JP2013065530A - Redox flow battery - Google Patents

Redox flow battery Download PDF

Info

Publication number
JP2013065530A
JP2013065530A JP2011204922A JP2011204922A JP2013065530A JP 2013065530 A JP2013065530 A JP 2013065530A JP 2011204922 A JP2011204922 A JP 2011204922A JP 2011204922 A JP2011204922 A JP 2011204922A JP 2013065530 A JP2013065530 A JP 2013065530A
Authority
JP
Japan
Prior art keywords
exchange membrane
battery
porous sheet
ion exchange
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011204922A
Other languages
Japanese (ja)
Inventor
Mitsuru Hisahata
満 久畑
Kazunori Kawase
和典 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011204922A priority Critical patent/JP2013065530A/en
Publication of JP2013065530A publication Critical patent/JP2013065530A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a redox flow battery (RF battery) with a low resistance and a high electric current efficiency.SOLUTION: The RF battery supplies an electrolytic solution to a battery element having a positive electrode 104, a negative electrode 105, and an ion-exchange membrane 10 interposed between the electrodes 104, 105 to perform charge and discharge. The ion-exchange membrane 10 has porous sheet materials 11A, 11B on faces opposed to the electrodes 104, 105; the porous sheet materials are formed from a material softer than a material constituting the electrodes 104, 105. The porous sheet materials 11A, 11B can prevent the ion-exchange membrane 10 from being damaged owing to the contact with the electrode 104, 105. In addition, the porous sheet materials 11A, 11B per se are soft and therefore, they never damage the ion-exchange membrane 10. The porous sheet materials 11A, 11B are hard to impede the ion conductivity and the permeability of the electrolytic solution. The RF battery of the invention can prevent the short circuit resulting from the damage to the ion-exchange membrane 10, and it achieves a high current efficiency and a low resistance.

Description

本発明は、レドックスフロー電池に関するものである。特に、低抵抗で電流効率が高いレドックスフロー電池に関するものである。   The present invention relates to a redox flow battery. In particular, the present invention relates to a redox flow battery with low resistance and high current efficiency.

昨今、地球温暖化への対策として、太陽光発電、風力発電といった新エネルギーの導入が世界的に推進されている。これらの発電出力は、天候に影響されるため、再生可能エネルギーを利用した発電の大量導入は、電力系統の周波数や電圧の維持を困難にさせるという問題を招く。この問題の対策の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の貯蓄、負荷平準化などを図ることが期待される。   In recent years, introduction of new energy such as solar power generation and wind power generation has been promoted worldwide as a countermeasure against global warming. Since these power generation outputs are affected by the weather, large-scale introduction of power generation using renewable energy causes a problem that it is difficult to maintain the frequency and voltage of the power system. As one of the countermeasures against this problem, it is expected to install a large-capacity storage battery to smooth the output fluctuation, save surplus power, and level the load.

大容量の蓄電池の一つにレドックスフロー電池(以下、RF電池と呼ぶ)がある。RF電池100は、図3に示す形態のものが知られている。RF電池100は、正極電極104を内蔵する正極セル102と負極電極105を内蔵する負極セル103との間にイオン交換膜101を介在させた電池要素100cと、電池要素100cに電解液を供給する循環機構とを具え、循環機構により、正極電解液及び負極電解液を電池要素100cに循環供給して充放電を行う。循環機構は、正極電解液を貯留する正極タンク106と、正極タンク106と電池要素100cとの間で正極電解液を流通する正極配管108,110と、負極電解液を貯留する負極タンク107と、負極タンク107と電池要素100cとの間で負極電解液を流通する負極配管109,111と、上流側の配管108,109に配置されるポンプ112,113とを具える。電解液には、代表的には、酸化還元により価数が変化するバナジウムイオンといった金属イオンを含有する水溶液が利用される。図3においてタンク106,107内のイオンは例示である。また、図3において実線矢印は、充電、破線矢印は放電を意味する。   One of the large-capacity storage batteries is a redox flow battery (hereinafter referred to as an RF battery). The RF battery 100 is known in the form shown in FIG. The RF battery 100 supplies a battery element 100c having an ion exchange membrane 101 interposed between a positive electrode cell 102 incorporating a positive electrode 104 and a negative electrode cell 103 incorporating a negative electrode 105, and supplying an electrolytic solution to the battery element 100c. A circulation mechanism is provided, and the positive electrode electrolyte and the negative electrode electrolyte are circulated and supplied to the battery element 100c by the circulation mechanism to perform charge / discharge. The circulation mechanism includes a positive electrode tank 106 that stores the positive electrode electrolyte, positive electrode pipes 108 and 110 that distribute the positive electrode electrolyte between the positive electrode tank 106 and the battery element 100c, a negative electrode tank 107 that stores the negative electrode electrolyte, and a negative electrode tank. Negative electrode pipes 109 and 111 for flowing a negative electrode electrolyte between 107 and the battery element 100c, and pumps 112 and 113 arranged in the upstream pipes 108 and 109 are provided. As the electrolytic solution, typically, an aqueous solution containing metal ions such as vanadium ions whose valence changes by oxidation-reduction is used. In FIG. 3, the ions in the tanks 106 and 107 are illustrative. In FIG. 3, the solid arrow means charging, and the broken arrow means discharging.

イオン交換膜101は、塩化ビニルやポリエチレンといった樹脂からなる基材に、イオン交換樹脂が付着されたものが汎用されている(特許文献1)。正極電極104,負極電極105は、代表的には、炭素繊維からなる不織布が挙げられる。   As the ion exchange membrane 101, a material in which an ion exchange resin is attached to a base material made of a resin such as vinyl chloride or polyethylene is widely used (Patent Document 1). The positive electrode 104 and the negative electrode 105 typically include a nonwoven fabric made of carbon fiber.

特開平10-172600号公報JP-A-10-172600

低抵抗としつつ、RF電池の電池効率(例えば、電流効率)を向上することが望まれる。   It is desired to improve the battery efficiency (for example, current efficiency) of the RF battery while reducing the resistance.

本発明者らが調べたところ、電流効率が低いRF電池では、電極を構成する繊維がイオン交換膜に突き刺さっていることがある、との知見を得た。このことから、イオン交換膜において繊維が突き刺さった箇所に生じた孔や当該孔から進展した亀裂を介して正極電解液と負極電解液とが混ざって短絡することで、電流効率の低下を招いた、と考えられる。また、上記繊維が突き刺さった箇所が破壊の起点となり、イオン交換樹脂が脱落するなどのイオン交換膜の破壊によって、RF電池の寿命を短くする可能性がある。   As a result of investigations by the present inventors, it has been found that in an RF battery with low current efficiency, the fibers constituting the electrode may pierce the ion exchange membrane. From this, the positive electrode electrolyte and the negative electrode electrolyte were mixed and short-circuited through the hole formed in the portion where the fiber pierced in the ion exchange membrane and the crack extending from the hole, resulting in a decrease in current efficiency. ,it is conceivable that. In addition, the portion where the fiber is pierced becomes a starting point of destruction, and there is a possibility that the life of the RF battery is shortened by the destruction of the ion exchange membrane such as the ion exchange resin dropping off.

上記孔や亀裂といった損傷を防止するために、例えば、イオン交換膜の厚さ(特にイオン交換樹脂の厚さ)を厚くすることが考えられる。しかし、この場合、樹脂が厚くなることで、イオン伝導性や電解液の透過性の低下を招き、結果として、電気抵抗が増大し、低抵抗化が難しくなる。   In order to prevent damage such as holes and cracks, for example, it is conceivable to increase the thickness of the ion exchange membrane (particularly the thickness of the ion exchange resin). However, in this case, the thick resin causes a decrease in ion conductivity and electrolyte permeability, resulting in an increase in electrical resistance and difficulty in reducing resistance.

製造段階において、電極を構成する繊維が突き刺さらないように、イオン交換膜と電極とを積層できたとしても、充放電を行うごとに電池要素の構成部材が伸縮するなどして、イオン交換膜と電極との接点が変化する。そのため、上述のように電極との接触によりイオン交換膜が損傷し得る。   Even if the ion exchange membrane and the electrode can be laminated so that the fibers constituting the electrode are not pierced in the manufacturing stage, the constituent elements of the battery element expand and contract each time charging / discharging is performed. The contact point between the electrode and the electrode changes. Therefore, the ion exchange membrane can be damaged by contact with the electrode as described above.

従って、低抵抗で、かつ電流効率を向上することができるRF電池の開発が望まれる。また、長期に亘り、低抵抗でありながら、高い電流効率を維持することができるRF電池の開発が望まれる。   Therefore, it is desired to develop an RF battery that has low resistance and can improve current efficiency. In addition, it is desired to develop an RF battery that can maintain high current efficiency while maintaining low resistance over a long period of time.

そこで、本発明の目的は、低抵抗で電流効率が高いレドックスフロー電池を提供することにある。   Therefore, an object of the present invention is to provide a redox flow battery with low resistance and high current efficiency.

本発明は、イオン交換膜と電極との間に特定の材質からなるカバーを配置することで上記目的を達成する。   The present invention achieves the above object by disposing a cover made of a specific material between the ion exchange membrane and the electrode.

本発明のレドックスフロー電池:RF電池は、正極電極と、負極電極と、これら両電極間に介在されるイオン交換膜とを具える電池要素に、電解液を供給して充放電を行う二次電池である。上記イオン交換膜において上記正極電極及び上記負極電極のそれぞれとの対向面に、上記正極電極及び上記負極電極の構成材料よりも柔らかい材質から構成された多孔質シート材を具える。   The redox flow battery of the present invention: an RF battery is a secondary battery that is charged and discharged by supplying an electrolytic solution to a battery element comprising a positive electrode, a negative electrode, and an ion exchange membrane interposed between the two electrodes. It is a battery. In the ion exchange membrane, a porous sheet material made of a material softer than the constituent material of the positive electrode and the negative electrode is provided on a surface facing each of the positive electrode and the negative electrode.

イオン交換膜と正極電極との間、及びイオン交換膜と負極電極との間のそれぞれに上記多孔質シート材が介在されることで、本発明RF電池では、イオン交換膜と正極電極、イオン交換膜と負極電極とのいずれもが直接接触することを低減できる、好ましくは実質的に接触しない。従って、本発明RF電池は、電極との接触によってイオン交換膜に亀裂や孔が生じることを効果的に低減できる、好ましくは防止できる。かつ、上記多孔質シート材は、電極よりも柔らかい材質から構成されているため、当該多孔質シート材との接触によってイオン交換膜に亀裂や孔が実質的に生じない。つまり、上記多孔質シート材は、イオン交換膜が正極電極及び負極電極に接触することによる損傷を防止するカバーとして機能し、上記亀裂や孔の発生による局所的な短絡を効果的に低減、或いは防止することができる。また、上記多孔質シート材は、多孔質体であることから、イオンの伝導や電解液の流通を阻害し難い。このように特定の材質からなる多孔質シート材を具える本発明RF電池は、低抵抗であり、電流効率を向上することができる。また、本発明RF電池は、製造段階だけでなく、充放電の繰り返し運転を行った場合にも、多孔質シート材によってイオン交換膜を保護できるため、長期に亘り、低抵抗で、高い電流効率を維持することができる。   By interposing the porous sheet material between the ion exchange membrane and the positive electrode and between the ion exchange membrane and the negative electrode, in the RF battery of the present invention, the ion exchange membrane, the positive electrode, and the ion exchange Both the membrane and the negative electrode can be reduced from direct contact, preferably not substantially in contact. Therefore, the RF battery of the present invention can effectively reduce, and preferably prevent, cracks and holes in the ion exchange membrane due to contact with the electrodes. And since the said porous sheet material is comprised from the softer material than an electrode, a crack and a hole do not produce in an ion exchange membrane substantially by contact with the said porous sheet material. That is, the porous sheet material functions as a cover for preventing damage caused by the ion exchange membrane coming into contact with the positive electrode and the negative electrode, and effectively reduces local short-circuiting due to the generation of cracks and holes, or Can be prevented. Moreover, since the said porous sheet material is a porous body, it is hard to inhibit conduction of ion and the distribution | circulation of electrolyte solution. Thus, the RF battery of the present invention having the porous sheet material made of a specific material has low resistance and can improve current efficiency. In addition, the RF battery of the present invention can protect the ion exchange membrane with a porous sheet material not only in the manufacturing stage but also in repeated charge / discharge operations, and thus has a low resistance and a high current efficiency over a long period of time. Can be maintained.

本発明の一形態として、上記正極電極及び上記負極電極が炭素繊維の不織布から構成され、上記多孔質シート材は、フッ素樹脂、フェノール樹脂、及びエンジニアリングプラスチックから選択される1種の有機材料から構成された形態が挙げられる。特に、フッ素樹脂は、ポリテトラフルオロエチレン:PTFEが挙げられる。   As one aspect of the present invention, the positive electrode and the negative electrode are composed of a carbon fiber non-woven fabric, and the porous sheet material is composed of one organic material selected from a fluororesin, a phenol resin, and an engineering plastic. The form which was made is mentioned. In particular, the fluororesin includes polytetrafluoroethylene: PTFE.

炭素繊維の不織布からなる電極を用いた場合、充放電の副反応として酸素ガスの発生を抑制し易く、当該酸素ガスに基づく電池部材の酸化などを抑制できる。上記列挙した有機材料はいずれも、上記不織布を構成する炭素よりも柔らかく、RF電池に利用される電解液に対する耐性も高い。従って、上記形態は、低抵抗で高効率なRF電池を構築することができる。特に、多孔質シート材がPTFEから構成される場合、(1)電解液に対する耐性に非常に高く、長期に亘って、イオン交換膜を保護することができる、(2)気孔率が高いシート材を製造可能であり、気孔率が高いシート材を具えることで、抵抗の増加がほとんどなく、低抵抗なRF電池が得られる、といった効果を奏する。   When an electrode made of a carbon fiber non-woven fabric is used, generation of oxygen gas is easily suppressed as a side reaction of charge and discharge, and oxidation of the battery member based on the oxygen gas can be suppressed. Any of the organic materials listed above is softer than the carbon constituting the nonwoven fabric and has high resistance to the electrolyte used in the RF battery. Therefore, the above embodiment can construct an RF battery with low resistance and high efficiency. In particular, when the porous sheet material is made of PTFE, (1) very high resistance to the electrolyte, and can protect the ion exchange membrane over a long period of time, (2) a highly porous sheet material By providing a sheet material having a high porosity, there is an effect that there is almost no increase in resistance and a low-resistance RF battery can be obtained.

本発明の一形態として、上記多孔質シート材は、気孔率が60%以上90%以下、厚さが50μm以上150μm以下である形態が挙げられる。   As an embodiment of the present invention, the porous sheet material may have a porosity of 60% to 90% and a thickness of 50 μm to 150 μm.

上記形態は、イオン交換膜と電極との接触を十分に防止しつつ、イオン伝導性や電解液の透過性の低下を抑制することができるため、低抵抗で高効率なRF電池を構築することができる。   The above configuration can prevent a decrease in ion conductivity and electrolyte permeability while sufficiently preventing contact between the ion exchange membrane and the electrode, so that a low-resistance and high-efficiency RF battery can be constructed. Can do.

本発明レドックスフロー電池は、低抵抗で、電流効率が高い。   The redox flow battery of the present invention has low resistance and high current efficiency.

本発明RF電池に具える電池要素の概略を示す断面図である。It is sectional drawing which shows the outline of the battery element provided to this invention RF battery. RF電池に具えるセルスッタックの概略構成図である。It is a schematic block diagram of the cell stack provided in RF battery. RF電池の基本構成及び動作原理を示す説明図である。It is explanatory drawing which shows the basic composition and the principle of operation of RF battery.

以下、図面を参照して、本発明の実施の形態を説明する。図中、同一符号は同一名称物を示す。図1では、分かり易いように各構成部材の大きさを異ならせて示す。   Embodiments of the present invention will be described below with reference to the drawings. In the figure, the same reference numerals indicate the same names. In FIG. 1, the sizes of the constituent members are shown differently for easy understanding.

本発明レドックスフロー電池:RF電池の基本的な構成は、上述した図3に示す従来のRF電池と同様であり、電池要素(特に、電極間に介在される部材)に特徴を有する。以下、RF電池の基本的な構成について概要を説明し、特徴点を詳細に説明する。   The basic structure of the redox flow battery: RF battery of the present invention is the same as that of the conventional RF battery shown in FIG. 3 described above, and is characterized by battery elements (particularly, members interposed between electrodes). Hereinafter, an outline of the basic configuration of the RF battery will be described, and feature points will be described in detail.

[全体構造]
本発明RF電池は、交流/直流変換器を介して、発電部(例えば、太陽光発電機、風力発電機、その他、一般の発電所など)と電力系統や需要家などの負荷とに接続され、発電部を電力供給源として充電を行い、負荷を電力提供対象として放電を行う。本発明RF電池は、従来のRF電池100(図3)と同様に、電池要素100c(図3)を主要構成部材とし、タンク106,107(図3)、配管108〜111(図3)、ポンプ112,113(図3)といった電解液の循環機構を利用して、電池要素100cに正極電解液及び負極電解液を循環供給して充放電を行う。
[Overall structure]
The RF battery of the present invention is connected to a power generation unit (for example, a solar power generator, a wind power generator, other general power plants, etc.) and a load such as a power system or a consumer via an AC / DC converter. Then, charging is performed using the power generation unit as a power supply source, and discharging is performed using the load as a power supply target. Like the conventional RF battery 100 (FIG. 3), the RF battery of the present invention has a battery element 100c (FIG. 3) as a main component, tanks 106 and 107 (FIG. 3), pipes 108 to 111 (FIG. 3), pumps 112 and 113. Using the electrolytic solution circulation mechanism (FIG. 3), the positive and negative electrolyte solutions are circulated and supplied to the battery element 100c for charging and discharging.

電池要素100cは、正極セル102(図3)とイオン交換膜101(図3)と負極セル103(図3)とを複数積層させたセルスタックと呼ばれる形態が利用される。セルスタック200には、図2に示す双極板211を具えるフレーム212が利用される。双極板211は、その表裏にそれぞれ正極電極104,負極電極105が配置され、フレーム212は、双極板211の外周に形成され、電極104,105に電解液を供給する給液孔213,214及び電極104,105からの電解液を排出する排液孔215,216を有する。セルスタック200は、双極板211を具えるフレーム210、正極電極104、イオン交換膜101、負極電極105、双極板211を有するフレーム212、…と順に繰り返し積層され、代表的には、この積層体の両側を一対のエンドプレート220で挟み、長ボルトなどの締付部材230によりエンドプレート220を締め付けることで組み立てられる。複数のフレーム212を積層することで、給液孔213(214)及び排液孔215(216)は正極極電解液(負極電解液)の流路を形成し、この流路は配管108〜111(図3)に適宜接続される。双極板211は、プラスチックカーボンからなるもの、フレーム212は、塩化ビニルなどの樹脂からなるものが挙げられる。   The battery element 100c uses a form called a cell stack in which a plurality of positive electrode cells 102 (FIG. 3), ion exchange membranes 101 (FIG. 3), and negative electrode cells 103 (FIG. 3) are stacked. For the cell stack 200, a frame 212 including a bipolar plate 211 shown in FIG. 2 is used. The bipolar plate 211 is provided with a positive electrode 104 and a negative electrode 105 on the front and back, respectively, and the frame 212 is formed on the outer periphery of the bipolar plate 211, and from the liquid supply holes 213 and 214 and the electrodes 104 and 105 for supplying the electrolyte to the electrodes 104 and 105. Drain holes 215 and 216 for discharging the electrolyte are provided. The cell stack 200 is repeatedly laminated in order of a frame 210 having a bipolar plate 211, a positive electrode 104, an ion exchange membrane 101, a negative electrode 105, a bipolar plate 211, and so on. Are assembled by tightening the end plate 220 with a fastening member 230 such as a long bolt. By laminating a plurality of frames 212, the liquid supply hole 213 (214) and the drainage hole 215 (216) form a flow path for the positive electrode electrolyte (negative electrode electrolyte), and the flow paths are connected to the pipes 108 to 111. (FIG. 3) as appropriate. The bipolar plate 211 may be made of plastic carbon, and the frame 212 may be made of resin such as vinyl chloride.

[電解液]
本発明RF電池において、正負の各極の活物質に利用される金属イオンの対として、正極:鉄イオン、負極:クロムイオン、正極及び負極:バナジウムイオン、その他、正極:マンガンイオン、負極:チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンからなる群から選択される少なくとも一種の金属イオンが挙げられる。正極活物質をマンガンイオンとする場合、負極活物質によっては全バナジウム系RF電池よりも起電力が高いRF電池を得ることができる。また、正極にマンガンイオンと共にチタンイオンを含有すると、Mn3+の不均化反応に伴うMnO2の析出を抑制することができる。正極及び負極の双方にマンガンイオン及びチタンイオンを含有する形態とすることもできる。
[Electrolyte]
In the RF battery of the present invention, positive electrode: iron ion, negative electrode: chromium ion, positive electrode and negative electrode: vanadium ion, and others, positive electrode: manganese ion, negative electrode: titanium, as a pair of metal ions used for positive and negative active materials Examples thereof include at least one metal ion selected from the group consisting of ions, vanadium ions, chromium ions, zinc ions, and tin ions. When the positive electrode active material is manganese ions, depending on the negative electrode active material, an RF battery having an electromotive force higher than that of all vanadium-based RF batteries can be obtained. Further, when the positive electrode contains manganese ions together with manganese ions, it is possible to suppress the precipitation of MnO 2 accompanying the disproportionation reaction of Mn 3+ . It can also be set as the form which contains manganese ion and titanium ion in both a positive electrode and a negative electrode.

正負の各極の電解液は、硫酸、リン酸、硝酸、硫酸塩、リン酸塩、及び硝酸塩の少なくとも一種を含む水溶液が好ましい。特に、硫酸アニオン(SO4 2-)を含むものが利用し易い。 The electrolyte solution for each positive and negative electrode is preferably an aqueous solution containing at least one of sulfuric acid, phosphoric acid, nitric acid, sulfate, phosphate, and nitrate. In particular, those containing sulfate anions (SO 4 2− ) are easy to use.

[電極]
正極電極104,負極電極105には、炭素繊維からなる不織布:カーボンフェルトを利用することができる。より具体的には、非圧縮状態で、繊維径:5μm〜10μm程度、気孔率:90%〜95%程度、厚さ:3mm〜5mm程度のものが挙げられる。電極104,105は上述のように積層して締め付ける(圧縮する)場合、締付度合いによって厚さ及び気孔率が変化し、電解液の流通状態が変化する。所望の流通状態となるように、気孔率や厚さ、締付度合いを選択・調整するとよい。電極104,105には、公知のもの、市販のものが適宜利用できる。
[electrode]
As the positive electrode 104 and the negative electrode 105, a nonwoven fabric made of carbon fiber: carbon felt can be used. More specifically, in a non-compressed state, the fiber diameter is about 5 μm to 10 μm, the porosity is about 90% to 95%, and the thickness is about 3 mm to 5 mm. When the electrodes 104 and 105 are laminated and tightened (compressed) as described above, the thickness and the porosity change depending on the degree of tightening, and the flow state of the electrolyte changes. It is preferable to select and adjust the porosity, thickness, and tightening degree so that a desired distribution state is obtained. As the electrodes 104 and 105, known and commercially available electrodes can be used as appropriate.

その他、正極電極104,負極電極105には、(1)Ru,Ti,Ir,Mn,Pd,Au及びPtから選択される少なくとも一種の金属と、Ru,Ti,Ir,Mn,Pd,Au及びPtから選択される少なくとも一種の金属の酸化物とを含む複合材(例えば、Ti基体にIr酸化物やRu酸化物を塗布したもの)、(2)上記複合材を含むカーボン複合物、(3)上記複合材を含む寸法安定電極(DSE)、(4)導電性ポリマー(例えば、ポリアセチレン、ポリチオフェンなどの電気を通す高分子材料)、(5)グラファイト、(6)ガラス質カーボン、(7)導電性ダイヤモンド、(8)導電性ダイヤモンドライクカーボン(DLC)、(9)カーボンファイバからなる織布などが利用できる。   In addition, the positive electrode 104 and the negative electrode 105 include (1) at least one metal selected from Ru, Ti, Ir, Mn, Pd, Au and Pt, and Ru, Ti, Ir, Mn, Pd, Au and A composite material containing at least one metal oxide selected from Pt (for example, a Ti substrate coated with Ir oxide or Ru oxide), (2) a carbon composite containing the composite material, (3 ) Dimensionally stable electrode (DSE) containing the above composite material, (4) conductive polymer (e.g., polymer material conducting electricity such as polyacetylene, polythiophene), (5) graphite, (6) vitreous carbon, (7) Conductive diamond, (8) conductive diamond-like carbon (DLC), and (9) woven fabric made of carbon fiber can be used.

上述のカーボンフェルトは、微視的にみれば、その表面において繊維が毛羽立っている。この毛羽立った繊維が後述するイオン交換膜に接触すると、イオン交換膜を突き刺したり、破ったりする可能性がある。このような毛羽立った電極を具えるRF電池に対して、後述する多孔質シート材を具えた構成とすることで、上述の突き刺しなどの低減・防止を図る。   When the above-mentioned carbon felt is viewed microscopically, fibers are fuzzy on its surface. When this fuzzy fiber comes into contact with an ion exchange membrane described later, the ion exchange membrane may be pierced or broken. An RF battery including such a fluffy electrode is configured to include a porous sheet material described later, thereby reducing / preventing the above-described piercing and the like.

[イオン交換膜]
イオン交換膜10(図1)は、塩化ビニル、フッ素樹脂、ポリオレフィン(例えば、ポリエチレン:PE、ポリプロピレン:PP)などの樹脂からなる基材に、イオン交換基を有するイオン交換樹脂、或いはイオン交換樹脂とマトリクス樹脂との複合樹脂が付着されたものが利用できる。イオン交換基は、スルホン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基、ピリジニウム塩基、第四級アンモニウム塩基、第三級アミン基、ホスホニウム基などが挙げられる。イオン交換膜10は、厚いほど、正極電極104,負極電極105との接触による損傷(孔など)を防止できるものの、電気抵抗の増加を招くことから、5μm〜100μm程度が好ましい。イオン交換膜10は、公知のもの、市販のものが適宜利用できる。
[Ion exchange membrane]
The ion exchange membrane 10 (FIG. 1) is a base material made of a resin such as vinyl chloride, fluororesin, polyolefin (for example, polyethylene: PE, polypropylene: PP), an ion exchange resin having an ion exchange group, or an ion exchange resin. And a composite resin of a matrix resin can be used. Examples of the ion exchange group include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a pyridinium base, a quaternary ammonium base, a tertiary amine group, and a phosphonium group. As the ion exchange membrane 10 is thicker, damage (holes and the like) due to contact with the positive electrode 104 and the negative electrode 105 can be prevented, but an increase in electric resistance is caused, so that the thickness is preferably about 5 μm to 100 μm. As the ion exchange membrane 10, a known one or a commercially available one can be used as appropriate.

[多孔質シート材]
そして、本発明RF電池では、イオン交換膜10において正極電極104との対向面、及び負極電極105との対向面のそれぞれに多孔質シート材11A,11B(図1)を具える点を最大の特徴とする。
[Porous sheet material]
In the RF battery of the present invention, the point that the ion exchange membrane 10 includes the porous sheet materials 11A and 11B (FIG. 1) on the surface facing the positive electrode 104 and the surface facing the negative electrode 105 is the largest. Features.

多孔質シート材11A,11Bは、主として、イオン交換膜10が正極電極104,負極電極105に接触して、上述の繊維が突き刺さったり、亀裂が生じたり、上述の基材に保持された樹脂が脱落するなどの損傷・破壊を防止するための保護層として機能する。また、多孔質シート材11A,11Bは、それ自体がイオン交換膜10に接触してもイオン交換膜10を損傷・破壊させないような柔軟性を有する。かつ、多孔質シート材11A,11Bは、イオンの伝導を阻害せず(イオン伝導度が高く)、電解液の流通抵抗を増大し難い(電解液の透過性に優れる)ことが望まれる。これらの点から、多孔質シート材11A,11Bは、多孔体とすると共に、電極104,105の構成材料よりも柔らかい材質から構成されたものとする。「電極の構成材料よりも柔らかい」とは、電極の構成材料そのものの硬度よりも、多孔質シート材の構成材料そのものの硬度が低いことをいう。多孔質シート材の硬度の測定は、例えば、デュロメータを利用できる。   The porous sheet materials 11A and 11B are mainly composed of the resin held on the base material, with the ion exchange membrane 10 in contact with the positive electrode 104 and the negative electrode 105, and the fibers described above are pierced or cracked. It functions as a protective layer to prevent damage and destruction such as falling off. Further, the porous sheet materials 11A and 11B have such flexibility that they do not damage or destroy the ion exchange membrane 10 even if they themselves contact the ion exchange membrane 10. In addition, it is desirable that the porous sheet materials 11A and 11B do not hinder ion conduction (high ion conductivity) and hardly increase the flow resistance of the electrolytic solution (excellent permeability of the electrolytic solution). From these points, it is assumed that the porous sheet materials 11A and 11B are made of a porous material and softer than the constituent materials of the electrodes 104 and 105. “Softer than the constituent material of the electrode” means that the constituent material itself of the porous sheet material is lower in hardness than the constituent material of the electrode itself. For example, a durometer can be used to measure the hardness of the porous sheet material.

多孔質シート材11A,11Bの具体的な材質としては、有機材料、より具体的には、フッ素樹脂、フェノール樹脂、エンジニアリングプラスチックが挙げられる。上記有機材料は、電極の材料として列挙した炭素繊維、金属と金属酸化物とを含む複合材、カーボン複合材、グラファイト、ダイヤモンド、DLCなどに比較して、十分に柔らかい。フッ素樹脂は、例えば、PTFE、テトラフルオロエチレンとエチレンとの共重合体:ETFE、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体:PFA、ポリフッ化ビニリデン:PVDFなどが挙げられる。フッ素樹脂は、硫酸溶液といった電解液に対する耐性に非常に優れるため、長期に亘り、イオン交換膜10の保護を行える。エンジニアリングプラスチックは、例えば、ポリエーテルエーテルケトン:PEEKなどが挙げられる。   Specific materials of the porous sheet materials 11A and 11B include organic materials, and more specifically, fluororesins, phenol resins, and engineering plastics. The organic material is sufficiently soft as compared with carbon fibers listed as electrode materials, composites containing metals and metal oxides, carbon composites, graphite, diamond, DLC, and the like. Examples of the fluororesin include PTFE, a copolymer of tetrafluoroethylene and ethylene: ETFE, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer: PFA, and polyvinylidene fluoride: PVDF. Since the fluororesin has excellent resistance to an electrolytic solution such as a sulfuric acid solution, the ion exchange membrane 10 can be protected over a long period of time. Examples of the engineering plastic include polyether ether ketone: PEEK.

多孔質シート材11A,11Bは、上記有機材料の繊維を用いた織布や不織布、シート材を切り込んだ後、エキスパンド加工を施した網、その他、公知の延伸加工を用いて微細な気孔を形成した多孔シート(例えば、ポアフロン(住友電気工業株式会社の登録商標))など、シート材の表裏に直線的に連通する気孔(以下、この気孔を直線孔と呼ぶ)を有するもの、表裏に非直線的に連通する気孔(屈曲した経路をとる気孔(以下、屈曲孔と呼ぶ))を有するもののいずれもが利用できる。また、多孔質シート材11A,11Bは、正極電極104,負極電極105の構成材料よりも柔らかいことから、上述の織布や網のように表面に毛羽たちが無い形態、不織布といった繊維が毛羽立った形態のいずれの形態としても、イオン交換膜10を損傷し難い。   Porous sheet materials 11A and 11B are woven fabrics and nonwoven fabrics using fibers of the above-mentioned organic materials, cut into sheet material, then expanded, and other fine pores are formed using known stretching processes Perforated sheets (for example, Poeflon (registered trademark of Sumitomo Electric Industries, Ltd.)), etc. having pores communicating linearly on the front and back of the sheet material (hereinafter referred to as straight holes), non-linear on the front and back Any one having pores communicating with each other (pores taking a bent path (hereinafter referred to as bent holes)) can be used. In addition, since the porous sheet materials 11A and 11B are softer than the constituent materials of the positive electrode 104 and the negative electrode 105, there are no fluffs on the surface like the above-mentioned woven fabrics and nets, and fibers such as non-woven fabrics are fluffy. In any form, the ion exchange membrane 10 is hardly damaged.

多孔質シート材11A,11Bの気孔の孔径は、正極電極104,負極電極105の形態にもよるが、例えば、電極104,105が不織布で構成されている場合、当該不織布を構成する繊維がイオン交換膜10に突き刺さることを防止できるように、繊維径よりも小さいことが好ましい。但し、孔径が小さ過ぎると、気孔率やシート材の形態にもよるが電解液の透過性を低下して内部抵抗の増大を招くため、最小径が1nm以上であることが好ましい。平織りの織布やダイヤ状孔が設けられた網などのように直線孔を有する形態では、不織布などのように屈曲孔を有する形態よりも電解液が透過し易い傾向にあるため、気孔を小さくしても、透過性の低下を抑制できる傾向にある。一方、孔径が大き過ぎると、例えば、電極を構成する繊維が気孔を通過してイオン交換膜10に突き刺さるなど、イオン交換膜10を損傷する恐れがある。従って、最大径は、電極を構成する繊維の最小径未満であることが好ましい。上述のように気孔率やシート材の形態にもよるが、平均孔径は、0.01μm〜1μm程度が挙げられる。   The pore diameters of the porous sheet materials 11A and 11B depend on the form of the positive electrode 104 and the negative electrode 105. For example, when the electrodes 104 and 105 are made of a nonwoven fabric, the fibers constituting the nonwoven fabric are ion exchange membranes. It is preferable that the diameter is smaller than the fiber diameter so that it can be prevented from sticking into the fiber. However, if the pore diameter is too small, although depending on the porosity and the form of the sheet material, the permeability of the electrolytic solution is lowered and the internal resistance is increased. Therefore, the minimum diameter is preferably 1 nm or more. In a form having a straight hole such as a plain woven cloth or a net provided with a diamond-shaped hole, the electrolyte tends to permeate more easily than a form having a bent hole such as a non-woven cloth. Even so, there is a tendency that a decrease in permeability can be suppressed. On the other hand, if the pore diameter is too large, the ion exchange membrane 10 may be damaged, for example, the fibers constituting the electrode may pass through the pores and pierce the ion exchange membrane 10. Accordingly, the maximum diameter is preferably less than the minimum diameter of the fibers constituting the electrode. As described above, although depending on the porosity and the form of the sheet material, the average pore diameter is about 0.01 μm to 1 μm.

多孔質シート材11A,11Bの気孔率は、小さ過ぎると、つまり、気孔が少なく緻密度が高いシート材であると、イオン伝導性及び電解液の透過性を低下させ、電気抵抗や内部抵抗の増大を招くことから、厚さにもよるが、50%以上、更に60%以上、特に70%以上が好ましい。気孔率が大き過ぎると、気孔が多いことで強度の低下を招くことから、90%以下が好ましい。不織布の気孔率は、例えば、水銀ポロシメーターやガス吸着比表面積測定装置などを利用して測定することができる。織布や上述の多孔シートの気孔率は、例えば、単位体積あたりの織布の質量:Dpを、当該織布を構成する繊維の密度:Dfで除した値を用いて、(1−Dp/Df)×100、といった演算により求めることができる。 If the porosity of the porous sheet materials 11A and 11B is too small, that is, if the sheet material has few pores and a high density, the ion conductivity and the electrolyte permeability decrease, and the electrical resistance and internal resistance are reduced. Since it increases, depending on the thickness, it is preferably 50% or more, more preferably 60% or more, and particularly preferably 70% or more. If the porosity is too large, the strength is lowered due to the large number of pores, so 90% or less is preferable. The porosity of a nonwoven fabric can be measured using a mercury porosimeter, a gas adsorption specific surface area measuring apparatus, etc., for example. The porosity of the woven fabric or the above-mentioned porous sheet is, for example, using a value obtained by dividing the mass of the woven fabric per unit volume: D p by the density of the fibers constituting the woven fabric: D f (1− D p / D f ) × 100.

多孔質シート材11A,11Bの厚さは、気孔率が高い場合には、イオン伝導性及び電解液の透過性を十分に確保できるものの、通常、厚いほど、イオン伝導性及び電解液の透過性を低下させることから、150μm以下が好ましい。気孔率にもよるが、100μm以下がより好ましい。厚さが薄過ぎると、シート材自体の強度の低下により、例えば、電極を構成する繊維がシート材を突き破り、更にイオン交換膜10に突き刺さるなどして、イオン交換膜10を損傷する恐れがある。従って、多孔質シート材11A,11Bの厚さは、50μm以上、更に60μm以上が好ましい。   When the porosity of the porous sheet material 11A, 11B is high, the ion conductivity and the electrolyte permeability can be sufficiently ensured, but usually the thicker the ion conductivity and the electrolyte permeability. Is preferably 150 μm or less. Depending on the porosity, it is more preferably 100 μm or less. If the thickness is too thin, the strength of the sheet material itself may decrease, and for example, the fibers constituting the electrode may break through the sheet material and further pierce the ion exchange membrane 10, which may damage the ion exchange membrane 10. . Accordingly, the thickness of the porous sheet materials 11A and 11B is preferably 50 μm or more, and more preferably 60 μm or more.

多孔質シート材11A,11Bの少なくとも一方をイオン交換膜10と一体化してもよいし、単に積層させてもよい。多孔質シート材とイオン交換膜と一体化する場合には、例えば、イオン交換樹脂や複合樹脂と基材とを一体化するときに同時に多孔質シート材も一体化したり、別途、イオン交換樹脂や複合樹脂を溶融して多孔質シート材を接合したりすることが挙げられる。   At least one of the porous sheet materials 11A and 11B may be integrated with the ion exchange membrane 10 or simply laminated. When integrating the porous sheet material and the ion exchange membrane, for example, when integrating the ion exchange resin or composite resin and the base material, the porous sheet material is also integrated at the same time, or separately, For example, the composite resin is melted to join a porous sheet material.

<試験例>
多孔質シート材の有無による電池特性の違いを調べた。
<Test example>
The difference in battery characteristics with and without the porous sheet material was investigated.

この試験では、いずれの試料も同じ仕様のイオン交換膜、及び電極(カーボンフェルト(平均繊維径:5μm〜10μm))を用意し、電極の反応面積が9cm2である単セルのRF電池を作製した。単セル電池とは、正極セルと負極セルとを一つずつ具える電池要素からなるものであり、図1に示すように一つのイオン交換膜10の両側にそれぞれ正極電極104,負極電極105を配置し、電極104,105の両側を双極板211を具えるフレーム212で挟んで構成した。 In this test, each sample was prepared with an ion exchange membrane and electrode (carbon felt (average fiber diameter: 5 μm to 10 μm)) with the same specifications, and a single-cell RF battery with an electrode reaction area of 9 cm 2 was prepared. did. A single cell battery is composed of battery elements each having a positive cell and a negative cell. As shown in FIG. 1, a positive electrode 104 and a negative electrode 105 are provided on both sides of one ion exchange membrane 10, respectively. The electrodes 104 and 105 are sandwiched by a frame 212 having a bipolar plate 211.

試料No.1〜3は、表1に示す材質の多孔質シート材をイオン交換膜10の両側に配置した。各試料の多孔質シート材の厚さ及び気孔率を表1に示す。試料No.1,2の多孔質シート材は、ポアフロン(住友電気工業株式会社の登録商標)を用いた。ポアフロン(登録商標)の気孔率は、以下のように測定した。ポアフロン(登録商標)の単位体積あたりの質量:Dpoを求める。また、ポアフロン(登録商標)と同じ材質の樹脂によって気孔の無いシートを作製し、この孔無しシートの単位体積あたりの質量:Dsを求める。そして、ポアフロン(登録商標)のDpoを孔無しシートのDsで除した値を用いて、(1−Dpo/Ds)×100を気孔率とする。なお、試料No.1,2のポアフロン(登録商標)の平均孔径は、1μm〜10μmであり、細孔径分布測定により求めた。試料No.3は、イオン交換膜の各面に異なる材質の多孔質シート材を配置した。具体的には、一面に試料No.1と同じポアフロン(登録商標)を配置し、他面に表1に示す織布を配置した。試料No.100は、イオン交換膜の片面にのみ、多孔質シート材を配置した試料であり、試料No.1と同じポアフロン(登録商標)を配置した。なお、気孔率、孔径、及び厚さは、多孔質シート材を圧縮していない状態で測定した値である。 In Sample Nos. 1 to 3, porous sheet materials of the materials shown in Table 1 were arranged on both sides of the ion exchange membrane 10. Table 1 shows the thickness and porosity of the porous sheet material of each sample. As the porous sheet material of Sample Nos. 1 and 2, Poeflon (registered trademark of Sumitomo Electric Industries, Ltd.) was used. The porosity of Poreflon (registered trademark) was measured as follows. The mass per unit volume of Poreflon (registered trademark): D po is determined. In addition, a sheet without pores is made of the same material as that of Poreflon (registered trademark), and the mass per unit volume of the sheet without holes: D s is obtained. Then, (1−D po / D s ) × 100 is defined as the porosity by using the value obtained by dividing PoFlon (registered trademark) D po by D s of the non-porous sheet. In addition, the average pore diameter of Poreflon (registered trademark) of Sample Nos. 1 and 2 was 1 μm to 10 μm, and was obtained by measurement of pore diameter distribution. In sample No. 3, a porous sheet material of a different material was disposed on each surface of the ion exchange membrane. Specifically, the same Poreflon (registered trademark) as Sample No. 1 was placed on one side, and the woven fabric shown in Table 1 was placed on the other side. Sample No. 100 was a sample in which a porous sheet material was disposed only on one side of the ion exchange membrane, and the same Poraflon (registered trademark) as Sample No. 1 was disposed. In addition, a porosity, a hole diameter, and thickness are the values measured in the state which has not compressed the porous sheet material.

正極電解液及び負極電解液としてバナジウム溶液を用い、作製した各試料の単セル電池に電流密度:70mA/cm2の定電流で充放電を行った。この試験では、予め設定した所定の切替電圧に達したら、充電から放電に切り替え、複数サイクルの充放電を行った。充放電後、各試料について電流効率及び電気抵抗を求めた。電流効率は、(放電時間の合計/充電時間の合計)×100、電池抵抗(セル抵抗)は、複数サイクルのうち、任意の1サイクルにおける平均電圧及び平均電流を求め、平均電圧/平均電流とした。 A vanadium solution was used as the positive electrode electrolyte and the negative electrode electrolyte, and the single cell batteries of each sample thus prepared were charged / discharged at a constant current of 70 mA / cm 2 . In this test, when a predetermined switching voltage set in advance was reached, switching from charging to discharging was performed, and charging and discharging were performed for a plurality of cycles. After charging and discharging, the current efficiency and electrical resistance were determined for each sample. Current efficiency is (total discharge time / total charge time) x 100, and battery resistance (cell resistance) is the average voltage / average current in any one cycle among multiple cycles. did.

Figure 2013065530
Figure 2013065530

表1に示すように、イオン交換膜において正極電極及び負極電極に対向する両面に、当該電極よりも柔らかい材質からなる多孔質シート材を具えることで、電気抵抗の上昇を抑えつつ、電流効率を向上することができることが分かる。   As shown in Table 1, by providing a porous sheet material made of a material softer than the electrode on both surfaces of the ion exchange membrane facing the positive electrode and the negative electrode, current efficiency is suppressed while suppressing an increase in electrical resistance. It can be seen that can be improved.

充放電後、各試料を解体してイオン交換膜をSEM観察したところ、試料No.100では、電極を構成する炭素繊維がイオン交換膜に突き刺さっていることを確認した。試料No.1〜3では、上記炭素繊維がイオン交換膜に突き刺さっていることが確認できなかった。このことから、イオン交換膜の両側に配置した多孔質シート材が、イオン交換膜が電極に接触することによって損傷することを防止したことで、局所的な短絡を防止できた、と考えられる。また、このことから、電極との接触によってイオン交換樹脂の一部が脱落するなどの損傷も防止でき、イオン交換膜の長寿命化、ひいてはRF電池の長寿命化を図ることができる、と期待される。   After charging and discharging, each sample was disassembled and the ion exchange membrane was observed by SEM. As a result, in sample No. 100, it was confirmed that the carbon fibers constituting the electrode were stuck into the ion exchange membrane. In Sample Nos. 1 to 3, it was not possible to confirm that the carbon fiber was stuck into the ion exchange membrane. From this, it is considered that the porous sheet material arranged on both sides of the ion exchange membrane prevented the ion exchange membrane from being damaged by contacting the electrode, thereby preventing a local short circuit. In addition, from this, it can be expected that damage such as part of the ion exchange resin dropping off due to contact with the electrode can be prevented, and the life of the ion exchange membrane can be extended, and thus the life of the RF battery can be extended. Is done.

また、試料No.1,100のRF電池の不良率を調べた。具体的には、RF電池を作製した後、充放電運転を行わずに解体し、イオン交換膜に対して孔や亀裂といった損傷の有無を調べ、損傷が生じているものを不良と判定した。その結果、試料No.100では、作製した6個の電池のうち、3個について、イオン交換膜の損傷が見られたが、試料No.1では、作製した6個の電池の全てについて、損傷が見られなかった。このことから、多孔質シート材をイオン交換膜の両側に具えることで、RF電池の不良率も低減でき、生産性の向上を図ることができる、と期待される。   Further, the defective rate of the RF battery of sample No. 1,100 was examined. Specifically, after the RF battery was fabricated, it was disassembled without performing a charge / discharge operation, and the presence or absence of damage such as a hole or a crack was examined on the ion exchange membrane, and the damaged one was determined to be defective. As a result, in sample No. 100, damage to the ion exchange membrane was observed for three of the six batteries produced, but in sample No. 1, all of the six batteries produced were damaged. Was not seen. For this reason, it is expected that the defective rate of the RF battery can be reduced and the productivity can be improved by providing the porous sheet material on both sides of the ion exchange membrane.

その他、多孔質シート材をイオン交換膜の両側に具えることで、イオン交換膜が電極との接触により損傷・破壊されることを十分に防止できることから、例えば、電解液の流通圧力を更に高めることができる。流通圧力の増大により、電池要素内の圧力も高められるものの、イオン交換膜は、その両側を多孔質シート材によって保護されることで、当該圧力の増大による損傷の恐れが少なく、或いは全く無い。この流通圧力の増大によって、例えば、液移り(一方の極の電解液が他方の極に移動する現象)を抑制することができる、といった効果が期待できる。   In addition, since the porous sheet material is provided on both sides of the ion exchange membrane, the ion exchange membrane can be sufficiently prevented from being damaged or destroyed by contact with the electrode. For example, the distribution pressure of the electrolyte is further increased. be able to. Although the pressure in the battery element is increased by the increase of the flow pressure, the ion exchange membrane is protected by the porous sheet material on both sides thereof, so that there is little or no risk of damage due to the increase of the pressure. By increasing the flow pressure, for example, an effect of suppressing liquid transfer (a phenomenon in which the electrolyte solution of one electrode moves to the other electrode) can be expected.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することができる。例えば、多孔質シート材の材質、厚さ、気孔率、孔径、電極の材質などを適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the material, thickness, porosity, pore diameter, electrode material, and the like of the porous sheet material can be appropriately changed.

本発明レドックスフロー電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池に好適に利用することができる。その他、本発明レドックスフロー電池は、一般的な発電所や工場などに併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。   The redox flow battery of the present invention has a large capacity for the purpose of stabilizing fluctuations in power generation output, storing electricity when surplus of generated power, load leveling, etc., for power generation of new energy such as solar power generation and wind power generation. It can utilize suitably for a storage battery. In addition, the redox flow battery of the present invention can be suitably used as a large-capacity storage battery that is installed in a general power plant or factory, for the purpose of instantaneous voltage drop / power failure countermeasures and load leveling.

10 イオン交換膜 11A,11B 多孔質シート材
100 レドックスフロー電池 100c 電池要素 101 イオン交換膜
102 正極セル 103 負極セル 104 正極電極 105 負極電極
106 正極タンク 107 負極タンク 108,110 正極配管 109,111 負極配管
112,113 ポンプ
200 セルスタック 211 双極板 212 フレーム 213,214 給液孔
215,216 排液孔 220 エンドプレート 230 締付部材
10 Ion exchange membrane 11A, 11B Porous sheet material
100 Redox flow battery 100c Battery element 101 Ion exchange membrane
102 Positive electrode cell 103 Negative electrode cell 104 Positive electrode 105 Negative electrode
106 Positive tank 107 Negative tank 108,110 Positive piping 109,111 Negative piping
112,113 pump
200 Cell stack 211 Bipolar plate 212 Frame 213,214 Supply hole
215,216 Drain hole 220 End plate 230 Tightening member

Claims (4)

正極電極と、負極電極と、これら両電極間に介在されるイオン交換膜とを具える電池要素に、電解液を供給して充放電を行うレドックスフロー電池であって、
前記イオン交換膜において前記正極電極及び前記負極電極のそれぞれとの対向面に、前記正極電極及び前記負極電極の構成材料よりも柔らかい材質から構成された多孔質シート材を具えることを特徴とするレドックスフロー電池。
A redox flow battery that performs charging and discharging by supplying an electrolytic solution to a battery element comprising a positive electrode, a negative electrode, and an ion exchange membrane interposed between the two electrodes.
The ion exchange membrane includes a porous sheet material made of a material softer than the constituent material of the positive electrode and the negative electrode, on a surface facing each of the positive electrode and the negative electrode. Redox flow battery.
前記正極電極及び前記負極電極は、炭素繊維の不織布から構成され、
前記多孔質シート材は、フッ素樹脂、フェノール樹脂、及びエンジニアリングプラスチックから選択される1種の有機材料から構成されていることを特徴とする請求項1に記載のレドックスフロー電池。
The positive electrode and the negative electrode are composed of a carbon fiber nonwoven fabric,
2. The redox flow battery according to claim 1, wherein the porous sheet material is composed of one organic material selected from a fluororesin, a phenol resin, and an engineering plastic.
前記多孔質シート材は、気孔率が60%以上90%以下、厚さが50μm以上150μm以下であることを特徴とする請求項1又は2に記載のレドックスフロー電池。   3. The redox flow battery according to claim 1, wherein the porous sheet material has a porosity of 60% to 90% and a thickness of 50 μm to 150 μm. 前記正極電極及び前記負極電極は、炭素繊維の不織布から構成され、
前記多孔質シート材は、ポリテトラフルオロエチレンから構成されていることを特徴とする請求項1〜3のいずれか1項に記載のレドックスフロー電池。
The positive electrode and the negative electrode are composed of a carbon fiber nonwoven fabric,
4. The redox flow battery according to claim 1, wherein the porous sheet material is made of polytetrafluoroethylene.
JP2011204922A 2011-09-20 2011-09-20 Redox flow battery Pending JP2013065530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204922A JP2013065530A (en) 2011-09-20 2011-09-20 Redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204922A JP2013065530A (en) 2011-09-20 2011-09-20 Redox flow battery

Publications (1)

Publication Number Publication Date
JP2013065530A true JP2013065530A (en) 2013-04-11

Family

ID=48188844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204922A Pending JP2013065530A (en) 2011-09-20 2011-09-20 Redox flow battery

Country Status (1)

Country Link
JP (1) JP2013065530A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715447A (en) * 2013-11-20 2014-04-09 浩源科技有限公司 Efficient soluble lead-acid flow battery
JP2014239038A (en) * 2013-06-10 2014-12-18 Nok株式会社 Electrode module
CN105161738A (en) * 2015-10-08 2015-12-16 四川理工学院 Composite membrane for vanadium batteries, continuous production method and application of composite membrane
JP2016524280A (en) * 2013-05-16 2016-08-12 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with hydrated ion exchange membrane with maximum water domain cluster size
WO2018043720A1 (en) 2016-09-02 2018-03-08 昭和電工株式会社 Redox flow secondary battery and electrode thereof
KR20180067512A (en) 2015-10-22 2018-06-20 스미토모덴키고교가부시키가이샤 Electrode for redox flow cell, and redox flow cell
WO2018117192A1 (en) * 2016-12-21 2018-06-28 京セラ株式会社 Flow battery
WO2018123965A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Redox flow battery
JP2019133860A (en) * 2018-01-31 2019-08-08 京セラ株式会社 Flow battery
JP2019153376A (en) * 2018-02-28 2019-09-12 京セラ株式会社 Flow battery
JP2020501298A (en) * 2016-11-09 2020-01-16 大連融科儲能技術発展有限公司 Electrode structure of flow battery, flow battery bank and sealed structure of flow battery bank
US10727498B2 (en) 2014-12-26 2020-07-28 Showa Denko K.K. Redox flow battery electrode, and redox flow battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148658A (en) * 1988-11-30 1990-06-07 Toyobo Co Ltd Liquid flow type electrolytic cell
JPH08502386A (en) * 1992-10-14 1996-03-12 ナショナル パワー ピーエルシー Electrochemical device for power distribution using air electrode
JP2003096219A (en) * 2001-05-24 2003-04-03 Asahi Glass Co Ltd Anion exchange membrane
JP2005158383A (en) * 2003-11-25 2005-06-16 Sumitomo Electric Ind Ltd Redox cell
JP2008027627A (en) * 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The Diaphragm for redox flow battery
WO2010143634A1 (en) * 2009-06-09 2010-12-16 シャープ株式会社 Redox flow battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148658A (en) * 1988-11-30 1990-06-07 Toyobo Co Ltd Liquid flow type electrolytic cell
JPH08502386A (en) * 1992-10-14 1996-03-12 ナショナル パワー ピーエルシー Electrochemical device for power distribution using air electrode
JP2003096219A (en) * 2001-05-24 2003-04-03 Asahi Glass Co Ltd Anion exchange membrane
JP2005158383A (en) * 2003-11-25 2005-06-16 Sumitomo Electric Ind Ltd Redox cell
JP2008027627A (en) * 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The Diaphragm for redox flow battery
WO2010143634A1 (en) * 2009-06-09 2010-12-16 シャープ株式会社 Redox flow battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524280A (en) * 2013-05-16 2016-08-12 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with hydrated ion exchange membrane with maximum water domain cluster size
JP2014239038A (en) * 2013-06-10 2014-12-18 Nok株式会社 Electrode module
CN103715447A (en) * 2013-11-20 2014-04-09 浩源科技有限公司 Efficient soluble lead-acid flow battery
US10727498B2 (en) 2014-12-26 2020-07-28 Showa Denko K.K. Redox flow battery electrode, and redox flow battery
CN105161738A (en) * 2015-10-08 2015-12-16 四川理工学院 Composite membrane for vanadium batteries, continuous production method and application of composite membrane
US10622638B2 (en) 2015-10-22 2020-04-14 Sumitomo Electric Industries, Ltd. Electrode for redox flow battery, and redox flow battery
KR20180067512A (en) 2015-10-22 2018-06-20 스미토모덴키고교가부시키가이샤 Electrode for redox flow cell, and redox flow cell
EP3509148A4 (en) * 2016-09-02 2020-05-20 Showa Denko K.K. Redox flow secondary battery and electrode thereof
JPWO2018043720A1 (en) * 2016-09-02 2018-09-06 昭和電工株式会社 Redox flow secondary battery and electrode thereof
WO2018043720A1 (en) 2016-09-02 2018-03-08 昭和電工株式会社 Redox flow secondary battery and electrode thereof
CN109643818A (en) * 2016-09-02 2019-04-16 昭和电工株式会社 Secondary cell and its electrode are flowed in redox
JP7128812B2 (en) 2016-11-09 2022-08-31 大連融科儲能技術発展有限公司 Electrode structure of flow battery, flow battery stack and sealing structure of flow battery stack
JP2020501298A (en) * 2016-11-09 2020-01-16 大連融科儲能技術発展有限公司 Electrode structure of flow battery, flow battery bank and sealed structure of flow battery bank
JPWO2018117192A1 (en) * 2016-12-21 2019-10-31 京セラ株式会社 Flow battery
CN110313094A (en) * 2016-12-21 2019-10-08 京瓷株式会社 Flow battery
WO2018117192A1 (en) * 2016-12-21 2018-06-28 京セラ株式会社 Flow battery
JPWO2018123965A1 (en) * 2016-12-28 2018-12-27 昭和電工株式会社 Redox flow battery
JP6434192B2 (en) * 2016-12-28 2018-12-05 昭和電工株式会社 Redox flow battery
WO2018123965A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Redox flow battery
JP2019133860A (en) * 2018-01-31 2019-08-08 京セラ株式会社 Flow battery
JP2019153376A (en) * 2018-02-28 2019-09-12 京セラ株式会社 Flow battery
JP7025243B2 (en) 2018-02-28 2022-02-24 京セラ株式会社 Flow battery

Similar Documents

Publication Publication Date Title
JP2013065530A (en) Redox flow battery
Zhou et al. Performance of a vanadium redox flow battery with a VANADion membrane
Reed et al. Performance of a low cost interdigitated flow design on a 1 kW class all vanadium mixed acid redox flow battery
US8822057B2 (en) High surface area flow battery electrodes
US20180048008A1 (en) Porous Electrodes, Membrane-Electrode Assemblies, Electrode Assemblies, and Electrochemical Cells and Liquid Flow Batteries Therefrom
JP5836501B2 (en) Flow battery with carbon paper
JP2013500158A (en) Bipolar electrode, supercapacitor desalination apparatus and manufacturing method
JP6701514B2 (en) Redox flow battery electrode and redox flow battery
US20180108915A1 (en) Porous Electrodes and Electrochemical Cells and Liquid Flow Batteries Therefrom
JP2013037856A (en) Redox flow cell
JP2015122229A (en) Electrode, and redox flow cell
JP6340070B2 (en) Redox flow battery
JP5890561B1 (en) Electrolyzer and battery
JP2015228364A (en) Redox flow battery
JP2017010809A (en) Electrode for redox flow battery and redox flow battery
JP6817548B2 (en) Electrodes for redox flow batteries and redox flow batteries
JP2012146469A (en) Redox flow battery, redox flow battery cell, and cell stack for redox flow battery
KR101163996B1 (en) a redox flow secondary cell having metal foam electrodes
US20180190991A1 (en) Electrode for redox flow battery and redox flow battery system
US20170207475A1 (en) Electrode for redox flow battery, redox flow battery, and electrode characteristics evaluation method
KR20160007719A (en) Bipolar plate for redox flow battery
JP2017224486A (en) Redox flow battery
Hung et al. Effects of current scan rate on the polarization curve of vanadium redox flow batteries
JP6903286B2 (en) Redox flow battery
JPWO2020035895A1 (en) Redox flow battery cell and redox flow battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150402