JP2013080639A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2013080639A
JP2013080639A JP2011220576A JP2011220576A JP2013080639A JP 2013080639 A JP2013080639 A JP 2013080639A JP 2011220576 A JP2011220576 A JP 2011220576A JP 2011220576 A JP2011220576 A JP 2011220576A JP 2013080639 A JP2013080639 A JP 2013080639A
Authority
JP
Japan
Prior art keywords
change
positive electrode
active material
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011220576A
Other languages
Japanese (ja)
Inventor
Masaru Yao
勝 八尾
Hiroshi Senoo
博 妹尾
Tetsu Kiyobayashi
哲 清林
Shinichi Yamazaki
眞一 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011220576A priority Critical patent/JP2013080639A/en
Publication of JP2013080639A publication Critical patent/JP2013080639A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery whose remaining capacity can be accurately determined by a simple method.SOLUTION: The nonaqueous secondary battery includes: a cathode material containing, as a cathode active material, a material whose optical properties change in accordance with a change in oxidation-reduction state; and means for evaluating a change in the optical properties of the cathode active material.

Description

本発明は、非水系二次電池に関する。   The present invention relates to a non-aqueous secondary battery.

日常生活に使われるポータブル電子機器の多くが電池で作動しており、近年は、電気自動車等の電源として電池が用いられている。この様な各種の電池では、電池の残存容量の低下による予期せぬ機器の停止を回避するため、種々の残存容量の予測法が検討されている。これまで提案されてきた電池の残存容量の予測法は、電圧から判定する方法がほとんどである。しかしながら、一般に、電池では、放電が進行するに従って電圧が低下するが、その変化が大きいのは放電初期と末期であり、放電中期ではその変化は少ないため、電圧を測定する方法では、放電中期において残存容量の変化を判断することは難しい。しかも、電池電圧は、残存容量だけでなく、使用状態や周辺温度によって変化するため、電圧の測定のみでは、残存容量を正確に判断することはできない。   Many portable electronic devices used in daily life operate on batteries, and in recent years, batteries have been used as power sources for electric vehicles and the like. In such various types of batteries, various methods for predicting the remaining capacity have been studied in order to avoid an unexpected stop of the device due to a decrease in the remaining capacity of the battery. Most of the methods for predicting the remaining capacity of the battery that have been proposed so far are methods for determining from the voltage. However, in general, in a battery, the voltage decreases as the discharge progresses, but the change is large in the initial and final stages of discharge, and the change is small in the middle stage of discharge. It is difficult to judge changes in remaining capacity. In addition, since the battery voltage varies depending not only on the remaining capacity but also on the usage state and the ambient temperature, the remaining capacity cannot be accurately determined only by measuring the voltage.

その他、有機物のエレクトロクロミック特性や液晶分子の配向特性を用いて残存容量を推定する方法も報告されている(特許文献1、2参照)。しかしながら、これらの方法は、いずれも、電池電圧の変化に基づくエレクトロクロミック特性や液晶分子の配向特性の変化を利用して残存容量を判断しているので、電圧を直接測定する場合と同様に、正確な残存容量の判断は困難である。   In addition, methods for estimating the remaining capacity using electrochromic characteristics of organic substances and alignment characteristics of liquid crystal molecules have been reported (see Patent Documents 1 and 2). However, both of these methods determine the remaining capacity by utilizing the change in the electrochromic characteristics based on the change in the battery voltage and the alignment characteristics of the liquid crystal molecules, so as in the case of directly measuring the voltage, It is difficult to accurately determine the remaining capacity.

特開平9−167638号公報JP-A-9-167638 特開平10−321241号公報Japanese Patent Laid-Open No. 10-32241

本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、簡単な方法で、より精度よく残存容量を判断することが可能な非水系二次電池を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and its main object is to provide a non-aqueous secondary battery capable of determining the remaining capacity more accurately by a simple method. It is to be.

本発明者は、上記した目的を達成すべく鋭意県研究を重ねてきた。その結果、非水系二次電池の正極活物質として作用する物質の内で、ある種の物質は、酸化還元状態の変化に伴って光学的性質に大きな変化が生じることを見出した。そして、このような正極活物質を用いた電池について、正極活物質の光学的性質の変化を外部から確認できる構造とすることによって、正極活物質の酸化還元の状態、即ち、充放電状態を容易に判断できることを見出した。特に、可視光域において反射光の強度に変化が生じる物質を正極活物質として用い、これを外部から視認できる構造とする場合には、正極活物質の色調の変化を目視するだけで充放電状態を知ることがき、簡単な方法で電池の残存容量を判断することが可能となることを見出し、ここに本発明を完成するに至った。 The present inventor has conducted earnest prefecture research to achieve the above-described purpose. As a result, it has been found that among the substances acting as the positive electrode active material of the non-aqueous secondary battery, a certain kind of substance undergoes a great change in optical properties as the oxidation-reduction state changes. And about the battery using such a positive electrode active material, by making the structure which can confirm the optical property change of a positive electrode active material from the outside, the oxidation reduction state of a positive electrode active material, ie, a charge / discharge state, is easy. It was found that it can be judged. In particular, when a substance that changes in the intensity of reflected light in the visible light region is used as the positive electrode active material, and this has a structure that can be visually recognized from the outside, the charge / discharge state can be obtained simply by visually observing the color tone change of the positive electrode active material. It was found that the remaining capacity of the battery can be determined by a simple method, and the present invention has been completed here.

即ち、本発明は、下記の非水系二次電池を提供するものである。
項1.酸化還元状態の変化に応じて光学的性質に変化が生じる物質を正極活物質として含む正極材料と、該正極活物質の光学的性質の変化を評価する手段とを含む、非水系二次電池。
項2.正極活物質における光学的性質の変化が、反射光の強度変化、蛍光の変化、又は燐光の変化である、上記項1に記載の非水系二次電池。
項3.正極活物質の光学的性質の変化を評価する手段が、正極活物質から生じる光を透過する部位を有する外装材料を含むものである、上記項1又は2に記載の非水系二次電池。
項4.正極活物質における光学的性質の変化が、可視光域又は赤外線域における反射光の強度変化である、上記項1〜3のいずれかに記載の非水系二次電池。
項5.正極活物質における光学的性質の変化が該活物質の色調の変化であり、正極活物質の光学的性質の変化を評価する手段が、可視光を透過する部位を有する外装材料を含むものである、上記項1〜4のいずれかに記載の非水系二次電池。
項6.正極材料が、導電助剤として白色又は淡色系材料を含むものである、上記項5に記載の非水系二次電池。
That is, the present invention provides the following non-aqueous secondary battery.
Item 1. A non-aqueous secondary battery comprising: a positive electrode material containing, as a positive electrode active material, a substance that changes in optical properties in response to a change in oxidation-reduction state; and a means for evaluating a change in optical properties of the positive electrode active material.
Item 2. The nonaqueous secondary battery according to Item 1, wherein the change in optical properties of the positive electrode active material is a change in the intensity of reflected light, a change in fluorescence, or a change in phosphorescence.
Item 3. Item 3. The nonaqueous secondary battery according to Item 1 or 2, wherein the means for evaluating a change in optical properties of the positive electrode active material includes an exterior material having a portion that transmits light generated from the positive electrode active material.
Item 4. Item 4. The nonaqueous secondary battery according to any one of Items 1 to 3, wherein the change in optical properties of the positive electrode active material is a change in the intensity of reflected light in the visible light region or infrared region.
Item 5. The change in the optical properties of the positive electrode active material is a change in the color tone of the active material, and the means for evaluating the change in the optical properties of the positive electrode active material includes an exterior material having a portion that transmits visible light. Item 5. The nonaqueous secondary battery according to any one of Items 1 to 4.
Item 6. Item 6. The nonaqueous secondary battery according to Item 5, wherein the positive electrode material contains a white or light-colored material as a conductive additive.

以下、本発明の非水系二次電池について具体的に説明する。   Hereinafter, the nonaqueous secondary battery of the present invention will be specifically described.

本発明の非水系二次電池は、酸化還元状態の変化に応じて光学的性質に変化が生じる物質を正極活物質として含む正極材料と、該正極活物質の光学的性質の変化を評価する手段とを含むものである。
(1)正極活物質
酸化還元状態の変化に応じて光学的性質に変化が生じる物質としては、特に限定はなく、正極活物質として有効な物質であって、酸化還元の状態に応じて光学的性質に変化が生じる物質であればよい。この場合、光学的性質の変化としては、反射光の強度変化、蛍光の変化、燐光の変化などを利用できる。
The non-aqueous secondary battery according to the present invention includes a positive electrode material containing, as a positive electrode active material, a substance that changes in optical properties according to a change in oxidation-reduction state, and means for evaluating changes in optical properties of the positive electrode active material Is included.
(1) The material in which the optical properties change according to the change in the redox state of the positive electrode active material is not particularly limited, and is a material that is effective as the positive electrode active material. Any substance that changes its properties may be used. In this case, the change in optical properties can be a change in the intensity of reflected light, a change in fluorescence, a change in phosphorescence, or the like.

これらの内で、反射光の強度変化については、可視光域及び赤外線域のいずれの波長域における変化であってもよく、正極活物質の種類に応じて、最も変化を確認し易い波長域の反射光を利用すればよい。特に、色調の変化として認識できる可視光域における反射光の強度変化を利用する場合には、複雑な装置を有することなく、目視によって色調の変化を確認できるので、簡単に充放電状態を判断できる。   Among these, the intensity change of the reflected light may be a change in any wavelength region of the visible light region and the infrared region, and depending on the type of the positive electrode active material, the wavelength region in which the change is most easily confirmed. What is necessary is just to utilize reflected light. In particular, when using a reflected light intensity change in the visible light range that can be recognized as a change in the color tone, the change in the color tone can be confirmed visually without having a complicated device, so the charge / discharge state can be easily determined. .

本発明で使用できる正極活物質としては、有機化合物、無機化合物のいずれであってもよく、酸化還元状態の変化に対応して、光学的性質が徐々に変化する物質であることが好ましい。特に、有機化合物は酸化還元状態の変化によって光学的性質が大きく変化するものが多く、例えば、インディゴ系化合物、キノン系化合物、ニトロキシラジカル基含有化合物等の有機活物質は、酸化還元状態の変化によって、可視領域又は赤外領域における反射光の強度が大きく変化するので、充放電状態の判断を簡単且つ正確に行うことができる。   The positive electrode active material that can be used in the present invention may be either an organic compound or an inorganic compound, and is preferably a material whose optical properties gradually change in response to changes in the redox state. In particular, many organic compounds have optical properties that change greatly due to changes in the redox state. For example, organic active materials such as indigo compounds, quinone compounds, and nitroxy radical group-containing compounds change the redox state. As a result, the intensity of reflected light in the visible region or the infrared region changes greatly, so that the charge / discharge state can be determined easily and accurately.

(2)正極材料
正極材料は、通常、正極活物質に加えて、導電助剤及び結合剤を含むものである。本発明では、上記した充放電状態の変化に応じて光学的性質に変化が生じる物質を正極活物質の少なくとも一部として使用すればよく、必要に応じて、その他の正極活物質と組み合わせて用いてもよい。この場合、正極活物質の混合割合は、正極活物質の光学的性質の変化の大きさと、正極活物質としての要求性能とを考慮して適宜決めればよい。
(2) Positive electrode material The positive electrode material usually contains a conductive additive and a binder in addition to the positive electrode active material. In the present invention, a material that changes in optical properties according to the change in the charge / discharge state described above may be used as at least a part of the positive electrode active material, and may be used in combination with other positive electrode active materials as necessary. May be. In this case, the mixing ratio of the positive electrode active material may be appropriately determined in consideration of the magnitude of change in the optical properties of the positive electrode active material and the required performance as the positive electrode active material.

正極材料に用いる導電助剤及び結合剤の種類については、特に限定はなく、公知の材料を用いればよく、使用量についても、通常の使用量の範囲から、要求される性能に応じて適宜決めればよい。   There are no particular limitations on the type of conductive additive and binder used for the positive electrode material, and any known material may be used, and the amount used is also appropriately determined according to the required performance from the range of normal amounts used. That's fine.

特に、正極活物質として、酸化還元状態の変化に応じて色調が変化する物質を用いて、目視により色調の変化を評価して充放電状態を判断する場合には、正極活物質の色調の変化を判別し易いように、導電助剤として、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化インジウム(FTO)、酸化スズ、二酸化チタン、白色系金属粉末等の白色又は淡色系材料を用いることが好ましい。   In particular, when using a substance whose color tone changes according to the change in the oxidation-reduction state as the positive electrode active material, and evaluating the change in color tone to determine the charge / discharge state, the change in the color tone of the positive electrode active material It is preferable to use a white or light-colored material such as tin-doped indium oxide (ITO), fluorine-doped indium oxide (FTO), tin oxide, titanium dioxide, or white metal powder as the conductive auxiliary.

尚、正極については、酸化還元状態の変化に応じて光学的性質に変化が生じる正極活物質が、外装材料側から確認できるように配置することが必要である。例えば、該正極活物質の少なくとも一部が正極用集電材料の外装材料側に位置するように配置して正極を作製すればよい。   In addition, about a positive electrode, it is necessary to arrange | position so that the positive electrode active material from which an optical property changes according to the change of an oxidation reduction state can be confirmed from the exterior material side. For example, the positive electrode may be produced by arranging so that at least a part of the positive electrode active material is located on the exterior material side of the positive electrode current collector material.

(3)正極活物質の光学的性質の変化を評価する手段
正極活物質の光学的性質の変化を評価する手段については、使用する正極活物質における光学的性質の変化の種類に応じて決めればよいが、少なくとも、正極活物質の光学的性質の変化を外部から評価するために、反射光、蛍光、燐光などの正極活物質から生じる光を透過する部位を有する外装材料を用いることが必要である。
(3) Means for evaluating the change in optical properties of the positive electrode active material The means for evaluating the change in optical properties of the positive electrode active material can be determined according to the type of change in the optical properties of the positive electrode active material used. However, at least in order to evaluate the change in the optical properties of the positive electrode active material from the outside, it is necessary to use an exterior material having a portion that transmits light generated from the positive electrode active material such as reflected light, fluorescence, and phosphorescence. is there.

外装材料の種類については、特に限定はなく、通常の非水系二次電池と同様に、アルミニウムアミネートや金属などの従来から使用されている材料等を用いることができ、その少なくとも一部を正極活物質から生じる光を透過する材料で構成すればよい。   There are no particular restrictions on the type of exterior material, and conventional materials such as aluminum aminates and metals can be used as in the case of ordinary non-aqueous secondary batteries. What is necessary is just to comprise with the material which permeate | transmits the light which arises from an active material.

例えば、正極活物質の色調の変化によって充放電状態を判断するためには、非水系二次電池の外装材料の少なくとも一部を、ガラス材料等の可視光域の光に対して透過性を有する材料で構成すればよい。このような構造を有する非水系二次電池によれば、二次電池の外部から正極活物質の色調の変化を視認できるので、予備的に充放電状態と正極活物質の色調との関係を評価しておけば、正極材料の色調の変化を目視で確認することによって、充放電状態を判断することができる。   For example, in order to determine the charge / discharge state based on a change in color tone of the positive electrode active material, at least a part of the exterior material of the non-aqueous secondary battery is transmissive to light in the visible light region such as a glass material. What is necessary is just to comprise with material. According to the non-aqueous secondary battery having such a structure, since the change in the color tone of the positive electrode active material can be visually recognized from the outside of the secondary battery, the relationship between the charge / discharge state and the color tone of the positive electrode active material is preliminarily evaluated. Then, the charge / discharge state can be determined by visually confirming the change in the color tone of the positive electrode material.

また、赤外域の反射光を利用して充放電状態を評価する場合には、正極活物質に対して赤外線を照射し、正極活物質からの反射光を透過させるために、赤外線に対して透過性を有する材料で外装材料の少なくとも一部を構成すればよい。   In addition, when evaluating the charge / discharge state using reflected light in the infrared region, the positive electrode active material is irradiated with infrared light, and the reflected light from the positive electrode active material is transmitted. What is necessary is just to comprise at least one part of exterior material with the material which has property.

また、正極活物質から生じる蛍光又は燐光の変化を利用して充放電状態を評価するためには、正極活物質に対して蛍光又は燐光を生じさせるための照射光と、正極活物質から生じる蛍光又は燐光を透過させるために、照射光と蛍光又は燐光とを透過できる部位を外装材料の少なくとも一部に設ければよい。この場合には、照射光を照射する手段と、蛍光又は燐光の強度を評価する手段を別途設ければよい。   In addition, in order to evaluate the charge / discharge state using changes in fluorescence or phosphorescence generated from the positive electrode active material, irradiation light for generating fluorescence or phosphorescence on the positive electrode active material and fluorescence generated from the positive electrode active material are used. Alternatively, in order to transmit phosphorescence, a portion that can transmit irradiation light and fluorescence or phosphorescence may be provided in at least part of the exterior material. In this case, a means for irradiating irradiation light and a means for evaluating the intensity of fluorescence or phosphorescence may be provided separately.

(4)非水系二次電池の構造
本発明の非水系二次電池では、正極材料及び外装材料を上記した構成とすること以外は、通常の非水系二次電池と同様でよい。
(4) Structure of non-aqueous secondary battery The non-aqueous secondary battery of the present invention may be the same as a normal non-aqueous secondary battery except that the positive electrode material and the exterior material are configured as described above.

例えば、リチウムイオン二次電池について説明すると、上記した条件を満足する正極活物質を正極材料の少なくとも一部として用い、負極活物質として、公知の材料である金属リチウム、リチウムをドープした炭素系材料(活性炭、黒鉛)などを使用し、電解液としては、例えば、エチレンカーボネート:EC、ジメチルカーボネート:DMC、テトラグライムなどの溶媒に過塩素酸リチウム:LiClO4、六フッ化リン酸リチウム:LiPF6などのリチウム塩を溶解させた公知の電解液を使用し、さらにその他の公知の電池構成要素を使用して、常法に従ってリチウムイオン二次電池を組立てればよい。 For example, a lithium ion secondary battery will be described. A positive electrode active material that satisfies the above-described conditions is used as at least a part of a positive electrode material, and as a negative electrode active material, a metal lithium that is a known material, a carbon-based material doped with lithium (Activated carbon, graphite) and the like, and as an electrolyte, for example, a solvent such as ethylene carbonate: EC, dimethyl carbonate: DMC, tetraglyme, lithium perchlorate: LiClO 4 , lithium hexafluorophosphate: LiPF 6 What is necessary is just to assemble a lithium ion secondary battery according to a conventional method using the well-known electrolyte solution which melt | dissolved lithium salts, such as these, and also using another well-known battery component.

本発明の非水系二次電池によれば、正極活物質の酸化還元状態の変化を光学的性質の変化によって評価するために、電圧の変化によって評価する場合と比較して、精度の高い充放電状態の評価が可能となる。   According to the nonaqueous secondary battery of the present invention, in order to evaluate the change in the redox state of the positive electrode active material by the change in optical properties, the charge / discharge is more accurate than in the case of evaluating by the change in voltage. The state can be evaluated.

特に、正極活物質の酸化還元状態の変化に伴う色調の変化を視認して、充放電状態を評価する方法によれば、正極活物質の色調の変化を目視するだけで充放電状態を知ることがき、簡単な方法で電池の残留容量を判断することができる。   In particular, according to the method of visually evaluating the change in color tone associated with the change in the redox state of the positive electrode active material and evaluating the charge / discharge state, it is possible to know the charge / discharge state simply by visually checking the change in color tone of the positive electrode active material. The remaining capacity of the battery can be determined by a simple method.

実施例1で作製した電池の概略の構成図。FIG. 2 is a schematic configuration diagram of a battery manufactured in Example 1. 実施例1で作製した電池の充放電曲線。The charge / discharge curve of the battery produced in Example 1.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
酸化還元状態の変化に応じて色調が変化する有機活物質としてインジゴカルミン(シグマアルドリッチジャパン(株))を用い、これに白色導電助剤としての酸化インジウムスズ(ITO)粉末(シグマアルドリッチジャパン(株))と、結合剤としてのポリテトラフルオロエチレン(PTFE)(ダイキン工業(株))を、活物質:導電助剤:結合剤(重量比)=1:15:3の割合で混合し、シート状に成形して、残留容量可視化用のシート状の正極材料を作製した。
Example 1
Indigo carmine (Sigma Aldrich Japan Co., Ltd.) is used as an organic active material whose color tone changes according to the change in the redox state, and indium tin oxide (ITO) powder (Sigma Aldrich Japan Co., Ltd.) as a white conductive auxiliary agent is used for this. )) And polytetrafluoroethylene (PTFE) (Daikin Kogyo Co., Ltd.) as a binder are mixed in a ratio of active material: conductive aid: binder (weight ratio) = 1: 15: 3, and sheet The sheet-like positive electrode material for residual capacity visualization was produced.

一方、正極活物質として同じくインジゴカルミンを用い、導電助剤としてのアセチレンブラックと結合剤としてのPTFEを、活物質:導電助剤:結合剤(重量比)=4:5:1の割合で混合し、シート状に成形して、高容量のシート状正極材料を作製した。   On the other hand, indigo carmine is also used as the positive electrode active material, and acetylene black as a conductive additive and PTFE as a binder are mixed in a ratio of active material: conductive auxiliary agent: binder (weight ratio) = 4: 5: 1. And it shape | molded in the sheet form, and produced the high capacity | capacitance sheet-like positive electrode material.

上記した方法で作製した残留容量可視化用のシート状正極材料と高容量のシート状正極材料を、集電体であるアルミニウムメッシュ(厚さ:110μm)を挟んで両側から圧着し、両者をスポット溶接することによって、正極を作製した。残留容量可視化用の正極材料と高容量の正極材料の容量比は、前者:後者=約1:10とした。   The sheet-like positive electrode material for residual capacity visualization and the high-capacity sheet-like positive electrode material produced by the above method are pressure-bonded from both sides with an aluminum mesh (thickness: 110 μm) as a current collector, and both are spot-welded. Thus, a positive electrode was produced. The capacity ratio between the positive electrode material for visualizing the residual capacity and the high capacity positive electrode material was the former: the latter = about 1:10.

負極材料としてリチウム箔、負極集電体として銅箔、セパレーターとしてガラスフィルターおよびポリプロピレン微多孔膜(セルガード(株))を用い、これら部材を二枚のガラス板で挟み込み、その間にOリングを配置することで、二極式の密閉型リチウムイオン二次電池を作製した。尚、正極については、残留容量可視化用の正極材料がガラス板側に位置するように配置した。電解液としては、リチウムビス(トリフルオロメタンスルホニル)イミド/γ-ブチルラクトン(1.0 mol/L)を用いた。得られたリチウムイオン二次電池の概略の構成を図1に示す。この電池では、正極側のガラス材料の外部から、インジゴカルミンを含む正極の色調を視認することが可能であった。   Lithium foil is used as the negative electrode material, copper foil is used as the negative electrode current collector, a glass filter and a polypropylene microporous membrane (Celgard Co., Ltd.) are used as separators, and these members are sandwiched between two glass plates, and an O-ring is placed between them Thus, a bipolar closed type lithium ion secondary battery was produced. In addition, about the positive electrode, it arrange | positioned so that the positive electrode material for residual capacity visualization may be located in the glass plate side. As the electrolytic solution, lithium bis (trifluoromethanesulfonyl) imide / γ-butyllactone (1.0 mol / L) was used. FIG. 1 shows a schematic configuration of the obtained lithium ion secondary battery. In this battery, it was possible to visually recognize the color tone of the positive electrode containing indigo carmine from the outside of the glass material on the positive electrode side.

この電池について、150μAの電流および1.5−3.0 V(vs.Li)の電位範囲で室温大気下にて充放電試験を行った。 図2に、充放電曲線を示す。この電池は、約2.0V(vs.Li)の放電平均電圧で作動し、繰り返し充放電が可能であった。   The battery was subjected to a charge / discharge test in the atmosphere at room temperature in a current range of 150 μA and a potential range of 1.5-3.0 V (vs. Li). FIG. 2 shows a charge / discharge curve. This battery operated at a discharge average voltage of about 2.0 V (vs. Li), and could be repeatedly charged and discharged.

この際、充電状態では、インジゴカルミンを含む正極材料の色は、インジゴカルミンの色を反映して濃青色であり、電池を放電させると、黄色〜黄褐色へ色調が変化した。この色調変化は可逆的であり、電池の充放電状態に対応して色調変化が生じた。このため、正極材料の色を目視で観察することによって、電池の充放電状態を判断することができた。   At this time, in the charged state, the color of the positive electrode material containing indigo carmine was dark blue reflecting the color of indigo carmine, and when the battery was discharged, the color tone changed from yellow to tan. This color change was reversible, and the color change occurred corresponding to the charge / discharge state of the battery. For this reason, the charge / discharge state of the battery could be determined by visually observing the color of the positive electrode material.

Claims (6)

酸化還元状態の変化に応じて光学的性質に変化が生じる物質を正極活物質として含む正極材料と、該正極活物質の光学的性質の変化を評価する手段とを含む、非水系二次電池。 A non-aqueous secondary battery comprising: a positive electrode material containing, as a positive electrode active material, a substance that changes in optical properties in response to a change in oxidation-reduction state; and a means for evaluating a change in optical properties of the positive electrode active material. 正極活物質における光学的性質の変化が、反射光の強度変化、蛍光の変化、又は燐光の変化である、請求項1に記載の非水系二次電池。 The nonaqueous secondary battery according to claim 1, wherein the change in optical properties of the positive electrode active material is a change in reflected light intensity, a change in fluorescence, or a change in phosphorescence. 正極活物質の光学的性質の変化を評価する手段が、正極活物質から生じる光を透過する部位を有する外装材料を含むものである、請求項1又は2に記載の非水系二次電池。 The non-aqueous secondary battery according to claim 1 or 2, wherein the means for evaluating a change in optical properties of the positive electrode active material includes an exterior material having a portion that transmits light generated from the positive electrode active material. 正極活物質における光学的性質の変化が、可視光域又は赤外線域における反射光の強度変化である、請求項1〜3のいずれかに記載の非水系二次電池。 The non-aqueous secondary battery according to any one of claims 1 to 3, wherein the change in optical properties of the positive electrode active material is a change in the intensity of reflected light in the visible light region or the infrared light region. 正極活物質における光学的性質の変化が該活物質の色調の変化であり、正極活物質の光学的性質の変化を評価する手段が、可視光を透過する部位を有する外装材料を含むものである、請求項1〜4のいずれかに記載の非水系二次電池。 The change in the optical properties of the positive electrode active material is a change in the color tone of the active material, and the means for evaluating the change in the optical properties of the positive electrode active material includes an exterior material having a portion that transmits visible light. Item 5. The nonaqueous secondary battery according to any one of Items 1 to 4. 正極材料が、導電助剤として白色又は淡色系材料を含むものである、請求項5に記載の非水系二次電池。 The non-aqueous secondary battery according to claim 5, wherein the positive electrode material contains a white or light-colored material as a conductive additive.
JP2011220576A 2011-10-05 2011-10-05 Nonaqueous secondary battery Pending JP2013080639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011220576A JP2013080639A (en) 2011-10-05 2011-10-05 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011220576A JP2013080639A (en) 2011-10-05 2011-10-05 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2013080639A true JP2013080639A (en) 2013-05-02

Family

ID=48526865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011220576A Pending JP2013080639A (en) 2011-10-05 2011-10-05 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2013080639A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018641A (en) * 2014-07-07 2016-02-01 トヨタ自動車株式会社 Overcharge detector for lithium ion battery
EP3098879A1 (en) * 2015-05-28 2016-11-30 Lithium Energy and Power GmbH & Co. KG Method for detecting a decomposition of a cathode of a battery cell and battery cell
JP2020508543A (en) * 2017-02-15 2020-03-19 ハイドロ−ケベック Electrode materials and processes for their preparation
WO2020105452A1 (en) * 2018-11-21 2020-05-28 日本電信電話株式会社 Lithium secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272044A (en) * 1988-04-22 1989-10-31 Toyoda Gosei Co Ltd Battery
JPH0251847A (en) * 1988-08-12 1990-02-21 Sanyo Electric Co Ltd Secondary battery
JPH05217603A (en) * 1992-02-07 1993-08-27 Fujitsu Ltd Highpolymer battery and its package structure
JPH06283212A (en) * 1993-03-29 1994-10-07 Yuasa Corp Battery having capacity indicating function
JP2004213938A (en) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd Lithium secondary battery and its manufacturing method
JP2007311057A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Electrode for battery
JP2008235252A (en) * 2007-02-23 2008-10-02 Tdk Corp Active substance particles for electrode, electrode, electrochemical device, and manufacturing method of electrode
JP2010157361A (en) * 2008-12-26 2010-07-15 Tdk Corp Method of manufacturing positive electrode for lithium-ion secondary battery, method of manufacturing lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272044A (en) * 1988-04-22 1989-10-31 Toyoda Gosei Co Ltd Battery
JPH0251847A (en) * 1988-08-12 1990-02-21 Sanyo Electric Co Ltd Secondary battery
JPH05217603A (en) * 1992-02-07 1993-08-27 Fujitsu Ltd Highpolymer battery and its package structure
JPH06283212A (en) * 1993-03-29 1994-10-07 Yuasa Corp Battery having capacity indicating function
JP2004213938A (en) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd Lithium secondary battery and its manufacturing method
JP2007311057A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Electrode for battery
JP2008235252A (en) * 2007-02-23 2008-10-02 Tdk Corp Active substance particles for electrode, electrode, electrochemical device, and manufacturing method of electrode
JP2010157361A (en) * 2008-12-26 2010-07-15 Tdk Corp Method of manufacturing positive electrode for lithium-ion secondary battery, method of manufacturing lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018641A (en) * 2014-07-07 2016-02-01 トヨタ自動車株式会社 Overcharge detector for lithium ion battery
EP3098879A1 (en) * 2015-05-28 2016-11-30 Lithium Energy and Power GmbH & Co. KG Method for detecting a decomposition of a cathode of a battery cell and battery cell
JP2020508543A (en) * 2017-02-15 2020-03-19 ハイドロ−ケベック Electrode materials and processes for their preparation
US11114668B2 (en) * 2017-02-15 2021-09-07 HYDRO-QUéBEC Electrode materials and processes for their preparation
JP7282681B2 (en) 2017-02-15 2023-05-29 ハイドロ-ケベック Electrode materials and processes for their preparation
WO2020105452A1 (en) * 2018-11-21 2020-05-28 日本電信電話株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
Mozhzhukhina et al. Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li–air battery
Jeżowski et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt
Zhang et al. The electrolyte comprising more robust water and superhalides transforms Zn‐metal anode reversibly and dendrite‐free
Yamada et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries
Qiao et al. Unraveling the complex role of iodide additives in Li–O2 batteries
Geng et al. From lithium‐oxygen to lithium‐air batteries: challenges and opportunities
Adams et al. Towards a stable organic electrolyte for the lithium oxygen battery
Abouimrane et al. Sulfone-based electrolytes for high-voltage Li-ion batteries
Jin et al. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage
Zhao et al. High‐performance lithium‐iodine flow battery
Nakanishi et al. Electrolyte composition in Li/O2 batteries with LiI redox mediators: solvation effects on redox potentials and implications for redox shuttling
Yao et al. Utilization of cobalt bis (terpyridine) metal complex as soluble redox mediator in Li–O2 batteries
Yamada et al. Correlation between charge− discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes
Gerbaldi et al. UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries
Agostini et al. A lithium-ion sulfur battery using a polymer, polysulfide-added membrane
Lee et al. N-(triphenylphosphoranylidene) aniline as a novel electrolyte additive for high voltage LiCoO2 operations in lithium ion batteries
Elia et al. A polymer lithium-oxygen battery
Qiao et al. High‐Voltage Li‐Ion Full‐Cells with Ultralong Term Cycle Life at Elevated Temperature
Villevieille et al. Novel electrochemical cell designed for operando techniques and impedance studies
Ngala et al. Characterization and electrocatalytic behavior of layered Li2MnO3 and its acid-treated form
US20200091557A1 (en) Electrolyte for electrochemical device and preparation method therefor
JP2013080639A (en) Nonaqueous secondary battery
Yu et al. Development of high‐voltage aqueous electrochemical energy storage devices
Büttner et al. Are Halide‐Perovskites Suitable Materials for Battery and Solar‐Battery Applications–Fundamental Reconsiderations on Solubility, Lithium Intercalation, and Photo‐Corrosion
Lin et al. Suppressing singlet oxygen formation during the charge process of Li-O2 batteries with a Co3O4 solid catalyst revealed by operando electron paramagnetic resonance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203