセチルアセトナート塩化錫のシリカ殻内への浸透が進行せずシリカ殻表面に積層し、シリカ殻表面に酸化錫が偏析し、光学特性が損なわれるという問題があった。 The invention described in Non-Patent Document 2 manufactures nano hollow particles made of silica shells having a pore diameter of about 1 nm, and uses tin acetylacetonate tin chloride aqueous solution as a tin oxide precursor, and supports tin oxide in the silica shells. Is the method. In the invention according to Non-Patent Document 2, the penetration of tin acetylacetonate having a large structure into the silica shell does not proceed and the oxide is laminated on the surface of the silica shell. There was a problem of being.

特開2010−254555号公報JP 2010-254555 A

平成22年度日本セラミックス協会東海支部学術研究発表会講演予稿集74ページ(2010/12/18発表)74 pages of the 2010 Annual Meeting of the Ceramic Society of Japan Ceramic Society Presentation (2010/12/18 presentation) 2010年度粉体工学会秋期研究発表会講演予稿集57〜58ページ(2010/11/30発表)Proceedings of the 2010 Annual Meeting of the Powder Engineering Society, 57-58 pages (2010/11/30 presentation)

本発明の課題は、可視光領域で透明性を与え、中空構造に起因の低密度という特性を有するために固有のシリカ殻厚、細孔径分布を有するナノサイズのシリカ中空粒子を得つつ、シリカ殻の高比表面積性を利用して、触媒能、物質内包能、断熱性に優れた、新たな機能性を付加した材料およびその製造方法を提供することである。 An object of the present invention is to provide nano-sized silica hollow particles having inherent silica shell thickness and pore size distribution in order to provide transparency in the visible light region and to have a characteristic of low density due to the hollow structure, while obtaining silica It is an object to provide a material with a new functionality, which is excellent in catalytic ability, substance inclusion ability, and heat insulation property, and a method for producing the same, utilizing the high specific surface area of the shell.

本発明者らは鋭意検討を重ねた結果、上記課題を解決する、金属ナノ粒子あるいは金属酸化物ナノ粒子を担持したシリカ殻、およびその製造方法を見出した。すなわち、本発明によれば以下のシリカ殻からなる複合ナノ中空粒子およびその製造方法が提供される As a result of intensive studies, the present inventors have found a silica shell carrying metal nanoparticles or metal oxide nanoparticles and a method for producing the same, which solve the above-described problems. That is, according to the present invention, there are provided the following composite nano-hollow particles comprising silica shells and a method for producing the same.

[1] 内表面と外表面を有するシリカ殻内に、ガス吸着等温線から検出される細孔径分布を持つシリカ殻からなり、前記シリカ殻外表面(A)、シリカ殻内(B)、あるいはシリカ殻内表面(C)、の少なくとも一部位に選択的に金属ナノ粒子または金属酸化物ナノ粒子を担持したシリカ殻からなる複合ナノ中空粒子であって、
前記シリカ殻外表面(A)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の、Vt−plotにより算出される平均細孔径が1〜5nm、シリカ殻内(B)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の平均細孔径が0.5〜3nm、シリカ殻内表面(C)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の平均細孔径が1nm以下である複合ナノ中空粒子。
[1] A silica shell having an inner surface and an outer surface is composed of a silica shell having a pore size distribution detected from a gas adsorption isotherm, and the silica shell outer surface (A), silica shell (B), or A composite nano-hollow particle comprising a silica shell selectively supporting metal nanoparticles or metal oxide nanoparticles on at least a part of the inner surface of the silica shell (C),
The nano-porous particles supported by metal nanoparticles or metal oxide nanoparticles on the outer surface (A) of the silica shell have an average pore diameter calculated by Vt-plot of 1 to 5 nm, and the metal nano-particles in the silica shell (B) The average pore diameter of the nano hollow particles supported by the particles or metal oxide nanoparticles is 0.5 to 3 nm, and the average fine diameter of the nano hollow particles supported by the metal nanoparticles or metal oxide nanoparticles on the silica shell inner surface (C). Composite nano hollow particles having a pore size of 1 nm or less.

[2] 前記ナノ中空粒子の、電子顕微鏡法により測定した平均粒子径が、30〜300nmの範囲内である前記[1]に記載の複合ナノ中空粒子。 [2] The composite nano-hollow particle according to [1], wherein the nano-hollow particle has an average particle diameter measured by an electron microscope in a range of 30 to 300 nm.

[3] 前記ナノ中空粒子の形状が、略球状、略立方体状、または略回転楕円体状である前記[1]または[2]に記載の複合ナノ中空粒子。 [3] The composite nanohollow particle according to [1] or [2], wherein the shape of the nanohollow particle is approximately spherical, approximately cubic, or approximately spheroid.

[4] 前記シリカ殻の電子顕微鏡法による厚みが3〜20nmである前記[1]〜[3]のいずれかに記載の複合ナノ中空粒子。 [4] The composite nano-hollow particle according to any one of [1] to [3], wherein the thickness of the silica shell measured by electron microscopy is 3 to 20 nm.

[5] 内表面と外表面を有するシリカ殻内に、ガス吸着等温線から検出される細孔径分布を持つシリカ殻からなり、前記シリカ殻外表面(A)、シリカ殻内(B)、あるいはシリカ殻内表面(C)、の少なくとも一部位に選択的に金属ナノ粒子または金属酸化物ナノ粒子を担持したシリカ殻からなる複合ナノ中空粒子であって、
前記細孔径分布を持つシリカ殻からなるナノ中空粒子を合成する工程と、
前記シリカ殻からなるナノ中空粒子に、金属または金属酸化物前駆体溶液を添加して、前記ナノ中空粒子に前記金属前駆体または金属酸化物前駆体を吸着させる工程と、
前記金属前駆体または金属酸化物前駆体が吸着されたナノ中空粒子を洗浄して焼成する工程と、
を含む金属ナノ粒子または金属酸化物ナノ粒子を選択的に担持する複合ナノ中空粒子の製造方法。
[5] A silica shell having an inner surface and an outer surface is composed of a silica shell having a pore size distribution detected from a gas adsorption isotherm, and the silica shell outer surface (A), silica shell (B), or A composite nano-hollow particle comprising a silica shell selectively supporting metal nanoparticles or metal oxide nanoparticles on at least a part of the inner surface of the silica shell (C),
Synthesizing nano hollow particles composed of silica shells having the pore size distribution;
Adding a metal or metal oxide precursor solution to the nano-hollow particles comprising the silica shell, and adsorbing the metal precursor or metal oxide precursor to the nano-hollow particles;
Washing and firing the nano hollow particles on which the metal precursor or metal oxide precursor is adsorbed; and
A method for producing composite nano hollow particles that selectively support metal nanoparticles or metal oxide nanoparticles containing

本発明に係るシリカ殻からなるナノ中空粒子によれば、金属粒子または金属酸化物粒子を、シリカ殻内表面、外表面、あるいはシリカ殻内の少なくとも一部位に選択的に担持することができる。
内表面に触媒機能を有する酸化チタンや酸化亜鉛を担持すれば、任意の細孔径を持つシリカ殻を通過する材料のみに触媒作用を与えることができる。
内表面のみに磁性粒子、導電性粒子を担持すれば、任意の細孔径を持つシリカ殻を通過する材料を、磁性または導電性の性質を使って捕集、貯蔵、または外部刺激から保護できる。
シリカ殻外表面で担持すれば、当該ナノ中空粒子を用いて多孔質導電性成形体を製造できる。ナノ中空粒子の分散性は維持しているから、導電性材料の添加量が最小限で導電性を発揮できる。
シリカ殻内では、細孔径に応じたサイズの金属酸化物粒子を担持させることができ、例えば、前記金属酸化物が酸化チタンであれば拡散反射などの光学特性の向上、酸化錫であれば透明導電性中空粒子とすることができる。
このように、本発明にかかる、金属または金属酸化物をシリカ殻内の任意の個所に選択的に担持させる方法は、添加する金属酸化物前駆体の担持効率が高く、少量の使用で効果を発揮させることができ、大量製造時のコスト削減が可能である。
According to the nano hollow particles comprising the silica shell according to the present invention, the metal particles or metal oxide particles can be selectively supported on at least a part of the inner surface of the silica shell, the outer surface, or the silica shell.
If titanium oxide or zinc oxide having a catalytic function is supported on the inner surface, only a material that passes through a silica shell having an arbitrary pore diameter can be catalyzed.
If magnetic particles and conductive particles are supported only on the inner surface, a material passing through a silica shell having an arbitrary pore size can be protected from collection, storage, or external stimulation using magnetic or conductive properties.
If supported on the outer surface of the silica shell, a porous conductive molded body can be produced using the nano hollow particles. Since the dispersibility of the nano hollow particles is maintained, the conductivity can be exhibited with the minimum amount of the conductive material added.
In the silica shell, metal oxide particles having a size corresponding to the pore diameter can be supported. For example, if the metal oxide is titanium oxide, optical properties such as diffuse reflection are improved, and if it is tin oxide, it is transparent. Conductive hollow particles can be obtained.
As described above, the method of selectively supporting a metal or a metal oxide at an arbitrary position in the silica shell according to the present invention has a high efficiency of supporting the metal oxide precursor to be added, and is effective when used in a small amount. This makes it possible to reduce costs during mass production.

本発明の実施例1に係るナノ中空粒子のTEM写真である。It is a TEM photograph of the nano hollow particle which concerns on Example 1 of this invention. 本発明の実施例4に係るナノ中空粒子のTEM写真である。It is a TEM photograph of the nano hollow particle which concerns on Example 4 of this invention. 本発明の実施例5に係るナノ中空粒子のTEM写真である。It is a TEM photograph of the nano hollow particle which concerns on Example 5 of this invention. 本発明の実施例4に係り、SnO2担持ナノ中空粒子のTEM写真である。4 is a TEM photograph of SnO2-supported nanohollow particles according to Example 4 of the present invention. 本発明の実施例5に係り、SnO2担持ナノ中空粒子のTEM写真である。6 is a TEM photograph of SnO2-supported nanohollow particles according to Example 5 of the present invention. 本発明の実施例5に係り、SnO2担持ナノ中空粒子のX線回折結果(XRD)である。It is an X-ray-diffraction result (XRD) of SnO2 carrying | support nano hollow particle concerning Example 5 of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

シリカ殻の細孔径分布として、シリカ殻外表面(A)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の、Vt−plotにより算出される平均細孔径が1〜5nm、シリカ殻内(B)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の平均細孔径が0.5〜3nm、シリカ殻内表面(C)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の平均細孔径は1nm以下であることが好ましい。これにより、シリカ殻内表面、殻外表面、またはシリカ殻内の少なくとも一部位に、金属ナノ粒子または金属酸化物ナノ粒子を選択的に吸着させることができる。 As the pore size distribution of the silica shell, the average pore size calculated by Vt-plot of the nano hollow particles supported by the metal nanoparticles or metal oxide nanoparticles on the outer surface (A) of the silica shell is 1 to 5 nm, the silica shell Inside (B), the average pore diameter of nano hollow particles supported by metal nanoparticles or metal oxide nanoparticles is 0.5-3 nm, and metal nanoparticles or metal oxide nanoparticles are supported on the inner surface of silica shell (C) The average pore size of the nano hollow particles is preferably 1 nm or less. Thereby, the metal nanoparticles or the metal oxide nanoparticles can be selectively adsorbed on at least a part of the inner surface of the silica shell, the outer surface of the shell, or the inside of the silica shell.

ナノ中空粒子の平均粒子径が30〜300nmの範囲内であることが好ましい。これにより、可視光領域の光学透明性を保持したまま、吸着させた金属または金属酸化物の特性を付与させることができる。 It is preferable that the average particle diameter of the nano hollow particles is in the range of 30 to 300 nm. Thereby, the property of the adsorbed metal or metal oxide can be imparted while maintaining the optical transparency in the visible light region.

ナノ中空粒子の形状は、略球状、略立方体状、または略回転楕円体状形態であることが好ましい。ここで、略球状とは、面で囲まれた球状に似た形状であり、略立方体状とは、面で囲まれた立方体に似た形状であり、略回転楕円体状とは、面で囲まれた回転楕円体状に似た形状である。 The shape of the nano hollow particles is preferably a substantially spherical shape, a substantially cubic shape, or a substantially spheroid shape. Here, a substantially spherical shape is a shape similar to a sphere surrounded by a surface, a substantially cubic shape is a shape similar to a cube surrounded by a surface, and a substantially spheroid shape is a surface. It is a shape similar to an enclosed spheroid.

略球状、略立方体状形態を有するシリカ殻に金属ナノ粒子または金属酸化物ナノ粒子を担持させることによって、より特性の向上が可能である。例えば、光学的特性を有する蛍光体などのナノ粒子を担持させたナノ中空粒子の光学性を利用した薄膜を作製する場合には、前記ナノ中空粒子の塗料中の分散性を向上させることができ、ナノサイズ、中空構造が有する光学特性を損なうことなく、さらに担持ナノ粒子の存在により、より光学的特性を向上させた薄膜の作製が可能である。さらにその形状が回転楕円体形状の場合は、球状の中空粒子よりも比表面積が大きく、例えば触媒担持体とした際に効果が大きい。また、樹脂や塗料等の目的物に混入する際には、球状の中空粒子よりもその生成物の機械的強度を高めることができる。 By supporting metal nanoparticles or metal oxide nanoparticles on a silica shell having a substantially spherical or substantially cubic shape, the characteristics can be further improved. For example, when preparing a thin film using the optical properties of nano hollow particles carrying nanoparticles such as phosphors having optical properties, the dispersibility of the nano hollow particles in the paint can be improved. In addition, it is possible to produce a thin film with further improved optical characteristics without impairing the optical characteristics of the nano-sized and hollow structures and further by the presence of the supported nanoparticles. Furthermore, when the shape is a spheroid shape, the specific surface area is larger than that of a spherical hollow particle, and for example, the effect is great when a catalyst carrier is used. Further, when mixed into a target object such as a resin or a paint, the mechanical strength of the product can be increased as compared with a spherical hollow particle.

シリカ殻の厚みが3〜20nmであることが好ましく、ナノ中空粒子の光学的透明性を保持でき、さらに金属または金属酸化物の担持量が少量でも当該ナノ粒子の光学的、電気的などの特性を効率良く付与することができる。 The thickness of the silica shell is preferably 3 to 20 nm, the optical transparency of the hollow nanoparticle can be maintained, and the optical and electrical properties of the nanoparticle can be maintained even when the amount of the metal or metal oxide supported is small. Can be efficiently applied.

(細孔径分布を制御したナノ中空粒子の合成)
ナノ中空粒子の製造方法を以下に示す。コア粒子を2−プロパノールに分散させ、オルトケイ酸テトラエチル(TEOS)、およびアンモニア水溶液(NH4OH)、および蒸留水を加え、懸濁液pHを11.0〜11.6となるように調製した。懸濁液を20℃に保ちながら、1〜8時間反応させた。その後、加圧ろ過により固液分離し、コアシェル粒子を得た。
コア粒子にポリスチレンを用いた場合、熱分解することによりコア粒子を除去し、ナノ中空粒子とした。コア粒子に炭酸カルシウムを用いた場合、塩酸水処理によりコア粒子を除去し、ナノ中空粒子とした。
製造したナノ中空粒子はガス吸着法により細孔径分布を測定し、シリカ殻厚はTEM観察から計測した。
(Synthesis of nano hollow particles with controlled pore size distribution)
A method for producing nano hollow particles will be described below. The core particles were dispersed in 2-propanol, and tetraethyl orthosilicate (TEOS), an aqueous ammonia solution (NH 4 OH), and distilled water were added to prepare a suspension pH of 11.0 to 11.6. The suspension was reacted for 1 to 8 hours while maintaining at 20 ° C. Thereafter, solid-liquid separation was performed by pressure filtration to obtain core-shell particles.
When polystyrene was used for the core particles, the core particles were removed by thermal decomposition to form nano hollow particles. When calcium carbonate was used for the core particles, the core particles were removed by treatment with hydrochloric acid to form nano hollow particles.
The produced nano hollow particles were measured for pore size distribution by a gas adsorption method, and the silica shell thickness was measured from TEM observation.

(ナノ中空粒子への金属または金属酸化物の担持)
以下、3種類の金属ナノ粒子あるいは金属酸化物ナノ粒子を担持させた。
(Support of metal or metal oxide in nano hollow particles)
Hereinafter, three types of metal nanoparticles or metal oxide nanoparticles were supported.

(白金を最初にしました)
<白金(Pt)ナノ粒子の担持(実施例1、2)>
製造したシリカ系中空粒子を丸底フラスコに投入し、接続したロータリーポンプによってフラスコ内を減圧しながらマントルヒーターによって200℃で2時間加熱した。その後、自然冷却させて同じくフラスコに接続した漏斗から濃度0.006Mの六塩化白金酸溶液50mLを滴下した。得られた混合液を140℃で1時間攪拌した。その後、両親媒性メンブレンフィルター(孔径0.1μm)を用い、ゲージ圧0.3MPaとした加圧ろ過器によって固液分離を行った。回収粒子を減圧下50℃で12時間乾燥することで目的の粒子を得た。
(Platinum first)
<Supporting of platinum (Pt) nanoparticles (Examples 1 and 2)>
The produced silica-based hollow particles were put into a round bottom flask, and heated at 200 ° C. for 2 hours with a mantle heater while reducing the pressure inside the flask with a connected rotary pump. Thereafter, 50 mL of a hexachloroplatinic acid solution having a concentration of 0.006 M was dropped from a funnel that was naturally cooled and connected to the flask. The resulting mixture was stirred at 140 ° C. for 1 hour. Then, solid-liquid separation was performed using an amphiphilic membrane filter (pore size: 0.1 μm) using a pressure filter with a gauge pressure of 0.3 MPa. The recovered particles were dried at 50 ° C. under reduced pressure for 12 hours to obtain the desired particles.

<酸化亜鉛(ZnO)ナノ粒子の担持(実施例3)>
製造したシリカ系中空粒子を丸底フラスコに投入し、接続したロータリーポンプによってフラスコ内を減圧しながらマントルヒーターによって200℃で2時間加熱した。その後、自然冷却させて同じくフラスコに接続した漏斗から濃度0.01mol/lの酢酸亜鉛エタノール溶液100mLを滴下した。得られた混合液を25℃で5日間攪拌した。その後、両親媒性メンブレンフィルター(孔径0.1μm)を用い、ゲージ圧0.3MPaとした加圧ろ過器によって固液分離を行った。回収粒子を減圧下50℃で12時間乾燥させた。続いて、大気中200℃で2時間加熱し、さらに管状炉を用いて酸素流入下550℃、3時間の加熱(酸素流速30mL/min)をすることで目的の粒子を得た。
<Supporting of zinc oxide (ZnO) nanoparticles (Example 3)>
The produced silica-based hollow particles were put into a round bottom flask, and heated at 200 ° C. for 2 hours with a mantle heater while reducing the pressure inside the flask with a connected rotary pump. Thereafter, 100 mL of a zinc acetate / ethanol solution having a concentration of 0.01 mol / l was dropped from a funnel that was naturally cooled and connected to the flask. The resulting mixture was stirred at 25 ° C. for 5 days. Then, solid-liquid separation was performed using an amphiphilic membrane filter (pore size: 0.1 μm) using a pressure filter with a gauge pressure of 0.3 MPa. The recovered particles were dried at 50 ° C. under reduced pressure for 12 hours. Then, it heated at 200 degreeC in air | atmosphere for 2 hours, and also intended particle | grains were obtained by heating for 3 hours (oxygen flow rate 30mL / min) at 550 degreeC under oxygen inflow using a tubular furnace.

<酸化錫(SnO2)ナノ粒子の担持(実施例4,5)>
製造したシリカ系中空粒子を丸底フラスコに投入し、接続したロータリーポンプによってフラスコ内を減圧しながらマントルヒーターによって200℃で2時間加熱した。その後、自然冷却させて同じくフラスコに接続した漏斗から濃度0.5mol/lのアセチルアセトナート塩化スズ(IV)溶液50mLを滴下した。得られた混合液を25℃で5日間攪拌した。その後、両親媒性メンブレンフィルター(孔径0.1μm)を用い、ゲージ圧0.3MPaとした加圧ろ過器によって固液分離を行った。回収粒子を減圧下50℃で12時間乾燥させた。続いて、大気中200℃で2時間加熱し、さらに管状炉を用いて酸素流入下600℃、1時間の加熱(酸素流速30mL/min)をすることで目的の粒子を得た。
<Supporting of tin oxide (SnO2) nanoparticles (Examples 4 and 5)>
The produced silica-based hollow particles were put into a round bottom flask, and heated at 200 ° C. for 2 hours with a mantle heater while reducing the pressure inside the flask with a connected rotary pump. Thereafter, 50 mL of a acetylacetonate tin (IV) chloride solution having a concentration of 0.5 mol / l was dropped from a funnel which was naturally cooled and connected to the flask. The resulting mixture was stirred at 25 ° C. for 5 days. Then, solid-liquid separation was performed using an amphiphilic membrane filter (pore size: 0.1 μm) using a pressure filter with a gauge pressure of 0.3 MPa. The recovered particles were dried at 50 ° C. under reduced pressure for 12 hours. Then, it heated at 200 degreeC in air | atmosphere for 2 hours, and also the target particle | grains were obtained by heating at 600 degreeC under oxygen inflow for 1 hour (oxygen flow rate 30mL / min) using a tubular furnace.

<酸化チタン(TiO2)ナノ粒子の担持(実施例6)>
製造したシリカ系中空粒子を丸底フラスコに投入し、接続したロータリーポンプによってフラスコ内を減圧しながらマントルヒーターによって200℃で2時間加熱した。その後、自然冷却させて同じくフラスコに接続した漏斗から濃度12.5mol/lのテトラブチルオルトチタネート80mLを滴下した。得られた混合液を25℃で5日間攪拌した。その後、両親媒性メンブレンフィルター(孔径0.1μm)を用い、ゲージ圧0.3MPaとした加圧ろ過器によって固液分離を行った。回収粒子を減圧下50℃で12時間乾燥させた。続いて、大気中200℃で2時間加熱し、さらに管状炉を用いて酸素流入下550℃、1時間の加熱(酸素流速30mL/min)をすることで目的の粒子を得た。
下記表1に、細孔径分布を制御したナノ中空粒子の合成結果、およびナノ粒子担持の結果(実施例1〜6、比較例1〜2)を示す。
<Support of titanium oxide (TiO2) nanoparticles (Example 6)>
The produced silica-based hollow particles were put into a round bottom flask, and heated at 200 ° C. for 2 hours with a mantle heater while reducing the pressure inside the flask with a connected rotary pump. Thereafter, 80 mL of tetrabutyl orthotitanate having a concentration of 12.5 mol / l was dropped from a funnel which was naturally cooled and connected to the flask. The resulting mixture was stirred at 25 ° C. for 5 days. Then, solid-liquid separation was performed using an amphiphilic membrane filter (pore size: 0.1 μm) using a pressure filter with a gauge pressure of 0.3 MPa. The recovered particles were dried at 50 ° C. under reduced pressure for 12 hours. Then, it heated at 200 degreeC in air | atmosphere for 2 hours, and also the target particle | grains were obtained by heating at 550 degreeC for 1 hour under oxygen inflow using a tubular furnace (oxygen flow rate 30mL / min).
Table 1 below shows the synthesis results of nano hollow particles with controlled pore size distribution and the results of nanoparticle support (Examples 1 to 6, Comparative Examples 1 and 2).


図1、2、および3はそれぞれ実施例1、4、5の条件で合成したシリカ系中空粒子(担持前)のTEM写真である。球状ポリスチレン粒子をコアとしたことで、コア形状にそった球状シリカ中空粒子が製造できた。反応時間を長くするか、あるいは懸濁液pHを高くすることにより、シリカ殻に存在するマイクロ細孔径を低下させることができる。
図4、5は実施例4、5の条件で製造したSnO2担持ナノ中空粒子のTEM写真である。実施例4では、比較的平均細孔径が大きなシリカ殻が生成し、シリカ殻内にSnO2が生成する。実施例5では、平均細孔径が小さいシリカ殻が生成し、シリカ殻内表面にSnO2が生成する。実施例4と実施例5とを比較すると、担持前のシリカ中空粒子の細孔径は実施例4より実施例5の方が小さく、実施例5ではシリカ殻内に進入した前駆体溶液が殻内にとどまり、殻内より殻内表面に生成・被着しやすくなったものと考えられる。
図6は実施例5で製造したSnO2担持ナノ中空粒子のXRDパターンである。酸化スズに基づくピーク(110、101、211)が確認できる。
なお、比較例1、2は、中空粒子が生成できなかったものである。その理由は、比較例1では懸濁液pHが低く反応時間が短いためシリカコーティングがなされなかったためであり、比較例2では懸濁液pHが高く反応時間が長いため中実シリカの生成が進行したためである。
なお、得られた中空粒子の平均細孔径は、ガス吸着等温線から吸着層の厚さtを横軸とし、ガス吸着量Vを縦軸にとったプロットの屈曲点から細孔径を求めるV−tplotと言う手法により求めた。
1, 2 and 3 are TEM photographs of silica-based hollow particles (before loading) synthesized under the conditions of Examples 1, 4, and 5, respectively. By using spherical polystyrene particles as a core, spherical silica hollow particles having a core shape could be produced. By increasing the reaction time or raising the suspension pH, the micropore diameter present in the silica shell can be reduced.
4 and 5 are TEM photographs of SnO 2 -supported nano hollow particles produced under the conditions of Examples 4 and 5. FIG. In Example 4, a silica shell having a relatively large average pore diameter is generated, and SnO 2 is generated in the silica shell. In Example 5, a silica shell having a small average pore diameter is generated, and SnO 2 is generated on the inner surface of the silica shell. When Example 4 and Example 5 are compared, the pore diameter of the silica hollow particles before loading is smaller in Example 5 than in Example 4, and in Example 5, the precursor solution that entered the silica shell was within the shell. It is thought that it was easier to produce and deposit on the inner surface of the shell than in the shell.
FIG. 6 is an XRD pattern of the SnO 2 -supporting nanohollow particles produced in Example 5. Peaks (110, 101, 211) based on tin oxide can be confirmed.
In Comparative Examples 1 and 2, hollow particles could not be generated. The reason for this is that in Comparative Example 1, the suspension pH was low and the reaction time was short, so silica coating was not performed. In Comparative Example 2, the suspension pH was high and the reaction time was long, so formation of solid silica progressed. This is because.
The average pore diameter of the obtained hollow particles is determined by calculating the pore diameter from the inflection point of the plot where the horizontal axis is the thickness t of the adsorption layer and the vertical axis is the gas adsorption amount V from the gas adsorption isotherm. It calculated | required by the method called tplot.

本発明はシリカ系中空粒子の細孔径を制御して、金属ナノ粒子あるいは金属粒子をシリカ系中空粒子に選択的に担持させることができ、触媒、物質内包剤、断熱材等に利用することができる。

The present invention can control the pore diameter of silica-based hollow particles to selectively carry metal nanoparticles or metal particles on silica-based hollow particles, and can be used for catalysts, substance inclusion agents, heat insulating materials, etc. it can.

Claims (5)

内表面と外表面を有するシリカ殻内に、ガス吸着等温線から検出される細孔径分布を持つシリカ殻からなり、前記シリカ殻外表面(A)、シリカ殻内(B)、あるいはシリカ殻内表面(C)、の少なくとも一部位に選択的に金属ナノ粒子または金属酸化物ナノ粒子を担持したシリカ殻からなる複合ナノ中空粒子であって、
前記シリカ殻外表面(A)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の、Vt−plotにより算出される平均細孔径が1〜5nm、シリカ殻内(B)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の平均細孔径が0.5〜3nm、シリカ殻内表面(C)に金属ナノ粒子または金属酸化物ナノ粒子が担持したナノ中空粒子の平均細孔径が1nm以下である複合ナノ中空粒子。
A silica shell having an inner surface and an outer surface is composed of a silica shell having a pore size distribution detected from a gas adsorption isotherm, and the silica shell outer surface (A), silica shell (B), or silica shell A composite nano-hollow particle comprising a silica shell selectively supporting metal nanoparticles or metal oxide nanoparticles on at least a part of the surface (C),
The nano-porous particles supported by metal nanoparticles or metal oxide nanoparticles on the outer surface (A) of the silica shell have an average pore diameter calculated by Vt-plot of 1 to 5 nm, and the metal nano-particles in the silica shell (B) The average pore diameter of the nano hollow particles supported by the particles or metal oxide nanoparticles is 0.5 to 3 nm, and the average fine diameter of the nano hollow particles supported by the metal nanoparticles or metal oxide nanoparticles on the silica shell inner surface (C). Composite nano hollow particles having a pore size of 1 nm or less.
前記ナノ中空粒子の、電子顕微鏡法により測定した平均粒子径が、30〜300nmの範囲内である請求項1に記載の複合ナノ中空粒子。 The composite nano hollow particle according to claim 1, wherein an average particle diameter of the nano hollow particle measured by an electron microscope is in a range of 30 to 300 nm. 前記ナノ中空粒子の形状が、略球状、略立方体状、または略回転楕円体状である請求項1または2に記載の複合ナノ中空粒子。 The composite nano hollow particle according to claim 1 or 2, wherein a shape of the nano hollow particle is a substantially spherical shape, a substantially cubic shape, or a substantially spheroid shape. 前記シリカ殻の電子顕微鏡法による厚みが3〜20nmである請求項1〜3のいずれか一項記載の複合ナノ中空粒子。 The composite nano hollow particle according to any one of claims 1 to 3, wherein the thickness of the silica shell as measured by electron microscopy is 3 to 20 nm. 内表面と外表面を有するシリカ殻内に、ガス吸着等温線から検出される細孔径分布を持つシリカ殻からなり、前記シリカ殻外表面(A)シリカ殻内(B)、あるいはシリカ殻内表面C)、の少なくとも一部位に選択的に金属ナノ粒子または金属酸化物ナノ粒子を担持したシリカ殻からなる複合ナノ中空粒子であって、
前記細孔径分布を持つシリカ殻からなるナノ中空粒子を合成する工程と、
前記シリカ殻からなるナノ中空粒子に、金属または金属酸化物前駆体溶液を添加して、前記ナノ中空粒子に前記金属前駆体または金属酸化物前駆体を吸着させる工程と、
前記金属前駆体または金属酸化物前駆体が吸着されたナノ中空粒子を洗浄して焼成する工程と、
を含む金属ナノ粒子または金属酸化物ナノ粒子を選択的に担持した複合ナノ中空粒子の製造方法。


The silica shell having an inner surface and an outer surface is composed of a silica shell having a pore size distribution detected from a gas adsorption isotherm, and the silica shell outer surface (A) in the silica shell (B) or in the silica shell inner surface C), a composite nano-hollow particle comprising a silica shell selectively supporting metal nanoparticles or metal oxide nanoparticles at least in part of
Synthesizing nano hollow particles composed of silica shells having the pore size distribution;
Adding a metal or metal oxide precursor solution to the nano-hollow particles comprising the silica shell, and adsorbing the metal precursor or metal oxide precursor to the nano-hollow particles;
Washing and firing the nano hollow particles on which the metal precursor or metal oxide precursor is adsorbed; and
A method for producing composite nano hollow particles selectively supporting metal nanoparticles or metal oxide nanoparticles containing


JP2011225393A 2011-10-13 2011-10-13 Hollow silica nanoparticle complexed with nanoparticle and production method thereof Pending JP2013082599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225393A JP2013082599A (en) 2011-10-13 2011-10-13 Hollow silica nanoparticle complexed with nanoparticle and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225393A JP2013082599A (en) 2011-10-13 2011-10-13 Hollow silica nanoparticle complexed with nanoparticle and production method thereof

Publications (1)

Publication Number Publication Date
JP2013082599A true JP2013082599A (en) 2013-05-09

Family

ID=48528207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225393A Pending JP2013082599A (en) 2011-10-13 2011-10-13 Hollow silica nanoparticle complexed with nanoparticle and production method thereof

Country Status (1)

Country Link
JP (1) JP2013082599A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401531B1 (en) 2012-04-05 2014-06-03 충남대학교산학협력단 Production appararatus of gas-phase hollow nanoparticle using non-metallic template particle and method thereof
WO2015133606A1 (en) * 2014-03-06 2015-09-11 国立大学法人名古屋工業大学 Method for producing nano hollow particles composed of silica shell
JP2015174960A (en) * 2014-03-17 2015-10-05 ブラザー工業株式会社 Pigment for ink jet recording, pigment ink for ink jet recording and method of producing pigment for ink jet recording
KR101614246B1 (en) * 2015-05-15 2016-04-22 한국세라믹기술원 Hollow thermal shield material loaded with inorganic oxide and preparation method thereof
JP2018516830A (en) * 2015-04-17 2018-06-28 ザ ユニバーシティー オブ クイーンズランド Composition, particulate material and method for making particulate material
WO2018221406A1 (en) * 2017-05-31 2018-12-06 日揮触媒化成株式会社 Hollow particles and cosmetic
CN111924851A (en) * 2020-09-28 2020-11-13 上海千溯生物科技有限公司 Silicon dioxide nano material with umbrella-shaped dendritic structure and preparation method thereof
WO2022163397A1 (en) * 2021-01-28 2022-08-04 日揮触媒化成株式会社 Particles, and substrate with transparent coating film containing said particles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401531B1 (en) 2012-04-05 2014-06-03 충남대학교산학협력단 Production appararatus of gas-phase hollow nanoparticle using non-metallic template particle and method thereof
WO2015133606A1 (en) * 2014-03-06 2015-09-11 国立大学法人名古屋工業大学 Method for producing nano hollow particles composed of silica shell
JPWO2015133606A1 (en) * 2014-03-06 2017-04-06 国立大学法人 名古屋工業大学 Method for producing nano hollow particles comprising silica shell
JP2015174960A (en) * 2014-03-17 2015-10-05 ブラザー工業株式会社 Pigment for ink jet recording, pigment ink for ink jet recording and method of producing pigment for ink jet recording
US11345599B2 (en) 2015-04-17 2022-05-31 The University Of Queensland Composition, particulate materials and methods for making particulate materials
JP2018516830A (en) * 2015-04-17 2018-06-28 ザ ユニバーシティー オブ クイーンズランド Composition, particulate material and method for making particulate material
KR101614246B1 (en) * 2015-05-15 2016-04-22 한국세라믹기술원 Hollow thermal shield material loaded with inorganic oxide and preparation method thereof
WO2018221406A1 (en) * 2017-05-31 2018-12-06 日揮触媒化成株式会社 Hollow particles and cosmetic
US11020326B2 (en) 2017-05-31 2021-06-01 Jgc Catalysts And Chemicals Ltd. Hollow particles and cosmetic
JPWO2018221406A1 (en) * 2017-05-31 2020-05-21 日揮触媒化成株式会社 Hollow particles and cosmetics
JP7170633B2 (en) 2017-05-31 2022-11-14 日揮触媒化成株式会社 Hollow particles and cosmetics
CN111924851A (en) * 2020-09-28 2020-11-13 上海千溯生物科技有限公司 Silicon dioxide nano material with umbrella-shaped dendritic structure and preparation method thereof
CN111924851B (en) * 2020-09-28 2020-12-25 上海千溯生物科技有限公司 Silicon dioxide nano material with umbrella-shaped dendritic structure and preparation method thereof
WO2022163397A1 (en) * 2021-01-28 2022-08-04 日揮触媒化成株式会社 Particles, and substrate with transparent coating film containing said particles

Similar Documents

Publication Publication Date Title
JP2013082599A (en) Hollow silica nanoparticle complexed with nanoparticle and production method thereof
Duan et al. Ag–Fe 3 O 4 nanocomposites@ chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis
El-Toni et al. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures
Zheng et al. A Monodispersed Spherical Zr‐Based Metal–Organic Framework Catalyst, Pt/Au@ Pd@ UIO‐66, Comprising an Au@ Pd Core–Shell Encapsulated in a UIO‐66 Center and Its Highly Selective CO2 Hydrogenation to Produce CO
Wu et al. A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks
Yang et al. Facile Fabrication of Core–Shell‐Structured Ag@ Carbon and Mesoporous Yolk–Shell‐Structured Ag@ Carbon@ Silica by an Extended Stöber Method
Li et al. Extension of the Stöber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core–shell structures
Peng et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity
Chen et al. One-pot synthesis of thermally stable gold@ mesoporous silica core-shell nanospheres with catalytic activity
Ming et al. CO 2-assisted template synthesis of porous hollow bi-phase γ-/α-Fe 2 O 3 nanoparticles with high sensor property
Kimling et al. Sol–gel synthesis of hierarchically porous TiO 2 beads using calcium alginate beads as sacrificial templates
Jiang et al. Self-assembly fabrication of hollow mesoporous silica@ Co–Al layered double hydroxide@ graphene and application in toxic effluents elimination
Barhoum et al. A green, simple chemical route for the synthesis of pure nanocalcite crystals
CN106984301B (en) Manganese cerium titanium catalyst with ordered mesoporous structure, preparation method and application thereof
JPWO2013073475A1 (en) Nano hollow particles and method for producing the same
CN104857902A (en) Preparation method of silver/carbon composite hollow nanospheres
JP4646077B2 (en) Nanoparticle catalyst embedded in porous carbon support and method for producing the same
Zhang et al. Encapsulation of Au nanoparticles with well-crystallized anatase TiO 2 mesoporous hollow spheres for increased thermal stability
Racles et al. A silica-silver nanocomposite obtained by sol-gel method in the presence of silver nanoparticles
Paraskevopoulou et al. Strategies toward catalytic biopolymers: Incorporation of tungsten in alginate aerogels
Ghods et al. Synthesis of nanostructured magnesium silicate with high surface area and mesoporous structure
Xiong et al. One-pot synthesis of ultrafine Ni0. 13Co0. 87P nanoparticles on halloysite nanotubes as efficient catalyst for hydrogen evolution from ammonia borane
JP4827666B2 (en) Catalyst material for producing hydrogen gas from hydrocarbon gas, method for producing the same, and method for producing hydrogen gas using the catalyst material
JP6004272B2 (en) Chiral metal oxide structure and method for producing the same
Kou et al. Highly efficient and recyclable catalyst: porous Fe3O4–Au magnetic nanocomposites with tailored synthesis