JP2013073686A - Method for manufacturing film-electrode assembly - Google Patents

Method for manufacturing film-electrode assembly Download PDF

Info

Publication number
JP2013073686A
JP2013073686A JP2011209625A JP2011209625A JP2013073686A JP 2013073686 A JP2013073686 A JP 2013073686A JP 2011209625 A JP2011209625 A JP 2011209625A JP 2011209625 A JP2011209625 A JP 2011209625A JP 2013073686 A JP2013073686 A JP 2013073686A
Authority
JP
Japan
Prior art keywords
catalyst ink
electrode assembly
electrolyte membrane
solvent
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011209625A
Other languages
Japanese (ja)
Other versions
JP5838688B2 (en
Inventor
Yu Sakurada
雄 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011209625A priority Critical patent/JP5838688B2/en
Publication of JP2013073686A publication Critical patent/JP2013073686A/en
Application granted granted Critical
Publication of JP5838688B2 publication Critical patent/JP5838688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid polymer fuel cell by which when forming a catalyst layer on a surface of the electrolytic film by directly coating the electrolytic film with a catalyst ink by means of a blade method, followed by drying, the swelling of the film is suppressed, and the catalyst layer uniform in thickness can be obtained.SOLUTION: The method comprises the steps of: supplying a catalyst ink including a polymer material and a solvent to an entire surface of an electrolytic film to form beads; coating the electrolytic film with the catalyst ink formed in the beads by scanning a blade; and heating and drying the coated electrolytic film by means of a backside heating unit provided under the backside of the electrolytic film. The blade is moved in synchronization with the backside heating unit at the same speed. The heating by the backside heating unit is arranged so that the catalyst ink is kept at an atmospheric temperature without heating during the step where the catalyst ink is formed into beads, and the heating is performed as the electrolytic film is coated with the catalyst ink. Thus, the following are made possible: to suppress the drying of the beads; to perform the coating with the blade with good accuracy; and to vaporize the solvent promptly after the coating.

Description

本発明は、固体高分子形燃料電池に使用される膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly used in a polymer electrolyte fuel cell.

燃料電池の発電方式は、水素などの燃料と空気などの酸化剤を電気化学的に反応させることにより、燃料の化学エネルギーを電気エネルギーに変換して取り出すものである。この発電方式は、発電効率が高く、静粛性に優れ、大気汚染の原因となるNOx、SOx、また地球温暖化の原因となるCO2の排出量が少ない等の利点から、新エネルギーとして期待されている。この燃料電池が適用されている例としては、携帯電気機器の長時間電力供給、コジェネレーション用定置型発電温水供給機、燃料電池自動車等があり、用途も規模も多様である。 A fuel cell power generation system is one that converts a chemical energy of a fuel into an electric energy and extracts it by electrochemically reacting a fuel such as hydrogen with an oxidant such as air. This power generation method is expected to be a new energy because of its advantages such as high power generation efficiency, excellent quietness, and low emissions of NOx and SOx that cause air pollution and CO 2 that causes global warming. ing. Examples of the application of this fuel cell include a long-time power supply for portable electric devices, a stationary power generation hot water supply machine for cogeneration, a fuel cell vehicle, and the like, which have various uses and scales.

燃料電池の種類は使用する電解質によって、固体高分子形、リン酸形、溶融炭酸塩形、固体酸化物形、アルカリ形等に分類される。燃料電池の運転温度は種類毎に大きく異なり、それに伴い発電規模や利用分野も異なる。   The types of fuel cells are classified into solid polymer type, phosphoric acid type, molten carbonate type, solid oxide type, alkaline type, etc., depending on the electrolyte used. The operating temperature of the fuel cell varies greatly depending on the type, and accordingly, the scale of power generation and the field of use vary.

陽イオン交換膜を電解質として用いたものは、固体高分子形燃料電池と呼ばれる。固体高分子形燃料電池は、燃料電池の中でも比較的低温での動作が可能であり、また、電解質膜の薄膜化により内部抵抗を低減できるため高出力化、コンパクト化が可能であり、車搭載源や家庭据置用電源等への使用が有望視されている。   A battery using a cation exchange membrane as an electrolyte is called a polymer electrolyte fuel cell. The polymer electrolyte fuel cell can operate at a relatively low temperature among fuel cells, and the internal resistance can be reduced by reducing the thickness of the electrolyte membrane. It is considered promising for use in power sources and household stationary power sources.

固体高分子形燃料電池は、膜電極接合体(Membrane−Electrolyte−Assembly:MEA)と呼ばれる電解質膜の両面に一対の電極触媒層を配置した接合体を、電極触媒層の一方に水素を含有する燃料ガスを供給するためのガス流路を有するセパレータ板と、電極触媒層の他方に酸素を含む酸化剤ガスを供給するためのガス流路を有するセパレータ板とで挟持して構成されている。この一対のセパレータ板で挟持した電池を単電池セルと呼ぶ。   A polymer electrolyte fuel cell is a membrane-electrode assembly (MEA) called a membrane-electrode assembly that includes a pair of electrode catalyst layers on both sides of an electrolyte membrane, and one of the electrode catalyst layers contains hydrogen. A separator plate having a gas flow path for supplying fuel gas and a separator plate having a gas flow path for supplying an oxidant gas containing oxygen to the other electrode catalyst layer are sandwiched. A battery sandwiched between the pair of separator plates is called a single battery cell.

出力密度の増大と燃料電池全体のコンパクト化を目的として、固体高分子形燃料電池の単電池セルを複数積層(スタック)して用いられる。スタックする枚数は、必要な電力により異なり、一般的な携帯電気機器のポータブル電源では数枚から10枚程度、コジェネレーション用定置型電気および温水供給機では60〜90枚程度、自動車用途では250〜400枚程度である。高出力化を実現するためにはスタック枚数を増やすことが必要となり、単電池セルのコストが燃料電池全体のコストに大きく影響する。プロセスコストの観点から、部品数が少なく組み立てが容易な膜電極接合体構造が望まれている。   For the purpose of increasing the power density and making the entire fuel cell compact, a plurality of unit cells of a polymer electrolyte fuel cell are stacked. The number of sheets to be stacked varies depending on the required electric power. For portable power sources of general portable electric devices, several to about 10 sheets, for stationary electric and hot water supply machines for cogeneration, about 60 to 90 sheets, and for automobile applications, 250 to About 400 sheets. In order to achieve high output, it is necessary to increase the number of stacks, and the cost of the unit cell greatly affects the cost of the entire fuel cell. From the viewpoint of process cost, a membrane electrode assembly structure with a small number of parts and easy assembly is desired.

近年、膜電極接合体を製造する際、触媒インクを電解質膜に直接塗布することにより触媒層を形成する手法が試みられている。副資材を必要としないことからプロセスコストが抑えられる点、電解質膜と触媒層の密着性が高く性能の向上を図れる点から、注目されている。   In recent years, when manufacturing a membrane electrode assembly, a method of forming a catalyst layer by directly applying a catalyst ink to an electrolyte membrane has been attempted. Attention has been paid to the fact that the process cost can be suppressed because no auxiliary material is required, and that the adhesion between the electrolyte membrane and the catalyst layer is high and the performance can be improved.

しかしながら、電解質膜は触媒インクの溶媒に触れるとすぐに膨潤してしまうという課題がある。この課題を解決する方法として、加熱吸着プレート上に電解質膜を設置し、背面加熱を行うことにより、触媒インクを塗布すると同時に溶媒を乾燥・除去する方法が提案されている(例えば、特許文献1、2を参照)。   However, there is a problem that the electrolyte membrane swells as soon as it comes into contact with the solvent of the catalyst ink. As a method for solving this problem, there has been proposed a method of drying and removing the solvent at the same time as applying the catalyst ink by installing an electrolyte membrane on the heating adsorption plate and performing backside heating (for example, Patent Document 1). 2).

特開2003−100314号公報JP 2003-100314 A 特開2006−344517号公報JP 2006-344517 A

しかしながら、特許文献1、2に記載の技術では、背面加熱を行っているため、触媒インク供給部が塗工途中に乾燥し、触媒インク中の溶媒量が塗工と共に減少していく。この結果、電解質膜に形成される触媒層が不均一な厚さとなる。例えば、ブレード法による塗工を行う場合、マスク上に形成されるビードと呼ばれる液溜まり部が塗工途中に加熱され、触媒インク中の溶媒量が塗工と共に減少していく。ブレード法において、ウェット膜厚は一定であるので、結果、塗工エンド部にかけて徐々に触媒層厚が厚くなっていくことになる。   However, in the techniques described in Patent Documents 1 and 2, since the back surface heating is performed, the catalyst ink supply unit dries during the coating, and the amount of solvent in the catalyst ink decreases with the coating. As a result, the catalyst layer formed on the electrolyte membrane has a non-uniform thickness. For example, when coating is performed by the blade method, a liquid reservoir called a bead formed on the mask is heated during coating, and the amount of solvent in the catalyst ink decreases with coating. In the blade method, the wet film thickness is constant, and as a result, the catalyst layer thickness gradually increases toward the coating end portion.

本発明は、上記問題を考慮して成し遂げられたものであり、電解質膜にブレード法により直接触媒インクを塗布させる際に電解質膜の膨潤を抑制できると共に触媒層厚を均一にできる膜電極接合体の製造方法を提供することを目的とする。   The present invention has been accomplished in consideration of the above problems, and is a membrane electrode assembly that can suppress swelling of the electrolyte membrane and make the catalyst layer uniform in thickness when the catalyst ink is directly applied to the electrolyte membrane by the blade method. It aims at providing the manufacturing method of.

本発明に係る燃料電池用膜電極接合体の製造方法は、少なくとも高分子材料と溶媒とを含む触媒インクを電解質膜の一方面上に供給してビードを形成する工程と、ブレードでビードを掃引することによって、触媒インクを電解質膜の一方面に塗工する工程と、ビードの掃引に同期して、電解質膜における触媒インクの塗工直後の部分を、電解質膜の他方面側から加熱して、触媒インク中の溶媒を揮発除去する工程とを備える。   The method for producing a membrane electrode assembly for a fuel cell according to the present invention includes a step of supplying a catalyst ink containing at least a polymer material and a solvent onto one surface of an electrolyte membrane to form a bead, and a bead is swept with a blade Thus, in synchronism with the step of coating the catalyst ink on one side of the electrolyte membrane and the sweep of the bead, the portion immediately after the application of the catalyst ink on the electrolyte membrane is heated from the other side of the electrolyte membrane. And a step of volatilizing and removing the solvent in the catalyst ink.

本発明に係る幕電極接合体の製造方法によれば、触媒インクを塗工すると同時に加熱乾燥を行うため、触媒インク中の溶媒が電解質膜に触れた直後に蒸発し、膜の膨潤を抑制することができる。   According to the method for producing a curtain electrode assembly according to the present invention, since the catalyst ink is applied and heated and dried at the same time, the solvent in the catalyst ink evaporates immediately after touching the electrolyte membrane, thereby suppressing the swelling of the membrane. be able to.

また、電解質膜における触媒インクの塗工直後の部分を加熱するため、ビードからの溶媒の揮発を抑制し、ビード中の固形成分比を一定に保つことができる。この結果、形成された触媒層の厚みを均一にすることができる。   Moreover, since the part immediately after application | coating of the catalyst ink in an electrolyte membrane is heated, volatilization of the solvent from a bead can be suppressed and the solid component ratio in a bead can be kept constant. As a result, the thickness of the formed catalyst layer can be made uniform.

本発明の実施形態に係る製造方法により製造された膜電極接合体の概略平面図Schematic plan view of a membrane electrode assembly manufactured by a manufacturing method according to an embodiment of the present invention 図1に示すII−IIラインに沿う断面図Sectional drawing which follows the II-II line shown in FIG. 本発明の実施形態に係る膜電極接合体の製造装置を示す概略構成図The schematic block diagram which shows the manufacturing apparatus of the membrane electrode assembly which concerns on embodiment of this invention. 従来例に係る製造装置を示す概略構成図Schematic configuration diagram showing a manufacturing apparatus according to a conventional example

以下、本発明の実施の形態に係る膜電極接合体及びその製造方法について、図面を用いて詳細に説明する。   Hereinafter, a membrane electrode assembly and a manufacturing method thereof according to embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る製造方法により製造された膜電極接合体概略平面図であり、図2は、図1に示すII−IIラインに沿う断面図である。   FIG. 1 is a schematic plan view of a membrane electrode assembly manufactured by a manufacturing method according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line II-II shown in FIG.

図1及び2に示すように、膜電極接合体6は電解質膜1と、電解質膜1の一方面上に形成されるカソード触媒層2及びカソード側ガスケット層4と、電解質膜1の他方面上に形成されるアノード触媒層3及びアノード側ガスケット層5とを備える。カソード側ガスケット層4は、カソード触媒層2を取り囲むように枠状に形成されている。同様に、アノード側ガスケット層5も、アノード触媒層3を取り囲むように枠状に形成されている。この膜電極接合体6の両面を図示しないカソード側ガス拡散層とアノード側ガス拡散層とで挟持し、さらに、図示しない一対のセパレータ板により挟持することにより、単電池セルが構成される。そして、単電池セルをスタックすることにより、固体高分子形燃料電池が形成される。   As shown in FIGS. 1 and 2, the membrane electrode assembly 6 includes an electrolyte membrane 1, a cathode catalyst layer 2 and a cathode-side gasket layer 4 formed on one surface of the electrolyte membrane 1, and the other surface of the electrolyte membrane 1. The anode catalyst layer 3 and the anode side gasket layer 5 are formed. The cathode side gasket layer 4 is formed in a frame shape so as to surround the cathode catalyst layer 2. Similarly, the anode side gasket layer 5 is also formed in a frame shape so as to surround the anode catalyst layer 3. A single battery cell is configured by sandwiching both surfaces of the membrane electrode assembly 6 between a cathode-side gas diffusion layer and an anode-side gas diffusion layer (not shown) and further sandwiching a pair of separator plates (not shown). And a polymer electrolyte fuel cell is formed by stacking unit cells.

図3は、本発明の実施形態に係る膜電極接合体の製造装置を示す概略構成図である。   FIG. 3 is a schematic configuration diagram showing an apparatus for manufacturing a membrane electrode assembly according to an embodiment of the present invention.

図3に示す製造装置は、電解質膜1を吸着保持する吸着プレート7と、吸着プレート7によって保持されている電解質膜1上に触媒インクを供給する触媒インク供給部(図示せず)と、電解質膜1上に供給された触媒インクのビード(液溜まり部)12を掃引して、電解質膜1上に均一な厚みで塗工するブレード11と、吸着プレート7の下面(吸着面と反対側の面)に沿って循環移動する加熱帯8及び9とを備える。加熱帯8及び9の各々は、独立して温度調整可能なプレートであり、同一の構成を有する。ただし、図3においては、常温に調整された加熱帯8と、高温に調整された加熱帯9とを区別して表している。加熱帯9の温度は、触媒インク中の溶媒の揮発温度以上に設定される。加熱帯8及び9は、ブレード11による掃引と同期して、図3に示した矢印方向に移動することができるように、図示しない駆動機構によって駆動される。   The manufacturing apparatus shown in FIG. 3 includes an adsorption plate 7 that adsorbs and holds the electrolyte membrane 1, a catalyst ink supply unit (not shown) that supplies catalyst ink onto the electrolyte membrane 1 held by the adsorption plate 7, and an electrolyte. A bead (liquid reservoir) 12 of the catalyst ink supplied on the membrane 1 is swept to apply a uniform thickness on the electrolyte membrane 1, and a lower surface of the adsorption plate 7 (on the side opposite to the adsorption surface). Heating zones 8 and 9 that circulate along the surface. Each of the heating zones 8 and 9 is an independently temperature-adjustable plate and has the same configuration. However, in FIG. 3, the heating zone 8 adjusted to normal temperature and the heating zone 9 adjusted to high temperature are distinguished. The temperature of the heating zone 9 is set to be equal to or higher than the volatilization temperature of the solvent in the catalyst ink. The heating zones 8 and 9 are driven by a driving mechanism (not shown) so that the heating zones 8 and 9 can move in the arrow direction shown in FIG.

ここで、本実施形態に係る膜電極接合体の製造方法を説明する。   Here, the manufacturing method of the membrane electrode assembly which concerns on this embodiment is demonstrated.

まず、電解質膜1上にカソード側ガスケット層及びアノード側ガスケット層が形成され、樹脂フィルム等で作製した額縁状のマスク10で、ガスケット層をマスキングした部材を用意する。額縁状のマスク10の窓部がカソード触媒層の形成領域となる。次に、マスク10でマスキングした電解質膜1を吸着プレート7上に吸着固定する。次に、触媒インク供給部(図示せず)からマスク10上に触媒インクを供給し、触媒インクのビード12を形成する。ここで、触媒インクの供給方法としては、グラビア印刷法、刷毛塗り、ダイコート法、ドクターブレード法などを採用できる。   First, a cathode-side gasket layer and an anode-side gasket layer are formed on the electrolyte membrane 1, and a member in which the gasket layer is masked with a frame-shaped mask 10 made of a resin film or the like is prepared. The window portion of the frame-shaped mask 10 is a cathode catalyst layer formation region. Next, the electrolyte membrane 1 masked by the mask 10 is adsorbed and fixed on the adsorption plate 7. Next, catalyst ink is supplied onto the mask 10 from a catalyst ink supply unit (not shown) to form a bead 12 of catalyst ink. Here, as a supply method of the catalyst ink, a gravure printing method, a brush coating method, a die coating method, a doctor blade method, or the like can be adopted.

次に、ブレード11を図3に示す矢印方向に掃引しながら、触媒インクのビード12をマスク10の窓部から露出した電解質膜1上に塗工する。この過程において、ブレード11の掃引と同期して、加熱帯8及び9をブレード11と同方向に移動させる。ただし、ブレード11の移動に伴ってビード12が電解質膜1上を移動するが、ビード12の下方には常温の加熱帯8が位置し、ブレード11によって触媒インクが塗工された部分の下方には高温の加熱帯9が位置するように、加熱帯8及び9の位置及び移動速度が制御される。この結果、常温の加熱帯8の上方に位置する触媒インクのビード12からの溶媒の揮発が抑制され、ブレード11による触媒インクの塗工後すぐに、吸着プレート7を介して電解質膜1を裏面側から加熱することができる。   Next, while the blade 11 is swept in the direction of the arrow shown in FIG. 3, the catalyst ink bead 12 is applied onto the electrolyte membrane 1 exposed from the window portion of the mask 10. In this process, the heating zones 8 and 9 are moved in the same direction as the blade 11 in synchronization with the sweep of the blade 11. However, the bead 12 moves on the electrolyte membrane 1 as the blade 11 moves, but the heating zone 8 at room temperature is located below the bead 12 and below the portion where the catalyst ink is applied by the blade 11. The positions and movement speeds of the heating zones 8 and 9 are controlled so that the high-temperature heating zone 9 is located. As a result, the volatilization of the solvent from the bead 12 of the catalyst ink located above the heating zone 8 at room temperature is suppressed, and immediately after the application of the catalyst ink by the blade 11, the electrolyte membrane 1 is placed on the back surface via the adsorption plate 7. It can be heated from the side.

触媒インクの乾燥後、マスク10が剥離される。そして、電解質膜1の裏面に対しても同様の方法により、触媒インクが塗工されて、アノード触媒層が形成される。   After the catalyst ink is dried, the mask 10 is peeled off. Then, the catalyst ink is applied to the back surface of the electrolyte membrane 1 by the same method to form an anode catalyst layer.

このように、本実施形態に係る膜電極接合体6の製造装置及び製造方法によれば、触媒インクのビード12からの溶媒の揮発が抑制されるため、ビード12部分の触媒インク中の固形成分の濃度を略一定に保つことができ、溶媒除去後の触媒層の厚みを均一にすることができる。また、触媒インクの塗工後すぐに高温の加熱帯9によって加熱されるため、電解質膜1の膨潤を抑制することができる。更に、加熱帯9の移動量を適宜制御して、電解質膜1の各部に対すると高温の加熱帯9による加熱量を同じにすることによって、形成された触媒層各部の溶媒除去量を一定にすることができる。これによっても、触媒層の膜厚化の均一化を図ることが可能となる。   Thus, according to the manufacturing apparatus and manufacturing method of the membrane electrode assembly 6 according to the present embodiment, since the volatilization of the solvent from the bead 12 of the catalyst ink is suppressed, the solid component in the catalyst ink in the bead 12 portion. The concentration of the catalyst layer can be kept substantially constant, and the thickness of the catalyst layer after removal of the solvent can be made uniform. Moreover, since it is heated by the high temperature heating zone 9 immediately after the application of the catalyst ink, the swelling of the electrolyte membrane 1 can be suppressed. Furthermore, the amount of solvent removed from each part of the formed catalyst layer is made constant by appropriately controlling the amount of movement of the heating zone 9 so that the heating amount by the high-temperature heating zone 9 is the same for each part of the electrolyte membrane 1. be able to. This also makes it possible to make the thickness of the catalyst layer uniform.

図4は、従来の膜電極接合体の製造装置を示す概略構成図である。図4に示した装置では、吸着プレート7上に吸着固定された電解質膜1の全体が加熱帯9によって一様に加熱されるので、ブレード11の掃引中に渡って、触媒インクのビード12中の溶媒が揮発し続ける。これにより、ビード12部分に含まれる固形成分濃度が徐々に上昇するため、溶媒除去後の触媒層の厚みが不均一となる。   FIG. 4 is a schematic configuration diagram showing a conventional apparatus for manufacturing a membrane electrode assembly. In the apparatus shown in FIG. 4, the entire electrolyte membrane 1 adsorbed and fixed on the adsorption plate 7 is uniformly heated by the heating zone 9, and therefore, in the catalyst ink bead 12 over the sweep of the blade 11. The solvent continues to volatilize. Thereby, since the solid component concentration contained in the bead 12 portion gradually increases, the thickness of the catalyst layer after removing the solvent becomes non-uniform.

尚、加熱帯8及び9から電解質膜1に熱が伝わるために必要な時間、すなわち遅れ時間や熱勾配により、加熱帯8及び9の位置や温度を適宜、調整してもよい。   Note that the position and temperature of the heating zones 8 and 9 may be appropriately adjusted according to the time required for heat to be transferred from the heating zones 8 and 9 to the electrolyte membrane 1, that is, the delay time and the thermal gradient.

また、本実施形態では、電解質膜1を吸着プレート7に吸着して固定し、ブレード11と加熱帯8及び9とを同一の所定速度で移動したがこれに限定されない。例えば図3において、ブレード11と加熱帯8及び9とを固定し、吸着プレート7に吸着された電解質膜1を、矢印と反対方向に所定の速度で移動させても、同様の効果が得られる。   Further, in the present embodiment, the electrolyte membrane 1 is adsorbed and fixed to the adsorption plate 7 and the blade 11 and the heating zones 8 and 9 are moved at the same predetermined speed. However, the present invention is not limited to this. For example, in FIG. 3, the same effect can be obtained by fixing the blade 11 and the heating zones 8 and 9 and moving the electrolyte membrane 1 adsorbed on the adsorption plate 7 at a predetermined speed in the direction opposite to the arrow. .

更に、上記の電解質膜1は、固体高分子形燃料電池に一般的に用いられるものでよい。例えば、フッ素系電解質膜や炭化水素電解質膜が好適に使用でき、特にフッ素系電解質膜が望ましい。   Furthermore, the electrolyte membrane 1 may be one generally used for a polymer electrolyte fuel cell. For example, a fluorine-based electrolyte membrane or a hydrocarbon electrolyte membrane can be suitably used, and a fluorine-based electrolyte membrane is particularly desirable.

更に、同様に触媒インクも、固体高分子形燃料電池に一般的に用いられるものでよい。例えば、白金または白金と他の金属(例えばRu、Rh、Mo、Cr、Co、Fe等)との合金の微粒子(平均粒径は10nm以下が望ましい)が表面に担持されたカーボンブラックなどの導電性炭素微粒子(平均粒径:20〜100nm程度)と、パーフルオロスルホン酸樹脂溶液などの高分子溶液とが適当な溶剤(エタノールなど)中で均一に混合されたものを使用できる。   Further, similarly, the catalyst ink may be one generally used for a polymer electrolyte fuel cell. For example, a conductive material such as carbon black in which fine particles of platinum or an alloy of platinum and another metal (for example, Ru, Rh, Mo, Cr, Co, Fe, etc.) (the average particle diameter is preferably 10 nm or less) is supported on the surface. The carbonaceous fine particles (average particle diameter: about 20 to 100 nm) and a polymer solution such as a perfluorosulfonic acid resin solution are uniformly mixed in a suitable solvent (ethanol or the like).

上記手段により電解質膜1の片側にのみ触媒層2が形成されているものが完成する。同様にして、電解質膜1の反対側にも触媒層3を形成することで本実施形態の膜電極接合体6が完成する。   With the above-described means, a structure in which the catalyst layer 2 is formed only on one side of the electrolyte membrane 1 is completed. Similarly, the membrane electrode assembly 6 of this embodiment is completed by forming the catalyst layer 3 on the opposite side of the electrolyte membrane 1.

更に、上述した実施形態では、触媒インクを電解質膜1の一面上に供給する方法として、グラビア印刷法、刷毛塗り、ダイコート法、ドクターブレード法などを挙げたが、触媒インクを電解質膜1に直接吹き付けるスプレー法を用いてもよい。この場合も、吹き付けられた触媒インクは常温のままビード12となり、ブレード11で精度良く塗工され、その後、加熱され速やかに溶媒が揮発するという、上述した実施形態と同様の効果を得ることができる。   Further, in the above-described embodiment, the gravure printing method, the brush coating, the die coating method, the doctor blade method, and the like are given as the method for supplying the catalyst ink onto one surface of the electrolyte membrane 1, but the catalyst ink is directly applied to the electrolyte membrane 1. A spraying method may be used. Also in this case, the sprayed catalyst ink becomes the bead 12 at room temperature, and is applied with high accuracy by the blade 11, and then heated, and the solvent is volatilized quickly. it can.

以下に、本発明に係る膜電極接合体の製造方法の具体的な実施例を説明する。尚、以下の説明は、図3に示した製造装置を用いて膜電極接合体を製造した実施例を説明するが本発明はこの実施例に限定されず、種々の変形が可能である。   Below, the specific Example of the manufacturing method of the membrane electrode assembly which concerns on this invention is described. In the following description, an embodiment in which a membrane electrode assembly is manufactured using the manufacturing apparatus shown in FIG. 3 will be described, but the present invention is not limited to this embodiment, and various modifications can be made.

白金担持量が50%である白金担持カーボン触媒(商品名:TEC10E50E、田中
貴金属工業製)と、20質量%高分子電解質溶液であるNafion(登録商標、デュポン社製)を、混合比1:2の水−エタノール混合溶媒中で混合した。続いて、遊星ボールミルで分散処理を行い、触媒インクを調整した。
A platinum-supporting carbon catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) having a platinum-supporting amount of 50% and Nafion (registered trademark, manufactured by DuPont), which is a 20% by mass polymer electrolyte solution, were mixed at a mixing ratio of 1: 2. Were mixed in a water-ethanol mixed solvent. Subsequently, a dispersion treatment was performed with a planetary ball mill to prepare a catalyst ink.

ガスケット層に弱粘着層付きのポリエチレンテレフタラートフィルムを貼合した2層構造のフィルムの中央部を打ち抜き、枠状の2層構造のマスク10を作製した。このマスク10の開口部サイズは50mm四方である。続いて、作製した枠状のマスク10を電解質膜1に貼合した。電解質膜としては、Nafion(登録商標)212(デュポン社製)を用いた。   A center portion of a two-layered film in which a polyethylene terephthalate film with a weak adhesive layer was bonded to the gasket layer was punched out to produce a frame-shaped two-layered mask 10. The opening size of the mask 10 is 50 mm square. Subsequently, the produced frame-shaped mask 10 was bonded to the electrolyte membrane 1. As an electrolyte membrane, Nafion (registered trademark) 212 (manufactured by DuPont) was used.

枠状のマスク10を貼合した電解質膜1を吸着プレート7上に固定し、マスク10部に触媒インクのビード12を形成した。ビード12形成部の下方には、常温の25℃に設定した加熱帯8を配置し、120℃に設定した加熱帯9を加熱帯8に隣接するように配置した。   The electrolyte membrane 1 bonded with the frame-shaped mask 10 was fixed on the adsorption plate 7, and a catalyst ink bead 12 was formed on the mask 10 portion. Below the bead 12 formation part, the heating zone 8 set to 25 ° C. at normal temperature was arranged, and the heating zone 9 set to 120 ° C. was arranged adjacent to the heating zone 8.

ドクターブレード11をビード12部より後方に配置し、ドクターブレード11を50mm/secの速度で掃引することにより、触媒インクをマスク10の開口部から露出する電解質膜1上に塗工した。この時、ドクターブレード11の掃引開始と同時に、加熱帯8及び9をドクターブレード11の掃引速度と同じ50mm/secの速度で循環させた。120℃に設定された最後尾の加熱帯9が塗工エンド部を通過後、加熱帯8及び9の循環を止めた。   The doctor blade 11 was arranged behind the bead 12 and the doctor blade 11 was swept at a speed of 50 mm / sec to apply the catalyst ink onto the electrolyte membrane 1 exposed from the opening of the mask 10. At this time, simultaneously with the start of the sweep of the doctor blade 11, the heating zones 8 and 9 were circulated at a speed of 50 mm / sec which is the same as the sweep speed of the doctor blade 11. After the last heating zone 9 set at 120 ° C. passed through the coating end portion, the circulation of the heating zones 8 and 9 was stopped.

白金担持量がカソード触媒層2の相当量(0.4mg/cm2)となるよう、ブレード法による塗工工程と背面加熱乾燥工程をさらに3度繰り返した後、吸着固定を解除した。続いてマスク10から弱粘着層付きのポリエチレンテレフタラートフィルム(マスク10)をガスケット層から剥離した。このようにして、電解質膜1の片面にカソード触媒層2と、その周縁部のガスケット層4とが配置された膜電極接合体6のカソード側面を形成した。 The coating process by the blade method and the back surface heating and drying process were repeated three more times so that the amount of platinum supported was an equivalent amount (0.4 mg / cm 2 ) of the cathode catalyst layer 2, and then the adsorption fixation was released. Subsequently, the polyethylene terephthalate film (mask 10) with a weak adhesive layer was peeled from the gasket layer from the mask 10. In this way, the cathode side surface of the membrane electrode assembly 6 in which the cathode catalyst layer 2 and the gasket layer 4 at the peripheral portion thereof were disposed on one surface of the electrolyte membrane 1 was formed.

カソード触媒層2とカソード側ガスケット層4とが片面に形成された膜電極接合体6の表裏を反転させ、反対側の面にアノード触媒層3とアノード側ガスケット層5とを同様にして形成した。このようにして、電解質膜の両面に触媒層とガスケット層とを備える膜電極接合体6を作製した。尚、アノード側においては、白金担持量がアノード触媒層3相当(0.1mg/cm2)となるよう、ブレード法による塗工工程と背面加熱乾燥工程は1度だけ行った。 The front and back of the membrane electrode assembly 6 having the cathode catalyst layer 2 and the cathode side gasket layer 4 formed on one side are reversed, and the anode catalyst layer 3 and the anode side gasket layer 5 are formed on the opposite side in the same manner. . Thus, the membrane electrode assembly 6 provided with the catalyst layer and the gasket layer on both surfaces of the electrolyte membrane was produced. On the anode side, the coating process by the blade method and the back surface heating and drying process were performed only once so that the amount of platinum supported was equivalent to the anode catalyst layer 3 (0.1 mg / cm 2 ).

作製された膜電極接合体6の触媒層厚を測定したところ、カソード側、アノード側共に、均一なものであった。   When the thickness of the catalyst layer of the produced membrane electrode assembly 6 was measured, it was uniform on both the cathode side and the anode side.

本発明は、携帯電子機器、電気自動車、家庭用蓄電装置等に用いられる固体高分子形燃料電池に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a polymer electrolyte fuel cell used for portable electronic devices, electric vehicles, household power storage devices and the like.

1 電解質膜
2 カソード触媒層
3 アノード触媒層
4 カソード側ガスケット層
5 アノード側ガスケット層
6 膜電極接合体
7 吸着プレート
8 加熱帯(常温設定)
9 加熱帯(高温設定)
10 マスク
11 ブレード
12 ビード
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Cathode catalyst layer 3 Anode catalyst layer 4 Cathode side gasket layer 5 Anode side gasket layer 6 Membrane electrode assembly 7 Adsorption plate 8 Heating zone (normal temperature setting)
9 Heating zone (high temperature setting)
10 Mask 11 Blade 12 Bead

Claims (5)

燃料電池用膜電極接合体の製造方法であって、
少なくとも高分子材料と溶媒とを含む触媒インクを電解質膜の一方面上に供給してビードを形成する工程と、
ブレードで前記ビードを掃引することによって、前記触媒インクを前記電解質膜の前記一方面に塗工する工程と、
前記ビードの掃引に同期して、前記電解質膜における前記触媒インクの塗工直後の部分を、前記電解質膜の他方面側から加熱して、前記触媒インク中の溶媒を揮発除去する工程とを備える、膜電極接合体の製造方法。
A method for producing a fuel cell membrane electrode assembly comprising:
Supplying a catalyst ink containing at least a polymer material and a solvent on one surface of the electrolyte membrane to form a bead;
Applying the catalyst ink to the one surface of the electrolyte membrane by sweeping the beads with a blade; and
Synchronizing with the sweeping of the bead, and heating the portion of the electrolyte membrane immediately after application of the catalyst ink from the other side of the electrolyte membrane to volatilize and remove the solvent in the catalyst ink. The manufacturing method of a membrane electrode assembly.
前記溶媒を揮発除去する工程が、前記電解質膜の前記他方面側に配置した異なる温度を有する加熱帯を循環させることによって行われることを特徴とする、請求項1に記載の膜電極接合体の製造方法。   The membrane electrode assembly according to claim 1, wherein the step of volatilizing and removing the solvent is performed by circulating heating zones having different temperatures arranged on the other surface side of the electrolyte membrane. Production method. 前記溶媒を揮発除去する工程において、前記ビードに対応する位置に常温の前記加熱帯が配置され、前記触媒インクの塗工直後の部分に対応する位置に前記触媒インク中の溶媒の揮発温度以上に設定された前記加温帯が配置されることを特徴とする、請求項2に記載の膜電極接合体の製造方法。   In the step of volatilizing and removing the solvent, the heating zone at room temperature is disposed at a position corresponding to the bead, and a temperature corresponding to a portion immediately after application of the catalyst ink is equal to or higher than the volatilization temperature of the solvent in the catalyst ink. The method for producing a membrane electrode assembly according to claim 2, wherein the set warming zone is arranged. 前記ブレード掃引速度が、前記加熱帯の循環速度と等しいことを特徴とする、請求項2または3に記載の膜電極接合体の製造方法。   The method for manufacturing a membrane electrode assembly according to claim 2 or 3, wherein the blade sweep speed is equal to the circulation speed of the heating zone. 請求項1〜4のいずれかに記載の製造方法により作製された、膜電極接合体。   The membrane electrode assembly produced by the manufacturing method in any one of Claims 1-4.
JP2011209625A 2011-09-26 2011-09-26 Manufacturing method of membrane electrode assembly Active JP5838688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011209625A JP5838688B2 (en) 2011-09-26 2011-09-26 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011209625A JP5838688B2 (en) 2011-09-26 2011-09-26 Manufacturing method of membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2013073686A true JP2013073686A (en) 2013-04-22
JP5838688B2 JP5838688B2 (en) 2016-01-06

Family

ID=48478059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011209625A Active JP5838688B2 (en) 2011-09-26 2011-09-26 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP5838688B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216066A (en) * 2014-05-13 2015-12-03 本田技研工業株式会社 Method for manufacturing electrolytic film-electrode structure for fuel batteries
JP2017162733A (en) * 2016-03-10 2017-09-14 凸版印刷株式会社 Membrane-electrode assembly for fuel battery and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100314A (en) * 2001-09-25 2003-04-04 Mitsubishi Heavy Ind Ltd Fabricating method of cell for solid polymer electrolyte fuel cell and its fabricating method
JP2011037952A (en) * 2009-08-07 2011-02-24 Kaneka Corp Polyelectrolyte containing triazine ring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100314A (en) * 2001-09-25 2003-04-04 Mitsubishi Heavy Ind Ltd Fabricating method of cell for solid polymer electrolyte fuel cell and its fabricating method
JP2011037952A (en) * 2009-08-07 2011-02-24 Kaneka Corp Polyelectrolyte containing triazine ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216066A (en) * 2014-05-13 2015-12-03 本田技研工業株式会社 Method for manufacturing electrolytic film-electrode structure for fuel batteries
JP2017162733A (en) * 2016-03-10 2017-09-14 凸版印刷株式会社 Membrane-electrode assembly for fuel battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP5838688B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP4879372B2 (en) Method and apparatus for manufacturing membrane-catalyst layer assembly
JPWO2011118244A1 (en) Manufacturing method of fuel cell membrane electrode assembly and manufacturing apparatus of fuel cell membrane electrode assembly
KR20140026404A (en) Manufacturing method and manufacturing device for membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
CN104923454B (en) Intermittent coating method and intermittent application device
JP2008135274A (en) Method of manufacturing fuel cell
JP2013191521A (en) Apparatus of manufacturing membrane electrode assembly for solid polymer fuel cell, and membrane electrode assembly
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP5838688B2 (en) Manufacturing method of membrane electrode assembly
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP5870643B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP5957930B2 (en) Membrane / electrode assembly manufacturing method for polymer electrolyte fuel cell, membrane / electrode assembly manufacturing apparatus for polymer electrolyte fuel cell
JP6364855B2 (en) Manufacturing method of membrane electrode assembly
JP6048015B2 (en) Manufacturing method of membrane electrode assembly
CN104838527B (en) The manufacture method of electrode for fuel cell piece
JP6074979B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
KR102633027B1 (en) Manufacturing method of polymer electrolyte fuel cell using adhesive transfer and polymer electrolyte fuel cell manufactured by the same
JP5720321B2 (en) Manufacturing method of gas diffusion electrode
KR101758960B1 (en) Electrolyte membrane, method for manufacturing the same and membrane eletrode assembly and fuel cell comprising the same
JP2014067483A (en) Method for manufacturing solid polymer fuel cell
JP2011192593A (en) Membrane-electrode assembly and fuel cell
JP6307960B2 (en) Method for producing electrolyte membrane with catalyst layer for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and electrolyte membrane with catalyst layer
JP6319940B2 (en) Method for producing electrolyte membrane with catalyst layer
WO2013080421A1 (en) Direct oxidation fuel cell and method for producing membrane catalyst layer assembly used in same
JP2006012676A (en) Manufacturing method of film stack for membrane-electrode assembly
JP2013084426A (en) Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5838688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250