JP2013065806A - Photovoltaic power generation system using spectroscopy by prism - Google Patents

Photovoltaic power generation system using spectroscopy by prism Download PDF

Info

Publication number
JP2013065806A
JP2013065806A JP2011278924A JP2011278924A JP2013065806A JP 2013065806 A JP2013065806 A JP 2013065806A JP 2011278924 A JP2011278924 A JP 2011278924A JP 2011278924 A JP2011278924 A JP 2011278924A JP 2013065806 A JP2013065806 A JP 2013065806A
Authority
JP
Japan
Prior art keywords
light
prism
power generation
solar panel
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011278924A
Other languages
Japanese (ja)
Inventor
Koichiro Tezuka
孔一郎 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011278924A priority Critical patent/JP2013065806A/en
Publication of JP2013065806A publication Critical patent/JP2013065806A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic power generation system capable of improving power generation efficiency and cost performance.SOLUTION: A combination of a convex lens 1 and concave lens 2 condenses light from a parallel light to a parallel light. The condensed light is dispersed through a prism 3. By placing a convex lens 4 under the prism 3, expanded light is condensed. Thus, a solar panel 5 is installed so that the dispersed light can be received by the solar panel 5 corresponding to respective wavelengths.

Description

本発明は、平行光に集光された太陽光を、プリズムを用いて分光し、分光された光の波長に応じて太陽光パネルを配置することによって、高価格になることなく従来よりも発電効率を高くする太陽光発電システムに関するものである。  The present invention splits sunlight condensed into parallel light using a prism, and arranges a solar panel according to the wavelength of the dispersed light, so that power generation can be performed more easily than before. The present invention relates to a photovoltaic power generation system that increases efficiency.

一般的な太陽光発電システムは、1枚の太陽光パネルだけを用いたものである。また、複数の種類の太陽光パネルを用いて発電効率を高めたタンデム型太陽電池も存在する。  A general solar power generation system uses only one solar panel. There are also tandem solar cells that use a plurality of types of solar panels to increase power generation efficiency.

しかしながら、1枚の太陽光パネルだけを用いたものは単一のバンドギャップしかもたず、さまざまな波長を含む太陽光を変換するのにはエネルギー損失が大きく、発電効率が低くなる。  However, the one using only one solar panel has only a single band gap, and converting sunlight including various wavelengths results in large energy loss and low power generation efficiency.

また、タンデム型太陽電池は複数のバンドギャップをもつため発電効率は高くなるが、複数の太陽光パネルを用いるため、価格が高くなり、同量の電力を生み出すには1枚の太陽光パネルだけの時よりも高くなってしまう。  In addition, tandem solar cells have multiple band gaps, so power generation efficiency is high, but because multiple solar panels are used, the price is high, and only one solar panel can produce the same amount of power. It will be higher than the time.

つまり、従来の技術では発電効率が低い、もしくは価格が高いため、コストパフォーマンスが上がらないという課題がある。    That is, there is a problem that the cost performance is not improved because the power generation efficiency is low or the price is high in the conventional technology.

上記の課題を解決するために、本発明では太陽光をプリズムによって分光し、分光された光に応じてその波長に合った太陽光パネルを配置することで、タンデム型太陽電池のように高い発電力を持ちながら、太陽光パネルにレンズ、プリズム等を付加させるだけという低コストに抑えるようにした。  In order to solve the above problems, in the present invention, sunlight is split by a prism, and a solar panel matching the wavelength is arranged according to the split light, so that high power generation like a tandem solar cell is achieved. While having the power, we tried to reduce the cost by simply adding lenses, prisms, etc. to the solar panel.

プリズムで分光した光をそれぞれの波長に応じた太陽光パネルで電力に変換することで、従来の太陽光パネルよりもエネルギー変換効率が格段に上がる。また、分光された光の幅はプリズムからの距離が長くなるほど広くなり、短くなるほど狭くなるので、プリズムと太陽光パネルの距離で受光する面積が変わる。したがって、その技術レベルに応じて太陽光パネルを減らすことも可能である。  By converting the light spectrally separated by the prism into electric power by a solar panel corresponding to each wavelength, the energy conversion efficiency is significantly increased as compared with the conventional solar panel. Further, the width of the dispersed light becomes wider as the distance from the prism becomes longer, and becomes narrower as the distance from the prism becomes shorter. Therefore, the light receiving area changes depending on the distance between the prism and the solar panel. Therefore, it is possible to reduce the number of solar panels according to the technical level.

コストとしては、集光レンズ及びにプリズム、その他発明の実施に必要な反射鏡等原材料費の安いものが必要なだけであり、大量生産が可能になれば、コストパフォーマンスは現在の太陽光パネルよりも大きくなる。  The only cost is a condensing lens and prism, and other low-cost raw materials such as a reflector required to implement the invention. If mass production becomes possible, the cost performance will be better than the current solar panel. Also grows.

本発明の斜視図である。  It is a perspective view of the present invention. 本発明に用いる太陽光パネルの模式図である。  It is a schematic diagram of the solar panel used for this invention. 本発明の側面方向からの断面図である。  It is sectional drawing from the side surface direction of this invention. 本発明の正面方向からの断面図である。  It is sectional drawing from the front direction of this invention.

以下、本発明の実施の形態について図面を参照しつつ説明する。分光すると光は拡散するため、プリズムを用いるだけではその面積以上に太陽光パネルを必要とし、大幅に効率が下がることになる。そこで、プリズムの上部に集光レンズを用いる。ただし、プリズムへの入射光が平行光でないと制御が困難なこと、また、太陽光を平行光とみなせることから、この集光レンズは平行光から平行光へ集光するレンズである必要がある。図面では、その1例として凸レンズ1と凹レンズ2を組み合わせたものを用いて示している。凸レンズと凹レンズは、同一中心軸で光源と反対側の焦点を一致させれば中心軸と平行な光を平行光へ集光できる。ただし、集光レンズはこの特性を持っていればどのような形態でも良く、必ずしも凸レンズと凹レンズの組み合わせには限らない。  Embodiments of the present invention will be described below with reference to the drawings. Since light diffuses when it is spectrally separated, the use of a prism alone requires a solar panel beyond its area, which greatly reduces efficiency. Therefore, a condenser lens is used on the upper part of the prism. However, since it is difficult to control if the incident light to the prism is not parallel light, and since sunlight can be regarded as parallel light, this condensing lens needs to be a lens that condenses parallel light to parallel light. . In the drawing, as an example, a combination of a convex lens 1 and a concave lens 2 is used. The convex lens and the concave lens can condense light parallel to the central axis into parallel light by matching the focal points on the opposite side of the light source with the same central axis. However, the condensing lens may have any form as long as it has this characteristic, and is not necessarily a combination of a convex lens and a concave lens.

次に、集光された光をプリズム3に通す。図面ではその1例として三角プリズムを用いて示しているが、これも入射光全てを分光出来るプリズムであればどのような形態でもよく、必ずしも三角プリズムには限らない。  Next, the condensed light is passed through the prism 3. In the drawings, a triangular prism is used as an example, but this may be any prism as long as it can split all incident light and is not necessarily limited to a triangular prism.

集光した光は、集光したとはいえある幅を持つ。したがって、これを分光してもその両端で分光された光も幅を持ってしまい、効率が下がってしまう。そこで、プリズムの下に凸レンズ4を設置する。これによってその幅を無視できるようになり、効率を維持できる。  The condensed light has a certain width even though it is condensed. Therefore, even if this is split, the light split at both ends also has a width, and the efficiency is lowered. Therefore, the convex lens 4 is installed under the prism. As a result, the width can be ignored, and the efficiency can be maintained.

以上のように分光された光を、それぞれの波長に応じた太陽光パネルで受光出来るように太陽光パネルを設置する。その方法としては、原理はタンデム型太陽電池そのままに、その設置方法を、重ねるのではなく横に並列に置くようにすればよい。図2はその模式図であり図1、図3でも太陽光パネル5はそのように示している。  The solar panel is installed so that the light separated as described above can be received by the solar panel corresponding to each wavelength. As the method, the principle is that the tandem solar cell is left as it is, and the installation method is arranged in parallel, not overlapping. FIG. 2 is a schematic view thereof, and the solar panel 5 is shown as such in FIGS.

さて、以上ではこのシステムに垂直に入射する光を仮定して説明したが、実際の太陽高度は常に変化する。このシステムではレンズやプリズムを重ねて用いるため、入射角度によってそれらを制御しなければならない。現実的に考えると、レンズやプリズムの位置を常に変化させるよりもシステム全体を動かす方が効率的である。これには太陽の追尾が必要になるが、その制御を簡単にするために少し工夫をする。説明のために、互いに直行したx軸、y軸、z軸を用い、z軸をシステムの鉛直方向と定義する。  In the above description, it is assumed that the light is perpendicularly incident on the system. However, the actual solar altitude always changes. In this system, lenses and prisms are used in an overlapping manner, so that they must be controlled by the incident angle. In practical terms, moving the entire system is more efficient than constantly changing the position of the lens or prism. This will require tracking the sun, but we will try a little to make it easier. For the sake of explanation, the x axis, the y axis, and the z axis that are orthogonal to each other are used, and the z axis is defined as the vertical direction of the system.

まず、レンズやプリズムをx軸に垂直な断面で常に図3のようになるレンズおよびプリズムを用意する。つまり、レンズはメガネのレンズなものではなく、図1のように棒状のレンズを用い、設置する。こうすれば断面は図3のようになる。そこうすることで、入射光のx軸方向の変化は無視でき、y軸方向の変化だけを追尾すればよいことになる。  First, lenses and prisms are always prepared as shown in FIG. 3 in a cross section perpendicular to the x-axis. In other words, the lens is not a spectacle lens, but is installed using a rod-shaped lens as shown in FIG. If it carries out like this, a cross section will become like FIG. By deviating, the change in the x-axis direction of the incident light can be ignored, and only the change in the y-axis direction needs to be tracked.

ただし、このままではx軸方向の傾きがあるとシステムの端から分光した光が逃げ出してしまう。もちろん、同様に横から入ってくる光もあるが、これは分光されておらず、変換効率の低下を招く。そこで図4のように、システムの両端に反射鏡6を設けることで、分光した光を逃がさないようにすることが出来る。  However, in this state, if there is an inclination in the x-axis direction, the dispersed light escapes from the end of the system. Of course, there is light coming in from the side as well, but this is not split and causes a reduction in conversion efficiency. Therefore, as shown in FIG. 4, by providing the reflecting mirrors 6 at both ends of the system, the dispersed light can be prevented from escaping.

例えば、太陽は東西方向の変化が主であるため、東西方向をx軸、南北方向をy軸にとれば、南北方向、すなわちシステムを上下方向に動かすだけで良いため、制御がとても簡単になる。これは屋根が南側に傾いていれば出来ることであり、もちろん屋根の傾く方向はさまざまであるが、いずれにしてもその面で太陽が一番大きく変化する方向にx軸をそろえれば制御は簡単になる。  For example, since the sun mainly changes in the east-west direction, if the east-west direction is taken as the x-axis and the north-south direction is taken as the y-axis, it is only necessary to move the system in the north-south direction, that is, the system is moved up and down. . This can be done if the roof is tilted to the south. Of course, the direction of tilting the roof is various, but in any case, if the x-axis is aligned in the direction in which the sun changes the most, the control can be achieved. It will be easy.

以上をまとめると本発明の実施の形態は、平行光を平行光へ集光する棒状のレンズの下にプリズムを設け、その下に棒状の凸レンズを設置し、分光された光に応じて太陽光パネルを配置して、そのシステムの両端に反射鏡を設けてy軸方向の太陽高度を追尾しながらシステムを動かすというものである。  In summary, according to the embodiment of the present invention, a prism is provided under a rod-shaped lens for condensing parallel light into parallel light, and a rod-shaped convex lens is disposed below the prism. A panel is arranged, reflectors are provided at both ends of the system, and the system is moved while tracking the solar altitude in the y-axis direction.

1 集光のための凸レンズ
2 集光のための凹レンズ
3 プリズム
4 凸レンズ
5 太陽光パネル
6 反射鏡
7 入射光
DESCRIPTION OF SYMBOLS 1 Convex lens for condensing 2 Concave lens 3 for condensing Prism 4 Convex lens 5 Solar panel 6 Reflecting mirror 7 Incident light

Claims (1)

太陽光のような平行光を平行光に集光するレンズを用い、その光をプリズムに通して分光し、その光の波長に応じて太陽光パネルを設置する太陽光発電システム。  A solar power generation system that uses a lens that condenses parallel light such as sunlight into parallel light, splits the light through a prism, and installs a solar panel according to the wavelength of the light.
JP2011278924A 2011-12-02 2011-12-02 Photovoltaic power generation system using spectroscopy by prism Pending JP2013065806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278924A JP2013065806A (en) 2011-12-02 2011-12-02 Photovoltaic power generation system using spectroscopy by prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278924A JP2013065806A (en) 2011-12-02 2011-12-02 Photovoltaic power generation system using spectroscopy by prism

Publications (1)

Publication Number Publication Date
JP2013065806A true JP2013065806A (en) 2013-04-11

Family

ID=48189021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278924A Pending JP2013065806A (en) 2011-12-02 2011-12-02 Photovoltaic power generation system using spectroscopy by prism

Country Status (1)

Country Link
JP (1) JP2013065806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183456A (en) * 2015-03-25 2016-10-20 富士通株式会社 Solar power generation device, sensing device and information processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183456A (en) * 2015-03-25 2016-10-20 富士通株式会社 Solar power generation device, sensing device and information processing system

Similar Documents

Publication Publication Date Title
JP2006080524A (en) Photovoltaic module of solar concentrating device
NL1040088C2 (en) Concentrating solar panel with diffuse light conversion.
EP3455886B1 (en) Optomechanical system for capturing and transmitting incident light with a variable direction of incidence to at least one collecting element and corresponding method
WO2010061636A1 (en) Optical layer for a light-adjusting type solar power-generating module, light-adjusting type solar power-generating module and light-adjusting type solar power-generating panel
WO2010009154A3 (en) Tracking concentrator employing inverted off-axis optics and method
US20090314347A1 (en) Solar multistage concentrator, and greenhouse
US20140144483A1 (en) Solar Module
JP2006332113A (en) Concentrating solar power generation module and solar power generator
CN101419333A (en) Combination concentration and power generation unit of concave reflecting mirror
CN101388625A (en) Solar concentration electricity generating apparatus
US8889982B2 (en) Concentrator for solar radiation and use thereof
KR20180063629A (en) An apparatus for generating solar power
US20120000509A1 (en) Multi-directional solar energy collector system
JP2013065806A (en) Photovoltaic power generation system using spectroscopy by prism
US20120260970A1 (en) Device for concentrating and converting solar energy
CN201725081U (en) Solar concentrator by reflection of flat plate-type flat glass mirrors
JP2019068651A (en) Photovoltaic power generation device
JP2010169981A (en) Solar lens and solar light utilizing device
JP3172797U (en) Sunlight collector
KR20100046337A (en) Concentrating optical apparatus for solar power system and solar power system by using the same
KR101722514B1 (en) Transmission Device Of Solar Light
ITRM20080703A1 (en) PHOTOVOLTAIC SYSTEM
WO2010059873A3 (en) Concentrating photovoltaic photo-current balancing system
US20120327523A1 (en) Offset concentrator optic for concentrated photovoltaic systems
JP5989036B2 (en) Solar condensing panel