JP2013077697A - Ceramic multilayer substrate and manufacturing method thereof - Google Patents

Ceramic multilayer substrate and manufacturing method thereof Download PDF

Info

Publication number
JP2013077697A
JP2013077697A JP2011216692A JP2011216692A JP2013077697A JP 2013077697 A JP2013077697 A JP 2013077697A JP 2011216692 A JP2011216692 A JP 2011216692A JP 2011216692 A JP2011216692 A JP 2011216692A JP 2013077697 A JP2013077697 A JP 2013077697A
Authority
JP
Japan
Prior art keywords
layer
laminated
base material
constraining
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011216692A
Other languages
Japanese (ja)
Other versions
JP5724806B2 (en
Inventor
Yoichi Moriya
要一 守屋
Takeshi Katsube
毅 勝部
Yuki Takemori
祐貴 武森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2011216692A priority Critical patent/JP5724806B2/en
Publication of JP2013077697A publication Critical patent/JP2013077697A/en
Application granted granted Critical
Publication of JP5724806B2 publication Critical patent/JP5724806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic multilayer substrate in which, even if base material layers having different thickness are provided, a substrate warp suppression requirement can be satisfied sufficiently, and a manufacturing method thereof.SOLUTION: A ceramic multilayer substrate comprises base material layers 12a-12j and 16a-16e which are obtained by sintering a ceramic material and the thickness of which are different from each other, and restriction layers 14a-14j and 18a-18e which are obtained by fixing non-sintered inorganic material powder via a fused and then solidified glass material and the thickness of which are different from each other. A plurality of laminate elements 11x and 11y each comprise one base material layer and one restriction layer laminated to each other are laminated to each other. The thickness of the base material layer 12a and the restriction layer 14a in the laminate element 11x including the thinnest base material layer among the laminate elements are defined as Tand Drespectively, the thickness of the base material layer 16a and the restriction layer 18a in the other laminate element 11y are defined as Tand Drespectively and smaller one between (T/D) and (T/D) is defined as K. In such a case, |(T/D)-(T/D)|≤0.2×K is established.

Description

本発明は、セラミック多層基板及びその製造方法に関し、詳しくは、セラミック材料粉末が焼結した基材層と、焼成時の基材層の収縮を抑制する拘束層とが積層されたセラミック多層基板及びその製造方法に関する。   The present invention relates to a ceramic multilayer substrate and a manufacturing method thereof, and more specifically, a ceramic multilayer substrate in which a base material layer obtained by sintering a ceramic material powder and a constraining layer that suppresses shrinkage of the base material layer during firing are laminated, and It relates to the manufacturing method.

セラミック材料からなる複数の基材層を備えたセラミック多層基板は、セラミック材料粉末を含む未焼結の基材層を積層した積層体を焼成することにより作製される。未焼結の基材層は焼成時に収縮するため、基板の反り等の不具合が発生しやすい。そこで、焼成時の基材層の収縮を抑制する拘束層と未焼結の基材層とを積層した積層体を焼成し、焼成時に基材層の面方向の収縮を拘束層によって抑制することによって、基材層と拘束層とが積層されたセラミック多層基板を作製することが提案されている。   A ceramic multilayer substrate including a plurality of base material layers made of a ceramic material is produced by firing a laminate in which unsintered base material layers containing ceramic material powder are stacked. Since the unsintered base material layer shrinks during firing, problems such as warpage of the substrate are likely to occur. Therefore, the laminate in which the constraining layer that suppresses shrinkage of the base material layer during firing and the unsintered base material layer is fired, and the shrinkage in the surface direction of the base material layer is suppressed by the constraining layer during firing. It has been proposed to produce a ceramic multilayer substrate in which a base material layer and a constraining layer are laminated.

例えば、特許文献1に開示されたセラミック多層基板は、第1のセラミック材料粉末とガラス材料粉末とを含む未焼結の基材層と、第1のセラミック材料粉末の焼結温度では焼結しない第2のセラミック材料粉末を含む未焼結の拘束層とを積層した積層体を、第1のセラミック材料粉末は焼結するが第2のセラミック材料粉末は焼結しない条件で焼成することにより作製される。基材層中のガラス材料粉末は、焼成時に流動化し拡散し、焼成後には拘束層の第2のセラミック材料粉末を固着する。   For example, the ceramic multilayer substrate disclosed in Patent Document 1 does not sinter at an unsintered base material layer including a first ceramic material powder and a glass material powder and a sintering temperature of the first ceramic material powder. Produced by firing a laminate in which an unsintered constraining layer containing a second ceramic material powder is laminated under a condition in which the first ceramic material powder is sintered but the second ceramic material powder is not sintered. Is done. The glass material powder in the substrate layer is fluidized and diffused during firing, and the second ceramic material powder of the constraining layer is fixed after firing.

特許文献2には、例えば図2に示すように、厚みの異なる基材層を含むセラミック多層基板について、相対的に厚い基材層に接する拘束層は相対的に厚く、相対的に薄い基材層に接する拘束層は相対的に薄くすることによって、セラミック多層基板の反りを抑制することが開示されている。すなわち、図2は、セラミック多層基板1の断面図である。図2に示すように、基材層3(a)は拘束層4(a)に接し、基材層3(b)は拘束層4(b)に接し、基材層3(c)は拘束層4(c)に接している。符号3(a)、3(b)、3(c)を付した基材層の厚みが、3(a)、3(b)、3(c)の順に大きくなるように、未焼結の基材層の厚みを選択する。また、符号4(a)、4(b)、4(c)を付した拘束層の厚みが、4(a)、4(b)、4(c)の順に大きくなるように、未焼結の拘束層の厚みを選択する。セラミック多層基板1には、導電性ペーストを用いて、内部導体6、外部導体7、ビアホール導体8,9を含む配線導体5が形成され、セラミック多層基板1の内部に電気回路が構成されている。セラミック多層基板1は、例えば、その下面の外部導体7を用いてマザーボード10に実装され、その上面の外部導体7に半導体やチップ部品(図示せず)が実装される。   In Patent Document 2, for example, as shown in FIG. 2, for a ceramic multilayer substrate including substrate layers having different thicknesses, the constraining layer in contact with the relatively thick substrate layer is relatively thick and the substrate is relatively thin. It is disclosed that the constraining layer in contact with the layer is made relatively thin to suppress warping of the ceramic multilayer substrate. That is, FIG. 2 is a cross-sectional view of the ceramic multilayer substrate 1. As shown in FIG. 2, the base material layer 3 (a) is in contact with the constraining layer 4 (a), the base material layer 3 (b) is in contact with the constraining layer 4 (b), and the base material layer 3 (c) is constrained. It is in contact with the layer 4 (c). Unsintered so that the thickness of the base material layer which attached | subjected the code | symbol 3 (a), 3 (b), 3 (c) becomes large in order of 3 (a), 3 (b), 3 (c). The thickness of the base material layer is selected. Also, the unsintered so that the thickness of the constraining layers denoted by reference numerals 4 (a), 4 (b), and 4 (c) increases in the order of 4 (a), 4 (b), and 4 (c). The thickness of the constraining layer is selected. A wiring conductor 5 including an inner conductor 6, an outer conductor 7, and via-hole conductors 8 and 9 is formed on the ceramic multilayer substrate 1 using a conductive paste, and an electric circuit is formed inside the ceramic multilayer substrate 1. . The ceramic multilayer substrate 1 is mounted on the mother board 10 using, for example, the outer conductor 7 on the lower surface, and a semiconductor or a chip component (not shown) is mounted on the outer conductor 7 on the upper surface.

ガラス材料粉末が未焼結の基材層に含有されている場合、拘束層の厚みを大きくすると、基材層から拘束層にガラス成分が十分に拡散しない。そこで、未焼結の拘束層に予めガラス材料粉末を含有させておくことが提案されている(例えば、特許文献3参照)。   When the glass material powder is contained in an unsintered base material layer, if the thickness of the constraining layer is increased, the glass component does not sufficiently diffuse from the base material layer to the constraining layer. Therefore, it has been proposed that glass material powder is previously contained in an unsintered constraining layer (see, for example, Patent Document 3).

特許第3601671号公報Japanese Patent No. 3601671 特許第3633435号公報Japanese Patent No. 3633435 特開2002−368421号公報JP 2002-368421 A

セラミック多層基板には、半導体やチップ部品が実装される。また、セラミック多層基板は、マザーボード等に実装される。実装精度を確保するため、セラミック多層基板の反りは、極力小さくする必要がある。   A semiconductor or chip component is mounted on the ceramic multilayer substrate. The ceramic multilayer substrate is mounted on a motherboard or the like. In order to ensure mounting accuracy, it is necessary to reduce the warpage of the ceramic multilayer substrate as much as possible.

セラミック多層基板は、種々の用途に対応するためには、厚みの異なる基材層が積層された構造にすることが必要となる場合がある。しかし、厚みの異なる基材層が積層された構造にすると、基板の反りが大きくなる。   In order to cope with various applications, the ceramic multilayer substrate may need to have a structure in which base layers having different thicknesses are laminated. However, if the base material layers having different thicknesses are laminated, the warpage of the substrate increases.

基板の反り抑制のため、単に、「相対的に厚い基材層には相対的に厚い拘束層が接し、相対的に薄い基材層には相対的に薄い拘束層が接する」だけの構造では、基板の反り抑制の要求を十分に満足できない場合がある。すなわち、拘束層の厚みを相対的に決めただけでは、基板の反り抑制の要求を十分に満足することができない場合がある。   In order to suppress the warping of the substrate, the structure is simply “a relatively thick constraining layer is in contact with a relatively thick base material layer and a relatively thin constraining layer is in contact with a relatively thin base material layer”. In some cases, the requirement for suppressing the warpage of the substrate cannot be sufficiently satisfied. That is, there is a case where the requirement for suppressing the warpage of the substrate cannot be sufficiently satisfied only by relatively determining the thickness of the constraining layer.

本発明は、かかる実情に鑑み、厚みの異なる基材層を備えても、基板の反り抑制の要求を十分に満足することができるセラミック多層基板及びその製造方法を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a ceramic multilayer substrate and a method for manufacturing the same, which can sufficiently satisfy the demand for suppressing the warpage of the substrate even when base layers having different thicknesses are provided.

本発明は、上記課題を解決するために、以下のように構成したセラミック多層基板を提供する。   In order to solve the above-described problems, the present invention provides a ceramic multilayer substrate configured as follows.

セラミック多層基板は、(a)セラミック材料が焼結した、厚みが互いに異なる基材層と、未焼結の無機材料粉末が、溶融後に固化したガラス材料を介して固着された、厚みが互いに異なる拘束層とを備え、互いに積層された各1層の前記基材層及び前記拘束層からなる複数の積層要素が、互いに積層されている。互いに積層されたすべての前記積層要素について、前記積層要素のうち最も厚みの薄い基材層を含む前記積層要素の焼成後の前記基材層及び前記拘束層の厚みをT、Dとし、他の前記積層要素の焼成後の前記基材層及び前記拘束層の厚みをT、Dとし、(T/D)と(T/D)のうち小さい方をKとすると、
|(T/D)−(T/D)|≦0.2×K
である。
The ceramic multilayer substrate has (a) a base material layer having a different thickness obtained by sintering a ceramic material and an unsintered inorganic material powder fixed through a glass material solidified after melting, and having a different thickness. A plurality of laminated elements each including a constraining layer and each of the base material layer and the constraining layer being laminated with each other are laminated with each other. For all the laminated elements laminated together, the thicknesses of the base material layer and the constraining layer after firing the laminated element including the thinnest base material layer among the laminated elements are T 0 and D 0 , When the thickness of the base material layer and the constraining layer after firing of the other laminated elements is T i and D i, and the smaller one of (T 0 / D 0 ) and (T i / D i ) is K ,
| (T i / D i ) − (T 0 / D 0 ) | ≦ 0.2 × K
It is.

上記構成によれば、各積層要素における拘束層に対する基材層の厚み比率の差を、最も厚みの薄い基材層を含む積層要素の厚み比率に対して±20%以内に抑制する。拘束層の厚みを相対的に決めるのではなく、基材層と拘束層の厚み比率の範囲を規定することにより、基板の反り抑制の要求を十分に満足することができる。   According to the said structure, the difference of the thickness ratio of the base material layer with respect to the constrained layer in each lamination element is suppressed within +/- 20% with respect to the thickness ratio of the lamination element containing the thinnest base material layer. Rather than determining the thickness of the constraining layer, the requirement for suppressing warpage of the substrate can be sufficiently satisfied by defining the range of the thickness ratio of the base material layer and the constraining layer.

また、本発明は、上記課題を解決するために、以下のように構成したセラミック多層基板の製造方法を提供する。   Moreover, in order to solve the said subject, this invention provides the manufacturing method of the ceramic multilayer substrate comprised as follows.

セラミック多層基板の製造方法は、(i)未焼結のセラミック材料粉末を含み、厚みが互いに異なる未焼成の基材層と、前記セラミック材料粉末の焼結温度では焼結しない無機材料粉末と前記セラミック材料粉末の焼結温度で溶融するガラス材料粉末とを含み、厚みが互いに異なる未焼成の拘束層とを準備し、互いに積層された各1層の前記基材層及び前記拘束層からなる複数の積層要素が互いに積層された積層体を形成する第1の工程と、(ii)未焼成の前記積層体を、前記基材層中の前記セラミック材料粉末は焼結するが、前記拘束層中の前記無機材料粉末は焼結しない条件下で焼成する第2の工程とを備える。前記第2の工程で焼成された後に、互いに積層されたすべての前記積層要素について、最も厚みの薄い基材層を含む前記積層要素の前記基材層及び前記拘束層の厚みをT、Dとし、他の前記積層要素の前記基材層及び前記拘束層の厚みをT、Dとし、(T/D)と(T/D)のうち小さい方をKとすると、
|(T/D)−(T/D)|≦0.2×K
となるようにする。
The method for producing a ceramic multilayer substrate includes (i) an unsintered base material layer containing unsintered ceramic material powder and having different thicknesses, an inorganic material powder that is not sintered at the sintering temperature of the ceramic material powder, and A glass material powder that melts at a sintering temperature of the ceramic material powder, and is prepared with unfired constraining layers having different thicknesses, and each of the plurality of base layers and constraining layers laminated to each other And (ii) the ceramic material powder in the base material layer is sintered in the constrained layer, the first step of forming a laminated body in which the laminated elements are laminated with each other, and (ii) the unfired laminated body The inorganic material powder includes a second step of firing under a condition in which the powder is not sintered. After firing in the second step, the thicknesses of the base material layer and the constraining layer of the laminated element including the thinnest base material layer are set to T 0 , D for all the laminated elements laminated to each other. 0, and the thicknesses of the base layer and the constraining layer of the other laminated elements are T i and D i, and the smaller of (T 0 / D 0 ) and (T i / D i ) is K ,
| (T i / D i ) − (T 0 / D 0 ) | ≦ 0.2 × K
To be.

上記方法において、ガラス材料粉末は、第2の工程により溶融した後に固化し、拘束層の無機材料粉末を固着する。   In the above method, the glass material powder is solidified after being melted in the second step, and the inorganic material powder of the constraining layer is fixed.

上記方法によれば、焼成後の各積層要素における拘束層に対する基材層の厚み比率の差を、それ自体の反り量が最も小さくなる積層要素の厚み比率に対して±20%以内に抑制する。拘束層の厚みを相対的に決めるのではなく、基材層と拘束層の厚み比率の範囲を規定することにより、基板の反り抑制の要求を十分に満足することができる。   According to the above method, the difference in the thickness ratio of the base material layer to the constraining layer in each laminated element after firing is suppressed to within ± 20% with respect to the thickness ratio of the laminated element that minimizes the amount of warpage itself. . Rather than determining the thickness of the constraining layer, the requirement for suppressing warpage of the substrate can be sufficiently satisfied by defining the range of the thickness ratio of the base material layer and the constraining layer.

また、ガラス材料粉末が未焼成の拘束層に含まれているので、拘束層が厚くなっても、焼成により、拘束層の無機材料粉末が、溶融後に固化したガラス材料を介して固着されるようにすることができる。   Further, since the glass material powder is contained in the unfired constraining layer, even if the constraining layer becomes thick, the inorganic material powder of the constraining layer is fixed by the firing through the glass material solidified after melting. Can be.

本発明によれば、厚みの異なる基材層を備えても、基板の反り抑制の要求を十分に満足することができる。   According to the present invention, even if the substrate layers having different thicknesses are provided, it is possible to sufficiently satisfy the demand for suppressing the warpage of the substrate.

セラミック多層基板の要部断面図である。(実施例1)It is principal part sectional drawing of a ceramic multilayer substrate. Example 1 セラミック多層基板の断面図である。(従来例)It is sectional drawing of a ceramic multilayer substrate. (Conventional example)

以下、本発明の実施の形態について、図1を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG.

図1は、本発明のセラミック多層基板11の要部断面図である。図1に示すように、セラミック多層基板11は、同数の第1の基材層12a〜12jと第1の拘束層14a〜14jとが交互に積層された第1の積層部11aと、同数の第2の基材層16a〜16eと第2の拘束層18a〜18eとが交互に積層された第2の積層部11bとを備える。第1の積層部11aと第2の積層部11bとは、第1の積層部11aの一方の主面11s(すなわち、第1の基材層12a)と第2の積層部11bの一方の主面11t(すなわち、第2の基材層16a)とが互いに接した状態で、接合されている。   FIG. 1 is a sectional view of an essential part of a ceramic multilayer substrate 11 of the present invention. As shown in FIG. 1, the ceramic multilayer substrate 11 includes the same number of first laminated portions 11a in which the same number of first base material layers 12a to 12j and first constraining layers 14a to 14j are alternately laminated. 2nd base material layers 16a-16e and 2nd constraining layers 18a-18e are provided with the 2nd lamination part 11b by which it laminated alternately. The first stacked portion 11a and the second stacked portion 11b are one main surface 11s of the first stacked portion 11a (that is, the first base material layer 12a) and one main surface of the second stacked portion 11b. The surface 11t (that is, the second base material layer 16a) is bonded in a state of being in contact with each other.

第1の基材層12a〜12jと第2の基材層16a〜16eとは、セラミック材料粉末が焼結した層である。第1の基材層12a〜12jのそれぞれの厚みは互いに等しく、第2の基材層16a〜16eのそれぞれの厚みは互いに等しい。第2の基材層16a〜16eのそれぞれの厚みは、第1の基材層12a〜12jのそれぞれの厚みよりも大きい。   The first base material layers 12a to 12j and the second base material layers 16a to 16e are layers obtained by sintering the ceramic material powder. The thicknesses of the first base material layers 12a to 12j are equal to each other, and the thicknesses of the second base material layers 16a to 16e are equal to each other. Each thickness of 2nd base material layers 16a-16e is larger than each thickness of 1st base material layers 12a-12j.

第1の拘束層14a〜14jと第2の拘束層18a〜18eとは、未焼結の無機材料粉末が、溶融後に固化したガラス材料を介して固着された層である。第1の拘束層14a〜14jのそれぞれの厚みは互いに等しく、第2の拘束層18a〜18eのそれぞれの厚みは互いに等しい。第2の拘束層18a〜18eのそれぞれの厚みは、第1の拘束層14a〜14jのそれぞれの厚みよりも大きい。   The first constraining layers 14a to 14j and the second constraining layers 18a to 18e are layers in which an unsintered inorganic material powder is fixed through a glass material solidified after melting. The thicknesses of the first constraining layers 14a to 14j are equal to each other, and the thicknesses of the second constraining layers 18a to 18e are equal to each other. The thickness of each of the second constraining layers 18a to 18e is larger than the thickness of each of the first constraining layers 14a to 14j.

第1の積層部11aは、互いに積層された各1層の第1の基材層12a〜12j及び第1の拘束層からなる第1の積層要素11xが、表裏が同じ向きになるように積層されている。第2の積層部11bは、互いに積層された各1層の第2の基材層16a〜16e及び第2の拘束層18a〜18eからなる第2の積層要素11yが、表裏が同じ向きになるように積層されている。   The first laminated portion 11a is laminated so that the first laminated elements 11x each including the first base material layers 12a to 12j and the first constraining layer laminated on each other are oriented in the same direction. Has been. As for the 2nd lamination | stacking part 11b, the 2nd lamination | stacking element 11y which consists of each 2nd base material layer 16a-16e and 2nd constraining layer 18a-18e laminated | stacked mutually becomes the same direction on both sides Are stacked.

図示していないが、セラミック多層基板11には、必要に応じて、図2と同様に、導電性ペーストを用いて、内部導体、外部導体、ビアホール導体を含む配線導体が形成され、内部に電気回路が構成される。セラミック多層基板11は、例えば、その下面の外部導体がマザーボードに実装され、その上面の外部導体に半導体やチップ部品が実装される。   Although not shown, a wiring conductor including an internal conductor, an external conductor, and a via-hole conductor is formed on the ceramic multilayer substrate 11 using a conductive paste as necessary, as in FIG. A circuit is constructed. In the ceramic multilayer substrate 11, for example, the outer conductor on the lower surface is mounted on the mother board, and the semiconductor or chip component is mounted on the outer conductor on the upper surface.

セラミック多層基板11は、例えば以下の工程で作製することができる。   The ceramic multilayer substrate 11 can be manufactured by the following processes, for example.

まず、第1及び第2の基材層12a〜12j,16a〜16eを形成するための基材層用セラミックグリーンシートを用意し、基材層用セラミックグリーンシート上に第1及び第2の拘束層14a〜14j,18a〜18eを形成するための拘束層用スラリーをドクターブレード法により塗布することにより拘束層用セラミックグリーンシートを形成し、互いに接する各1層の基材層用セラミックグリーン及び拘束層用セラミックグリーンシートからなる積層要素を作製する。   First, a ceramic green sheet for a base material layer for forming the first and second base material layers 12a to 12j and 16a to 16e is prepared, and the first and second restraints are formed on the ceramic green sheet for the base material layer. A constraining layer ceramic green sheet is formed by applying a constraining layer slurry for forming the layers 14a to 14j and 18a to 18e by a doctor blade method. A laminated element made of ceramic green sheets for layers is produced.

必要に応じて、拘束層用スラリーを塗布する前の基材層用セラミックグリーンシート又は積層要素の適宜位置にレーザー加工やパンチング加工等により貫通孔を加工し、この貫通孔に導体ペーストを印刷等により埋め込むことによって、焼成後にビアホール導体となる部分を配置する。また、拘束層用スラリーを塗布する前の基材層用セラミックグリーンシートの主面に、あるいは拘束層用セラミックグリーンシートの主面に、導体ペーストをスクリーン印刷法やグラビア印刷法等により印刷するか、あるいは所定パターン形状の金属箔を転写する等によって、内部導体や外部導体を形成する。   If necessary, process through holes by laser processing, punching, etc. at appropriate positions on the ceramic green sheet for substrate layer or the laminated element before applying the constraining layer slurry, and print the conductor paste on the through holes, etc. By embedding by, the part which will become a via-hole conductor after baking is arrange | positioned. Whether conductor paste is printed on the main surface of the ceramic green sheet for the base layer before applying the slurry for constraining layer or on the main surface of the ceramic green sheet for constraining layer by screen printing or gravure printing Alternatively, the inner conductor and the outer conductor are formed by transferring a metal foil having a predetermined pattern shape.

次いで、積層要素を適宜な順序で積層し、積層方向に圧力を加えて圧着し、図1に示す層構造になる未焼成の積層体を作製する。例えば、第1の積層部と第2の積層部とに分けて積層要素を積層し、仮圧着した後、第1の積層部と第2の積層部とを重ね合わせて圧着する。あるいは、所定の順序で積層要素を一括して積層し、圧着してもよい。   Next, the laminated elements are laminated in an appropriate order, and pressure is applied in the laminating direction for pressure bonding to produce an unfired laminated body having the layer structure shown in FIG. For example, after laminating the laminated elements into a first laminated portion and a second laminated portion and pre-pressure bonding, the first laminated portion and the second laminated portion are overlapped and pressure bonded. Alternatively, the laminated elements may be laminated together in a predetermined order and pressed.

なお、積層体は、他の方法で作製してもよい。例えば、基材層用セラミックグリーンシートと拘束層用セラミックグリーンシートとを別々に作製しておき、基材層用セラミックグリーンシートと拘束層用セラミックグリーンシートとを積層してもよい。あるいは、基材層用セラミックグリーンシート上に拘束層用セラミックグリーンシートを形成した後、基材層用セラミックグリーンシートを積層し、さらに、その上に拘束層用セラミックグリーンシートを形成し、拘束層用セラミックグリーンシートの形成と基材層用セラミックグリーンシートの積層とを繰り返すことにより、基材層用セラミックグリーンシートと拘束層用セラミックグリーンシートとを積層してもよい。   In addition, you may produce a laminated body by another method. For example, the ceramic green sheet for the base layer and the ceramic green sheet for the constraining layer may be prepared separately, and the ceramic green sheet for the base layer and the ceramic green sheet for the constraining layer may be laminated. Alternatively, after forming the ceramic green sheet for the constraining layer on the ceramic green sheet for the base material layer, the ceramic green sheet for the base material layer is laminated, and further, the ceramic green sheet for the constraining layer is formed thereon, and the constraining layer The ceramic green sheet for the base layer and the ceramic green sheet for the constraining layer may be stacked by repeating the formation of the ceramic green sheet for base and the lamination of the ceramic green sheet for the base layer.

次いで、未焼成の積層体を焼成する。焼成は、第1及び第2の基材層を形成するためのセラミックグリーンシートに含まれるセラミック材料粉末を焼結させ、第1及び第2の拘束層を形成するためのセラミックグリーンシートに含まれる無機材料粉末は焼結させない条件下で行う。すなわち、第1及び第2の基材層を形成するための基材層用セラミックグリーンシートの焼成温度よりは高く、かつ、第1及び第2の拘束層を形成するための拘束層用セラミックグリーンシートの焼成温度よりは低い温度で、焼成する。   Next, the unfired laminate is fired. Firing is included in the ceramic green sheet for forming the first and second constraining layers by sintering the ceramic material powder contained in the ceramic green sheet for forming the first and second substrate layers. The inorganic material powder is performed under conditions that do not allow sintering. That is, the ceramic green for the constraining layer for forming the first and second constraining layers is higher than the firing temperature of the ceramic green sheet for the base layer for forming the first and second base layers. Firing is performed at a temperature lower than the firing temperature of the sheet.

次いで、必要に応じて、焼成済みの積層体の主面に形成された外部導体にメッキを行う。   Next, if necessary, the outer conductor formed on the main surface of the fired laminate is plated.

複数個分を含む集合状態でセラミック多層基板を作製する場合には、焼成の前に、あるいは焼成後に、セラミック多層基板の個片に分割する。   When the ceramic multilayer substrate is manufactured in a collective state including a plurality of portions, the ceramic multilayer substrate is divided into individual pieces of the ceramic multilayer substrate before firing or after firing.

<作製例>
SiO:51.9重量%、BaCO:36.7重量%、Al:10.9重量%、ZrO:0.5重量%の混合粉末に、バインダ、可塑剤、溶剤を加えたスラリーを用い、ドクターブレード法によりシート成型することにより、第1及び第2の基材層を形成するための基材層用セラミックグリーンシート(以下、「第1のシート層」という。)を作製した。
<Production example>
A binder, a plasticizer, and a solvent are added to a mixed powder of SiO 2 : 51.9 wt%, BaCO 3 : 36.7 wt%, Al 2 O 3 : 10.9 wt%, and ZrO 2 : 0.5 wt%. A ceramic green sheet for base material layer (hereinafter referred to as “first sheet layer”) for forming the first and second base material layers by forming a sheet by a doctor blade method using the prepared slurry. Produced.

また、SiO:55モル%、Al:4モル%、B:10モル%、BaO:20モル%、CaO:5.5モル%、MgO:0.5モル%、SrO:5モル%のガラス材料粉末(軟化点670℃の非晶質ガラス):40重量%と、アルミナ粉末:60重量%の混合粉末に、バインダ、可塑剤、溶剤を加えたスラリーを用い、第1のシート層上にドクターブレード法でシート成型することにより、第1及び第2の拘束層を形成するための拘束層用セラミックグリーンシート(以下、「第2のシート層」という。)を作製した。 Further, SiO 2: 55 mol%, Al 2 O 3: 4 mol%, B 2 O 3: 10 mol%, BaO: 20 mol%, CaO: 5.5 mol%, MgO: 0.5 mol%, SrO : 5 mol% glass material powder (amorphous glass having a softening point of 670 ° C.): 40% by weight and alumina powder: 60% by weight of mixed powder, a slurry obtained by adding a binder, a plasticizer and a solvent. A ceramic green sheet for constraining layers (hereinafter referred to as “second sheet layer”) for forming the first and second constraining layers is produced by molding a sheet on one sheet layer by a doctor blade method. did.

作製した未焼成の第1のシート層と第2のシート層の厚み(シート生厚/μm)の組み合わせ(シート(1)〜シート(8))を、次の表1に示す。

Figure 2013077697
The combinations (sheet (1) to sheet (8)) of the thicknesses (sheet thickness / μm) of the produced unfired first sheet layer and second sheet layer are shown in Table 1 below.
Figure 2013077697

表1のシート(1)〜シート(8)の厚みの組み合わせについて、各シート層をそれぞれ20枚積層し、中性雰囲気中で990℃×60minの条件で焼成した。焼成後の試料の断面観察により、第1セラミック層(第1のシート層から形成された絶縁層)と第2セラミック層(第2のシート層から形成された絶縁層)の厚み(焼成後セラミック層厚/μm)を測定し、厚み比率とその変化率を計算した結果を、次の表2に示す。

Figure 2013077697
表2中の「絶縁層(1)」〜「絶縁層(8)」は、シート(1)〜シート(8)の厚みの組み合わせに対応する測定結果を示している。 About the combination of the thickness of the sheet | seat (1)-sheet | seat (8) of Table 1, 20 sheets of each sheet layer were laminated | stacked, respectively, and it baked on the conditions of 990 degreeC x 60 min in neutral atmosphere. The thickness of the first ceramic layer (insulating layer formed from the first sheet layer) and the second ceramic layer (insulating layer formed from the second sheet layer) by the cross-sectional observation of the sample after firing (ceramic after firing) Table 2 shows the results of measuring the layer thickness / μm) and calculating the thickness ratio and the rate of change thereof.
Figure 2013077697
“Insulating layer (1)” to “Insulating layer (8)” in Table 2 indicate measurement results corresponding to combinations of thicknesses of sheets (1) to (8).

表2中の「厚み比率」は、(第1セラミック層の厚み)/(第2セラミック層の厚み)の値である。「変化率」は、絶縁層(1)の厚み比率との比較であり、{(対象絶縁層の厚み比率)−(絶縁層(1)の厚み比率)}/(対象絶縁層の厚み比率と絶縁層(1)の厚み比率とのうち低い方の値)の値である。対象絶縁層の厚み比率が絶縁層(1)の厚み比率より大きい場合は変化率をプラスとし、対象絶縁層の厚み比率が絶縁層(1)の厚み比率より小さい場合は変化率をマイナスとする。   The “thickness ratio” in Table 2 is a value of (thickness of the first ceramic layer) / (thickness of the second ceramic layer). “Change rate” is a comparison with the thickness ratio of the insulating layer (1), and {(thickness ratio of the target insulating layer) − (thickness ratio of the insulating layer (1))} / (thickness ratio of the target insulating layer) It is the value of the lower one of the thickness ratios of the insulating layer (1). When the thickness ratio of the target insulating layer is larger than the thickness ratio of the insulating layer (1), the rate of change is positive. When the thickness ratio of the target insulating layer is smaller than the thickness ratio of the insulating layer (1), the rate of change is negative. .

次に、評価用の積層体の試料を作製し、焼成後の試料(基板)の反り量を測定した。具体的には、シート(1)〜(8)の厚みの組み合わせについて、150mm×150mmの矩形のシートを準備し、図1に示す層構成において、未焼成の第1の積層部11aの第1の基材層12a〜12j及び第1の拘束層14a〜14jについてはシート(1)の厚みの組み合わせを用い、未焼成の第2の積層部11bの第2の基材層116a〜16e及び第2の拘束層18a〜18eについてはシート(2)〜シート(8)のいずれかの厚みの組み合わせを用いて、未焼成の第1の積層部11aと未焼成の第2の積層部11bとが接合された未焼成の積層体の試料を作製した。作製した未焼成の積層体の試料を、中性雰囲気中で990℃×60minの条件(表2の試料と同じ条件)で焼成した。試料は、図1の下面11qに対応する面を下にして台座上に設置した状態と、上面11pに対応する面を下にして台座上に設置した状態とで焼成し、焼成後の試料の下面が凸になった方について、焼成後の試料(基板)の下面の四隅と台座面との間の隙間を測定し、平均値を反り量とした。   Next, a sample of the laminate for evaluation was prepared, and the amount of warpage of the sample (substrate) after firing was measured. Specifically, for the combination of thicknesses of the sheets (1) to (8), a rectangular sheet of 150 mm × 150 mm is prepared, and in the layer configuration shown in FIG. For the base material layers 12a to 12j and the first constraining layers 14a to 14j, a combination of the thicknesses of the sheets (1) is used, and the second base material layers 116a to 16e and the first base material layers 116a to 16e of the unfired second laminated portion 11b are used. For the two constraining layers 18a to 18e, the unfired first laminated portion 11a and the unfired second laminated portion 11b are combined using any combination of the thicknesses of the sheets (2) to (8). A joined unfired laminate sample was prepared. The sample of the produced unfired laminate was fired in a neutral atmosphere under the conditions of 990 ° C. × 60 min (the same conditions as the samples in Table 2). The sample is fired in a state where the surface corresponding to the lower surface 11q in FIG. 1 is placed on the pedestal and a state where the surface corresponding to the upper surface 11p is placed on the pedestal with the surface corresponding to the lower surface 11p down. About the direction where the lower surface became convex, the clearance gap between the four corners of the lower surface of the sample (board | substrate) after baking and a base surface was measured, and the average value was made into curvature amount.

図1の下面11qに対応する面を下にして台座の上面に設置した状態で焼成したときに焼成後の試料(基板)の下面が凸になった場合は反り量をプラスとし、図1の上面11pに対応する面を下にして台座の上面に設置した状態で焼成したときに焼成後の試料(基板)の下面が凸になった場合は反り量をマイナスとした。   When the bottom surface of the sample (substrate) after firing becomes convex when firing in a state where the surface corresponding to the bottom surface 11q in FIG. When the bottom surface of the sample (substrate) after firing is convex when firing with the surface corresponding to the top surface 11p facing down and placed on the top surface of the pedestal, the amount of warpage is negative.

反り量が300μm以下をG(良)と判定し、反り量が300μmを越えるとNG(不良)と判定した。反り量評価結果を、次の表3に示す。

Figure 2013077697
表3中の「基板(1)」〜「基板(7)」は、第2の積層体(図1の上半分のシート)に用いるシート(2)〜シート(8)に対応する評価を示している。 A warpage amount of 300 μm or less was determined as G (good), and a warpage amount exceeding 300 μm was determined as NG (defective). The results of warpage evaluation are shown in Table 3 below.
Figure 2013077697
“Substrate (1)” to “Substrate (7)” in Table 3 indicate evaluations corresponding to the sheets (2) to (8) used for the second laminate (upper half sheet of FIG. 1). ing.

表2及び表3から、第2の積層部に、シート(1)の厚み比率に対する厚み比率の変化率が±20%以内である厚みの組み合わせ(表2の絶縁層(3)〜絶縁層(7))を用いた場合(表3の基板(2)〜基板(6))は、基板の反りが抑制され(表3において判定が『G』)、150mm×150mm当りで反り量300μm以下の要求を満たすことが可能となることが分かる。   From Table 2 and Table 3, a combination of thicknesses in which the change rate of the thickness ratio with respect to the thickness ratio of the sheet (1) is within ± 20% (insulating layer (3) to insulating layer (in Table 2) 7)) (Substrate (2) to Substrate (6) in Table 3), the warpage of the substrate is suppressed (the determination is “G” in Table 3), and the warpage amount is 150 μm or less per 150 mm × 150 mm. It can be seen that the request can be satisfied.

すなわち、第1の積層部の第1の基材層の厚みをT、第1の積層部の第1の拘束層の厚みをD、第2の積層部の第2の基材層の厚みをT、第2の積層部の第2の拘束層の厚みをD、(T/D)と(T/D)のうち小さい方をKとすると、
|(T/D)−(T/D)|≦0.2×K・・・(式1)
とすれば、基板の反りを所望範囲内に抑制することができる。
That is, the thickness of the first base material layer of the first laminated portion is T 1 , the thickness of the first constraining layer of the first laminated portion is D 1 , and the second base material layer of the second laminated portion is When the thickness is T 2 , the thickness of the second constraining layer of the second stacked portion is D 2 , and the smaller one of (T 1 / D 1 ) and (T 2 / D 2 ) is K,
| (T 2 / D 2 ) − (T 1 / D 1 ) | ≦ 0.2 × K (Formula 1)
Then, it is possible to suppress the warpage of the substrate within a desired range.

同一の積層要素だけを複数積層した積層体の焼成後の反り量と、一つの積層要素自体の焼成後の反り量とは、同じであるとみなせるので、(式1)は積層要素の積層数には関係しない。   Since the amount of warping after firing of a laminate in which only the same layered elements are laminated and the amount of warping after firing of one layered element itself can be regarded as the same, (Equation 1) is the number of layers of the layered elements Does not matter.

図1の構成は、厚みの異なるセラミック層(基材層)を対極に配置したものであり、最も基板の反りが厳しくなる構成である。したがって、例えば図2のように、厚み比率が互いに異なる3種類以上の積層要素が積層された場合にも、(式1)の関係を満たせば、基板の反りを所望範囲内に抑制することができる。   The configuration of FIG. 1 is a configuration in which ceramic layers (base material layers) having different thicknesses are arranged on the counter electrode, and the warp of the substrate is the most severe. Therefore, for example, as shown in FIG. 2, even when three or more kinds of laminated elements having different thickness ratios are laminated, if the relationship of (Equation 1) is satisfied, the warpage of the substrate can be suppressed within a desired range. it can.

以上のことから、一般に、互いに積層されたすべての積層要素について、積層要素のうち最も厚みの薄い基材層を含む積層要素の焼成後の基材層及び拘束層の厚みをT、Dとし、他の積層要素の焼成後の基材層及び拘束層の厚みをT、Dとし、(T/D)と(T/D)のうち小さい方をKとすると、
|(T/D)−(T/D)|≦0.2×K・・・(式2)
となるようすれば、基板の反りを所望範囲に抑制することができる。
From the above, in general, the thicknesses of the base material layer and the constraining layer after firing of the laminated element including the thinnest base material layer among the laminated elements are set to T 0 and D 0 for all laminated elements laminated to each other. And the thickness of the base layer and the constraining layer after firing of the other laminated elements are T i and D i, and the smaller one of (T 0 / D 0 ) and (T i / D i ) is K,
| (T i / D i ) − (T 0 / D 0 ) | ≦ 0.2 × K (Expression 2)
If it becomes so, the curvature of a board | substrate can be suppressed to a desired range.

拘束層の厚みを相対的に決めるのではなく、(式2)によって、基材層と拘束層の厚み比率の範囲を規定することにより、厚みの異なる基材層を備えても、基板の反り抑制の要求を十分に満足することができる。   Rather than determining the thickness of the constraining layer, the warp of the substrate can be provided even if the base material layers having different thicknesses are provided by defining the range of the thickness ratio of the base material layer and the constraining layer by (Equation 2). The demand for suppression can be fully satisfied.

<まとめ> 以上に説明したように、厚みが異なる基材層を備える場合に、基材層とその基材層に接する拘束層との厚み比率の範囲を規定することによって、基板の反り抑制の要求を十分に満足することができる。   <Summary> As described above, when the substrate layers having different thicknesses are provided, the range of the thickness ratio between the substrate layer and the constraining layer in contact with the substrate layer is specified, thereby suppressing the warpage of the substrate. The request can be fully satisfied.

なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with various modifications.

例えば、第1の積層要素と第2の積層要素とが互いに積層される場合を例示したが、厚みが互いに異なる3種類以上の積層要素が互いに積層されてもよい。互いに積層される積層要素の積層方向の配置順序や数は、任意に選択することができる。また、積層要素ごとに、積層されるときの基材層と拘束層の上下関係を任意に選択でき、互いに接する積層要素は、一方の基材層と他方の拘束層とが接しても、基材層同士が接しても、拘束層同士が接してもよい。   For example, although the case where the first laminated element and the second laminated element are laminated with each other is illustrated, three or more kinds of laminated elements having different thicknesses may be laminated with each other. The arrangement order and number of the lamination elements laminated on each other can be arbitrarily selected. Further, for each laminated element, the vertical relationship between the base material layer and the constraining layer when laminated can be arbitrarily selected, and the laminating elements that are in contact with each other can be connected to each other even if one base material layer and the other constraining layer are in contact with each other. The material layers may be in contact with each other or the constraining layers may be in contact with each other.

11 セラミック多層基板
11a 第1の積層部
11b 第2の積層部
11p 上面
11q 下面
11s 主面
11t 主面
11x 第1の積層要素
11y 第2の積層要素
12a-12j 第1の基材層
14a-14j 第1の拘束層
16a-16e 第2の基材層
18a-18e 第2の拘束層
DESCRIPTION OF SYMBOLS 11 Ceramic multilayer substrate 11a 1st laminated part 11b 2nd laminated part 11p Upper surface 11q Lower surface 11s Main surface 11t Main surface 11x 1st laminated element 11y 2nd laminated element 12a-12j 1st base material layer 14a-14j First constraining layer 16a-16e Second base material layer 18a-18e Second constraining layer

Claims (2)

セラミック材料が焼結した、厚みが互いに異なる基材層と、
未焼結の無機材料粉末が、溶融後に固化したガラス材料を介して固着された、厚みが互いに異なる拘束層と、
を備え、
互いに積層された各1層の前記基材層及び前記拘束層からなる複数の積層要素が互いに積層され、
互いに積層されたすべての前記積層要素について、前記積層要素のうち最も厚みの薄い基材層を含む前記積層要素の前記基材層及び前記拘束層の厚みをT、Dとし、他の前記積層要素の前記基材層及び前記拘束層の厚みをT、Dとし、(T/D)と(T/D)のうち小さい方をKとすると、
|(T/D)−(T/D)|≦0.2×K
であることを特徴とする、セラミック多層基板。
Substrate layers with different thicknesses, sintered ceramic materials,
A constraining layer having different thicknesses, in which the unsintered inorganic material powder is fixed through the glass material solidified after melting,
With
A plurality of laminated elements each composed of one base material layer and the constraining layer laminated with each other are laminated with each other,
For all the laminated elements laminated with each other, the thickness of the base material layer and the constraining layer of the laminated element including the thinnest base material layer among the laminated elements is T 0 , D 0 , and the other When the thicknesses of the base material layer and the constraining layer of the laminated element are T i and D i, and the smaller one of (T 0 / D 0 ) and (T i / D i ) is K,
| (T i / D i ) − (T 0 / D 0 ) | ≦ 0.2 × K
A ceramic multilayer substrate, characterized in that
未焼結のセラミック材料粉末を含み、厚みが互いに異なる未焼成の基材層と、前記セラミック材料粉末の焼結温度では焼結しない無機材料粉末と前記セラミック材料粉末の焼結温度で溶融するガラス材料粉末とを含み、厚みが互いに異なる未焼成の拘束層とを準備し、互いに積層された各1層の前記基材層及び前記拘束層からなる複数の積層要素が互いに積層された積層体を形成する第1の工程と、
未焼成の前記積層体を、前記基材層中の前記セラミック材料粉末は焼結するが、前記拘束層中の前記無機材料粉末は焼結しない条件下で焼成する第2の工程と、
を備え、
前記第2の工程で焼成された後に、互いに積層されたすべての前記積層要素について、最も厚みの薄い基材層を含む前記積層要素の焼成後の前記基材層及び前記拘束層の厚みをT、Dとし、他の前記積層要素の焼成後の前記基材層及び前記拘束層の厚みをT、Dとし、(T/D)と(T/D)のうち小さい方をKとすると、
|(T/D)−(T/D)|≦0.2×K
となるようにすることを特徴とする、セラミック多層基板の製造方法。
Non-sintered base material layers containing unsintered ceramic material powder, different thicknesses, inorganic material powder that does not sinter at the sintering temperature of the ceramic material powder, and glass that melts at the sintering temperature of the ceramic material powder A laminated body in which a plurality of laminated elements each including the base layer and the constraining layer are laminated to each other. A first step of forming;
A second step of firing the unfired laminate under a condition in which the ceramic material powder in the base material layer is sintered but the inorganic material powder in the constraining layer is not sintered;
With
After firing in the second step, the thicknesses of the base material layer and the constraining layer after firing the laminated element including the thinnest base material layer for all the laminated elements laminated with each other are defined as T. 0 and D 0, and the thicknesses of the base layer and the constraining layer after firing the other laminated elements are T i and D i, and (T 0 / D 0 ) and (T i / D i ) If the smaller one is K,
| (T i / D i ) − (T 0 / D 0 ) | ≦ 0.2 × K
A method for producing a ceramic multilayer substrate, characterized in that:
JP2011216692A 2011-09-30 2011-09-30 Ceramic multilayer substrate and manufacturing method thereof Active JP5724806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216692A JP5724806B2 (en) 2011-09-30 2011-09-30 Ceramic multilayer substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216692A JP5724806B2 (en) 2011-09-30 2011-09-30 Ceramic multilayer substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013077697A true JP2013077697A (en) 2013-04-25
JP5724806B2 JP5724806B2 (en) 2015-05-27

Family

ID=48480955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216692A Active JP5724806B2 (en) 2011-09-30 2011-09-30 Ceramic multilayer substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5724806B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291955A (en) * 2000-04-10 2001-10-19 Murata Mfg Co Ltd Multilayered ceramic substrate and manufacturing method therefor, designing method therefor and electronic device
JP2002368421A (en) * 2001-06-08 2002-12-20 Murata Mfg Co Ltd Multilayer ceramic board and method for manufacturing the same
JP2004026646A (en) * 2002-06-04 2004-01-29 E I Du Pont De Nemours & Co Tape composition and internally constrained sintering method of low-temperature co-fired ceramic
JP2004055728A (en) * 2002-07-18 2004-02-19 Murata Mfg Co Ltd Stacked ceramic electronic component and its manufacturing method
JP2010103481A (en) * 2008-10-23 2010-05-06 Samsung Electro-Mechanics Co Ltd Ceramic laminate and method of manufacturing ceramic sintered compact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291955A (en) * 2000-04-10 2001-10-19 Murata Mfg Co Ltd Multilayered ceramic substrate and manufacturing method therefor, designing method therefor and electronic device
JP2002368421A (en) * 2001-06-08 2002-12-20 Murata Mfg Co Ltd Multilayer ceramic board and method for manufacturing the same
JP2004026646A (en) * 2002-06-04 2004-01-29 E I Du Pont De Nemours & Co Tape composition and internally constrained sintering method of low-temperature co-fired ceramic
JP2004055728A (en) * 2002-07-18 2004-02-19 Murata Mfg Co Ltd Stacked ceramic electronic component and its manufacturing method
JP2010103481A (en) * 2008-10-23 2010-05-06 Samsung Electro-Mechanics Co Ltd Ceramic laminate and method of manufacturing ceramic sintered compact

Also Published As

Publication number Publication date
JP5724806B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5029699B2 (en) Ceramic composite multilayer substrate, method for manufacturing the same, and electronic component
JP2015026760A (en) Multilayer coil
JP4788544B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JPWO2018042846A1 (en) Electronic device and multilayer ceramic substrate
KR20080060184A (en) Multilayer ceramic substrate
JP5880780B2 (en) Insulating ceramic paste, ceramic electronic component and manufacturing method thereof
JP2014212291A (en) Multilayer ceramic electronic component, manufacturing method therefor and mounting board
JPWO2008108172A1 (en) Multilayer wiring board
JP2006108529A (en) Ceramic multilayer substrate and method for manufacturing the same
JP5724806B2 (en) Ceramic multilayer substrate and manufacturing method thereof
US9380699B2 (en) Ceramic multilayer substrate and method for manufacturing the same
JP2010258189A (en) Manufacturing method of electronic component mounting substrate, and manufacturing method of electronic component mounting motherboard
JP4696443B2 (en) Manufacturing method of multilayer ceramic substrate
JP2014216641A (en) Multilayer ceramic electronic component and board for mounting the same
JP5648682B2 (en) Metal base substrate
JP2009111239A (en) Multilayer ceramic substrate and method of manufacturing multilayer ceramic substrate
JP2015005532A (en) Manufacturing method of coupling wiring board, and coupling wiring board
JP2011171651A (en) Ceramic electronic component
JP5682342B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2012015177A (en) Ceramic multilayer substrate
JP2009087965A (en) Multilayer wiring board
JP2005268290A (en) Multilayer ceramic electronic component and its production process
JP2020025044A (en) Ceramic wiring board
JP5209563B2 (en) Manufacturing method of multilayer ceramic substrate
JP2009266993A (en) Multilayer wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5724806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150