JP2013075260A - Treatment method and treatment apparatus for removing fluorine and harmful substance - Google Patents

Treatment method and treatment apparatus for removing fluorine and harmful substance Download PDF

Info

Publication number
JP2013075260A
JP2013075260A JP2011216629A JP2011216629A JP2013075260A JP 2013075260 A JP2013075260 A JP 2013075260A JP 2011216629 A JP2011216629 A JP 2011216629A JP 2011216629 A JP2011216629 A JP 2011216629A JP 2013075260 A JP2013075260 A JP 2013075260A
Authority
JP
Japan
Prior art keywords
fluorine
sludge
treatment
harmful substances
soluble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011216629A
Other languages
Japanese (ja)
Other versions
JP5794422B2 (en
Inventor
Tomoya Nihei
智也 二瓶
Hiroshi Hayashi
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011216629A priority Critical patent/JP5794422B2/en
Publication of JP2013075260A publication Critical patent/JP2013075260A/en
Application granted granted Critical
Publication of JP5794422B2 publication Critical patent/JP5794422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method and a treatment apparatus capable of removing fluorine from wastewater or the like with a high fluorine concentration to below a drainage standard value or to an environmental standard value in a short time at low cost, and also capable of removing a harmful substance or the like also at the same time.SOLUTION: The treatment method and treatment apparatus include: a primary treatment process in which a calcium salt is added to raw water including fluorine, calcium fluoride sedimentation is generated, and the sedimentation is performed with solid-liquid separation; and a secondary treatment process in which a poor solubility metal oxide and a soluble metal compound are added to the treated water (primarily treated water) after the primary treatment and are made to react under alkaline, thereby sludge in which a layered double hydroxide is formed on the surface of the poor solubility metal oxide is generated, the sludge is precipitated, and is performed with solid-liquid separation.

Description

本発明はフッ素濃度の高い排水などからフッ素を排水基準以下〔8mg/L(海域以外の公共用水域)、15mg/L(海域)〕または環境基準(0.8mg/L以下)まで短時間に低コストで除去することができる処理方法と処理装置に関する。本発明は、より詳しくは、フッ素を排水基準値以下または環境基準値まで低コストで除去することができ、かつ重金属類などの有害物質も同時に除去することができる処理方法と処理装置に関する。 In the present invention, fluorine is discharged from wastewater with high fluorine concentration to a level below the drainage standard [8 mg / L (public water areas other than sea areas), 15 mg / L (sea area)] or environmental standards (0.8 mg / L or less) in a short time. The present invention relates to a processing method and a processing apparatus that can be removed at low cost. More particularly, the present invention relates to a treatment method and a treatment apparatus that can remove fluorine at a low cost to a wastewater standard value or lower or an environmental standard value, and can simultaneously remove harmful substances such as heavy metals.

例えば、特開2003−285076号公報(特許文献1)には、フッ素を含む排水に2価金属イオンと3価金属イオンを添加して層状複水酸化物を生成させ、該層状複水酸化物の層間にフッ素を取り込ませる処理方法が記載されている。 For example, Japanese Patent Application Laid-Open No. 2003-285076 (Patent Document 1) discloses that a layered double hydroxide is generated by adding a divalent metal ion and a trivalent metal ion to a wastewater containing fluorine to form the layered double hydroxide. A treatment method for incorporating fluorine between the two layers is described.

国際公開WO2005−087664号公報(特許文献2)には、アルミニウムイオンとマグネシウムイオンを含む酸性溶液とアルカリを含むアルカリ性溶液を混合し、酸性溶液とアルカリ性溶液の混合が完了した後、時間を置かずに直ちに水分を除去または中和することによって、一般式:Mg2+ 1-xAl3+ x(OH)2(An-)x/n・mH2O(An-はアニオン)で表されるハイドロタルサイト様物質を形成し、該物質にフッ素などを取り込ませて固定する処理方法が記載されている。 In International Publication WO2005-087664 (Patent Document 2), an acidic solution containing aluminum ions and magnesium ions and an alkaline solution containing alkali are mixed, and after mixing of the acidic solution and the alkaline solution is completed, no time is left. By immediately removing or neutralizing water, the general formula: Mg 2+ 1-x Al 3+ x (OH) 2 (A n− ) x / n · mH 2 O (A n− is an anion) The hydrotalcite-like substance is formed, and a treatment method is described in which fluorine or the like is taken into the substance and fixed.

特開2003−285076号公報JP 2003-285076 A 国際公開WO2005−087664号公報International Publication WO2005-087664

従来の上記処理方法は、ハイドロタルサイトなどの層状複水酸化物を生成させてフッ素を除去する方法であるが、生成した汚泥の沈降性に劣り、処理時間が長引く問題がある。また、特許文献2の処理方法は、薬剤添加から脱水・中和までの処理条件を整えるのが面倒であり、しかもフッ素濃度が高い場合には薬剤コストの負担が大幅に増大し、また汚泥発生量が多くなると云う問題がある。 The conventional treatment method described above is a method of removing fluorine by producing a layered double hydroxide such as hydrotalcite, but has a problem that the treatment time is prolonged due to poor sedimentation of the produced sludge. Further, the treatment method of Patent Document 2 is troublesome to adjust the treatment conditions from the addition of chemicals to dehydration / neutralization, and when the fluorine concentration is high, the burden of chemical costs is greatly increased and sludge is generated. There is a problem that the amount increases.

本発明は、従来の処理方法における上記問題を解決したものであり、フッ素に対する吸着効果および生成した汚泥の沈降性に優れており、汚泥の処理が容易であって、フッ素濃度が高い場合にも低コストで排水基準値以下または環境基準値までフッ素を低減することができ、かつ同時に重金属類等の有害物質をも除去することができる処理方法を提供する。 The present invention solves the above-mentioned problems in the conventional treatment method, is excellent in the adsorption effect on fluorine and the sedimentation property of the generated sludge, and is easy to treat sludge and has a high fluorine concentration. Provided is a treatment method capable of reducing fluorine to a wastewater standard value or lower or an environmental standard value at a low cost and simultaneously removing harmful substances such as heavy metals.

本発明は、以下の構成からなる処理方法に関する。
〔1〕フッ素を含む原水にカルシウム塩を添加してフッ化カルシウム沈澱を生成させ、該沈澱を固液分離する一次処理工程、この一次処理後の処理水(一次処理水)に、難溶性金属酸化物と可溶性金属化合物とを添加してアルカリ性下で反応させることによって、該難溶性金属酸化物の表面に層状複水酸化物が形成された汚泥を生成させ、この汚泥を沈降させて固液分離する二次処理工程を有することを特徴とするフッ素および有害物質を除去する処理方法。
〔2〕難溶性金属酸化物が酸化マグネシウムであり、可溶性金属化合物が可溶性アルミニウム塩であり、一次処理後の処理水に酸化マグネシウムと可溶性アルミニウム塩を添加してアルカリ性下で反応させることによって酸化マグネシウムの表面にハイドロタルサイトを形成させると共に、該ハイドロタルサイトにフッ素および有害物質が取り込まれた汚泥を生成させ、該汚泥を固液分離してフッ素および有害物質を除去する上記[1]に記載するフッ素および有害物質を除去する処理方法。
〔3〕フッ素濃度30mg/L以上の原水について、一次処理によってフッ素濃度を10〜20mg/Lに低減し、二次処理によってフッ素濃度を8mg/L以下に低減する上記[1]または上記[2]に記載するフッ素および有害物質を除去する処理方法。
〔4〕フッ素濃度30mg/L以上の原水について、一次処理によってフッ素濃度を10〜20mg/Lに低減し、二次処理によってフッ素濃度を0.8mg/L以下に低減する上記[1]または上記[2]に記載するフッ素および有害物質を除去する処理方法。
〔5〕二次処理において生成する汚泥スラリーの30分静置後の安定容積が40%以下である上記[1]〜上記[4]の何れかに記載するフッ素および有害物質を除去する処理方法。
〔6〕一次処理において固液分離したフッ化カルシウム沈澱からフッ素を回収する上記[1]〜上記[5]の何れかに記載するフッ素および有害物質を除去する処理方法。
〔7〕二次処理において固液分離した汚泥の一部または全部を二次処理の反応工程に返送し、返送した汚泥を層状複水酸化物の形成に利用する上記[1]〜上記[6]の何れかに記載するフッ素および有害物質を除去する処理方法。
〔8〕反応工程に返送しない余剰汚泥をセメント原料または浄化材または一次処理のpH調整剤として利用する上記[1]〜上記[7]の何れかに記載するフッ素および有害物質を除去する処理方法。
The present invention relates to a processing method having the following configuration.
[1] A primary treatment step in which calcium fluoride is added to raw water containing fluorine to form a calcium fluoride precipitate, and the precipitate is solid-liquid separated. In the treated water after this primary treatment (primary treated water), a hardly soluble metal By adding an oxide and a soluble metal compound and reacting under alkalinity, sludge having a layered double hydroxide formed on the surface of the hardly soluble metal oxide is generated, and the sludge is allowed to settle to form a solid liquid. A treatment method for removing fluorine and harmful substances, comprising a secondary treatment step for separating.
[2] The hardly soluble metal oxide is magnesium oxide, the soluble metal compound is a soluble aluminum salt, and magnesium oxide and a soluble aluminum salt are added to the treated water after the primary treatment and reacted under alkaline conditions. The hydrotalcite is formed on the surface of the liquid, and sludge in which fluorine and harmful substances are taken into the hydrotalcite is generated, and the sludge is solid-liquid separated to remove fluorine and harmful substances. Treatment method to remove fluorine and harmful substances.
[3] For raw water having a fluorine concentration of 30 mg / L or more, the primary treatment reduces the fluorine concentration to 10 to 20 mg / L and the secondary treatment reduces the fluorine concentration to 8 mg / L or less [1] or [2 The processing method which removes the fluorine and harmful substance described in].
[4] For raw water with a fluorine concentration of 30 mg / L or more, the primary treatment reduces the fluorine concentration to 10-20 mg / L and the secondary treatment reduces the fluorine concentration to 0.8 mg / L or less [1] or above The processing method for removing fluorine and harmful substances according to [2].
[5] The treatment method for removing fluorine and harmful substances according to any one of [1] to [4] above, wherein the sludge slurry produced in the secondary treatment has a stable volume after standing for 30 minutes of 40% or less .
[6] The processing method for removing fluorine and harmful substances according to any one of [1] to [5] above, wherein fluorine is recovered from a calcium fluoride precipitate separated in solid and liquid in the primary treatment.
[7] Part or all of the sludge separated and solid-liquid separated in the secondary treatment is returned to the reaction step of the secondary treatment, and the returned sludge is used for forming the layered double hydroxide. ] The processing method which removes the fluorine and harmful substance described in any one of.
[8] The treatment method for removing fluorine and harmful substances according to any one of [1] to [7] above, wherein surplus sludge not returned to the reaction step is used as a cement raw material, a purification material, or a primary treatment pH adjuster. .

また、本発明は、以下の構成からなるフッ素を除去する処理装置に関する。
〔9〕フッ素を含有する原水にカルシウム塩を添加してフッ化カルシウムを沈澱させる反応槽A、該沈澱を固液分離する分離槽B、分離槽Bから抜き出した一次処理水に可溶性金属化合物を添加する添加槽C、可溶性金属化合物を添加した一次処理水に難溶性金属酸化物を加えて反応させ、フッ素および有害物質を取込んだ汚泥を生成させる反応槽D、反応槽DにpH調整剤を供給する手段E、反応槽Dから抜き出したスラリーに凝集剤を供給する手段F、凝集剤を添加したスラリーを固液分離する分離槽Gを備えることを特徴とするフッ素および有害物質を除去する処理装置。
〔10〕分離槽Gから反応槽Dに汚泥を返送する管路に第二添加槽Hが設けられており、第二添加槽Hで汚泥に難溶性金属酸化物が添加され、難溶性金属酸化物が添加された汚泥が反応槽Dに供給される上記[8]に記載するフッ素および有害物質を除去する処理装置。
Moreover, this invention relates to the processing apparatus which removes the fluorine which consists of the following structures.
[9] Reaction tank A for adding calcium salt to raw water containing fluorine to precipitate calcium fluoride, separation tank B for solid-liquid separation of the precipitate, and soluble metal compound in the primary treated water extracted from the separation tank B Addition tank C to be added, reaction tank D in which slightly soluble metal oxide is added to and reacted with primary treated water to which a soluble metal compound has been added to generate sludge incorporating fluorine and harmful substances, and pH adjuster to reaction tank D For removing fluorine and harmful substances, comprising: a means E for supplying slag; a means F for supplying a flocculant to the slurry extracted from the reaction tank D; and a separation tank G for solid-liquid separation of the slurry to which the flocculant has been added. Processing equipment.
[10] The second addition tank H is provided in the pipeline for returning the sludge from the separation tank G to the reaction tank D, and the poorly soluble metal oxide is added to the sludge in the second addition tank H. The processing apparatus for removing fluorine and harmful substances according to the above [8], wherein sludge to which a substance is added is supplied to the reaction tank D.

本発明の処理システム(処理方法および処理装置)は、一次処理工程においてフッ化カルシウム沈澱を生成させ、該沈澱を系外に分離するので、フッ素濃度の高い原水でも、一次処理工程でフッ素濃度を低減することができ、二次処理において容易にフッ素濃度を排水基準以下まで低減することができる。さらに、分離した汚泥を反応工程に返送することによって、フッ素の除去効果を高めることができ、排水中のフッ素濃度を容易に環境基準まで低減することができる。 Since the treatment system (treatment method and treatment apparatus) of the present invention generates a calcium fluoride precipitate in the primary treatment step and separates the precipitate out of the system, even in raw water with a high fluorine concentration, the fluorine concentration in the primary treatment step is reduced. In the secondary treatment, the fluorine concentration can be easily reduced below the drainage standard. Furthermore, by returning the separated sludge to the reaction step, the effect of removing fluorine can be enhanced, and the fluorine concentration in the waste water can be easily reduced to the environmental standard.

一次処理において使用するカルシウム塩は、消石灰、炭酸カルシウム、塩化カルシウム、酸化カルシウム、カーバイドなど安価な材料を使用することができるので、低コストでフッ素濃度を低減することができる。 As the calcium salt used in the primary treatment, an inexpensive material such as slaked lime, calcium carbonate, calcium chloride, calcium oxide, and carbide can be used, so that the fluorine concentration can be reduced at a low cost.

また、二次処理工程で生成される汚泥は沈降性に優れており、例えば、30分静置後の安定容積が40%以下であり、短時間に沈降するので、短時間で固液分離することができ、かつ固液分離槽を小型化することができる。 Moreover, the sludge produced | generated by a secondary treatment process is excellent in sedimentation property, for example, the stable volume after standing for 30 minutes is 40% or less, and settles in a short time, Therefore Solid-liquid separation is carried out in a short time The solid-liquid separation tank can be downsized.

さらに、二次処理工程の汚泥はフッ素と同時に有害物質を取り込むので、フッ素と共に有害物質を除去することができ、例えば、重金属類、ホウ素、窒素化合物、リンなどの有害物質を取り込んで除去することができる。 Furthermore, since the sludge in the secondary treatment process takes in harmful substances at the same time as fluorine, it can remove harmful substances together with fluorine, for example, take in and remove harmful substances such as heavy metals, boron, nitrogen compounds, and phosphorus. Can do.

本発明の処理方法を示す工程図Process drawing showing the processing method of the present invention 本発明の処理方法において第二添加槽を設けた工程図Process drawing provided with the second addition tank in the treatment method of the present invention 本発明の処理方法において二次処理の余剰汚泥を一次処理に利用した工程図Process drawing using surplus sludge from secondary treatment for primary treatment in the treatment method of the present invention 本発明の二次処理工程で生じる汚泥のSEM写真SEM photograph of sludge generated in the secondary treatment process of the present invention 図3の汚泥内部(図4イ)の成分分析図Component analysis diagram inside the sludge of Fig. 3 (Fig. 4a) 図3汚泥表面付近(図4ロ)の成分分析図Fig. 3 Component analysis diagram near the sludge surface (Fig. 4 b) 図4の汚泥と従来の処理方法の汚泥について、30分静置後の状態を示す写真A photograph showing the state after standing for 30 minutes for the sludge of FIG. 4 and the sludge of the conventional treatment method 本発明の二次処理工程で生じる汚泥のXRD解析チャートXRD analysis chart of sludge generated in the secondary treatment process of the present invention

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の処理方法は、フッ素を含む原水にカルシウム塩を添加してフッ化カルシウム沈澱を生成させ、該沈澱を固液分離する一次処理工程、この一次処理後の処理水(一次処理水)に、難溶性金属酸化物と可溶性金属化合物とを添加してアルカリ性下で反応させることによって、該難溶性金属酸化物の表面に層状複水酸化物が形成された汚泥を生成させ、この汚泥を沈降させて固液分離する二次処理工程を有することを特徴とするフッ素および有害物質を除去する処理方法である。図1、図2、および図3に本発明の処理工程を示す。
Hereinafter, the present invention will be specifically described based on embodiments.
In the treatment method of the present invention, a calcium salt is added to raw water containing fluorine to form a calcium fluoride precipitate, and the precipitate is subjected to solid-liquid separation, and the treated water (primary treated water) after this primary treatment is used. Then, by adding a hardly soluble metal oxide and a soluble metal compound and reacting under alkalinity, sludge having a layered double hydroxide formed on the surface of the hardly soluble metal oxide is generated, and the sludge is settled. And a secondary treatment process for solid-liquid separation. The treatment method removes fluorine and harmful substances. 1, 2, and 3 show the processing steps of the present invention.

本発明の処理方法は、自然発生的および人為的に生じた各種の廃水や排水などであってフッ素を含有するもの(フッ素を含む原水と云う)に広く適用することができる。例えば、工場排水や下水、海水、河川水、湖沼や池の水、地表の溜り水、河川等の堰止域の水、地下の流水や溜り水、暗渠の水等であってフッ素濃度の高いものに適用することができる。さらに、有害物質によって汚染された土壌の浄化排水、海水や最終処分場からの浸出水などの塩類濃度の高い排水を逆浸透膜および電気透析などを利用して清澄水(淡水)と濃縮水に分離(脱塩処理)した後の濃縮水などについて、フッ素濃度の高いものにも適用することができる。 The treatment method of the present invention can be widely applied to various types of wastewater and wastewater generated naturally and artificially and containing fluorine (referred to as raw water containing fluorine). For example, industrial effluent and sewage, seawater, river water, lake and pond water, surface pool water, river dam water, underground running water and pool water, culvert water, etc. with high fluorine concentration Can be applied to things. Furthermore, wastewater with high salt concentration, such as purified wastewater from soil contaminated with harmful substances, seawater and leachate from the final disposal site, is converted into clear water (fresh water) and concentrated water using reverse osmosis membranes and electrodialysis. Concentrated water after separation (desalting treatment) can also be applied to those having a high fluorine concentration.

本発明の処理方法において、有害物質とはフッ素以外の物質であり、例えば、重金属類、ホウ素、窒素、リンなどである。重金属類はカドミウム、鉛、銅、亜鉛、鉄、ニッケル、セレン、六価クロム、ヒ素、マンガン、アンチモンなどである。さらに、有害物質には、ハロゲン化物イオン、各種のハロゲン酸(ハロゲン酸、過ハロゲン酸、亜ハロゲン酸、次亜ハロゲン酸など)、ヘキサフルオロリン酸イオン(PF6 -)、ホウフッ化物イオン(BF4 -)、珪フッ化物イオン(SiF6 2-)、有機酸、浮遊物質(SS)および有機物などがある。本発明の処理システムによれば、フッ素と共にフッ素以外の有害物質を含む原水についても優れた除去効果を有する。 In the treatment method of the present invention, harmful substances are substances other than fluorine, for example, heavy metals, boron, nitrogen, phosphorus and the like. Heavy metals include cadmium, lead, copper, zinc, iron, nickel, selenium, hexavalent chromium, arsenic, manganese, and antimony. Further, harmful substances include halide ions, various halogen acids (such as halogen acids, perhalogen acids, halous acids, hypohalous acids), hexafluorophosphate ions (PF 6 ), borofluoride ions (BF 4 -), silicofluoride fluoride ions (SiF 6 2-), organic acids, and the like suspended solids (SS) and organic. According to the treatment system of the present invention, raw water containing harmful substances other than fluorine together with fluorine has an excellent removal effect.

〔一次処理工程〕
フッ素を含む原水にカルシウム塩を添加してフッ化カルシウム沈澱を生成させ、該沈澱を固液分離する。カルシウム塩は消石灰、炭酸カルシウム、塩化カルシウム、酸化カルシウム、カーバイドなど安価な材料を使用することができる。カルシウム塩の添加量は原水のフッ素濃度に応じて定めればよい。
[Primary treatment process]
A calcium salt is added to raw water containing fluorine to form a calcium fluoride precipitate, and the precipitate is separated into solid and liquid. As the calcium salt, inexpensive materials such as slaked lime, calcium carbonate, calcium chloride, calcium oxide, and carbide can be used. What is necessary is just to determine the addition amount of a calcium salt according to the fluorine concentration of raw | natural water.

図1および図2の処理フローにおいて、反応槽Aに原水を供給し、原水を撹拌しながらカルシウム塩を添加してpHを調整し、数分間反応させてフッ化カルシウム沈澱(CaF2沈澱)を生成させる。次いで、凝集剤を加えて緩く撹拌し、沈澱のフロックを形成させ、該フロックを含有する状態で分離槽Bに導入し、固液分離してCaF2沈澱を系外に取り出す。 In the processing flow of FIG. 1 and FIG. 2, raw water is supplied to the reaction tank A, the calcium salt is added while stirring the raw water, the pH is adjusted, and the reaction is performed for several minutes to cause calcium fluoride precipitation (CaF 2 precipitation). Generate. Next, a flocculant is added and gently stirred to form a floc of precipitate, introduced into the separation tank B in a state containing the floc, and solid-liquid separated to take out the CaF 2 precipitate out of the system.

反応槽AはpH4〜9に調整し、好ましくはpH5.5〜7に調整する。pH調整剤として、硫酸、塩酸、硝酸などの酸、あるいは消石灰、生石灰、水酸化ナトリウムなどのアルカリを用いることができる。また、二次処理の分離槽Gから抜き出した余剰汚泥を利用してもよい(図3参照)。生成したスラリーに無機凝集剤(硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄など)や、高分子凝集剤を添加して沈降を促進してもよい。 The reaction tank A is adjusted to pH 4-9, preferably pH 5.5-7. As a pH adjuster, an acid such as sulfuric acid, hydrochloric acid or nitric acid, or an alkali such as slaked lime, quicklime or sodium hydroxide can be used. Moreover, you may utilize the excess sludge extracted from the separation tank G of a secondary process (refer FIG. 3). Sedimentation may be promoted by adding an inorganic flocculant (aluminum sulfate, polyaluminum chloride, ferric chloride, etc.) or a polymer flocculant to the resulting slurry.

この一次処理によれば、高フッ素濃度の原水(例えばフッ素濃度30mg/L以上)について、一次処理後のフッ素濃度を10〜20mg/Lまで低減することができる。分離した沈澱は主にCaF2であり、脱水処理して処分することができる。CaF2純度が85wt%以上のものは蛍石代替品として再利用することができる。また、一次処理によりフッ素以外の有害物質も、pHの調整により水酸化物沈澱を生成し、該沈殿を分離することにより、低減できる場合もある。 According to this primary treatment, the fluorine concentration after the primary treatment can be reduced to 10 to 20 mg / L for raw water having a high fluorine concentration (for example, a fluorine concentration of 30 mg / L or more). The separated precipitate is mainly CaF 2 and can be disposed of after dehydration. Those having a CaF 2 purity of 85 wt% or more can be reused as a substitute for fluorite. In addition, harmful substances other than fluorine may be reduced by the primary treatment by generating a hydroxide precipitate by adjusting the pH and separating the precipitate.

〔二次処理工程〕
一次処理後の処理水に、難溶性金属酸化物と可溶性金属化合物とを添加してアルカリ性下で反応させることによって、該難溶性金属酸化物の表面に層状複水酸化物が形成された汚泥を生成させ、この汚泥を沈降させて固液分離する。
[Secondary treatment process]
Sludge having a layered double hydroxide formed on the surface of the hardly soluble metal oxide by adding a hardly soluble metal oxide and a soluble metal compound to the treated water after the primary treatment and reacting under alkaline conditions. The sludge is allowed to settle and solid-liquid separation is performed.

図1、図2、および図3の処理フローにおいて、一次処理水を添加槽Cに導入し、これに可溶性金属化合物を加えた後に、反応槽Dに導入する。反応槽Dには難溶性金属酸化物が添加される。図2のフローに示すように、難溶性金属酸化物を返送汚泥に加え、この汚泥を反応槽Dに供給してもよい。なお、添加槽Cまたは反応槽Dに難溶性金属酸化物と可溶性金属化合物を添加してもよい。また、添加槽Cに可溶性金属化合物を添加したとき、完全に溶解しない場合がある。その際はpH調整剤を添加して可溶性金属化合物を完全に溶解してもよいし、そのまま反応槽Dに導入してもよい。また、必要に応じて反応槽DにpH調整剤を添加してもよい。 In the processing flow of FIGS. 1, 2, and 3, the primary treated water is introduced into the addition tank C, and a soluble metal compound is added thereto, and then introduced into the reaction tank D. A hardly soluble metal oxide is added to the reaction vessel D. As shown in the flow of FIG. 2, the hardly soluble metal oxide may be added to the returned sludge, and this sludge may be supplied to the reaction tank D. Note that a hardly soluble metal oxide and a soluble metal compound may be added to the addition tank C or the reaction tank D. Moreover, when a soluble metal compound is added to the addition tank C, it may not completely dissolve. In that case, a pH adjusting agent may be added to completely dissolve the soluble metal compound, or it may be introduced into the reaction vessel D as it is. Moreover, you may add a pH adjuster to the reaction tank D as needed.

難溶性金属酸化物は、その表面が一部溶解して層状複水酸化物の成分源になると共に大部分は未溶解部分として残り、溶解した難溶性金属酸化物と可溶性金属化合物とが反応し、難溶性金属酸化物の表面に層状複水酸化物が形成される。また、溶解した難溶性金属酸化物は層状複水酸化物の成分源になると共にアルカリ剤としての役割を果たす。 The hardly soluble metal oxide partially dissolves on its surface and becomes a component source of the layered double hydroxide, and most of it remains as an undissolved part, and the dissolved hardly soluble metal oxide reacts with the soluble metal compound. A layered double hydroxide is formed on the surface of the hardly soluble metal oxide. Further, the dissolved hardly soluble metal oxide serves as a component source of the layered double hydroxide and serves as an alkali agent.

難溶性金属酸化物としては酸化マグネシウムや酸化カルシウムなどが用いられる。なお、層状複水酸化物のハイドロタルサイトを形成させるには酸化マグネシウムが好ましい。この酸化マグネシウムは、ドロマイト〔CaMg(CO3)2〕の焼成物のように、成分の一部に酸化マグネシウムを含むもの、あるいはCaに限らず他の成分と共に酸化マグネシウムを含むものを用いることができる。 Examples of the hardly soluble metal oxide include magnesium oxide and calcium oxide. In addition, magnesium oxide is preferable for forming the hydrotalcite of the layered double hydroxide. This magnesium oxide may be one containing magnesium oxide as a part of the component, such as a baked product of dolomite [CaMg (CO 3 ) 2 ], or one containing magnesium oxide together with other components, not limited to Ca. it can.

可溶性金属化合物として可溶性アルミニウム塩や可溶性鉄塩などを用いることができる。このなかで、ハイドロタルサイトを形成させるには可溶性アルミニウム塩が好ましい。具体的には、ポリ塩化アルミニウム、硫酸アルミニウム(硫酸バンド)、塩化アルミニウム、硝酸アルミニウムなどが好ましい。なお、可溶性アルミニウム塩として、アルミニウムを高濃度に含有する廃液(貴金属触媒の回収廃液、金属アルミニウムを溶解した液など)を利用することができる。 A soluble aluminum salt, a soluble iron salt, etc. can be used as a soluble metal compound. Among these, a soluble aluminum salt is preferable for forming hydrotalcite. Specifically, polyaluminum chloride, aluminum sulfate (sulfuric acid band), aluminum chloride, aluminum nitrate and the like are preferable. In addition, as a soluble aluminum salt, a waste liquid containing a high concentration of aluminum (a recovery waste liquid of a noble metal catalyst, a liquid in which metal aluminum is dissolved, or the like) can be used.

可溶性アルミニウム塩の添加量は、フッ素濃度1〜50mg/Lの一次処理水1Lに対して水中のアルミニウム濃度が10〜1000mg/Lになる量が適当である。また、酸化マグネシウムの添加量は、フッ素濃度1〜50mg/Lの一次処理水1Lに対して0.05〜10g/Lになる量が適当である。 The amount of the soluble aluminum salt added is suitably such that the aluminum concentration in the water is 10 to 1000 mg / L with respect to 1 L of the primary treated water with a fluorine concentration of 1 to 50 mg / L. The amount of magnesium oxide added is suitably 0.05 to 10 g / L with respect to 1 L of primary treated water with a fluorine concentration of 1 to 50 mg / L.

例えば、難溶性金属酸化物として酸化マグネシウムを用い、可溶性金属化合物として可溶性アルミニウム塩を用い、これらを一次処理水に添加し、アルカリ性下(pH7〜11が好ましい)で反応させると、酸化マグネシウムは溶け難いので大部分は未溶解部分として残るが、表面は部分的に溶解し、溶出したマグネシウムがアルミニウムと反応して酸化マグネシウム表面に層状複水酸化物が形成される。具体的には、酸化マグネシウム表面にマグネシウムとアルミニウムが反応してハイドロタルサイト〔一般式:Mg2+ 1-xAl3+ x(OH)2(An-)x/n・mH2O(An-はアニオン)〕が形成される。 For example, when magnesium oxide is used as the hardly soluble metal oxide, soluble aluminum salt is used as the soluble metal compound, and these are added to the primary treated water and reacted under alkaline conditions (preferably pH 7 to 11), the magnesium oxide is dissolved. Since it is difficult, most remains as an undissolved portion, but the surface is partially dissolved, and the eluted magnesium reacts with aluminum to form a layered double hydroxide on the surface of magnesium oxide. Specifically, magnesium and aluminum react with the magnesium oxide surface to form hydrotalcite [general formula: Mg 2+ 1-x Al 3+ x (OH) 2 (A n− ) x / n · mH 2 O ( An- is an anion)].

この状態の汚泥を図4に示す。図4の汚泥内部(イ)のEDX分析チャートを図5に示す。図示するように、圧倒的にマグネシウム成分が多く、酸化マグネシウムであることを示している。一方、図4の汚泥表面付近(ロ)のEDX分析チャートを図6に示す。図示するように、マグネシウムとアルミニウムのピークが検出され、ハイドロタルサイトを形成していることが分かる。 The sludge in this state is shown in FIG. FIG. 5 shows an EDX analysis chart inside the sludge (A) in FIG. As shown in the figure, the magnesium component is overwhelmingly large and indicates magnesium oxide. On the other hand, FIG. 6 shows an EDX analysis chart in the vicinity (b) of the sludge surface in FIG. As shown in the figure, the peaks of magnesium and aluminum are detected, and it can be seen that hydrotalcite is formed.

上記層状複水酸化物は、層間に水分子を含む層状構造を有しており、電気的中性を保つために層間に陰イオンを取り込む性質があり、一次処理水に残留しているフッ素は層間に取り込まれる。また、フッ素と共に有機酸、オキシアニオン系のホウ素、窒素、リン、セレン、六価クロム、ヒ素、アンチモンなどの陰イオンも層間に取り込まれる。さらに、層状複水酸化物を形成している2価金属(マグネシウムなど)や3価金属(アルミニウムなど)の一部が陽イオンの重金属類と置換することによって、カドミウム、鉛、銅、亜鉛、鉄、ニッケル、マンガンなどの有害重金属類が取り込まれる。また、浮遊物質(SS)は層状複水酸化物を含む汚泥と凝集して取り込まれ、有機物は層状複水酸化物を含む汚泥の表面に吸着して取り込まれる。このようにフッ素および有害物質が層状複水酸化物に取り込まれ、この層状複水酸化物を含む汚泥が沈降し、これを固液分離することによってフッ素および有害物質を同時に除去することができる。 The layered double hydroxide has a layered structure containing water molecules between layers, and has the property of taking in anions between layers in order to maintain electrical neutrality. The fluorine remaining in the primary treated water is Captured between layers. In addition to fluorine, anions such as organic acid, oxyanionic boron, nitrogen, phosphorus, selenium, hexavalent chromium, arsenic, and antimony are also taken in between the layers. Furthermore, cadmium, lead, copper, zinc, a part of divalent metals (such as magnesium) and trivalent metals (such as aluminum) forming the layered double hydroxide are replaced with cationic heavy metals. Harmful heavy metals such as iron, nickel and manganese are taken in. The suspended matter (SS) is aggregated and taken in with the sludge containing the layered double hydroxide, and the organic matter is adsorbed and taken in the surface of the sludge containing the layered double hydroxide. In this way, fluorine and harmful substances are taken into the layered double hydroxide, and sludge containing the layered double hydroxide settles, and the solid and liquid can separate the fluorine and harmful substances at the same time.

反応槽Dには必要に応じてpH調整剤を添加することができる。pH調整剤としては、水酸化ナトリウム、水酸化カルシウム、酸化カルシウムなどのアルカリや硫酸、塩酸などの酸を用いることができる。反応槽DをpH7〜11に調整するとよい。pHの調整は反応前、反応中、または反応後の何れでもよいが、層状複水酸化物の形成を促進するには反応中もしくは反応後が好ましい。 A pH adjuster can be added to the reaction vessel D as necessary. As the pH adjuster, an alkali such as sodium hydroxide, calcium hydroxide or calcium oxide, or an acid such as sulfuric acid or hydrochloric acid can be used. The reaction tank D may be adjusted to pH 7-11. The pH may be adjusted before the reaction, during the reaction, or after the reaction, but preferably during or after the reaction in order to promote the formation of the layered double hydroxide.

生成した汚泥を含むスラリーを分離槽Gに導いて沈降させ、固液分離する。本発明の処理方法によって生成した汚泥は、未溶解の難溶性金属酸化物(酸化マグネシウム等)の表面に層状複水酸化物が形成された構造を有しているので沈降性が良い。 The slurry containing the generated sludge is guided to the separation tank G to be settled and solid-liquid separated. The sludge produced by the treatment method of the present invention has a structure in which a layered double hydroxide is formed on the surface of an undissolved hardly soluble metal oxide (magnesium oxide or the like), and thus has good sedimentation.

例えば、図7に示すように、本発明の処理方法によって生成した汚泥スラリーをメスシリンダーに入れて30分間静置すると、静置開始時の汚泥スラリーの容積は2300mLであったものが、静置後の汚泥スラリー部分の容積は約550mLとなり、安定容積が短時間に40%以下、好ましくは25%以下になる。ここで安定容積とは次式[1]によって算出される指標である。安定容積の小さい方が汚泥を短時間に固液分離することができることを示す。
(一定時間経過後の汚泥スラリー容積)/(初期の汚泥スラリー容積)×100…[1]
For example, as shown in FIG. 7, when the sludge slurry produced by the treatment method of the present invention is placed in a graduated cylinder and allowed to stand for 30 minutes, the sludge slurry volume at the start of standing is 2300 mL. The volume of the later sludge slurry portion is about 550 mL, and the stable volume is 40% or less, preferably 25% or less in a short time. Here, the stable volume is an index calculated by the following equation [1]. A smaller stable volume indicates that sludge can be solid-liquid separated in a short time.
(Sludge slurry volume after a certain period of time) / (initial sludge slurry volume) × 100 ... [1]

一方、難溶性の酸化マグネシウムに代えて、可溶性のマグネシウム塩(塩化マグネシウムなど)を用い、これを可溶性アルミニウム塩と共に有害物質含有水に添加し、さらに水酸化ナトリウムを添加してアルカリ性に調整する従来の処理方法によって生成した汚泥スラリーは、この汚泥スラリーをメスシリンダーに入れて30分間静置すると、図7に示すように、例えば静置開始時の初期汚泥スラリー容積が2300mLであったものは、静置後の汚泥スラリー容積が約2200mLであり、30分程度では殆ど沈降しない。 On the other hand, instead of sparingly soluble magnesium oxide, a soluble magnesium salt (magnesium chloride, etc.) is used, and this is added to toxic substance-containing water together with a soluble aluminum salt, and further sodium hydroxide is added to adjust to alkalinity. When the sludge slurry generated by the treatment method is placed in a graduated cylinder and allowed to stand for 30 minutes, as shown in FIG. 7, for example, the initial sludge slurry volume at the start of standing is 2300 mL. The sludge slurry volume after standing is about 2200 mL, and hardly settles in about 30 minutes.

本発明の処理方法は汚泥を短時間に固液分離することができので、分離槽Gを小型化することができる。なお、汚泥スラリーを分離槽Gに導入する前に凝集剤を添加すれば、さらに短時間で固液分離することができる。凝集剤は無機凝集剤やアニオン性、カチオン性、ノニオン性、両性の高分子凝集剤を用いることができる。 Since the treatment method of the present invention can solid-liquid separate sludge in a short time, the separation tank G can be downsized. If a flocculant is added before the sludge slurry is introduced into the separation tank G, solid-liquid separation can be performed in a shorter time. As the flocculant, inorganic flocculants and anionic, cationic, nonionic and amphoteric polymer flocculants can be used.

本発明の処理方法において、好ましくは、固液分離した汚泥の一部または全部を反応槽Dに返送し、返送した汚泥を層状複水酸化物の形成に利用すると良い。汚泥の一部または全部を反応工程に戻すことによって、層状複水酸化物の生成が促進し、フッ素および重金属類、さらにはホウ素、窒素化合物、リン等の有害物質が汚泥中に多く取り込まれるようになり、これらの除去効果が向上する。 In the treatment method of the present invention, preferably, part or all of the solid-liquid separated sludge is returned to the reaction tank D, and the returned sludge is used for the formation of the layered double hydroxide. By returning part or all of the sludge to the reaction process, the formation of layered double hydroxides is promoted, and fluorine and heavy metals, as well as toxic substances such as boron, nitrogen compounds, phosphorus, etc., are often incorporated into the sludge. Thus, these removal effects are improved.

なお、固液分離した汚泥について、重量や比重あるいは沈降速度の違いを利用して難溶性金属酸化物量の多いものに濃縮した汚泥を反応工程に返送するとよい。例えば、難溶性金属酸化物量の多い汚泥は他の汚泥よりも重いために速く沈降するので、沈降初期の汚泥を集めて難溶性金属酸化物量の多い汚泥に濃縮することができる。反応工程に難溶性金属酸化物量の多い汚泥を返送することによって、層状複水酸化物の生成を促進することができる。例えば、難溶性金属酸化物として酸化マグネシウムを使用したとき、酸化マグネシウム量の多い汚泥を濃縮して反応工程に返送することによって、ハイドロタルサイトの生成を促進することができる。 In addition, about the sludge isolate | separated into solid and liquid, it is good to return the sludge concentrated to the thing with much amount of a hardly soluble metal oxide using the difference in a weight, specific gravity, or sedimentation speed to a reaction process. For example, since sludge with a large amount of hardly soluble metal oxides is heavier than other sludges and settles quickly, it is possible to collect sludge at the initial stage of sedimentation and concentrate it to sludge with a large amount of hardly soluble metal oxides. By returning the sludge having a large amount of the hardly soluble metal oxide to the reaction step, the generation of the layered double hydroxide can be promoted. For example, when magnesium oxide is used as the hardly soluble metal oxide, the formation of hydrotalcite can be promoted by concentrating sludge having a large amount of magnesium oxide and returning it to the reaction step.

一方、反応工程に返送しない余剰の汚泥は、これを回収してセメント原料として再資源化することができる。また、余剰汚泥を土壌汚染や廃水処理の浄化材として利用することができる。あるいは、余剰汚泥を一次処理のpH調整剤として反応槽Aに導入することができる。二次処理の余剰汚泥を一次処理に利用した工程図を図3に示す。 On the other hand, surplus sludge that is not returned to the reaction process can be recovered and recycled as a cement raw material. Moreover, surplus sludge can be utilized as a purification material for soil contamination or wastewater treatment. Or surplus sludge can be introduce | transduced into the reaction tank A as a pH adjuster of a primary process. FIG. 3 shows a process diagram in which surplus sludge from the secondary treatment is used for the primary treatment.

本発明の処理方法は、汚泥を分離した液分(二次処理水)を後処理する工程を設けることができる。二次処理水に有機物や浮遊物質、窒素化合物が残留し、あるいは処理水のpHが9以上の場合があるので、二次処理水を後処理するとよい。 The processing method of this invention can provide the process of post-processing the liquid component (secondary process water) which isolate | separated sludge. Since organic substances, suspended solids, and nitrogen compounds may remain in the secondary treated water, or the pH of the treated water may be 9 or higher, the secondary treated water may be post-treated.

二次処理水に含まれる有機物は、生物処理法(活性汚泥法など)や促進酸化法(紫外線酸化や光触媒など)などによって除去することができる。浮遊物質(SS)は、無機凝集剤や高分子凝集剤を添加して浮遊物質を沈澱分離すればよい。窒素化合物は、生物処理(硝化脱窒素法など)によって低減することができる。pHが高い場合には硫酸や塩酸などを添加して中和処理するとよい。 Organic substances contained in the secondary treated water can be removed by a biological treatment method (such as an activated sludge method) or an accelerated oxidation method (such as an ultraviolet oxidation or a photocatalyst). The suspended substance (SS) may be precipitated and separated by adding an inorganic flocculant or a polymer flocculant. Nitrogen compounds can be reduced by biological treatment (such as nitrification and denitrification). If the pH is high, neutralization may be performed by adding sulfuric acid or hydrochloric acid.

〔処理装置〕
本発明の処理装置(処理システム)を図1、図2、および図3に示す。
図1に示す処理装置には、フッ素を含有する原水にカルシウム塩を添加してフッ化カルシウムを沈澱させる反応槽A、該沈澱を固液分離する分離槽B、分離槽Bから抜き出した一次処理水に可溶性金属化合物を添加する添加槽C、可溶性金属化合物を添加した一次処理水に難溶性金属酸化物を加えて反応させ、フッ素および重金属類を取込んだ汚泥を生成させる反応槽D、反応槽DにpH調整剤を供給する手段E、反応槽Dから抜き出したスラリーに凝集剤を供給する手段F、凝集剤を添加したスラリーを固液分離する分離槽Gが設置されている。
[Processing equipment]
The processing apparatus (processing system) of this invention is shown in FIG.1, FIG2 and FIG.3.
In the treatment apparatus shown in FIG. 1, a reaction tank A in which calcium fluoride is added to raw water containing fluorine to precipitate calcium fluoride, a separation tank B for solid-liquid separation of the precipitate, and a primary treatment extracted from the separation tank B. Addition tank C for adding soluble metal compounds to water, reaction tank D for reacting by adding a hardly soluble metal oxide to primary treated water to which soluble metal compounds have been added, and generating sludge incorporating fluorine and heavy metals, reaction A means E for supplying a pH adjusting agent to the tank D, a means F for supplying a flocculant to the slurry extracted from the reaction tank D, and a separation tank G for solid-liquid separation of the slurry added with the flocculant are installed.

反応槽A、分離槽B、添加槽C、反応槽D、および分離槽Gは管路50によって接続されており、二次処理水は管路51を通じて系外に排水される。分離槽Gの汚泥は管路52を通じて抜き出され、その一部または全部は管路53を通じて反応槽Dに返送される。 The reaction tank A, the separation tank B, the addition tank C, the reaction tank D, and the separation tank G are connected by a pipe 50, and the secondary treated water is drained outside the system through the pipe 51. The sludge in the separation tank G is extracted through the pipe line 52, and part or all of the sludge is returned to the reaction tank D through the pipe line 53.

図2に示す処理装置には、管路53に第二添加槽Hが設けられている。第二添加槽Hに返送汚泥が導入され、ここに難溶性金属酸化物が添加され、難溶性金属酸化物が添加された汚泥が反応槽Dに供給される。 In the processing apparatus shown in FIG. 2, a second addition tank H is provided in the pipe line 53. The return sludge is introduced into the second addition tank H, the hardly soluble metal oxide is added thereto, and the sludge to which the hardly soluble metal oxide is added is supplied to the reaction tank D.

図3に示す処理装置には、二次処理の余剰汚泥を一次処理のpH調整剤として反応槽Aに供給する返送管路54が設置されている。 The processing apparatus shown in FIG. 3 is provided with a return pipeline 54 that supplies surplus sludge from the secondary treatment to the reaction tank A as a pH adjuster for the primary treatment.

反応槽Dは、二酸化炭素を吸収すると有害物質の取り込みが影響される懸念があるので、二酸化炭素を吸収し難い構造が好ましく、密閉系の反応槽が好ましい。添加槽Cを省略して管路内で原水に可溶性金属化合物を添加してもよい。 The reaction tank D has a concern that absorption of carbon dioxide may affect the uptake of harmful substances. Therefore, a structure that hardly absorbs carbon dioxide is preferable, and a closed reaction tank is preferable. You may abbreviate | omit the addition tank C and add a soluble metal compound to raw | natural water within a pipe line.

上記処理装置は、例えば、車載可能にし、あるいは添加槽や反応槽および固液分離槽などのユニットに分離可能にした可搬型装置にすることができる。 The said processing apparatus can be used as the portable apparatus which made it possible to mount in-vehicle or made separation into units, such as an addition tank, a reaction tank, and a solid-liquid separation tank, for example.

以下、本発明の実施例を比較例と共に示す。なお、フッ素濃度はイオン電極法により測定した。Cr、鉄、Niの濃度はICP発光分光分析法によって測定した。 Examples of the present invention are shown below together with comparative examples. The fluorine concentration was measured by an ion electrode method. The concentrations of Cr, iron and Ni were measured by ICP emission spectroscopy.

〔実施例1〕
<一次処理工程>
図2に示す処理工程に従い、フッ素含有水を以下のように処理した。まず、フッ素含有水(フッ素濃度80mg/L、pH2.9)を反応槽Aに供給し、撹拌しながら水酸化カルシウムを添加してpH7.0に調整した。30分間反応させた後に、アニオン性高分子凝集剤を2mg/L添加し、緩やかに撹拌して沈澱のフロックを形成した。これを分離槽Bに導き沈降分離した。このときの一次処理水のフッ素濃度は20mg/Lであった。
[Example 1]
<Primary treatment process>
According to the treatment process shown in FIG. 2, the fluorine-containing water was treated as follows. First, fluorine-containing water (fluorine concentration 80 mg / L, pH 2.9) was supplied to the reaction tank A, and calcium hydroxide was added while stirring to adjust the pH to 7.0. After reacting for 30 minutes, 2 mg / L of anionic polymer flocculant was added and gently stirred to form a floc of precipitate. This was introduced into separation tank B and separated by settling. At this time, the fluorine concentration of the primary treated water was 20 mg / L.

<二次処理工程>
一次処理水を添加槽Cに導入し、ポリ塩化アルミニウムをアルミニウム濃度が200mg/Lになるように添加した後に反応槽Dに導入した。一方、分離槽Gから抜き出した汚泥の全量を第二添加槽Hに導入し、ここで酸化マグネシウムを0.9mg/L添加した。この汚泥を反応槽Dに加えてポリ塩化アルミニウムを添加した一次処理水と混合し、30分間撹拌し、温度20℃下、30分間反応させた。反応後、pH調整剤として水酸化ナトリウムを添加してpH8.5〜9.5に調整した後、生成した汚泥を分離槽Gに入れ、20時間静置して汚泥を沈降させた。分離槽Gに導入する前にアニオン系高分子凝集剤2mg/Lを添加した。沈降した汚泥を分離槽Gから抜き出し、汚泥全量を第二添加槽Hに導入し、酸化マグネシウムを添加して反応層Dに戻し、汚泥の生成を17回繰り返した。
この結果を表1、表2に示す。また、汚泥のX線解析チャートを図8に示した。図8において1st〜10thは繰返し回数である。
<Secondary treatment process>
Primary treated water was introduced into the addition tank C, and polyaluminum chloride was added to the reaction tank D after the aluminum concentration was added to 200 mg / L. On the other hand, the entire amount of sludge extracted from the separation tank G was introduced into the second addition tank H, where 0.9 mg / L of magnesium oxide was added. This sludge was added to reaction tank D and mixed with primary treated water to which polyaluminum chloride was added, stirred for 30 minutes, and reacted at a temperature of 20 ° C. for 30 minutes. After the reaction, sodium hydroxide was added as a pH adjuster to adjust the pH to 8.5 to 9.5, and then the generated sludge was placed in the separation tank G and allowed to stand for 20 hours to settle the sludge. Before being introduced into the separation tank G, 2 mg / L of an anionic polymer flocculant was added. The settled sludge was extracted from the separation tank G, the entire amount of sludge was introduced into the second addition tank H, magnesium oxide was added and returned to the reaction layer D, and the generation of sludge was repeated 17 times.
The results are shown in Tables 1 and 2. Further, an X-ray analysis chart of sludge is shown in FIG. In FIG. 8, 1st to 10th is the number of repetitions.

表1および表2に示すように、一次処理によって原水のフッ素濃度は80mg/Lから20mg/Lに低減され、さらに二次処理において、1回目の処理で排水基準値以下の6.7mg/Lまで減少し、処理回数の繰り返しに応じてフッ素濃度が減少する。さらに、繰り返し回数を増加させるとフッ素濃度は0.6mg/Lまで減少し、環境基準値まで処理できる。原水に含まれている鉄、Cr、Niも除去されている。 As shown in Tables 1 and 2, the primary treatment reduced the fluorine concentration of raw water from 80 mg / L to 20 mg / L, and in the secondary treatment, 6.7 mg / L below the wastewater standard value in the first treatment. The fluorine concentration decreases as the number of treatments is repeated. Furthermore, when the number of repetitions is increased, the fluorine concentration is reduced to 0.6 mg / L and can be processed to the environmental standard value. Iron, Cr, and Ni contained in the raw water are also removed.

また、汚泥のX線解析チャートに示すように、酸化マグネシウムと共にハイドロタルサイトのピークが現れており、酸化マグネシウム表面にハイドロタルサイトが形成されていることが分かる。繰返し回数が1回ではハイドロタルサイトのピークは小さいが、繰返し回数が5回以降になるとハイドロタルサイトのピークは大きくなり、繰返し回数に比例して成長している。 Moreover, as shown in the X-ray analysis chart of sludge, the peak of hydrotalcite appears with magnesium oxide, and it turns out that the hydrotalcite is formed on the magnesium oxide surface. When the number of repetitions is 1, the hydrotalcite peak is small, but when the number of repetitions is 5 or more, the hydrotalcite peak increases and grows in proportion to the number of repetitions.

A−反応槽、B−分離槽、C−添加槽、D−反応槽、G−分離槽、H−第二添加槽、50−管路、51、52−排出管路、53−返送管路、54−返送管路。 A-reaction tank, B-separation tank, C-addition tank, D-reaction tank, G-separation tank, H-second addition tank, 50-pipe, 51, 52-discharge pipe, 53-return pipe , 54-return line.

Claims (10)

フッ素を含む原水にカルシウム塩を添加してフッ化カルシウム沈澱を生成させ、該沈澱を固液分離する一次処理工程、この一次処理後の処理水(一次処理水)に、難溶性金属酸化物と可溶性金属化合物とを添加してアルカリ性下で反応させることによって、該難溶性金属酸化物の表面に層状複水酸化物が形成された汚泥を生成させ、この汚泥を沈降させて固液分離する二次処理工程を有することを特徴とするフッ素および有害物質を除去する処理方法。
Calcium fluoride is added to raw water containing fluorine to form a calcium fluoride precipitate, and the precipitate is solid-liquid separated. In the treated water after this primary treatment (primary treated water), a hardly soluble metal oxide and A sludge having a layered double hydroxide formed on the surface of the hardly soluble metal oxide is generated by adding a soluble metal compound and reacting under alkalinity, and the sludge is settled and solid-liquid separated. A treatment method for removing fluorine and harmful substances, characterized by comprising a subsequent treatment step.
難溶性金属酸化物が酸化マグネシウムであり、可溶性金属化合物が可溶性アルミニウム塩であり、一次処理後の処理水に酸化マグネシウムと可溶性アルミニウム塩を添加してアルカリ性下で反応させることによって酸化マグネシウムの表面にハイドロタルサイトを形成させると共に、該ハイドロタルサイトにフッ素および有害物質が取り込まれた汚泥を生成させ、該汚泥を固液分離してフッ素および有害物質を除去する請求項1に記載するフッ素および有害物質を除去する処理方法。 The hardly soluble metal oxide is magnesium oxide, the soluble metal compound is a soluble aluminum salt, and magnesium oxide and a soluble aluminum salt are added to the treated water after the primary treatment and reacted under alkalinity on the surface of the magnesium oxide. The fluorine and harmful substances according to claim 1, wherein hydrotalcite is formed, sludge in which fluorine and harmful substances are taken into hydrotalcite is generated, and the sludge is solid-liquid separated to remove fluorine and harmful substances. Treatment method to remove material. フッ素濃度30mg/L以上の原水について、一次処理によってフッ素濃度を10〜20mg/Lに低減し、二次処理によってフッ素濃度を8mg/L以下に低減する請求項1または請求項2に記載するフッ素および有害物質を除去する処理方法。 Fluorine according to claim 1 or 2, wherein the raw water having a fluorine concentration of 30 mg / L or more is reduced to 10 to 20 mg / L by primary treatment and reduced to 8 mg / L or less by secondary treatment. And processing methods to remove harmful substances. フッ素濃度30mg/L以上の原水について、一次処理によってフッ素濃度を10〜20mg/Lに低減し、二次処理によってフッ素濃度を0.8mg/L以下に低減する請求項1または請求項2に記載するフッ素および有害物質を除去する処理方法。 The raw water having a fluorine concentration of 30 mg / L or more is reduced to 10 to 20 mg / L by primary treatment, and the fluorine concentration is reduced to 0.8 mg / L or less by secondary treatment. Treatment method to remove fluorine and harmful substances. 二次処理において生成する汚泥スラリーの30分静置後の安定容積が40%以下である請求項1〜請求項4の何れかに記載するフッ素および有害物質を除去する処理方法。 The treatment method for removing fluorine and harmful substances according to any one of claims 1 to 4, wherein a stable volume of the sludge slurry produced in the secondary treatment after standing for 30 minutes is 40% or less. 一次処理において固液分離したフッ化カルシウム沈澱からフッ素を回収する請求項1〜請求項5の何れかに記載するフッ素および有害物質を除去する処理方法。 6. The treatment method for removing fluorine and harmful substances according to any one of claims 1 to 5, wherein fluorine is recovered from a calcium fluoride precipitate that has been solid-liquid separated in a primary treatment. 二次処理において固液分離した汚泥の一部または全部を二次処理の反応工程に返送し、返送した汚泥を層状複水酸化物の形成に利用する請求項1〜請求項6の何れかに記載するフッ素および有害物質を除去する処理方法。 A part or all of the sludge separated and solid-liquid separated in the secondary treatment is returned to the reaction step of the secondary treatment, and the returned sludge is used for the formation of the layered double hydroxide. Treatment method to remove fluorine and harmful substances to be described. 反応工程に返送しない余剰汚泥をセメント原料または浄化材または一次処理のpH調整剤として利用する請求項1〜請求項7の何れかに記載するフッ素および有害物質を除去する処理方法。 The treatment method for removing fluorine and harmful substances according to any one of claims 1 to 7, wherein surplus sludge not returned to the reaction step is used as a cement raw material, a purification material, or a pH adjuster for primary treatment. フッ素を含有する原水にカルシウム塩を添加してフッ化カルシウムを沈澱させる反応槽A、該沈澱を固液分離する分離槽B、分離槽Bから抜き出した一次処理水に可溶性金属化合物を添加する添加槽C、可溶性金属化合物を添加した一次処理水に難溶性金属酸化物を加えて反応させ、フッ素および有害物質を取込んだ汚泥を生成させる反応槽D、反応槽DにpH調整剤を供給する手段E、反応槽Dから抜き出したスラリーに凝集剤を供給する手段F、凝集剤を添加したスラリーを固液分離する分離槽Gを備えることを特徴とするフッ素および有害物質を除去する処理装置。 Reaction tank A for adding calcium salt to raw water containing fluorine to precipitate calcium fluoride, separation tank B for solid-liquid separation of the precipitate, addition for adding soluble metal compound to primary treated water extracted from separation tank B A pH adjuster is supplied to tank C, reaction tank D for generating sludge incorporating fluorine and harmful substances, and reaction by adding a hardly soluble metal oxide to primary treated water to which a soluble metal compound has been added. A treatment apparatus for removing fluorine and harmful substances, comprising means E, means F for supplying a flocculant to the slurry extracted from the reaction tank D, and a separation tank G for solid-liquid separation of the slurry to which the flocculant has been added. 分離槽Gから反応槽Dに汚泥を返送する管路に第二添加槽Hが設けられており、第二添加槽Hで汚泥に難溶性金属酸化物が添加され、難溶性金属酸化物が添加された汚泥が反応槽Dに供給される請求項8に記載するフッ素および有害物質を除去する処理装置。 A second addition tank H is provided in the pipeline for returning the sludge from the separation tank G to the reaction tank D, and the hardly soluble metal oxide is added to the sludge in the second addition tank H. The processing apparatus for removing fluorine and harmful substances according to claim 8, wherein the treated sludge is supplied to the reaction tank D.
JP2011216629A 2011-09-30 2011-09-30 Treatment method and treatment apparatus for removing fluorine and harmful substances Active JP5794422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216629A JP5794422B2 (en) 2011-09-30 2011-09-30 Treatment method and treatment apparatus for removing fluorine and harmful substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216629A JP5794422B2 (en) 2011-09-30 2011-09-30 Treatment method and treatment apparatus for removing fluorine and harmful substances

Publications (2)

Publication Number Publication Date
JP2013075260A true JP2013075260A (en) 2013-04-25
JP5794422B2 JP5794422B2 (en) 2015-10-14

Family

ID=48479171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216629A Active JP5794422B2 (en) 2011-09-30 2011-09-30 Treatment method and treatment apparatus for removing fluorine and harmful substances

Country Status (1)

Country Link
JP (1) JP5794422B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944499A (en) * 2015-05-25 2015-09-30 常州大学 Method for treating high-concentration ammonia nitrogen in leather wastewater
JP2019155209A (en) * 2018-03-07 2019-09-19 住友金属鉱山株式会社 Treatment facility and treatment method of boron-containing water
CN111542499A (en) * 2017-12-27 2020-08-14 三菱综合材料株式会社 Method for treating waste water
CN113735327A (en) * 2021-09-26 2021-12-03 成都理工大学 Coagulant for synchronously removing fluorine and phosphorus in phosphorus chemical wastewater and removing method thereof
US11505480B2 (en) 2017-12-27 2022-11-22 Mitsubishi Materials Corporation Method of treating wastewater

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228401A (en) * 1990-06-01 1992-08-18 Asahi Glass Co Ltd Production of hydrogen fluoride
JPH10128313A (en) * 1996-09-25 1998-05-19 Eastman Kodak Co Method for removing heavy metal from photographic waste solution
JPH10216742A (en) * 1997-01-31 1998-08-18 Kawaken Fine Chem Co Ltd Collection of heavy metal-containing ions
JP2001219177A (en) * 2000-02-10 2001-08-14 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing water
JP2001252675A (en) * 2000-03-13 2001-09-18 Nippon Chem Ind Co Ltd Method for removing heavy metal ion in waste water
JP2005193167A (en) * 2004-01-08 2005-07-21 Sophia Co Ltd Drainage purification method and purification method
JP2007000741A (en) * 2005-06-22 2007-01-11 Unitika Ltd Stabilizing agent for harmful substance in ash and stabilizing method
JP2007117809A (en) * 2005-10-25 2007-05-17 Mitsubishi Materials Corp Cleaning method of soil and cleaning device
JP2007209886A (en) * 2006-02-09 2007-08-23 Bokuto Kasei Kogyo Kk Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP4036237B2 (en) * 2004-03-16 2008-01-23 学校法人早稲田大学 Hydrotalcite-like substance, method for producing the same, and method for immobilizing harmful substances
EP2014358A1 (en) * 2007-07-04 2009-01-14 Süd-Chemie Ag Preparation of hydrotalcite-like adsorbents useful for the adsorption of anionic materials
JP2009137801A (en) * 2007-12-07 2009-06-25 Sophia Co Ltd New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water
JP2012106226A (en) * 2010-10-29 2012-06-07 Mitsubishi Materials Corp Method and apparatus for treating harmful substance-containing water

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228401A (en) * 1990-06-01 1992-08-18 Asahi Glass Co Ltd Production of hydrogen fluoride
JPH10128313A (en) * 1996-09-25 1998-05-19 Eastman Kodak Co Method for removing heavy metal from photographic waste solution
JPH10216742A (en) * 1997-01-31 1998-08-18 Kawaken Fine Chem Co Ltd Collection of heavy metal-containing ions
JP2001219177A (en) * 2000-02-10 2001-08-14 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing water
JP2001252675A (en) * 2000-03-13 2001-09-18 Nippon Chem Ind Co Ltd Method for removing heavy metal ion in waste water
JP2005193167A (en) * 2004-01-08 2005-07-21 Sophia Co Ltd Drainage purification method and purification method
JP4036237B2 (en) * 2004-03-16 2008-01-23 学校法人早稲田大学 Hydrotalcite-like substance, method for producing the same, and method for immobilizing harmful substances
JP2007000741A (en) * 2005-06-22 2007-01-11 Unitika Ltd Stabilizing agent for harmful substance in ash and stabilizing method
JP2007117809A (en) * 2005-10-25 2007-05-17 Mitsubishi Materials Corp Cleaning method of soil and cleaning device
JP2007209886A (en) * 2006-02-09 2007-08-23 Bokuto Kasei Kogyo Kk Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
EP2014358A1 (en) * 2007-07-04 2009-01-14 Süd-Chemie Ag Preparation of hydrotalcite-like adsorbents useful for the adsorption of anionic materials
JP2009137801A (en) * 2007-12-07 2009-06-25 Sophia Co Ltd New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water
JP2012106226A (en) * 2010-10-29 2012-06-07 Mitsubishi Materials Corp Method and apparatus for treating harmful substance-containing water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944499A (en) * 2015-05-25 2015-09-30 常州大学 Method for treating high-concentration ammonia nitrogen in leather wastewater
CN111542499A (en) * 2017-12-27 2020-08-14 三菱综合材料株式会社 Method for treating waste water
US11479490B2 (en) 2017-12-27 2022-10-25 Mitsubishi Materials Corporation Method of treating wastewater
US11505480B2 (en) 2017-12-27 2022-11-22 Mitsubishi Materials Corporation Method of treating wastewater
JP2019155209A (en) * 2018-03-07 2019-09-19 住友金属鉱山株式会社 Treatment facility and treatment method of boron-containing water
CN113735327A (en) * 2021-09-26 2021-12-03 成都理工大学 Coagulant for synchronously removing fluorine and phosphorus in phosphorus chemical wastewater and removing method thereof

Also Published As

Publication number Publication date
JP5794422B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5943176B2 (en) Method and apparatus for treating harmful substance-containing water.
US9499420B2 (en) Formulations and methods for removing heavy metals from waste solutions containing chelating agents
JP5794423B2 (en) Processing method and processing apparatus for removing harmful substances
JP5794422B2 (en) Treatment method and treatment apparatus for removing fluorine and harmful substances
JP2017114705A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP5915834B2 (en) Method for producing purification treatment material
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP2004283736A (en) Treating method of waste solution
JP4954131B2 (en) Treatment method of water containing borofluoride
JP2004050096A (en) Method for treating wastewater containing harmful substance without producing sludge, and chemical agent used therein
Zhu et al. Removal of sulfate and chloride ions from reverse osmosis concentrate using a two-stage ultra-high lime with aluminum process
WO2004045740A1 (en) Purification agent for wastewater and sludge water
JP5848119B2 (en) Treatment method for fluorine-containing wastewater
JP4210509B2 (en) Method for treating boron-containing water
KR102116420B1 (en) Waste water treatment method of removing fluorine and cyanides
JP2009136873A (en) Treatment method for dust in cement kiln extraction gas
JP4583786B2 (en) Treatment method for boron-containing wastewater
JP5306977B2 (en) Method for treating boron-containing water and boron removing agent
JP6008455B1 (en) How to handle hazardous substances
JP5965164B2 (en) Cadmium-containing wastewater treatment method
JP2003047972A (en) Method for treating fluorine-containing wastewater
JP2022134521A (en) Processing method of fluorine-containing waste water
JP5911270B2 (en) Arsenic water treatment method
JP2021107048A (en) Water treatment method
JP2009262109A (en) Treating agent of chromium and arsenic, and treatment method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5794422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150