JP2013071859A - Method for producing vanadium dioxide particle - Google Patents

Method for producing vanadium dioxide particle Download PDF

Info

Publication number
JP2013071859A
JP2013071859A JP2011211405A JP2011211405A JP2013071859A JP 2013071859 A JP2013071859 A JP 2013071859A JP 2011211405 A JP2011211405 A JP 2011211405A JP 2011211405 A JP2011211405 A JP 2011211405A JP 2013071859 A JP2013071859 A JP 2013071859A
Authority
JP
Japan
Prior art keywords
vanadium
vanadium oxide
solution
reduction
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011211405A
Other languages
Japanese (ja)
Inventor
Naoyuki Nagatani
直之 永谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011211405A priority Critical patent/JP2013071859A/en
Publication of JP2013071859A publication Critical patent/JP2013071859A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing vanadium dioxide particles capable of producing high-purity vanadium dioxide particles having a proper particle size.SOLUTION: This method for producing vanadium dioxide particles includes: a reaction step of reacting a vanadium alkoxide solution containing vanadium alkoxide and alcohol with a basic aqueous solution to produce a solution containing a vanadium oxide precursor; a firing step of firing the vanadium oxide precursor; and a reduction step of reducing the fired vanadium oxide precursor under a hydrogen atmosphere, wherein, in the reaction step, reaction is performed in the range of pH 10.9-12.5, and in the reduction step, reduction is performed under a condition at 600-650°C for 10-30 minutes or at 500-550°C for 1-2 hours.

Description

本発明は、適度な粒子径を有し、高純度の二酸化バナジウム粒子を作製することが可能な二酸化バナジウム粒子の製造方法に関する。 The present invention relates to a method for producing vanadium dioxide particles having an appropriate particle size and capable of producing high-purity vanadium dioxide particles.

二酸化バナジウムは、温度変化によって透過率や反射率等の光学的特性が可逆的に変化するサーモクロミック現象を示す材料として注目されている。ルチル型二酸化バナジウムの結晶は、相転移温度以下では半導体相を示すが、相転移温度以上では金属相へ転移する。相転移は約68℃で可逆的に起こり、近赤外線及び赤外線透過率が大幅に変化する。
このような性質を利用して、相転移温度以下では、可視光線、赤外線ともに透過するが、相転移温度を超えると可視光線のみを透過して、赤外線を遮断するという特性を発現する赤外線遮断材として用いることが提案されている。
Vanadium dioxide has attracted attention as a material exhibiting a thermochromic phenomenon in which optical characteristics such as transmittance and reflectance are reversibly changed by temperature change. The crystal of rutile vanadium dioxide exhibits a semiconductor phase below the phase transition temperature, but transitions to the metal phase above the phase transition temperature. The phase transition occurs reversibly at about 68 ° C., and the near-infrared and infrared transmittance changes significantly.
Utilizing these properties, both infrared rays and infrared rays are transmitted below the phase transition temperature, but only visible rays are transmitted when the phase transition temperature is exceeded. It has been proposed to be used as

特許文献1には、バナジウムアルコキシドと、モリブデン又はタングステンアルコキシドとをイソプロパノールに溶解した後、イオン交換水を添加して加水分解反応させ、焼成することで金属ドープ二酸化バナジウムを作製する方法が提案されている。
しかしながら、特許文献1の方法では、加水分解反応条件が促進されず、収率が低くなるという問題があった。
Patent Document 1 proposes a method for producing metal-doped vanadium dioxide by dissolving vanadium alkoxide and molybdenum or tungsten alkoxide in isopropanol, then adding ion-exchanged water to cause a hydrolysis reaction, and firing. Yes.
However, the method of Patent Document 1 has a problem that the hydrolysis reaction conditions are not accelerated and the yield is low.

更に、特許文献2には、バナジウム化合物含有溶液に、一部がルチル型結晶相からなる二酸化チタンの粒子を添加し、水熱反応させることにより、R相の二酸化バナジウムを製造する方法が開示されている。
しかしながら、この方法では、二酸化チタン粒子上に二酸化バナジウムが成長するため、二酸化バナジウムのみを単離、利用することは困難であるという問題点があった。
Further, Patent Document 2 discloses a method for producing R-phase vanadium dioxide by adding titanium dioxide particles partially composed of a rutile-type crystal phase to a vanadium compound-containing solution and causing a hydrothermal reaction. ing.
However, this method has a problem in that it is difficult to isolate and use only vanadium dioxide because vanadium dioxide grows on the titanium dioxide particles.

特開2004−346260号公報JP 2004-346260 A 特開2010−031235号公報JP 2010-031235 A

本発明は、適度な粒子径を有し、高純度の二酸化バナジウム粒子を作製することが可能な二酸化バナジウム粒子の製造方法を提供することを目的とする。 An object of this invention is to provide the manufacturing method of the vanadium dioxide particle which has a moderate particle diameter and can produce a highly purified vanadium dioxide particle.

本発明は、バナジウムアルコキシド及びアルコールを含有するバナジウムアルコキシド溶液と、塩基性水溶液とを反応させ、酸化バナジウム前駆体を含有する溶液を作製する反応工程、前記酸化バナジウム前駆体を焼成する焼成工程、及び、前記焼成した酸化バナジウム前駆体を水素雰囲気中で還元する還元工程を有し、前記反応工程において、pH10.9〜12.5の範囲内で反応を行い、かつ、前記還元工程において、600〜650℃で10〜30分間、又は、500〜550℃で1〜2時間の条件で還元を行う二酸化バナジウム粒子の製造方法である。
以下、本発明を詳述する。
The present invention comprises a reaction step of reacting a vanadium alkoxide solution containing vanadium alkoxide and alcohol with a basic aqueous solution to produce a solution containing a vanadium oxide precursor, a firing step of firing the vanadium oxide precursor, and And a reduction step of reducing the calcined vanadium oxide precursor in a hydrogen atmosphere, in the reaction step, the reaction is performed within a pH range of 10.9 to 12.5, and in the reduction step, 600 to It is the manufacturing method of the vanadium dioxide particle which reduces on conditions for 650 degreeC for 10 to 30 minutes, or 500 to 550 degreeC for 1 to 2 hours.
The present invention is described in detail below.

本発明者は、鋭意検討した結果、バナジウムアルコキシド溶液と、塩基性水溶液とを反応させる際のpHを所定の範囲内とし、かつ、還元工程での温度、時間を調整することで、二酸化バナジウムの比率が高く高純度であり、かつ、適度な粒子径を有する二酸化バナジウム粒子が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventor made the pH at the time of reacting the vanadium alkoxide solution and the basic aqueous solution within a predetermined range, and by adjusting the temperature and time in the reduction step, the vanadium dioxide It has been found that vanadium dioxide particles having a high ratio and high purity and having an appropriate particle diameter can be obtained, and the present invention has been completed.

本発明の二酸化バナジウム粒子の製造方法では、バナジウムアルコキシド及びアルコールを含有するバナジウムアルコキシド溶液と、塩基性水溶液とを反応させ、酸化バナジウム前駆体を含有する溶液を作製する反応工程を有する。
なお、酸化バナジウム前駆体とは、五価のバナジウムの酸化物が主に含まれる酸化バナジウムをいう。
In the manufacturing method of the vanadium dioxide particle of this invention, it has the reaction process which makes the vanadium alkoxide solution containing vanadium alkoxide and alcohol and basic aqueous solution react, and produces the solution containing a vanadium oxide precursor.
The vanadium oxide precursor refers to vanadium oxide mainly containing pentavalent vanadium oxide.

本発明では、上記反応工程において、pH10.9〜12.5の範囲内で反応を行う。
これにより、加水分解反応が促進かつ安定し、酸化バナジウム前駆体の生成も改善され、生成する二酸化バナジウム粒子の収率も向上する。上記pHが10.9未満であると、加水分解反応が促進せず、酸化バナジウム前駆体の収率が低くなる。一方、pHが12.5を超えると、加水分解反応が安定せず、酸化バナジウム前駆体の収率が低くなる。好ましくは10.9〜12.0、より好ましくは10.9〜11.7である。
In the present invention, in the reaction step, the reaction is performed within a pH range of 10.9 to 12.5.
As a result, the hydrolysis reaction is accelerated and stabilized, the production of the vanadium oxide precursor is improved, and the yield of the vanadium dioxide particles to be produced is also improved. When the pH is less than 10.9, the hydrolysis reaction is not accelerated and the yield of the vanadium oxide precursor is lowered. On the other hand, when the pH exceeds 12.5, the hydrolysis reaction is not stable, and the yield of the vanadium oxide precursor is lowered. Preferably it is 10.9-12.0, More preferably, it is 10.9-11.7.

上記反応工程において、pH10.9〜12.5の範囲内に調整する方法としては、アルカリ性材料を任意に添加し、反応系をアルカリ性pH環境とする方法等が挙げられる。 Examples of the method for adjusting the pH within the range of 10.9 to 12.5 in the reaction step include a method in which an alkaline material is arbitrarily added and the reaction system is set to an alkaline pH environment.

上記バナジウムアルコキシドとしては、例えば、バナジウムトリイソプロポキシドオキシド、バナジウムトリノルマルプロポキシドオキシド、バナジウムトリメトキシドオキシド、バナジウムトリエトキシドオキシド等が挙げられる。 Examples of the vanadium alkoxide include vanadium triisopropoxide oxide, vanadium trinormal propoxide oxide, vanadium trimethoxide oxide, vanadium triethoxide oxide, and the like.

上記アルコールとしては特に限定されないが、例えば、イソプロパノール、エタノール、メタノール、ブタノール等が挙げられる。 Although it does not specifically limit as said alcohol, For example, isopropanol, ethanol, methanol, a butanol etc. are mentioned.

上記バナジウムアルコキシド溶液における上記バナジウムアルコキシドの含有量は、1〜10重量%であることが好ましい。上記範囲内とすることで、加水分解反応も制御しやすく、生成する二酸化バナジウム粒子の収率も向上する。 The vanadium alkoxide content in the vanadium alkoxide solution is preferably 1 to 10% by weight. By setting it within the above range, the hydrolysis reaction can be easily controlled, and the yield of the generated vanadium dioxide particles can be improved.

上記塩基性水溶液としては、アンモニア、水酸化ナトリウム等の水溶液が好ましい。
なかでも、乾燥又は焼成中に脱離しやすく粒子に残存しないという理由から、アンモニアが好ましい。
As the basic aqueous solution, an aqueous solution of ammonia, sodium hydroxide or the like is preferable.
Among these, ammonia is preferable because it is easily detached during drying or baking and does not remain in the particles.

上記反応工程における上記アンモニアの添加量は、バナジウムアルコキシドに対して2〜40重量%であることが好ましい。2重量%未満であると、pH10.9以上に調整するのが困難となり、40重量%を超えると、pH12.5以下に調整するのが困難となる。 The amount of ammonia added in the reaction step is preferably 2 to 40% by weight with respect to the vanadium alkoxide. If it is less than 2% by weight, it is difficult to adjust to pH 10.9 or more, and if it exceeds 40% by weight, it is difficult to adjust to pH 12.5 or less.

上記反応工程における反応温度は10〜80℃が好ましい。
また、上記反応工程における反応時間は、1〜120時間が好ましい。
The reaction temperature in the reaction step is preferably 10 to 80 ° C.
The reaction time in the reaction step is preferably 1 to 120 hours.

本発明では、次いで、上記酸化バナジウム前駆体を焼成する焼成工程を行う。
上記焼成工程における、焼成温度としては、400℃以上であることが好ましく、400〜500℃がより好ましい。また、上記焼成工程においては、例えば、水素雰囲気下又は水素気流中で焼成を行ってもよい。また、上記焼成工程における焼成時間は、1〜5時間とすることが好ましい。
Next, in the present invention, a firing step of firing the vanadium oxide precursor is performed.
As a baking temperature in the said baking process, it is preferable that it is 400 degreeC or more, and 400-500 degreeC is more preferable. Moreover, in the said baking process, you may bake in a hydrogen atmosphere or a hydrogen stream, for example. Moreover, it is preferable that the baking time in the said baking process shall be 1 to 5 hours.

本発明では、その後、上記焼成した酸化バナジウム前駆体を水素雰囲気中で還元する還元工程を行う。
上記還元工程を行うことで、上記五価のバナジウムの酸化物(V)が含まれる酸化バナジウム前駆体が、還元され、四価の二酸化バナジウム(VO)とすることができる。
In the present invention, after that, a reduction step of reducing the calcined vanadium oxide precursor in a hydrogen atmosphere is performed.
By performing the reduction step, the vanadium oxide precursor containing the pentavalent vanadium oxide (V 2 O 5 ) can be reduced to tetravalent vanadium dioxide (VO 2 ).

上記還元工程は、還元が進みすぎず効率的に二酸化バナジウムを得るという観点から、
(1)水素雰囲気中、600〜650℃で10〜30分間の条件、又は、
(2)水素雰囲気中、500〜550℃で1〜2時間の条件、で行う。
From the viewpoint that the reduction process efficiently obtains vanadium dioxide without excessive reduction,
(1) Conditions in a hydrogen atmosphere at 600 to 650 ° C. for 10 to 30 minutes, or
(2) Perform in a hydrogen atmosphere at 500 to 550 ° C. for 1 to 2 hours.

上記条件(1)で還元工程を行うことで、結晶性の高い二酸化バナジウムが得られる。
上記条件(1)では、600〜630℃が好ましく、15〜30分間の条件で還元工程を行うことが好ましい。
By performing the reduction step under the above condition (1), highly crystalline vanadium dioxide can be obtained.
In the said condition (1), 600-630 degreeC is preferable and it is preferable to perform a reduction | restoration process on the conditions for 15-30 minutes.

上記条件(2)で還元工程を行うことで、還元が進みすぎず純度の高い二酸化バナジウムが得られる。
上記条件(2)では、520〜550℃が好ましく、60〜120分間の条件で還元工程を行うことが好ましい。
By performing the reduction step under the above condition (2), vanadium dioxide having high purity can be obtained without excessive reduction.
In said condition (2), 520-550 degreeC is preferable and it is preferable to perform a reduction | restoration process on the conditions for 60 to 120 minutes.

上記還元工程は、上述した水素雰囲気中で行うことが好ましいが、メタン、アンモニア、ブタジエン等の還元ガス雰囲気下で行ってもよい。 The reduction step is preferably performed in the hydrogen atmosphere described above, but may be performed in a reducing gas atmosphere such as methane, ammonia, or butadiene.

本発明の製造方法を用いることで、粒子中の二酸化バナジウムの比率が高く、サーモクロミック性に優れるものとすることができる。
このことは、例えば、粉末X線回折(XRD)を用いて測定することで評価することができる。
また、本発明の製造方法で得られた二酸化バナジウム粒子は、平均粒子径が0.1〜5μmであることから、これをサーモクロミックフィルム等に用いた場合、薄膜化、大型化が容易で、かつ、高い可視光透過性を有するサーモクロミックフィルムを作製することができる。
By using the production method of the present invention, the ratio of vanadium dioxide in the particles is high, and the thermochromic property can be excellent.
This can be evaluated, for example, by measuring using powder X-ray diffraction (XRD).
In addition, since the vanadium dioxide particles obtained by the production method of the present invention have an average particle size of 0.1 to 5 μm, when this is used for a thermochromic film or the like, it is easy to reduce the thickness and size, In addition, a thermochromic film having high visible light permeability can be produced.

本発明の二酸化バナジウム粒子の製造方法によれば、適度な粒子径を有し、高純度の二酸化バナジウム粒子を作製することが可能となる。 According to the method for producing vanadium dioxide particles of the present invention, high-purity vanadium dioxide particles having an appropriate particle diameter can be produced.

以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Examples of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
[酸化バナジウム溶液の調製]
バナジウム(V)トリ−i−プロポキシドオキシド(高純度化学研究所社製)2.50gとイソプロパノール(和光純薬工業社製)71.20gとを混合し、バナジウムアルコキシド含有溶液を調製した。
また、純水2.56gと25%アンモニア水溶液(和光純薬工業社製)0.25gを混合し、塩基性水溶液を調製した。得られた塩基性水溶液をバナジウムアルコキシド含有溶液に添加した。
この時の混合液のpHは10.90であった。その後、室温で24時間反応させ、酸化バナジウム溶液を得た。
Example 1
[Preparation of vanadium oxide solution]
A vanadium alkoxide-containing solution was prepared by mixing 2.50 g of vanadium (V) tri-i-propoxide oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 71.20 g of isopropanol (manufactured by Wako Pure Chemical Industries, Ltd.).
Further, 2.56 g of pure water and 0.25 g of 25% aqueous ammonia solution (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed to prepare a basic aqueous solution. The obtained basic aqueous solution was added to the vanadium alkoxide-containing solution.
The pH of the mixed solution at this time was 10.90. Then, it was made to react at room temperature for 24 hours, and the vanadium oxide solution was obtained.

[酸化バナジウム粒子の作製]
得られた酸化バナジウム溶液をエバポレーターによって脱溶媒し、得られた固形物を乾燥させ酸化バナジウム前駆体を得た。得られた酸化バナジウム前駆体を大気中400℃で2時間焼成した。
その後、窒素/水素(3%)混合ガス気流中、600℃で30分間還元することで酸化バナジウム粒子を得た。
[Production of vanadium oxide particles]
The obtained vanadium oxide solution was desolvated with an evaporator, and the obtained solid was dried to obtain a vanadium oxide precursor. The obtained vanadium oxide precursor was calcined in the atmosphere at 400 ° C. for 2 hours.
Thereafter, vanadium oxide particles were obtained by reduction at 600 ° C. for 30 minutes in a nitrogen / hydrogen (3%) mixed gas stream.

(実施例2)
[酸化バナジウム溶液の調製]
純水2.38gと25%アンモニア水溶液0.5gとを混合して塩基性水溶液を調製した以外は実施例1と同様にして、酸化バナジウム溶液を得た。なお、混合液のpHは11.7であった。
(Example 2)
[Preparation of vanadium oxide solution]
A vanadium oxide solution was obtained in the same manner as in Example 1 except that 2.38 g of pure water and 0.5 g of 25% aqueous ammonia solution were mixed to prepare a basic aqueous solution. The pH of the mixed solution was 11.7.

[酸化バナジウム粒子の作製]
得られた酸化バナジウム溶液をエバポレーターによって脱溶媒し、得られた固形物を乾燥させ酸化バナジウム前駆体を得た。得られた酸化バナジウム前駆体を大気中400℃で2時間焼成した。
その後、窒素/水素(3%)混合ガス気流中、600℃で30分間還元することで酸化バナジウム粒子を得た。
[Production of vanadium oxide particles]
The obtained vanadium oxide solution was desolvated with an evaporator, and the obtained solid was dried to obtain a vanadium oxide precursor. The obtained vanadium oxide precursor was calcined in the atmosphere at 400 ° C. for 2 hours.
Thereafter, vanadium oxide particles were obtained by reduction at 600 ° C. for 30 minutes in a nitrogen / hydrogen (3%) mixed gas stream.

(実施例3)
実施例2の[酸化バナジウム粒子の作製]において、600℃で15分間還元した以外は実施例2と同様にして酸化バナジウム溶液及び酸化バナジウム粒子を得た。
(Example 3)
In [Production of vanadium oxide particles] in Example 2, a vanadium oxide solution and vanadium oxide particles were obtained in the same manner as in Example 2 except that reduction was performed at 600 ° C. for 15 minutes.

(実施例4)
実施例2の[酸化バナジウム粒子の作製]において、525℃で2時間還元した以外は実施例2と同様にして酸化バナジウム溶液及び酸化バナジウム粒子を得た。
Example 4
In [Production of vanadium oxide particles] in Example 2, a vanadium oxide solution and vanadium oxide particles were obtained in the same manner as in Example 2 except that the reduction was performed at 525 ° C. for 2 hours.

(実施例5)
実施例1の[酸化バナジウム溶液の調製]において、純水1.63gと25%アンモニア水溶液1.5gとを混合して塩基性水溶液を調製した以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。なお、混合液のpHは12.17であった。
(Example 5)
A vanadium oxide solution was prepared in the same manner as in Example 1 except that a basic aqueous solution was prepared by mixing 1.63 g of pure water and 1.5 g of a 25% aqueous ammonia solution in [Preparation of vanadium oxide solution] in Example 1. And vanadium oxide particles were obtained. The pH of the mixed solution was 12.17.

(実施例6)
実施例1の[酸化バナジウム溶液の調製]において、純水0.01gと25%アンモニア水溶液3.65gとを混合して塩基性水溶液を調製した以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。なお、混合液のpHは12.49であった。
(Example 6)
A vanadium oxide solution was prepared in the same manner as in Example 1 except that a basic aqueous solution was prepared by mixing 0.01 g of pure water and 3.65 g of a 25% aqueous ammonia solution in [Preparation of vanadium oxide solution] in Example 1. And vanadium oxide particles were obtained. The pH of the mixed solution was 12.49.

(比較例1)
実施例1の[酸化バナジウム溶液の調製]において、純水2.74gと25%アンモニア水溶液0.01gとを混合して塩基性水溶液を調製した以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。なお、混合液のpHは9.80であった。
(Comparative Example 1)
A vanadium oxide solution was prepared in the same manner as in Example 1 except that a basic aqueous solution was prepared by mixing 2.74 g of pure water and 0.01 g of a 25% aqueous ammonia solution in [Preparation of vanadium oxide solution] in Example 1. And vanadium oxide particles were obtained. The pH of the mixed solution was 9.80.

(比較例2)
実施例1の[酸化バナジウム溶液の調製]において、アンモニア水溶液を加えず、塩基性水溶液に代えて純水2.75gを用いた以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。なお、混合液のpHは6.50であった。
(Comparative Example 2)
In [Preparation of vanadium oxide solution] in Example 1, vanadium oxide solution and vanadium oxide particles were added in the same manner as in Example 1 except that 2.75 g of pure water was used instead of the basic aqueous solution without adding the aqueous ammonia solution. Got. The pH of the mixed solution was 6.50.

(比較例3)
実施例1の[酸化バナジウム溶液の調製]において、純水2.75gと酢酸1.5gとを混合して酸性水溶液を調製した以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。なお、混合液のpHは3.93であった。
(Comparative Example 3)
In [Preparation of vanadium oxide solution] in Example 1, vanadium oxide solution and vanadium oxide particles were prepared in the same manner as in Example 1 except that 2.75 g of pure water and 1.5 g of acetic acid were mixed to prepare an acidic aqueous solution. Got. The pH of the mixed solution was 3.93.

(比較例4)
実施例1の[酸化バナジウム溶液の調製]において、純水2.75gと塩酸1.5gとを混合して酸性水溶液を調製した以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。なお、混合液のpHは1.92であった。
(Comparative Example 4)
In [Preparation of vanadium oxide solution] in Example 1, vanadium oxide solution and vanadium oxide particles were prepared in the same manner as in Example 1 except that 2.75 g of pure water and 1.5 g of hydrochloric acid were mixed to prepare an acidic aqueous solution. Got. The pH of the mixed solution was 1.92.

(比較例5)
実施例1の[酸化バナジウム粒子の作製]において、600℃で1時間還元した以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。
(Comparative Example 5)
In [Production of vanadium oxide particles] in Example 1, a vanadium oxide solution and vanadium oxide particles were obtained in the same manner as in Example 1 except that reduction was performed at 600 ° C. for 1 hour.

(比較例6)
実施例1の[酸化バナジウム粒子の作製]において、550℃で3時間還元した以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。
(Comparative Example 6)
In [Production of vanadium oxide particles] in Example 1, a vanadium oxide solution and vanadium oxide particles were obtained in the same manner as in Example 1 except that reduction was performed at 550 ° C. for 3 hours.

(比較例7)
実施例1の[酸化バナジウム粒子の作製]において、500℃で0.5時間還元した以外は実施例1と同様にして、酸化バナジウム溶液及び酸化バナジウム粒子を得た。
(Comparative Example 7)
In [Production of vanadium oxide particles] in Example 1, a vanadium oxide solution and vanadium oxide particles were obtained in the same manner as in Example 1 except that reduction was performed at 500 ° C. for 0.5 hour.

(評価方法) (Evaluation method)

(1)反応後溶液の安定性
実施例及び比較例で得られた酸化バナジウム溶液5.0gに、1.0gの水を滴下した後の変色を目視にて確認した。なお、変色がない場合を「安定」、変色があった場合を「不安定」とした。
(1) Stability of solution after reaction The discoloration after 1.0 g of water was dropped into 5.0 g of the vanadium oxide solution obtained in Examples and Comparative Examples was visually confirmed. The case where there was no discoloration was defined as “stable”, and the case where there was discoloration was defined as “unstable”.

(2)二酸化バナジウム生成
実施例及び比較例で得られた酸化バナジウム粒子をXRD(Rigaku社製、RINT1000)を用い、X線回折法で結晶構造の特定を行った。なお、測定条件は、電圧50KV、電流100mA、スキャン速度4°/min、回折角2θ=10〜70°とした。
VOのピーク[(011)面、2θ=27.8°]が確認された場合を「○」、確認されない場合を「×」とした。
(2) Vanadium dioxide production The crystal structure of the vanadium oxide particles obtained in Examples and Comparative Examples was specified by X-ray diffraction using XRD (Rigaku, RINT1000). The measurement conditions were a voltage of 50 KV, a current of 100 mA, a scanning speed of 4 ° / min, and a diffraction angle 2θ = 10 to 70 °.
The case where the peak of VO 2 [(011) plane, 2θ = 27.8 °] was confirmed was “◯”, and the case where it was not confirmed was “x”.

(3)二酸化バナジウム粒子の粒子径
粒度分布計(日機装社製、マイクロトラックUAM−1)を用いて、反応液後の二酸化バナジウム粒子の分散径(体積平均粒子径)を測定した。
(3) The dispersion diameter (volume average particle diameter) of the vanadium dioxide particles after the reaction solution was measured using a particle size distribution meter (manufactured by Nikkiso Co., Ltd., Microtrac UAM-1).

(4)サーモクロミック性
得られた二酸化バナジウム粒子の相転移時の熱量ΔH(mJ/mg)を、示差走査熱量計DSC(エスアイアイ・ナノテクノロジー社製「DSC6220」)を用い0℃〜100℃までの温度範囲、昇温速度5℃/min、窒素雰囲気下にて測定した。
(4) Thermochromic The amount of heat ΔH (mJ / mg) at the phase transition of the obtained vanadium dioxide particles was measured at 0 ° C. to 100 ° C. using a differential scanning calorimeter DSC (“DSC 6220” manufactured by SII Nanotechnology). Up to a temperature range up to 5 ° C./min and a nitrogen atmosphere.

Figure 2013071859
Figure 2013071859

本発明によれば、適度な粒子径を有し、高純度の二酸化バナジウム粒子を作製することが可能な二酸化バナジウム粒子の製造方法を提供することができる。
なお、本発明で得られた二酸化バナジウム粒子は、サーモクロミック性フィルム、合わせガラス用中間膜、合わせガラス及び貼り付け用フィルム等に使用することができる。
ADVANTAGE OF THE INVENTION According to this invention, it can provide the manufacturing method of the vanadium dioxide particle which has moderate particle diameter and can produce a highly purified vanadium dioxide particle.
In addition, the vanadium dioxide particle obtained by this invention can be used for a thermochromic film, the intermediate film for laminated glasses, a laminated glass, a film for affixing, etc.

Claims (3)

バナジウムアルコキシド及びアルコールを含有するバナジウムアルコキシド溶液と、塩基性水溶液とを反応させ、酸化バナジウム前駆体を含有する溶液を作製する反応工程、
前記酸化バナジウム前駆体を焼成する焼成工程、及び、
前記焼成した酸化バナジウム前駆体を水素雰囲気中で還元する還元工程を有し、
前記反応工程において、pH10.9〜12.5の範囲内で反応を行い、かつ、
前記還元工程において、600〜650℃で10〜30分間、又は、500〜550℃で1〜2時間の条件で還元を行う
ことを特徴とする二酸化バナジウム粒子の製造方法。
A reaction step of reacting a vanadium alkoxide solution containing vanadium alkoxide and alcohol with a basic aqueous solution to produce a solution containing a vanadium oxide precursor;
A firing step of firing the vanadium oxide precursor; and
A reduction step of reducing the calcined vanadium oxide precursor in a hydrogen atmosphere;
In the reaction step, the reaction is performed within a pH range of 10.9 to 12.5, and
In the reduction step, the reduction is performed under conditions of 600 to 650 ° C for 10 to 30 minutes or 500 to 550 ° C for 1 to 2 hours.
塩基性水溶液はアンモニアを含有することを特徴とする請求項1記載の二酸化バナジウム粒子の製造方法。 The method for producing vanadium dioxide particles according to claim 1, wherein the basic aqueous solution contains ammonia. 焼成工程において、酸化バナジウム前駆体を400℃以上で焼成することを特徴とする請求項1又は2記載の二酸化バナジウム粒子の製造方法。 The method for producing vanadium dioxide particles according to claim 1 or 2, wherein in the firing step, the vanadium oxide precursor is fired at 400 ° C or higher.
JP2011211405A 2011-09-27 2011-09-27 Method for producing vanadium dioxide particle Withdrawn JP2013071859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211405A JP2013071859A (en) 2011-09-27 2011-09-27 Method for producing vanadium dioxide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211405A JP2013071859A (en) 2011-09-27 2011-09-27 Method for producing vanadium dioxide particle

Publications (1)

Publication Number Publication Date
JP2013071859A true JP2013071859A (en) 2013-04-22

Family

ID=48476632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211405A Withdrawn JP2013071859A (en) 2011-09-27 2011-09-27 Method for producing vanadium dioxide particle

Country Status (1)

Country Link
JP (1) JP2013071859A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151355A1 (en) * 2014-03-31 2015-10-08 株式会社村田製作所 Vanadium oxide and manufacturing method therefor
WO2016152865A1 (en) * 2015-03-23 2016-09-29 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles
WO2016158432A1 (en) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 Vanadium-dioxide-containing particles having thermochromic property and manufacturing method thereof
WO2017006699A1 (en) * 2015-07-09 2017-01-12 コニカミノルタ株式会社 Vanadium dioxide-containing particles, dispersion liquid containing same, optical film containing same, method for producing same, method for producing said dispersion liquid, and method for producing said optical film
WO2017006767A1 (en) * 2015-07-07 2017-01-12 コニカミノルタ株式会社 Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
KR101790072B1 (en) * 2016-06-09 2017-10-26 한국세라믹기술원 Synthetic process of high purity vanadium dioxide under hydrogen atmosphere and high purity vanadium dioxide prepared by the same
WO2018021111A1 (en) * 2016-07-29 2018-02-01 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles and optical film
CN110316757A (en) * 2019-07-24 2019-10-11 青岛大学 A kind of vanadium oxide preparation method and applications

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015151355A1 (en) * 2014-03-31 2017-04-13 株式会社村田製作所 Vanadium oxide and method for producing the same
WO2015151355A1 (en) * 2014-03-31 2015-10-08 株式会社村田製作所 Vanadium oxide and manufacturing method therefor
WO2016152865A1 (en) * 2015-03-23 2016-09-29 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles
CN107428554A (en) * 2015-03-31 2017-12-01 柯尼卡美能达株式会社 Particle containing vanadium dioxide and its manufacture method with thermochromism
WO2016158432A1 (en) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 Vanadium-dioxide-containing particles having thermochromic property and manufacturing method thereof
WO2017006767A1 (en) * 2015-07-07 2017-01-12 コニカミノルタ株式会社 Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
WO2017006699A1 (en) * 2015-07-09 2017-01-12 コニカミノルタ株式会社 Vanadium dioxide-containing particles, dispersion liquid containing same, optical film containing same, method for producing same, method for producing said dispersion liquid, and method for producing said optical film
KR101790072B1 (en) * 2016-06-09 2017-10-26 한국세라믹기술원 Synthetic process of high purity vanadium dioxide under hydrogen atmosphere and high purity vanadium dioxide prepared by the same
WO2018021111A1 (en) * 2016-07-29 2018-02-01 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles and optical film
CN109476503A (en) * 2016-07-29 2019-03-15 柯尼卡美能达株式会社 The manufacturing method of particle containing vanadium dioxide, particle and optical film containing vanadium dioxide
JPWO2018021111A1 (en) * 2016-07-29 2019-05-16 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles and optical film
JP7088011B2 (en) 2016-07-29 2022-06-21 コニカミノルタ株式会社 Production method of vanadium dioxide-containing particles, vanadium dioxide-containing particles and optical film
CN109476503B (en) * 2016-07-29 2022-09-16 柯尼卡美能达株式会社 Method for producing particles containing vanadium dioxide, and optical film
CN110316757A (en) * 2019-07-24 2019-10-11 青岛大学 A kind of vanadium oxide preparation method and applications

Similar Documents

Publication Publication Date Title
JP2013071859A (en) Method for producing vanadium dioxide particle
US10167223B2 (en) Preparation method of doped vanadium dioxide powder
JP5019826B2 (en) Zirconia sol and method for producing the same
CN107935039B (en) Preparation method of titanium dioxide water-based sol
JP5126783B2 (en) Method for producing rutile type titanium oxide fine particles
JP2014198645A (en) Production method of composite vanadium oxide particle
JP6583637B2 (en) Strontium titanate fine particle powder and method for producing the same
JP2013119131A (en) Silica-based composite particle and production method thereof
JP5787745B2 (en) Method for producing silica-based composite particles
CN104944471A (en) Tungsten doped bronze powder having high infrared shielding property and synthesis method of doped tungsten bronze powder
JP2013523584A (en) Granules containing silicon dioxide and titanium dioxide
JP5703549B2 (en) Alumina-doped zirconia nanoparticles and production method thereof
JP2011509906A5 (en)
CN109502643B (en) Boron-magnesium co-doped VO2Powder and preparation method and application thereof
JP2009179521A (en) Method for producing rutile type titanium oxide fine particle
EP3040309B1 (en) Zirconium oxide-titanium oxide composite sol and production method thereof
WO2018116762A1 (en) Zirconia sol and method for producing same
JP5625929B2 (en) Method for producing silica-containing hydrous titanium oxide and silica-containing anatase-type titanium oxide
JP5758037B1 (en) Sol comprising amorphous Zr-O-based particles as dispersoid and method for producing the same
JP2014080350A (en) Vanadium oxide particle
JP2008156167A (en) Spherical peroxotitanium hydrate and spherical titanium oxide and method for producing the same
Castkova et al. Sintering of Ce, Sm, and Pr oxide nanorods
JP5821871B2 (en) Method for producing metal oxide nanoparticles
WO2020004411A1 (en) Method for producing ceria-zirconia complex oxide dispersion
JPH0970532A (en) Production of titania catalyst

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202