JP2013058336A - Metal-air battery - Google Patents

Metal-air battery Download PDF

Info

Publication number
JP2013058336A
JP2013058336A JP2011194982A JP2011194982A JP2013058336A JP 2013058336 A JP2013058336 A JP 2013058336A JP 2011194982 A JP2011194982 A JP 2011194982A JP 2011194982 A JP2011194982 A JP 2011194982A JP 2013058336 A JP2013058336 A JP 2013058336A
Authority
JP
Japan
Prior art keywords
positive electrode
layer
metal
air battery
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011194982A
Other languages
Japanese (ja)
Inventor
Hirobumi Nakamoto
博文 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011194982A priority Critical patent/JP2013058336A/en
Publication of JP2013058336A publication Critical patent/JP2013058336A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a metal-air battery capable of homogenizing binding forces of cells and supplying a uniform oxygen gas to a positive electrode.SOLUTION: The metal-air battery comprises: a positive electrode layer; a negative electrode layer: an electrolyte layer disposed between the positive electrode layer and the negative electrode layer; a positive electrode collector layer disposed so as to be adjacent to the positive electrode layer in the opposite side of the electrolyte layer; and a negative electrode collector layer disposed so as to be adjacent to the negative electrode layer in the opposite side of the electrolyte layer. The positive electrode layer includes an oxygen supply port at a side part of the positive electrode layer and an oxygen diffusion path communicated from the oxygen supply port.

Description

本発明は金属空気電池に関係し、特に、正極の側面部に酸素供給口を有する金属空気電池に関する。   The present invention relates to a metal-air battery, and more particularly to a metal-air battery having an oxygen supply port on a side surface of a positive electrode.

近年の携帯電話等の機器の普及、進歩に伴い、その電源である電池の高容量化が望まれている。このような中で、金属空気電池は、空気極において、大気中の酸素を正極活物質として利用して、当該酸素の酸化還元反応が行われ、一方、負極において、負極を構成する金属の酸化還元反応が行われることで、充電又は放電が可能であるため、エネルギー密度が高く、現在汎用されているリチウムイオン電池に優る高容量電池として注目されている(非特許文献1)。   With the spread and progress of devices such as mobile phones in recent years, it is desired to increase the capacity of the battery as the power source. Under such circumstances, the metal-air battery uses the oxygen in the atmosphere as the positive electrode active material at the air electrode, and the oxygen reduction reaction of the oxygen is performed, while the negative electrode oxidizes the metal constituting the negative electrode. Since the reductive reaction can be performed for charging or discharging, it has been attracting attention as a high-capacity battery that has a high energy density and is superior to the currently used lithium ion batteries (Non-patent Document 1).

金属空気電池は、酸素ガスを正極に取り込むために、従来、多孔体の正極集電体及び多孔体の正極を用いた空気電池が提案されている(特許文献1)。   As a metal-air battery, conventionally, an air battery using a porous positive electrode current collector and a porous positive electrode has been proposed in order to take oxygen gas into the positive electrode (Patent Document 1).

特開2011−96492号公報JP 2011-96492 A

独立行政法人 産業技術総合研究所(産総研)、「新しい構造の高性能リチウム空気電池を開発」、[online]、2009年2月24日報道発表、[平成23年8月19日検索]、インターネット<http://www.aist.go.jp/aist_j/press_release/pr2009/pr20090224/pr20090224.html>National Institute of Advanced Industrial Science and Technology (AIST), “Development of high-performance lithium-air battery with new structure”, [online], press release on February 24, 2009, [search on August 19, 2011], Internet <http: // www. aist. go. jp / aist_j / press_release / pr2009 / pr20090224 / pr20090224. html>

このように、従来、金属空気電池において、多孔体の正極及び正極集電体が用いられるが、酸素ガスを多孔体の集電体を通して多孔体の正極層に送るため、酸素ガス濃度が不均一になりやすいという問題点がある。   Thus, conventionally, in a metal-air battery, a porous positive electrode and a positive electrode current collector are used. However, since oxygen gas is sent to the positive electrode layer of the porous material through the porous current collector, the oxygen gas concentration is uneven. There is a problem that it is easy to become.

したがって、上記問題を解決できる金属空気電池が求められる。   Therefore, a metal-air battery that can solve the above problem is required.

本発明に係る金属空気電池は、正極層の側面部に酸素供給口を有し、且つ正極中に酸素供給口から連通する酸素拡散経路を含むものであり、正極集電体が多孔体でなくてもよい。   The metal-air battery according to the present invention has an oxygen supply port in the side surface portion of the positive electrode layer and includes an oxygen diffusion path communicating with the oxygen supply port in the positive electrode, and the positive electrode current collector is not a porous body. May be.

本発明は、正極層、負極層、正極層及び負極層の間に配置された電解質層、正極層に隣接して電解質層とは反対側に配置された正極集電体層、並びに負極層に隣接して電解質層とは反対側に配置された負極集電体層を備えた金属空気電池であって、正極層が、正極層の側面部に酸素供給口を有し、並びに酸素供給口から連通する酸素拡散経路を含む、金属空気電池である。   The present invention provides a positive electrode layer, a negative electrode layer, an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, a positive electrode current collector layer disposed adjacent to the positive electrode layer on the side opposite to the electrolyte layer, and a negative electrode layer. A metal-air battery comprising a negative electrode current collector layer disposed adjacent to the opposite side of the electrolyte layer, the positive electrode layer having an oxygen supply port on a side surface of the positive electrode layer, and from the oxygen supply port A metal-air battery including a communicating oxygen diffusion path.

本発明により、従来の金属空気電池よりも、正極への酸素ガスのより均一な供給が可能となる金属空気電池を得ることができる。   According to the present invention, it is possible to obtain a metal-air battery that can supply oxygen gas to the positive electrode more uniformly than a conventional metal-air battery.

本発明の金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第1の実施形態の構成を説明する側面模式図である。It is a side surface schematic diagram explaining the structure of 1st Embodiment of the positive electrode collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode collector layer in the metal air battery of this invention. 図1Aに示した金属空気電池における正極層のA−A断面の模式図である。It is a schematic diagram of the AA cross section of the positive electrode layer in the metal air battery shown to FIG. 1A. 本発明の金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第2の実施形態の構成を説明する側面模式図である。It is a side surface schematic diagram explaining the structure of 2nd Embodiment of the positive electrode collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode collector layer in the metal air battery of this invention. 図2Aに示した金属空気電池における正極層のB−B断面の模式図である。It is a schematic diagram of the BB cross section of the positive electrode layer in the metal air battery shown to FIG. 2A. 本発明の金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第3の実施形態の構成を説明する側面模式図である。It is a side surface schematic diagram explaining the structure of 3rd Embodiment of the positive electrode collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode collector layer in the metal air battery of this invention. 図3Aに示した金属空気電池における正極層のC−C断面の模式図である。It is a schematic diagram of CC section of the positive electrode layer in the metal air battery shown in FIG. 3A. 本発明の金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第4の実施形態の構成を説明する側面模式図である。It is a side surface schematic diagram explaining the structure of 4th Embodiment of the positive electrode collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode collector layer in the metal air battery of this invention. 図4Aに示した金属空気電池における正極層のD−D断面の模式図である。It is a schematic diagram of DD section of the positive electrode layer in the metal air battery shown in FIG. 4A. 本発明の金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第5の実施形態の構成を説明する正面及び側面模式図である。It is the front and side schematic diagram explaining the structure of 5th Embodiment of the positive electrode collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode collector layer in the metal air battery of this invention. 本発明の金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第6の実施形態の構成を説明する正面及び側面模式図である。It is the front and side schematic diagram explaining the structure of 6th Embodiment of the positive electrode collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode collector layer in the metal air battery of this invention. 本発明の金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第7の実施形態の構成を説明する正面及び側面模式図である。It is the front and side schematic diagram explaining the structure of 7th Embodiment of the positive electrode collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode collector layer in the metal air battery of this invention. 本発明の金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第8の実施形態の構成を説明する正面及び側面模式図である。It is the front and side schematic diagram explaining the structure of 8th Embodiment of the positive electrode collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode collector layer in the metal air battery of this invention.

本発明に係る金属空気電池は、正極層、負極層、正極層及び負極層の間に配置された電解質層、正極層に隣接して電解質層とは反対側に配置された正極集電体層、並びに負極層に隣接して電解質層とは反対側に配置された負極集電体層を備えており、正極層が、正極層の側面部に酸素供給口を有し、且つ正極層中に酸素供給口から連通する酸素拡散経路を有している。   The metal-air battery according to the present invention includes a positive electrode layer, a negative electrode layer, an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and a positive electrode current collector layer disposed adjacent to the positive electrode layer and opposite to the electrolyte layer And a negative electrode current collector layer disposed on the opposite side of the electrolyte layer adjacent to the negative electrode layer, the positive electrode layer having an oxygen supply port on a side surface portion of the positive electrode layer, and in the positive electrode layer An oxygen diffusion path communicating from the oxygen supply port is provided.

従来、金属空気電池において、正極への酸素の供給経路についてはあまり検討されておらず、正極層の上面に配置した多孔体の正極集電体を通して、正極に酸素を送ることが行われている。   Conventionally, in a metal-air battery, the oxygen supply path to the positive electrode has not been studied so much, and oxygen is sent to the positive electrode through a porous positive electrode current collector disposed on the upper surface of the positive electrode layer. .

この場合、酸素ガスの流れは、多孔体の正極集電体層表面から酸素ガスが取り込まれ、正極集電体層から正極層に向かって、正極集電体層及び正極層の積層面に垂直方向の一方向にのみ流れやすいが、酸素ガスをメッシュ等の多孔体を通して多孔体の正極層に送るため、酸素ガス濃度が不均一になりやすい。   In this case, the flow of oxygen gas is such that oxygen gas is taken in from the surface of the positive electrode current collector layer of the porous body and is perpendicular to the stacked surface of the positive electrode current collector layer and the positive electrode layer from the positive electrode current collector layer toward the positive electrode layer. Although it tends to flow only in one direction, the oxygen gas concentration is likely to be non-uniform because oxygen gas is sent to the positive electrode layer of the porous body through a porous body such as a mesh.

酸素ガス濃度が不均一になると、正極層及び/または正極集電体層に、負極金属の酸化物の析出物、例えばリチウム金属負極を用いた場合はLi22、Li2O等の析出物が不均一に形成されやすくなり、正極層中、正極集電体層中、または正極層及び正極集電体層の界面等において孔の目詰まりが発生しやすく、正極層への酸素ガスの供給が不十分になり、すぐに電池として機能しなくなる、といった問題や、負極においてデンドライトが発生しやすい等の問題があることが分かった。 When the oxygen gas concentration becomes non-uniform, when a negative electrode metal oxide precipitate, such as a lithium metal negative electrode, is used for the positive electrode layer and / or the positive electrode current collector layer, precipitation of Li 2 O 2 , Li 2 O, etc. In the positive electrode layer, in the positive electrode current collector layer, or in the interface between the positive electrode layer and the positive electrode current collector layer, etc., and the clogging of the oxygen gas to the positive electrode layer is likely to occur. It has been found that there are problems such as insufficient supply and immediate function as a battery, and problems such as dendrite being easily generated in the negative electrode.

また、例えばメッシュ状の集電体を用いる場合、メッシュの片当たりによって集電体によるセルの拘束力にばらつきが生じやすく、あるいは平織りの集電体を用いても孔の部分に圧力が生じないため、セルの拘束力にばらつが生じやすく、拘束力にばらつきが生じると、セルの機械的強度の低下、充放電に伴うセルの体積変化によるサイクル特性の低下、界面抵抗のばらつきが生じやすく負極においてデンドライトが発生しやすい等、といった問題がおきやすくなることが分かった。   In addition, for example, when using a mesh current collector, the cell binding force due to the current collector tends to vary depending on the mesh piece, or even if a plain weave current collector is used, no pressure is generated at the hole portion. Therefore, the cell restraint force tends to vary, and if the restraint force varies, the cell mechanical strength decreases, the cycle characteristics decrease due to cell volume change due to charge / discharge, and the interface resistance varies easily. It was found that problems such as dendrite are likely to occur in

これに対して、本発明に係る空気電池においては、正極層の側面部の酸素供給口から酸素ガスを取り込み、酸素供給口から連通する酸素拡散経路によって正極層中に酸素ガスを拡散させることにより、従来よりも、正極層に実質的に等方に酸素ガスを送ることが可能となる。また、本発明に係る空気電池においては、多孔体の正極集電体を用いる必要性がない。多孔体の正極集電体を使用することに制限されず、板状、箔状等の集電体を用いることができるようになり、例えば板状の正極集電体を用いることによって、セルの拘束力の均一化を図ることを可能にする。   On the other hand, in the air battery according to the present invention, oxygen gas is taken in from the oxygen supply port on the side surface portion of the positive electrode layer, and oxygen gas is diffused into the positive electrode layer through the oxygen diffusion path communicating from the oxygen supply port. Thus, it is possible to send oxygen gas to the positive electrode layer substantially isotropically compared to the conventional case. In the air battery according to the present invention, there is no need to use a porous positive electrode current collector. The present invention is not limited to the use of a porous positive electrode current collector, and plate-like, foil-like current collectors can be used. For example, by using a plate-like positive electrode current collector, It is possible to make the binding force uniform.

酸素供給口及び酸素供給口から連通する酸素拡散経路は、正極層に含まれる正極材によって構成され得る。好ましくは、正極材の少なくとも一部は柱状形状であり、柱状正極材によって形成される空間によって、酸素供給口及び酸素供給口から連通する酸素拡散経路が構成され得る。   The oxygen supply port and the oxygen diffusion path communicating from the oxygen supply port can be constituted by a positive electrode material included in the positive electrode layer. Preferably, at least a part of the positive electrode material has a columnar shape, and an oxygen diffusion path communicating from the oxygen supply port and the oxygen supply port can be configured by a space formed by the columnar positive electrode material.

以下、図面を参照して本発明に係る金属空気電池を説明する。   Hereinafter, a metal-air battery according to the present invention will be described with reference to the drawings.

図1Aに、本発明に係る金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第1の実施形態の構成を説明する側面模式図を示し、図1Bに、図1Aに示した金属空気電池における正極層のA−A断面の模式図を示す。   FIG. 1A is a schematic side view illustrating the configuration of the first embodiment of the positive electrode current collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector layer in the metal-air battery according to the present invention. FIG. 1B is a schematic diagram of the AA cross section of the positive electrode layer in the metal-air battery shown in FIG. 1A.

図1Aに示すように、本発明の第1の実施形態による金属空気電池10は、正極層1、負極層2、正極層1及び負極層2の間に配置された電解質層3、正極層1に隣接して電解質層3とは反対側に配置された正極集電体層4、並びに負極層2に隣接して電解質層3とは反対側に配置された負極集電体層5を備えている。図1A及び1Bに示すように、正極層1が、複数の柱状正極材19を含むことができ、正極層1の側面部に酸素供給口17を有し、正極層1中に酸素供給口17から連通する酸素拡散経路18を有している。   As shown in FIG. 1A, the metal-air battery 10 according to the first embodiment of the present invention includes a positive electrode layer 1, a negative electrode layer 2, an electrolyte layer 3 disposed between the positive electrode layer 1 and the negative electrode layer 2, and a positive electrode layer 1. A positive electrode current collector layer 4 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer, and a negative electrode current collector layer 5 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer 2. Yes. As shown in FIGS. 1A and 1B, the positive electrode layer 1 can include a plurality of columnar positive electrode materials 19. The positive electrode layer 1 has an oxygen supply port 17 on the side surface portion, and the oxygen supply port 17 is in the positive electrode layer 1. And an oxygen diffusion path 18 communicating with the gas.

複数の柱状正極材19は、柱状正極材19の柱軸が電解質層3及び正極集電体層4の互いに対向する面に垂直になるように、電解質層3及び正極集電体層4の間に配置され得る。複数の柱状正極材19間の空間が、酸素供給口17及び酸素供給口17から連通する酸素拡散経路18を形成することができる。   The plurality of columnar positive electrode materials 19 are arranged between the electrolyte layer 3 and the positive electrode current collector layer 4 so that the column axis of the columnar positive electrode material 19 is perpendicular to the mutually facing surfaces of the electrolyte layer 3 and the positive electrode current collector layer 4. Can be arranged. The space between the plurality of columnar positive electrode materials 19 can form the oxygen supply port 17 and the oxygen diffusion path 18 communicating with the oxygen supply port 17.

正極層1内に酸素拡散経路18が均一に形成されていることが好ましい。この場合、酸素ガスを正極材へ均一に供給しやすくなる。酸素ガスが正極材に均一に供給されると、利点の一つとして、負極金属酸化物の析出物の偏在を抑制することができる。酸素拡散経路18は正極層内において不均一に形成されていてもよい。酸素拡散経路18は、直線状及び/または曲線状の経路を有することができる。直線状の酸素拡散経路においては酸素ガスの通りが良くなるため、正極層内の少なくとも一部分において直線的な酸素拡散経路が形成されていてもよい。   It is preferable that the oxygen diffusion path 18 is uniformly formed in the positive electrode layer 1. In this case, it becomes easy to uniformly supply oxygen gas to the positive electrode material. When oxygen gas is uniformly supplied to the positive electrode material, as one advantage, uneven distribution of the negative electrode metal oxide precipitates can be suppressed. The oxygen diffusion path 18 may be formed unevenly in the positive electrode layer. The oxygen diffusion path 18 can have a straight and / or curved path. In the linear oxygen diffusion path, oxygen gas can be easily passed. Therefore, a linear oxygen diffusion path may be formed in at least a part of the positive electrode layer.

酸素ガスを正極材へ均一に供給するために、柱状正極材19は等間隔で並んでいることが好ましいが、等間隔で並んでいなくてもよい。また、複数の柱状正極材19の全てが互いに分離されていることが好ましいが、複数の柱状正極材19のいくつかが互いに接していてもよい。   In order to uniformly supply oxygen gas to the positive electrode material, the columnar positive electrode materials 19 are preferably arranged at equal intervals, but may not be arranged at equal intervals. Moreover, although it is preferable that all of the plurality of columnar positive electrode materials 19 are separated from each other, some of the plurality of columnar positive electrode materials 19 may be in contact with each other.

酸素ガスを正極材へ均一に供給するために、柱状正極材19は、正円柱、半円柱、若しくは1/4円柱、または楕円柱形状等の円柱形状であることが好ましいが、円柱形状に限られず、角柱形状、またはこれらの複合形状等、任意の形状の柱状正極材であることができる。また、複数の柱状正極材19は、それぞれが異なる形状の柱状正極材であってもよい。図1A及び1Bに模式的に示した金属空気電池10における正極材19は、正円柱及び半円柱を含んでいる。   In order to uniformly supply oxygen gas to the positive electrode material, the columnar positive electrode material 19 is preferably in the shape of a cylinder such as a regular cylinder, a half cylinder, a quarter cylinder, or an elliptic cylinder, but is not limited to a column shape. However, it may be a columnar positive electrode material having an arbitrary shape such as a prismatic shape or a composite shape thereof. The plurality of columnar positive electrode materials 19 may be columnar positive electrode materials having different shapes. The positive electrode material 19 in the metal air battery 10 schematically shown in FIGS. 1A and 1B includes a regular cylinder and a semi-cylinder.

第1の実施形態による金属空気電池10によれば、正極材料と酸素との接触面積を大きくすることができるので、正極材料への酸素の溶解量が増大し、金属空気電池の出力を向上することができる。また、酸素ガスを均一に正極材料に供給することができるので、正規出物の偏析による目詰まりを抑制することができ、金属空気電池の特性が安定しやすい。また、正極層が、正極と酸素拡散層とを兼用した構造を有するため、電池体積の低減及び部品点数の低減が可能となり、エネルギー密度の向上及びコストの低減を図ることができる。   According to the metal-air battery 10 according to the first embodiment, since the contact area between the positive electrode material and oxygen can be increased, the amount of dissolved oxygen in the positive electrode material is increased, and the output of the metal-air battery is improved. be able to. Moreover, since oxygen gas can be uniformly supplied to the positive electrode material, clogging due to segregation of regular products can be suppressed, and the characteristics of the metal-air battery are easily stabilized. In addition, since the positive electrode layer has a structure that serves as both the positive electrode and the oxygen diffusion layer, it is possible to reduce the battery volume and the number of parts, thereby improving the energy density and reducing the cost.

また、第1の実施形態による金属空気電池10によれば、正極層がその側面に酸素供給口を有しているため、正極層の上面に配置する集電体として、メッシュ状などの特殊な集電体を用いなければならないという制約がない。メッシュ状集電体を用いて正極層の上面から酸素を正極内に取り込む従来構造の金属空気電池の場合、メッシュの片当たりによってセルの拘束力が不均一になりやすく、また、メッシュの孔を通じて正極層に一方向に酸素ガスを送る構造のため正極層及び正極集電体層内において酸素ガス濃度が不均一になりやすく、負極金属酸化物の析出物が正極層、正極集電体層、または正極層及び正極集電体層の界面等に偏析しやすく目詰まりしやすいといった問題がある。これに対して、第1の実施形態による金属空気電池によれば、正極層の側面部から酸素ガスを取り入れることができるため、板状、箔状等の連続体である通常の集電体を使用することができ、セルの拘束力をより均一化することができ、また、正極層内の酸素ガス濃度をより均一化することができ、正極における目詰まり抑制、負極におけるデンドライト抑制、サイクル性向上、及びコスト低減等を図ることができる。   In addition, according to the metal-air battery 10 according to the first embodiment, since the positive electrode layer has an oxygen supply port on its side surface, the current collector disposed on the upper surface of the positive electrode layer has a special shape such as a mesh shape. There is no restriction that a current collector must be used. In the case of a metal-air battery having a conventional structure in which oxygen is taken into the positive electrode from the upper surface of the positive electrode layer using a mesh current collector, the cell binding force tends to be non-uniform due to contact with the mesh pieces, and through the mesh holes. Due to the structure in which oxygen gas is sent in one direction to the positive electrode layer, the oxygen gas concentration tends to be non-uniform in the positive electrode layer and the positive electrode current collector layer, and the deposit of the negative electrode metal oxide is positive electrode layer, positive electrode current collector layer, Alternatively, there is a problem that segregation is likely to occur at the interface between the positive electrode layer and the positive electrode current collector layer and clogging is likely to occur. On the other hand, according to the metal-air battery according to the first embodiment, oxygen gas can be taken in from the side surface portion of the positive electrode layer. Therefore, a normal current collector that is a continuous body such as a plate shape or a foil shape is used. Can be used, the cell binding force can be made more uniform, the oxygen gas concentration in the positive electrode layer can be made more uniform, clogging suppression in the positive electrode, dendrite suppression in the negative electrode, cycleability Improvement and cost reduction can be achieved.

さらに、第1の実施形態による金属空気電池によれば、正極層が単層で構成されるため、正極層内に接触界面がなく、正極層内での優れた負極金属イオン輸送性を得やすい。   Furthermore, according to the metal-air battery according to the first embodiment, since the positive electrode layer is composed of a single layer, there is no contact interface in the positive electrode layer, and it is easy to obtain excellent negative electrode metal ion transportability in the positive electrode layer. .

図2Aに、本発明に係る金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第2の実施形態の構成を説明する側面模式図を示し、図2Bに、図2Aに示した金属空気電池における正極層のB−B断面の模式図を示す。   FIG. 2A is a schematic side view illustrating the configuration of the second embodiment of the positive electrode current collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector layer in the metal-air battery according to the present invention. FIG. 2B shows a schematic diagram of a BB cross section of the positive electrode layer in the metal-air battery shown in FIG. 2A.

図2Aに示すように、本発明の第2の実施形態による金属空気電池20は、正極層1、負極層2、正極層1及び負極層2の間に配置された電解質層3、正極層1に隣接して電解質層3とは反対側に配置された正極集電体層4、並びに負極層2に隣接して電解質層3とは反対側に配置された負極集電体層5を備えている。図2A及び2Bに示すように、正極層1が、柱状体部分及び連続体部分を有する正極材29を含むことができ、正極層1の側面部に酸素供給口27を有し、正極層1中に酸素供給口27から連通する酸素拡散経路28を有している。そして、正極層1中における酸素供給口27及び酸素拡散経路28の密度が電解質層3側の領域よりも正極集電体層4側の領域において高くなるように、正極材29並びに酸素供給口27及び酸素拡散経路28が形成されている。   As shown in FIG. 2A, the metal-air battery 20 according to the second embodiment of the present invention includes a positive electrode layer 1, a negative electrode layer 2, a positive electrode layer 1, and an electrolyte layer 3 disposed between the positive electrode layer 1 and the positive electrode layer 1. A positive electrode current collector layer 4 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer, and a negative electrode current collector layer 5 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer 2. Yes. As shown in FIGS. 2A and 2B, the positive electrode layer 1 can include a positive electrode material 29 having a columnar body portion and a continuous body portion, and has an oxygen supply port 27 on the side surface portion of the positive electrode layer 1. An oxygen diffusion path 28 communicating from the oxygen supply port 27 is provided inside. The positive electrode material 29 and the oxygen supply port 27 are so arranged that the density of the oxygen supply port 27 and the oxygen diffusion path 28 in the positive electrode layer 1 is higher in the region on the positive electrode current collector layer 4 side than in the region on the electrolyte layer 3 side. And an oxygen diffusion path 28 is formed.

一態様において、正極層1中における酸素供給口27及び酸素拡散経路28が、正極集電体層4に接し、且つ電解質層3には接しないように形成され得る。正極材29は、図2AのB−B線の断面においては図2Bに示すように複数の円柱形状を有して酸素拡散経路28を画定し、且つ電解質層3に接する領域では連続体構造を有することができ、正極層1と電解質層3との界面において、正極材29と電解質層3とが、界面の全面にわたって接することができる。   In one embodiment, the oxygen supply port 27 and the oxygen diffusion path 28 in the positive electrode layer 1 may be formed so as to be in contact with the positive electrode current collector layer 4 and not in contact with the electrolyte layer 3. The positive electrode material 29 has a plurality of columnar shapes as shown in FIG. 2B in the cross section taken along the line BB in FIG. 2A to define the oxygen diffusion path 28 and a continuous structure in the region in contact with the electrolyte layer 3. The positive electrode material 29 and the electrolyte layer 3 can be in contact with the entire surface of the interface at the interface between the positive electrode layer 1 and the electrolyte layer 3.

正極材29は、複数の円柱部分の柱軸が電解質層3及び正極集電体層4の互いに対向する面に垂直になるように、電解質層3及び正極集電体層4の間に配置され得る。複数の円柱部分は、少なくとも一部が互いに分離されて、酸素供給口27及び酸素供給口27から連通する酸素拡散経路28を形成することができる。   The positive electrode material 29 is disposed between the electrolyte layer 3 and the positive electrode current collector layer 4 so that the column axes of the plurality of cylindrical portions are perpendicular to the surfaces of the electrolyte layer 3 and the positive electrode current collector layer 4 facing each other. obtain. The plurality of cylindrical portions can be separated at least partially from each other to form the oxygen supply port 27 and the oxygen diffusion path 28 communicating from the oxygen supply port 27.

正極材29の円柱部分は、空気を均一に正極材に供給するために正円柱、半円柱、若しくは1/4円柱、または楕円柱形状等の円柱形状であることが好ましいが、円柱形状に限られず、角柱形状、またはこれらの複合形状等、任意の形状の柱状正極材であることができる。また、正極材29の複数の円柱部分は、それぞれが異なる形状の柱状正極材であってもよい。図2A及び2Bに模式的に示した金属空気電池20における正極材29は、正円柱及び半円柱を含んでいる。   The cylindrical portion of the positive electrode material 29 is preferably a cylindrical shape such as a regular cylinder, a half cylinder, a quarter cylinder, or an elliptic cylinder in order to uniformly supply air to the positive electrode material. However, it may be a columnar positive electrode material having an arbitrary shape such as a prismatic shape or a composite shape thereof. Further, the plurality of cylindrical portions of the positive electrode material 29 may be columnar positive electrode materials having different shapes. The positive electrode material 29 in the metal-air battery 20 schematically shown in FIGS. 2A and 2B includes a regular cylinder and a semi-cylinder.

第2の実施形態による金属空気電池によれば、上述の第1の実施形態による金属空気電池による効果に加えて、正極材と電解質層との接触面積を大きくすることができることから、電解質層と正極層との間の負極金属イオン伝導性の向上及び均一化を図ることができる。   According to the metal-air battery according to the second embodiment, in addition to the effect of the metal-air battery according to the first embodiment described above, the contact area between the positive electrode material and the electrolyte layer can be increased. The negative electrode metal ion conductivity with the positive electrode layer can be improved and uniformized.

図3Aに、本発明に係る金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第3の実施形態の構成を説明する側面模式図を示し、図3Bに、図3Aに示した金属空気電池における正極層のC−C断面の模式図を示す。   FIG. 3A is a schematic side view illustrating the configuration of the third embodiment of the positive electrode current collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector layer in the metal-air battery according to the present invention. FIG. 3B shows a schematic diagram of a CC cross section of the positive electrode layer in the metal-air battery shown in FIG. 3A.

図3Aに示すように、本発明の第3の実施形態による金属空気電池30は、正極層1、負極層2、正極層1及び負極層2の間に配置された電解質層3、正極層1に隣接して電解質層3とは反対側に配置された正極集電体層4、並びに負極層2に隣接して電解質層3とは反対側に配置された負極集電体層5を備えている。図3A及び3Bに示すように、正極層1が、柱状体部分及び連続体部分を有する正極材39を含むことができ、正極層1の側面部に酸素供給口37を有し、正極層1中に酸素供給口37から連通する酸素拡散経路38を有している。そして、正極層1中における酸素供給口37及び酸素拡散経路38の密度が、正極集電体層4側の領域よりも電解質層3側の領域において高くなるように形成されている。   As shown in FIG. 3A, the metal-air battery 30 according to the third embodiment of the present invention includes a positive electrode layer 1, a negative electrode layer 2, a positive electrode layer 1, and an electrolyte layer 3 disposed between the positive electrode layer 1 and the positive electrode layer 1. A positive electrode current collector layer 4 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer, and a negative electrode current collector layer 5 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer 2. Yes. As shown in FIGS. 3A and 3B, the positive electrode layer 1 can include a positive electrode material 39 having a columnar body portion and a continuous body portion, and has an oxygen supply port 37 on the side surface portion of the positive electrode layer 1. An oxygen diffusion path 38 communicating from the oxygen supply port 37 is provided therein. The density of the oxygen supply port 37 and the oxygen diffusion path 38 in the positive electrode layer 1 is formed to be higher in the region on the electrolyte layer 3 side than in the region on the positive electrode current collector layer 4 side.

一態様において、正極層1中における酸素供給口37及び酸素拡散経路38が、電解質層3に接し、且つ正極集電体層4には接しないように形成され得る。正極材39は、図3AのC−C線の断面においては、図3Bに示すように、複数の円柱形状を有して酸素拡散経路38を画定し、且つ正極集電体層4に接する領域では連続体構造を有することができる。   In one embodiment, the oxygen supply port 37 and the oxygen diffusion path 38 in the positive electrode layer 1 may be formed so as to be in contact with the electrolyte layer 3 and not in contact with the positive electrode current collector layer 4. As shown in FIG. 3B, the positive electrode material 39 has a plurality of columnar shapes, defines an oxygen diffusion path 38, and is in contact with the positive electrode current collector layer 4 in the cross section taken along the line CC in FIG. 3A. Then, it can have a continuum structure.

正極材39は、複数の円柱部分の柱軸が電解質層3及び正極集電体層4の互いに対向する面に垂直になるように、電解質層3及び正極集電体層4の間に配置され得る。複数の円柱部分は、少なくとも一部が互いに分離されて、酸素供給口37及び酸素供給口37から連通する酸素拡散経路38を形成することができる。   The positive electrode material 39 is disposed between the electrolyte layer 3 and the positive electrode current collector layer 4 so that the column axes of the plurality of cylindrical portions are perpendicular to the surfaces of the electrolyte layer 3 and the positive electrode current collector layer 4 facing each other. obtain. The plurality of cylindrical portions can be separated at least partially from each other to form an oxygen supply port 37 and an oxygen diffusion path 38 communicating with the oxygen supply port 37.

正極材39の円柱部分は、空気を均一に正極材に供給するために正円柱、半円柱、若しくは1/4円柱、または楕円柱形状等の円柱形状であることが好ましいが、円柱形状に限られず、角柱形状、またはこれらの複合形状等、任意の形状の柱状正極材であることができる。また、正極材39の複数の円柱部分は、それぞれが異なる形状の柱状正極材であってもよい。図3A及び3Bに模式的に示した金属空気電池30における正極材39は、正円柱及び半円柱を含んでいる。   The cylindrical portion of the positive electrode material 39 is preferably a cylindrical shape such as a regular cylinder, a semi-column, a quarter cylinder, or an elliptic cylinder in order to uniformly supply air to the positive electrode material. However, it may be a columnar positive electrode material having an arbitrary shape such as a prismatic shape or a composite shape thereof. Further, the plurality of columnar portions of the positive electrode material 39 may be columnar positive electrode materials each having a different shape. The positive electrode material 39 in the metal-air battery 30 schematically shown in FIGS. 3A and 3B includes a regular cylinder and a semi-cylinder.

第3の実施形態による金属空気電池によれば、上述の第1の実施形態による金属空気電池による効果に加えて、正極材と集電体層との接触面積を大きくすることができることから、正極層と集電体層との間の電子伝導性の向上及び均一化を図ることができる。   According to the metal-air battery according to the third embodiment, in addition to the effects of the metal-air battery according to the first embodiment described above, the contact area between the positive electrode material and the current collector layer can be increased. The electron conductivity between the layer and the current collector layer can be improved and uniformized.

図4Aに、本発明に係る金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第4の実施形態の構成を説明する側面模式図を示し、図4Bに、図4Aに示した金属空気電池における正極層のD−D断面の模式図を示す。   FIG. 4A is a schematic side view illustrating the configuration of the fourth embodiment of the positive electrode current collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector layer in the metal-air battery according to the present invention. 4B shows a schematic diagram of a DD cross section of the positive electrode layer in the metal-air battery shown in FIG. 4A.

図4Aに示すように、本発明の第4の実施形態による金属空気電池40は、正極層1、負極層2、正極層1及び負極層2の間に配置された電解質層3、正極層1に隣接して電解質層3とは反対側に配置された正極集電体層4、並びに負極層2に隣接して電解質層3とは反対側に配置された負極集電体層5を備えている。図4A及び4Bに示すように、正極層1が、柱状体部分及び連続体部分を有する正極材49を含むことができ、正極層1の側面部に酸素供給口47を有し、正極層1中に酸素供給口47から連通する酸素拡散経路48を有している。そして、正極層1中における酸素供給口47及び酸素拡散経路48の密度が、電解質層3側及び正極集電体層4側の領域よりも、正極層1の略中央部において高くなるように形成されている。   As shown in FIG. 4A, the metal-air battery 40 according to the fourth embodiment of the present invention includes a positive electrode layer 1, a negative electrode layer 2, a positive electrode layer 1, and an electrolyte layer 3 disposed between the positive electrode layer 1 and the positive electrode layer 1. A positive electrode current collector layer 4 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer, and a negative electrode current collector layer 5 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer 2. Yes. As shown in FIGS. 4A and 4B, the positive electrode layer 1 can include a positive electrode material 49 having a columnar body portion and a continuous body portion, and has an oxygen supply port 47 on the side surface portion of the positive electrode layer 1. An oxygen diffusion path 48 communicating from the oxygen supply port 47 is provided therein. Further, the density of the oxygen supply port 47 and the oxygen diffusion path 48 in the positive electrode layer 1 is formed so as to be higher in the substantially central portion of the positive electrode layer 1 than the regions on the electrolyte layer 3 side and the positive electrode current collector layer 4 side. Has been.

一態様において、正極層1中における酸素供給口47及び酸素拡散経路48が、電解質層3及び正極集電体層4に接しないように形成され得る。正極材49は、図4AのD−D線の断面において、図4Bに示すように、複数の円柱形状を有して酸素拡散経路48を画定し、且つ電解質層3及び正極集電体層4に接する領域では連続体構造を有することができる。   In one aspect, the oxygen supply port 47 and the oxygen diffusion path 48 in the positive electrode layer 1 may be formed so as not to contact the electrolyte layer 3 and the positive electrode current collector layer 4. As shown in FIG. 4B, the positive electrode material 49 has a plurality of columnar shapes in the cross section taken along the line DD in FIG. 4A to define the oxygen diffusion path 48, and the electrolyte layer 3 and the positive electrode current collector layer 4. The region in contact with can have a continuum structure.

正極材49は、複数の円柱部分の柱軸が電解質層3及び正極集電体層4の互いに対向する面に垂直になるように、電解質層3及び正極集電体層4の間に配置され得る。複数の円柱部分は、少なくとも一部が互いに分離されて、酸素供給口47及び酸素供給口47から連通する酸素拡散経路48を形成することができる。   The positive electrode material 49 is disposed between the electrolyte layer 3 and the positive electrode current collector layer 4 so that the column axes of the plurality of cylindrical portions are perpendicular to the surfaces of the electrolyte layer 3 and the positive electrode current collector layer 4 facing each other. obtain. The plurality of cylindrical portions can be separated at least partially from each other to form an oxygen supply port 47 and an oxygen diffusion path 48 communicating with the oxygen supply port 47.

正極材49の円柱部分は、空気を均一に正極材に供給するために正円柱、半円柱、若しくは1/4円柱、または楕円柱形状等の円柱形状であることが好ましいが、円柱形状に限られず、角柱形状、またはこれらの複合形状等、任意の形状の柱状正極材であることができる。また、正極材49の複数の円柱部分は、それぞれが異なる形状の柱状正極材であってもよい。図4A及び4Bに模式的に示した金属空気電池40における正極材49は、正円柱及び半円柱を含んでいる。   The cylindrical portion of the positive electrode material 49 is preferably a cylindrical shape such as a regular cylinder, a half cylinder, a quarter cylinder, or an elliptic cylinder in order to uniformly supply air to the positive electrode material. However, it may be a columnar positive electrode material having an arbitrary shape such as a prismatic shape or a composite shape thereof. Further, the plurality of cylindrical portions of the positive electrode material 49 may be columnar positive electrode materials each having a different shape. The positive electrode material 49 in the metal air battery 40 schematically shown in FIGS. 4A and 4B includes a regular cylinder and a semi-cylinder.

第4の実施形態による金属空気電池によれば、上述の第1の実施形態による金属空気電池による効果に加えて、正極材と電解質層との接触面積を大きくすることができ、且つ正極材と集電体層との接触面積を大きくすることができることから、電解質層と正極層との間の負極金属イオン伝導性の向上及び均一化と、正極層と集電体層との間の電子伝導性の向上及び均一化とを図ることができる。さらに、板状または箔状の集電体を用いた場合に、セルの拘束力をより均一にかけやすい。   According to the metal-air battery according to the fourth embodiment, in addition to the effects of the metal-air battery according to the first embodiment described above, the contact area between the positive electrode material and the electrolyte layer can be increased, and Since the contact area with the current collector layer can be increased, improvement and homogenization of the negative electrode metal ion conductivity between the electrolyte layer and the positive electrode layer, and electron conduction between the positive electrode layer and the current collector layer Improvement and uniformity can be achieved. Furthermore, when a plate-shaped or foil-shaped current collector is used, the cell restraining force can be more uniformly applied.

第1〜4の実施形態による金属空気電池において、酸素ガスを正極材に均一に供給するために、酸素供給口は正極層の全ての側面に均一に形成されていることが好ましく、例えば電池が直方体形状の場合、4つの正極側面の全てに均一に酸素供給口が形成されていることが好ましく、電池が円柱形状の場合、曲面形状である正極側面に均一に酸素供給口が形成されていることが好ましい。ただし、酸素供給口は正極層の側面の一部のみに形成されていてもよく、例えば電池が直方体形状の場合、4つの正極側面のうち対向する2面に酸素供給口が形成されていてもよい。   In the metal-air batteries according to the first to fourth embodiments, in order to uniformly supply oxygen gas to the positive electrode material, the oxygen supply ports are preferably formed uniformly on all side surfaces of the positive electrode layer. In the case of a rectangular parallelepiped shape, it is preferable that the oxygen supply ports are uniformly formed on all of the four positive electrode side surfaces. When the battery has a cylindrical shape, the oxygen supply ports are uniformly formed on the positive electrode side surface having a curved shape. It is preferable. However, the oxygen supply port may be formed only on a part of the side surface of the positive electrode layer. For example, when the battery has a rectangular parallelepiped shape, the oxygen supply port may be formed on two opposing surfaces of the four positive electrode side surfaces. Good.

図5に、本発明に係る金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第5の実施形態の構成を説明する正面及び側面模式図を示す。   FIG. 5 is a schematic front and side view illustrating the configuration of the fifth embodiment of the positive electrode current collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector layer in the metal-air battery according to the present invention. Indicates.

図5に示すように、本発明の第5の実施形態による金属空気電池は、正極層1、負極層2、正極層1及び負極層2の間に配置された電解質層3、正極層1に隣接して電解質層3とは反対側に配置された正極集電体層4、並びに負極層2に隣接して電解質層3とは反対側に配置された負極集電体層5を備えている。正極層1が、複数の柱状正極材59を含むことができ、正極層1の側面部に酸素供給口57を有し、正極層1中に酸素供給口57から連通する酸素拡散経路58を有している。   As shown in FIG. 5, the metal-air battery according to the fifth embodiment of the present invention includes a positive electrode layer 1, a negative electrode layer 2, an electrolyte layer 3 disposed between the positive electrode layer 1 and the negative electrode layer 2, and a positive electrode layer 1. A positive electrode current collector layer 4 disposed adjacent to the opposite side of the electrolyte layer 3 and a negative electrode current collector layer 5 disposed adjacent to the negative electrode layer 2 and opposite to the electrolyte layer 3 are provided. . The positive electrode layer 1 can include a plurality of columnar positive electrode materials 59. The positive electrode layer 1 has an oxygen supply port 57 on a side surface portion thereof, and an oxygen diffusion path 58 that communicates from the oxygen supply port 57 in the positive electrode layer 1. doing.

正極材59は、柱状正極材59の柱軸が電解質層3及び正極集電体層4の互いに対向する面に並行になり、且つ互いの柱軸が並行になるように、電解質層3及び正極集電体層4の間に配置され得る。複数の柱状正極材59間の隙間が、酸素供給口57及び酸素供給口57から連通する酸素拡散経路58を形成することができる。   The positive electrode material 59 includes the electrolyte layer 3 and the positive electrode material such that the column axes of the columnar positive electrode material 59 are parallel to the surfaces of the electrolyte layer 3 and the positive electrode current collector layer 4 facing each other and the column axes of the positive electrode material 59 are parallel to each other. It can be disposed between the current collector layers 4. A gap between the plurality of columnar positive electrode members 59 can form the oxygen supply port 57 and the oxygen diffusion path 58 communicating with the oxygen supply port 57.

酸素ガスを正極材へ均一に供給するために、柱状正極材59は、正円柱、半円柱、若しくは1/4円柱、または楕円柱形状等の円柱形状であることが好ましいが、円柱形状に限られず、酸素拡散経路58を形成することができるものであれば、角柱形状、またはこれらの複合形状等、任意の形状の柱状正極材であることができる。柱状正極材59は中空形状であることもできる。また、複数の柱状正極材59は、それぞれが異なる形状の柱状正極材であってもよい。図5に模式的に示した金属空気電池50における正極材59は、正円柱及び半円柱を含んでいる。   In order to uniformly supply oxygen gas to the positive electrode material, the columnar positive electrode material 59 is preferably in the shape of a cylinder such as a regular cylinder, a half cylinder, a quarter cylinder, or an elliptic cylinder, but is not limited to a column shape. However, as long as the oxygen diffusion path 58 can be formed, a columnar positive electrode material having an arbitrary shape such as a prismatic shape or a composite shape thereof can be used. The columnar positive electrode material 59 may be hollow. Further, the plurality of columnar positive electrode materials 59 may be columnar positive electrode materials having different shapes. The positive electrode material 59 in the metal-air battery 50 schematically shown in FIG. 5 includes a regular cylinder and a semi-cylinder.

第5の実施形態による金属空気電池によれば、上述の第1の実施形態による金属空気電池による効果と同様の効果を得ることができ、さらに、複数の柱状正極材が電解質層3及び正極集電体層4の互いに対向する面に並行に配置されているため、弾力性に優れ、充放電に伴う電池の膨張収縮を緩和することができ、電池の耐久性を向上することができる。   According to the metal-air battery according to the fifth embodiment, the same effect as that obtained by the metal-air battery according to the first embodiment described above can be obtained, and the plurality of columnar positive electrode materials can be used as the electrolyte layer 3 and the positive electrode collector. Since it arrange | positions in parallel with the mutually opposing surface of the electric body layer 4, it is excellent in elasticity, can expand / contract the expansion / contraction of the battery accompanying charging / discharging, and can improve durability of a battery.

図6に、本発明に係る金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第6の実施形態の構成を説明する正面及び側面模式図を示す。   FIG. 6 is a schematic front and side view illustrating the configuration of the sixth embodiment of the positive electrode current collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector layer in the metal-air battery according to the present invention. Indicates.

図6に示すように、本発明の第6の実施形態による金属空気電池60は、正極層1、負極層2、正極層1及び負極層2の間に配置された電解質層3、正極層1に隣接して電解質層3とは反対側に配置された正極集電体層4、並びに負極層2に隣接して電解質層3とは反対側に配置された負極集電体層5を備えている。正極層1が、複数の柱状正極材69を含むことができ、正極層1の側面部に酸素供給口67を有し、正極層1中に酸素供給口67から連通する酸素拡散経路68を有している。   As shown in FIG. 6, the metal-air battery 60 according to the sixth embodiment of the present invention includes a positive electrode layer 1, a negative electrode layer 2, an electrolyte layer 3 disposed between the positive electrode layer 1 and the negative electrode layer 2, and a positive electrode layer 1. A positive electrode current collector layer 4 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer, and a negative electrode current collector layer 5 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer 2. Yes. The positive electrode layer 1 can include a plurality of columnar positive electrode materials 69. The positive electrode layer 1 has an oxygen supply port 67 on a side surface portion thereof, and an oxygen diffusion path 68 that communicates from the oxygen supply port 67 in the positive electrode layer 1. doing.

図6に示すように、正極層1は複数の柱状正極材69を含み、電解質層3に接する正極材が半円柱状正極材であり、半円の平面部分が電解質層3に接している。   As shown in FIG. 6, the positive electrode layer 1 includes a plurality of columnar positive electrode materials 69, the positive electrode material in contact with the electrolyte layer 3 is a semi-columnar positive electrode material, and the planar portion of the semicircle is in contact with the electrolyte layer 3.

正極材69は、柱状正極材69の柱軸が電解質層3及び正極集電体層4の互いに対向する面に並行になり、且つ互いの柱軸が並行になるように、電解質層3及び正極集電体層4の間に配置され得る。複数の柱状正極材69間の隙間が、酸素供給口67及び酸素供給口67から連通する酸素拡散経路68を形成することができる。   The positive electrode material 69 includes the electrolyte layer 3 and the positive electrode so that the column axes of the columnar positive electrode material 69 are parallel to the surfaces of the electrolyte layer 3 and the positive electrode current collector layer 4 facing each other and the column axes of the columnar positive electrode material 69 are parallel to each other. It can be disposed between the current collector layers 4. A gap between the plurality of columnar positive electrode materials 69 can form an oxygen supply path 67 and an oxygen diffusion path 68 communicating with the oxygen supply port 67.

酸素ガスを正極材へ均一に供給するために、柱状正極材69は、正円柱、半円柱、若しくは1/4円柱、または楕円柱形状等の円柱形状であることが好ましいが、円柱形状に限られず、酸素拡散経路68を形成することができるものであれば、角柱形状、またはこれらの複合形状等、任意の形状の柱状正極材であることができる。柱状正極材69は中空形状であることもできる。また、複数の柱状正極材69は、それぞれが異なる形状の柱状正極材であってもよい。図6に模式的に示した金属空気電池60における正極材69は、正円柱、半円柱、及び1/4円柱を含んでいる。   In order to uniformly supply the oxygen gas to the positive electrode material, the columnar positive electrode material 69 is preferably a columnar shape such as a regular cylinder, a semi-cylinder, a quarter cylinder, or an elliptic cylinder, but is not limited to a columnar shape. However, as long as the oxygen diffusion path 68 can be formed, a columnar positive electrode material having an arbitrary shape such as a prismatic shape or a composite shape thereof can be used. The columnar positive electrode material 69 may be hollow. Further, the plurality of columnar positive electrode materials 69 may be columnar positive electrode materials having different shapes. The positive electrode material 69 in the metal-air battery 60 schematically shown in FIG. 6 includes a regular cylinder, a half cylinder, and a quarter cylinder.

第6の実施形態による金属空気電池によれば、上述の第5の実施形態による金属空気電池による効果に加えて、正極層と電解質層との間の接触面積が増加することから、正極層及び電解質層の間の接着性の向上及び、正極層及び電解質層の間の負極金属イオン輸送性の向上及び均一化を図ることができる。   According to the metal-air battery according to the sixth embodiment, in addition to the effects of the metal-air battery according to the fifth embodiment described above, the contact area between the positive electrode layer and the electrolyte layer is increased. It is possible to improve the adhesion between the electrolyte layers and to improve and make uniform the negative electrode metal ion transportability between the positive electrode layer and the electrolyte layer.

図7に、本発明に係る金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第7の実施形態の構成を説明する正面及び側面模式図を示す。   FIG. 7 is a schematic front and side view illustrating the configuration of the seventh embodiment of the positive electrode current collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector layer in the metal-air battery according to the present invention. Indicates.

図7に示すように、本発明の第7の実施形態による金属空気電池70は、正極層1、負極層2、正極層1及び負極層2の間に配置された電解質層3、正極層1に隣接して電解質層3とは反対側に配置された正極集電体層4、並びに負極層2に隣接して電解質層3とは反対側に配置された負極集電体層5を備えている。正極層1が、複数の柱状正極材79を含むことができ、正極層1の側面部に酸素供給口77を有し、正極層1中に酸素供給口77から連通する酸素拡散経路78を有している。   As shown in FIG. 7, the metal-air battery 70 according to the seventh embodiment of the present invention includes a positive electrode layer 1, a negative electrode layer 2, an electrolyte layer 3 disposed between the positive electrode layer 1 and the negative electrode layer 2, and a positive electrode layer 1. A positive electrode current collector layer 4 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer, and a negative electrode current collector layer 5 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer 2. Yes. The positive electrode layer 1 can include a plurality of columnar positive electrode materials 79. The positive electrode layer 1 has an oxygen supply port 77 on the side surface thereof, and an oxygen diffusion path 78 communicating with the positive electrode layer 1 from the oxygen supply port 77. doing.

図7に示すように、正極層1は複数の柱状正極材79を含み、正極集電体層4に接する正極材が半円柱状正極材であり、半円の平面部分が正極集電体層4に接している。   As shown in FIG. 7, the positive electrode layer 1 includes a plurality of columnar positive electrode materials 79, the positive electrode material in contact with the positive electrode current collector layer 4 is a semi-cylindrical positive electrode material, and the flat portion of the semicircle is the positive electrode current collector layer 4 is in contact.

正極材79は、柱状正極材79の柱軸が電解質層3及び正極集電体層4の互いに対向する面に並行になり、且つ互いの柱軸が並行になるように、電解質層3及び正極集電体層4の間に配置され得る。複数の柱状正極材79間の隙間が、酸素供給口77及び酸素供給口77から連通する酸素拡散経路78を形成することができる。   The positive electrode material 79 includes the electrolyte layer 3 and the positive electrode so that the column axes of the columnar positive electrode material 79 are parallel to the surfaces of the electrolyte layer 3 and the positive electrode current collector layer 4 facing each other and the column axes of the positive electrode material 79 are parallel to each other. It can be disposed between the current collector layers 4. A gap between the plurality of columnar positive electrode materials 79 can form the oxygen supply port 77 and the oxygen diffusion path 78 communicating from the oxygen supply port 77.

酸素ガスを正極材へ均一に供給するために、柱状正極材79は、正円柱、半円柱、若しくは1/4円柱、または楕円柱形状等の円柱形状であることが好ましいが、円柱形状に限られず、酸素拡散経路78を形成することができるものであれば、角柱形状、またはこれらの複合形状等、任意の形状の柱状正極材であることができる。柱状正極材79は中空形状であることもできる。また、複数の柱状正極材79は、それぞれが異なる形状の柱状正極材であってもよい。図7に模式的に示した金属空気電池70における正極材79は、正円柱、半円柱、及び1/4円柱を含んでいる。   In order to uniformly supply oxygen gas to the positive electrode material, the columnar positive electrode material 79 is preferably in the shape of a cylinder such as a regular cylinder, a semi-column, a quarter cylinder, or an elliptic cylinder, but is not limited to a column shape. However, as long as the oxygen diffusion path 78 can be formed, a columnar positive electrode material having an arbitrary shape such as a prismatic shape or a composite shape thereof can be used. The columnar positive electrode material 79 may be hollow. Further, the plurality of columnar positive electrode materials 79 may be columnar positive electrode materials each having a different shape. The positive electrode material 79 in the metal-air battery 70 schematically shown in FIG. 7 includes a regular cylinder, a semi-cylinder, and a quarter cylinder.

第7の実施形態による金属空気電池によれば、上述の第5の実施形態による金属空気電池による効果に加えて、正極層と正極集電体層との間の接触面積が増加することから、正極層及び正極集電体層の間の接着性の向上及び、正極層及び正極集電体層の間の電子伝導性の向上及び均一化を図ることができる。   According to the metal-air battery according to the seventh embodiment, in addition to the effect of the metal-air battery according to the fifth embodiment described above, the contact area between the positive electrode layer and the positive electrode current collector layer is increased. The adhesion between the positive electrode layer and the positive electrode current collector layer can be improved, and the electron conductivity between the positive electrode layer and the positive electrode current collector layer can be improved and uniformized.

図8に、本発明に係る金属空気電池における、正極集電体層、正極層、電解質層、負極層、及び負極集電体層の第8の実施形態の構成を説明する正面及び側面模式図を示す。   FIG. 8 is a schematic front and side view illustrating the configuration of the eighth embodiment of the positive electrode current collector layer, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector layer in the metal-air battery according to the present invention. Indicates.

図8に示すように、本発明の第8の実施形態による金属空気電池80は、正極層1、負極層2、正極層1及び負極層2の間に配置された電解質層3、正極層1に隣接して電解質層3とは反対側に配置された正極集電体層4、並びに負極層2に隣接して電解質層3とは反対側に配置された負極集電体層5を備えている。正極層1が、複数の柱状正極材79を含むことができ、正極層1の側面部に酸素供給口87を有し、正極層1中に酸素供給口87から連通する酸素拡散経路88を有している。   As shown in FIG. 8, the metal-air battery 80 according to the eighth embodiment of the present invention includes a positive electrode layer 1, a negative electrode layer 2, a positive electrode layer 1, an electrolyte layer 3 disposed between the positive electrode layer 1 and the positive electrode layer 1. A positive electrode current collector layer 4 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer, and a negative electrode current collector layer 5 disposed on the opposite side of the electrolyte layer 3 adjacent to the negative electrode layer 2. Yes. The positive electrode layer 1 can include a plurality of columnar positive electrode materials 79. The positive electrode layer 1 has an oxygen supply port 87 on a side surface portion thereof, and an oxygen diffusion path 88 that communicates from the oxygen supply port 87 in the positive electrode layer 1. doing.

図8に示すように、正極層1は複数の柱状正極材89を含み、電解質層3及び正極集電体層4に接する正極材が半円柱状正極材であり、半円の平面部分が電解質層3及び正極集電体層4に接している。   As shown in FIG. 8, the positive electrode layer 1 includes a plurality of columnar positive electrode materials 89, the positive electrode material in contact with the electrolyte layer 3 and the positive electrode current collector layer 4 is a semi-cylindrical positive electrode material, and the planar portion of the semicircle is the electrolyte. It is in contact with the layer 3 and the positive electrode current collector layer 4.

正極材89は、柱状正極材89の柱軸が電解質層3及び正極集電体層4の互いに対向する面に並行になり、且つ互いの柱軸が並行になるように、電解質層3及び正極集電体層4の間に配置され得る。複数の柱状正極材89間の隙間が、酸素供給口87及び酸素供給口87から連通する酸素拡散経路88を形成することができる。   The positive electrode material 89 includes the electrolyte layer 3 and the positive electrode material 89 so that the column axes of the columnar positive electrode material 89 are parallel to the mutually facing surfaces of the electrolyte layer 3 and the positive electrode current collector layer 4. It can be disposed between the current collector layers 4. A gap between the plurality of columnar positive electrode members 89 can form the oxygen supply port 87 and the oxygen diffusion path 88 communicating with the oxygen supply port 87.

酸素ガスを正極材へ均一に供給するために、柱状正極材89は、正円柱、半円柱、若しくは1/4円柱、または楕円柱形状等の円柱形状であることが好ましいが、円柱形状に限られず、酸素拡散経路88を形成することができるものであれば、角柱形状、またはこれらの複合形状等、任意の形状の柱状正極材であることができる。柱状正極材89は中空形状であることもできる。また、複数の柱状正極材89は、それぞれが異なる形状の柱状正極材であってもよい。図8に模式的に示した金属空気電池80における正極材89は、正円柱、半円柱、及び1/4円柱を含んでいる。   In order to uniformly supply oxygen gas to the positive electrode material, the columnar positive electrode material 89 is preferably a columnar shape such as a regular cylinder, a semi-cylinder, a quarter cylinder, or an elliptic cylinder, but is not limited to a columnar shape. However, as long as the oxygen diffusion path 88 can be formed, a columnar positive electrode material having an arbitrary shape such as a prismatic shape or a composite shape thereof can be used. The columnar positive electrode material 89 may be hollow. Further, the plurality of columnar positive electrode materials 89 may be columnar positive electrode materials having different shapes. The positive electrode material 89 in the metal-air battery 80 schematically shown in FIG. 8 includes a regular cylinder, a half cylinder, and a quarter cylinder.

第8の実施形態による金属空気電池によれば、上述の第5の実施形態による金属空気電池による効果に加えて、正極層と電解質層との間の接触面積が増加することから、正極層及び電解質層の間の接着性の向上及び、正極層及び電解質層の間の負極金属イオン輸送性の向上及び均一化を図ることができ、並びに正極層と正極集電体層との間の接触面積が増加することから、正極層及び正極集電体層の間の接着性の向上及び、正極層及び正極集電体層の間の電子伝導性の向上及び均一化を図ることができる。さらに、板状または箔状の集電体を用いた場合に、セルの拘束力をより均一にかけやすい。   According to the metal-air battery according to the eighth embodiment, in addition to the effects of the metal-air battery according to the fifth embodiment described above, the contact area between the positive electrode layer and the electrolyte layer is increased. Improvement in adhesion between electrolyte layers, improvement and uniformity of negative electrode metal ion transportability between positive electrode layers and electrolyte layers, and contact area between positive electrode layers and positive electrode current collector layers Therefore, the adhesion between the positive electrode layer and the positive electrode current collector layer can be improved, and the electron conductivity between the positive electrode layer and the positive electrode current collector layer can be improved and made uniform. Furthermore, when a plate-shaped or foil-shaped current collector is used, the cell restraining force can be more uniformly applied.

本発明に係る金属空気電池に含まれる正極層は、正極層の体積を大きくすれば電池容量を増やすことができるが、概して、正極層の縦方向及び横方向の大きさは、自動車、携帯機器等の所望の用途に応じて決めることができ、正極層の厚みは容量と出力とのバランスを考慮して決めることができる。   The positive electrode layer included in the metal-air battery according to the present invention can increase the battery capacity by increasing the volume of the positive electrode layer. The thickness of the positive electrode layer can be determined in consideration of the balance between capacity and output.

正極層内の酸素拡散経路と正極材との体積比は所望の電池特性に応じて決定することができる。正極材の体積を大きくすれば電池容量を増やすことができ、酸素拡散経路の体積を大きくすれば電池出力を大きくすることができる。概して、正極層内において正極材の体積が酸素拡散経路の体積よりも大きくなるように配置することが好ましく、この場合、電池の容量を確保しつつ大きな出力を得やすくなる。   The volume ratio between the oxygen diffusion path in the positive electrode layer and the positive electrode material can be determined according to desired battery characteristics. The battery capacity can be increased by increasing the volume of the positive electrode material, and the battery output can be increased by increasing the volume of the oxygen diffusion path. Generally, it is preferable to arrange the positive electrode material so that the volume of the positive electrode material is larger than the volume of the oxygen diffusion path in the positive electrode layer. In this case, it is easy to obtain a large output while securing the capacity of the battery.

いずれの実施形態においても、酸素供給口から連通する酸素拡散経路は、直線状または非直線状であってもよい。正極材への酸素の供給を向上するという点で直線状が好ましく、酸素供給口から連通する酸素拡散経路のうちの少なくとも1つが好ましくは直線状である。   In any embodiment, the oxygen diffusion path communicating from the oxygen supply port may be linear or non-linear. A linear shape is preferable in terms of improving supply of oxygen to the positive electrode material, and at least one of oxygen diffusion paths communicating from the oxygen supply port is preferably linear.

本発明に係る金属空気電池においては、酸素供給口を正極層の側面に備えているため、正極層の上面に配置する集電体として、メッシュ状の集電体を用いる必要性がなく、板状、箔状等の集電体を用いることができる。メッシュ状等の多孔体の集電体に比べて、箔状等の集電体を用いる場合、セルの拘束力のばらつきを低減することができる。   In the metal-air battery according to the present invention, since the oxygen supply port is provided on the side surface of the positive electrode layer, there is no need to use a mesh current collector as the current collector disposed on the upper surface of the positive electrode layer. Or foil-like current collectors can be used. In the case of using a foil-like current collector as compared with a mesh-like porous current collector, variation in binding force of cells can be reduced.

いずれの実施形態においても、正極層に含まれる正極材は、導電材を含むことができる。導電材としては、特に限定されないが、例えばカーボンが挙げられ、カーボンとしては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、メソポーラスカーボン等のカーボンブラック、活性炭、カーボン炭素繊維等が挙げられ、比表面積の大きいカーボン材料が好ましく用いられる。   In any embodiment, the positive electrode material included in the positive electrode layer may include a conductive material. The conductive material is not particularly limited, and examples thereof include carbon. Examples of the carbon include carbon black such as ketjen black, acetylene black, channel black, furnace black, and mesoporous carbon, activated carbon, carbon carbon fiber, and the like. A carbon material having a large specific surface area is preferably used.

正極材は触媒を含んでもよい。触媒としては、負極金属及び酸素の酸化還元触媒として機能するものを用いることができ、特に限定されないが、例えば、二酸化マンガン、酸化コバルト、酸化セリウム等の金属酸化物、Pt、Pd等の貴金属、Co等の遷移金属、コバルトフタロシアニン等の金属フタロシアニン等が挙げられる。   The positive electrode material may contain a catalyst. The catalyst can be a negative electrode metal and one that functions as an oxygen redox catalyst, and is not particularly limited. For example, metal oxides such as manganese dioxide, cobalt oxide, and cerium oxide, noble metals such as Pt and Pd, Examples thereof include transition metals such as Co and metal phthalocyanines such as cobalt phthalocyanine.

正極材は電解質を含んでもよい。電解質としては、正極層及び負極層の間で金属イオンの伝導を行うものであり、負極層の金属種に応じたイオン伝導性を示す材料であれば、液体電解質、固体電解質、ゲル状電解質、ポリマー電解質、またはそれらの組み合わせを使用することができる。   The positive electrode material may include an electrolyte. As the electrolyte, it conducts metal ions between the positive electrode layer and the negative electrode layer, and a liquid electrolyte, a solid electrolyte, a gel electrolyte, as long as the material exhibits ion conductivity according to the metal species of the negative electrode layer, Polymer electrolytes, or combinations thereof, can be used.

液体電解質としては、特に限定されないが、有機電解液、イオン液体等、通常用いられる液体電解質を用いることができる。イオン液体としては、例えば酸素ラジカル耐性が高い溶媒及びリチウム塩を混合したイオン液体を用いることが好ましく、例えばN−メチル−N−プロピルピペリジニウムビストリフルオロメタンスルフォニルアミドと、リチウムビストリフルオロメタンスルフォニルアミドとを混合したイオン液体等が挙げられる。   Although it does not specifically limit as a liquid electrolyte, Usually used liquid electrolytes, such as an organic electrolyte solution and an ionic liquid, can be used. As the ionic liquid, for example, an ionic liquid in which a solvent having high oxygen radical resistance and a lithium salt are mixed is preferably used. For example, N-methyl-N-propylpiperidinium bistrifluoromethanesulfonylamide and lithium bistrifluoromethanesulfonylamide are used. An ionic liquid mixed with and the like.

固体電解質としては、特に限定されないが、例えば、Li2S−SiS2、LiI−Li2S−SiS2、LiI−Li2S−P25、LiI−Li2S−B23、Li3PO4−Li2S−Si2S、Li3PO4−Li2S−SiS2、LiPO4−Li2S−SiS、LiI−Li2S−P25、LiI−Li3PO4−P25、若しくはLi2S−P25等の硫化物系固体電解質、Li2O−B23−P25、Li2O−SiO2、Li2O−B23、若しくはLi2O−B23−ZnO等の酸化物系非晶質固体電解質、Li1.3Al0.3Ti0.7(PO43、Li1+x+yxTi2-xSiy3-y12(Aは、AlまたはGa、0≦x≦0.4、0<y≦0.6)、[(B1/2Li1/21-zz]TiO3(Bは、La、Pr、Nd、またはSm、CはSrまたはBa、0≦z≦0.5)、Li5La3Ta212、Li7La3Zr212、Li6BaLa2Ta212、若しくはLi3.6Si0.60.44等の結晶質酸化物、Li3PO(4-3/2w)w(w<1)等の結晶質酸窒化物、またはLiI、LiI−Al23、Li3N、若しくはLi3N−LiI−LiOH等が挙げられる。 The solid electrolyte is not particularly limited, for example, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-B 2 S 3, Li 3 PO 4 —Li 2 S—Si 2 S, Li 3 PO 4 —Li 2 S—SiS 2 , LiPO 4 —Li 2 S—SiS, LiI—Li 2 S—P 2 O 5 , LiI—Li 3 PO Sulfide-based solid electrolyte such as 4- P 2 S 5 or Li 2 S-P 2 S 5 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—B 2 O 3, or Li 2 O-B 2 O 3 -ZnO oxide-based amorphous solid electrolytes such as, Li 1.3 Al 0.3 Ti 0.7 ( PO 4) 3, Li 1 + x + y a x Ti 2-x Si y P 3−y O 12 (A is Al or Ga, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.6), [(B 1/2 Li 1/2 ) 1−z C z ] TiO 3 (B is La, Pr, Nd or Sm, C is Sr or Ba, 0 ≦ z ≦ 0.5) , Li 5 La 3 Ta 2 O 12, Li 7 La 3 Zr 2 O 12, Li 6 BaLa 2 Ta 2 O 12, Or crystalline oxides such as Li 3.6 Si 0.6 P 0.4 O 4 , crystalline oxynitrides such as Li 3 PO (4-3 / 2w) N w (w <1), or LiI, LiI-Al 2 O 3, Li 3 N, or Li 3 N-LiI-LiOH, and the like.

ポリマー電解質としては、特に限定されないが、リチウム塩を含むポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデン、またはポリアクリロニトリル等の半固体のポリマー電解質が挙げられる。   Although it does not specifically limit as polymer electrolyte, Semi-solid polymer electrolytes, such as polyethylene oxide containing a lithium salt, polypropylene oxide, a polyvinylidene fluoride, or a polyacrylonitrile, are mentioned.

正極材はバインダーを含むことができる。バインダーとしては、特に限定されないが、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等のフッ素系樹脂、ポリプロピレン、ポリエチレン、ポリアクリロニトリル等の熱可塑性樹脂、またはスチレンブタジエンゴム(SBR)等を用いることができる。   The positive electrode material can include a binder. Although it does not specifically limit as a binder, For example, thermoplastic resins, such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluororubber, polypropylene, polyethylene, polyacrylonitrile, or styrene butadiene rubber ( SBR) or the like can be used.

本発明に係る金属空気電池の正極層と負極層との間にはセパレータを備えていてもよい。セパレータとしては、特に限定されないが、例えば、ポリプロピレン製不織布、ポリフェニレンスルフィド製不織布等の高分子不織布、ポリエチレン、ポリプロピレン等のオレフィン系樹脂等の微多孔フィルム、またはこれらの組み合わせを使用することができる。電解質として液体電解質を用いた場合、セパレータに電解液を含浸させて電解質層としてもよい。   A separator may be provided between the positive electrode layer and the negative electrode layer of the metal-air battery according to the present invention. Although it does not specifically limit as a separator, For example, microporous films, such as polymer nonwoven fabrics, such as a nonwoven fabric made from a polypropylene and a nonwoven fabric made from a polyphenylene sulfide, olefin resin, such as polyethylene and a polypropylene, or these combinations can be used. When a liquid electrolyte is used as the electrolyte, the separator may be impregnated with an electrolytic solution to form an electrolyte layer.

本発明に係る金属空気電池に含まれる負極層は、負極活物質を含有する層である。負極活物質としては、金属または合金材料を用いることができ、特に限定されないが、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属、アルミニウム等の第13族元素、亜鉛、鉄等の遷移金属、またはこれらの金属を含有する合金材料が挙げられる。   The negative electrode layer included in the metal-air battery according to the present invention is a layer containing a negative electrode active material. As the negative electrode active material, a metal or an alloy material can be used, and is not particularly limited. For example, alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and Group 13 elements such as aluminum , Transition metals such as zinc and iron, or alloy materials containing these metals.

また、負極活物質として、リチウム元素を含む合金、酸化物、窒化物、または硫化物を用いることができる。リチウム元素を有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。リチウム元素を有する金属酸化物としては、例えばリチウムチタン酸化物等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。   In addition, an alloy, oxide, nitride, or sulfide containing a lithium element can be used as the negative electrode active material. Examples of the alloy having a lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy. Examples of the metal oxide having a lithium element include lithium titanium oxide. Examples of the metal nitride containing a lithium element include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.

負極層は、導電性材料及び/またはバインダーをさらに含有してもよい。例えば、負極活物質が板状または箔状である場合は、負極活物質のみを含有する負極層とすることができ、負極活物質が粉末状である場合は、負極活物質及びバインダーを有する負極層とすることができる。なお、導電性材料及びバインダーについては、上述の正極層に用いられ得る材料と同様のものを用いることができる。   The negative electrode layer may further contain a conductive material and / or a binder. For example, when the negative electrode active material is in the form of a plate or foil, a negative electrode layer containing only the negative electrode active material can be obtained, and when the negative electrode active material is in powder form, the negative electrode having the negative electrode active material and a binder It can be a layer. In addition, about a conductive material and a binder, the thing similar to the material which can be used for the above-mentioned positive electrode layer can be used.

本発明に係る金属空気電池は外装材を有することができる。外装材としては、特に限定されないが、金属缶、樹脂、ラミネートパック等、金属空気電池に通常用いられる材料を用いることができる。本発明に係る金属空気電池においては、例えば、電解質として液体電解質を用いるときに外装材を有することができる。外装材においては、正極層の側面近傍の位置に酸素を取り込むための孔及び酸素透過膜を配置して、酸素供給口から酸素を取り込めるようにしてもよい。撥水膜を所望の位置に配置してもよい。外装材として金属材料を用いる場合は、正極と負極との間の絶縁のために、正極層と負極層との間に絶縁樹脂等を介在させたり、外装材と電極との間にろ紙を配置する等してもよい。   The metal-air battery according to the present invention can have an exterior material. Although it does not specifically limit as an exterior material, The material normally used for metal air batteries, such as a metal can, resin, a laminate pack, can be used. In the metal-air battery according to the present invention, for example, when a liquid electrolyte is used as an electrolyte, an exterior material can be included. In the exterior material, a hole for taking in oxygen and an oxygen permeable film may be arranged at a position near the side surface of the positive electrode layer so that oxygen can be taken in from the oxygen supply port. The water repellent film may be disposed at a desired position. When a metal material is used as an exterior material, an insulating resin or the like is interposed between the positive electrode layer and the negative electrode layer, or a filter paper is disposed between the exterior material and the electrode for insulation between the positive electrode and the negative electrode. You may do it.

外装材には、酸素を供給するための孔は、任意の位置に設けられ得るが、好ましくは、正極層の側面部の酸素供給口に酸素ガスを効率よく送り込める個所に設けられ得る。   A hole for supplying oxygen can be provided in the exterior material at an arbitrary position, but it can be preferably provided at a location where oxygen gas can be efficiently fed to the oxygen supply port on the side surface of the positive electrode layer.

本発明に係る金属空気電池の正極層の形成は、任意の方法で作成され得る。例えば、テンプレートを用いて正極層を形成することができる。例えば、カーボン粒子及びバインダーを含む正極材を形成する場合、所定量のカーボン粒子及びバインダーに適量のエタノール等の溶媒を加えて混合し、得られた混合物を所定の形状を有するテンプレートに流し込んで乾燥及び所望により熱処理等を行って、所望の形状の正極材を得ることができる。前記工程にプレス成形を加えてもよい。別法では、押出成形等によって正極材を得ることもできる。本発明の金属空気電池に含まれる電解質層及び負極層の形成、並びに金属空気電池の形成は、従来行われている任意の方法で行うことができる。   Formation of the positive electrode layer of the metal-air battery according to the present invention can be made by any method. For example, the positive electrode layer can be formed using a template. For example, when forming a positive electrode material containing carbon particles and a binder, an appropriate amount of a solvent such as ethanol is added to and mixed with a predetermined amount of carbon particles and a binder, and the resulting mixture is poured into a template having a predetermined shape and dried. And it can heat-process etc. as needed and can obtain the positive electrode material of a desired shape. You may add press molding to the said process. Alternatively, the positive electrode material can be obtained by extrusion molding or the like. Formation of the electrolyte layer and the negative electrode layer included in the metal-air battery of the present invention and formation of the metal-air battery can be performed by any conventional method.

本発明の金属空気電池の形状は、特に限定されず、円筒型、角型、ボタン型、コイン型、または扁平型等、所望の形状をとることができる。   The shape of the metal-air battery of the present invention is not particularly limited, and can take a desired shape such as a cylindrical shape, a square shape, a button shape, a coin shape, or a flat shape.

本発明の金属空気電池は、二次電池として使用することができるものであるが、一次電池として使用してもよい。   The metal-air battery of the present invention can be used as a secondary battery, but may be used as a primary battery.

第1〜4の実施形態による金属空気電池及び第5〜8の実施形態による金属空気電池は、共通の技術的思想を有する。すなわち、第1〜8の実施形態による金属空気電池は、酸素供給口及び酸素供給口から連通する酸素拡散経路の正極層中の密度が、正極層中において実質的に均一であるか、電解質層側の領域よりも正極集電体層側の領域において高いか、または正極集電体層側の領域よりも電解質層側の領域において高いか、正極層の中央部において高い構成を有する点で共通する。また、第1〜8の実施形態による金属空気電池は、正極材が、正極層中において実質的に均一に配置されているか、電解質層との界面の全面にわたって接する部分を有するか、正極集電体層との界面の全面にわたって接する部分を有するか、または電解質層及び正極集電体層との界面の全面にわたって接している部分を有する構成を有する点で共通する。   The metal-air battery according to the first to fourth embodiments and the metal-air battery according to the fifth to eighth embodiments have a common technical idea. That is, in the metal-air battery according to the first to eighth embodiments, the density in the positive electrode layer of the oxygen diffusion path communicating from the oxygen supply port and the oxygen supply port is substantially uniform in the positive electrode layer or the electrolyte layer. Common in that it is higher in the region on the positive electrode current collector layer side than the region on the side, or higher in the region on the electrolyte layer side than the region on the positive electrode current collector layer side, or higher in the central portion of the positive electrode layer To do. In the metal-air batteries according to the first to eighth embodiments, the positive electrode material is disposed substantially uniformly in the positive electrode layer, or has a portion in contact with the entire surface of the interface with the electrolyte layer. The structure is common in that it has a portion in contact with the entire surface of the interface with the body layer, or a portion in contact with the entire surface of the interface between the electrolyte layer and the positive electrode current collector layer.

第1〜8の実施形態による金属空気電池は、金属空気電池に用いる正極材等の材料や電池としての所望の特性に応じて、選択され得る。例えば、高出力型の電池を得たい場合は、酸素ガスを正極層により多く取り込むために、第1または第5の実施形態を選択することができる。電池の容量を大きくしたい場合は、正極層内における正極材の体積比率を大きくできる第4または第8の実施形態による金属空気電池を選択してもよい。また、例えば、電解質層3として固体電解質を用いる場合には、電解質層と正極層との界面における負極金属イオン伝導性を向上させるために、第2、第4、第6、または第8の実施形態による金属空気電池を選択することができ、電解質層3として液体電解質を用いる場合には、電解質層と正極層との界面における負極金属イオン伝導性はさほど問題とならないため、電子伝導性の向上等を目的として第3または第7の実施形態による金属空気電池を選択してもよい。   The metal-air battery according to the first to eighth embodiments can be selected according to materials such as a positive electrode material used for the metal-air battery and desired characteristics as the battery. For example, when it is desired to obtain a high-power battery, the first or fifth embodiment can be selected in order to incorporate more oxygen gas into the positive electrode layer. When it is desired to increase the capacity of the battery, the metal-air battery according to the fourth or eighth embodiment that can increase the volume ratio of the positive electrode material in the positive electrode layer may be selected. For example, when a solid electrolyte is used as the electrolyte layer 3, the second, fourth, sixth, or eighth implementation is performed in order to improve the negative electrode metal ion conductivity at the interface between the electrolyte layer and the positive electrode layer. A metal-air battery can be selected depending on the form, and when a liquid electrolyte is used as the electrolyte layer 3, the negative electrode metal ion conductivity at the interface between the electrolyte layer and the positive electrode layer is not a problem, so that the electron conductivity is improved. For example, the metal-air battery according to the third or seventh embodiment may be selected.

本発明に係る金属空気電池は、第1〜8の実施形態による金属空気電池に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The metal-air battery according to the present invention is not limited to the metal-air battery according to the first to eighth embodiments. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1 正極層
2 負極層
3 電解質層
4 正極集電体層
5 負極集電体層
10 第1の実施形態による金属空気電池
17 酸素供給口
18 酸素拡散経路
19 正極材
20 第2の実施形態による金属空気電池
27 酸素供給口
28 酸素拡散経路
29 正極材
30 第3の実施形態による金属空気電池
37 酸素供給口
38 酸素拡散経路
39 正極材
40 第4の実施形態による金属空気電池
47 酸素供給口
48 酸素拡散経路
49 正極材
50 第5の実施形態による金属空気電池
57 酸素供給口
58 酸素拡散経路
59 正極材
60 第6の実施形態による金属空気電池
67 酸素供給口
68 酸素拡散経路
69 正極材
70 第7の実施形態による金属空気電池
77 酸素供給口
78 酸素拡散経路
79 正極材
80 第8の実施形態による金属空気電池
87 酸素供給口
88 酸素拡散経路
89 正極材
DESCRIPTION OF SYMBOLS 1 Positive electrode layer 2 Negative electrode layer 3 Electrolyte layer 4 Positive electrode collector layer 5 Negative electrode collector layer 10 Metal-air battery by 1st Embodiment 17 Oxygen supply port 18 Oxygen diffusion path 19 Positive electrode material 20 Metal by 2nd Embodiment Air battery 27 Oxygen supply port 28 Oxygen diffusion path 29 Cathode material 30 Metal-air battery according to the third embodiment 37 Oxygen supply port 38 Oxygen diffusion path 39 Cathode material 40 Metal-air battery according to the fourth embodiment 47 Oxygen supply port 48 Oxygen Diffusion path 49 Cathode material 50 Metal-air battery according to fifth embodiment 57 Oxygen supply port 58 Oxygen diffusion path 59 Cathode material 60 Metal-air battery according to sixth embodiment 67 Oxygen supply port 68 Oxygen diffusion path 69 Cathode material 70 Seventh Metal-air battery according to the embodiment 77 Oxygen supply port 78 Oxygen diffusion path 79 Cathode material 80 Metal-air battery according to the eighth embodiment 87 Oxygen supply port 88 Oxygen diffusion path 89 Cathode material

Claims (14)

正極層、負極層、前記正極層及び負極層の間に配置された電解質層、前記正極層に隣接して前記電解質層とは反対側に配置された正極集電体層、並びに前記負極層に隣接して前記電解質層とは反対側に配置された負極集電体層を備えた金属空気電池であって、前記正極層が、正極材を含み、前記正極層の側面部に酸素供給口を有し、並びに前記酸素供給口から連通する酸素拡散経路を含む、金属空気電池。   A positive electrode layer, a negative electrode layer, an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, a positive electrode current collector layer disposed adjacent to the positive electrode layer on a side opposite to the electrolyte layer, and the negative electrode layer; A metal-air battery comprising a negative electrode current collector layer disposed adjacent to the side opposite to the electrolyte layer, wherein the positive electrode layer includes a positive electrode material, and an oxygen supply port is provided on a side surface of the positive electrode layer. And a metal-air battery including an oxygen diffusion path communicating from the oxygen supply port. 前記正極材が複数の柱状正極材を含む、請求項1に記載の金属空気電池。   The metal-air battery according to claim 1, wherein the positive electrode material includes a plurality of columnar positive electrode materials. 前記複数の柱状正極材の柱軸が前記電解質層及び前記正極集電体層が互いに対向する面に垂直になるように、前記複数の柱状正極材が前記電解質層及び前記正極集電体層の間に配置され、前記複数の柱状正極材間の空間が、前記酸素供給口及び前記酸素供給口から連通する酸素拡散経路を形成している、請求項2に記載の金属空気電池。   The plurality of columnar positive electrode materials are formed of the electrolyte layer and the positive electrode current collector layer so that the column axes of the plurality of columnar positive electrode materials are perpendicular to the surfaces of the electrolyte layer and the positive electrode current collector layer facing each other. The metal-air battery according to claim 2, wherein a space between the plurality of columnar positive electrode materials is formed between the oxygen supply port and an oxygen diffusion path communicating with the oxygen supply port. 前記複数の柱状正極材の柱軸が前記電解質層及び前記正極集電体層が互いに対向する面に並行になり且つ互いの柱軸が並行になるように、前記複数の柱状正極材が前記電解質層及び前記正極集電体層の間に配置され、前記複数の柱状正極材間の空間が、前記酸素供給口及び前記酸素供給口から連通する酸素拡散経路を形成している、請求項2に記載の金属空気電池。   The plurality of columnar positive electrode materials are the electrolyte so that the column axes of the plurality of columnar positive electrode materials are parallel to the surfaces where the electrolyte layer and the positive electrode current collector layer face each other and the column axes thereof are parallel to each other. The space between the plurality of columnar positive electrode materials disposed between the layer and the positive electrode current collector layer forms an oxygen diffusion path communicating with the oxygen supply port and the oxygen supply port. The metal-air battery as described. 前記酸素供給口及び前記酸素供給口から連通する酸素拡散経路の前記正極層中の密度が、前記電解質層側の領域よりも前記正極集電体層側の領域において高い、請求項1〜4のいずれか一項に記載の金属空気電池。   The density in the positive electrode layer of the oxygen diffusion path communicating from the oxygen supply port and the oxygen supply port is higher in the region on the positive electrode collector layer side than in the region on the electrolyte layer side. The metal-air battery according to any one of the above. 前記酸素供給口及び前記酸素供給口から連通する酸素拡散経路の前記正極層中の密度が、前記正極集電体層側の領域よりも前記電解質層側の領域において高い、請求項1〜4のいずれか一項に記載の金属空気電池。   The density in the positive electrode layer of the oxygen diffusion path communicating from the oxygen supply port and the oxygen supply port is higher in the region on the electrolyte layer side than in the region on the positive electrode current collector layer side. The metal-air battery according to any one of the above. 前記酸素供給口及び前記酸素供給口から連通する酸素拡散経路の前記正極層中の密度が、前記電解質層側及び前記正極集電体層側の領域よりも、前記正極層の中央部において高い、請求項1〜4のいずれか一項に記載の金属空気電池。   The density in the positive electrode layer of the oxygen diffusion path communicating from the oxygen supply port and the oxygen supply port is higher in the central portion of the positive electrode layer than the regions on the electrolyte layer side and the positive electrode current collector layer side, The metal-air battery according to any one of claims 1 to 4. 前記正極層と前記正極集電体層との界面において、前記正極材と前記正極集電体層とが、前記界面の全面にわたって接している、請求項1〜4及び請求項6〜7のいずれか一項に記載の金属空気電池。   The interface of the said positive electrode layer and the said positive electrode collector layer WHEREIN: The said positive electrode material and the said positive electrode collector layer are touching over the whole surface of the said interface, Either of Claims 1-4 and Claims 6-7 The metal-air battery according to claim 1. 前記正極層と前記電解質層との界面において、前記正極材と前記電解質層とが、前記界面の全面にわたって接している、請求項1〜5及び請求項7のいずれか一項に記載の金属空気電池。   The metal air according to claim 1, wherein the positive electrode material and the electrolyte layer are in contact with each other over the entire surface of the interface at the interface between the positive electrode layer and the electrolyte layer. battery. 前記正極層と前記電解質層及び前記正極集電体層とのそれぞれの界面において、前記正極材と前記電解質層及び前記正極集電体層とが、前記それぞれの界面の全面にわたって接している、請求項1〜4及び請求項7のいずれか一項に記載の金属空気電池。   The positive electrode material, the electrolyte layer, and the positive electrode current collector layer are in contact with each other over the entire surface of each of the positive electrode layer, the electrolyte layer, and the positive electrode current collector layer. The metal-air battery according to any one of Items 1 to 4 and Claim 7. 前記柱状正極材が円柱形状を有する、請求項2に記載の金属空気電池。   The metal-air battery according to claim 2, wherein the columnar positive electrode material has a cylindrical shape. 前記柱状正極材が角柱形状を有する、請求項2に記載の金属空気電池。   The metal-air battery according to claim 2, wherein the columnar positive electrode material has a prismatic shape. 前記正極集電体層が板状または箔状である、請求項1〜12のいずれか一項に記載の金属空気電池。   The metal-air battery according to any one of claims 1 to 12, wherein the positive electrode current collector layer has a plate shape or a foil shape. 前記酸素供給口から連通する酸素拡散経路のうちの少なくとも1つが直線状である、請求項1〜13のいずれか一項に記載の金属空気電池。   The metal air battery according to any one of claims 1 to 13, wherein at least one of oxygen diffusion paths communicating from the oxygen supply port is linear.
JP2011194982A 2011-09-07 2011-09-07 Metal-air battery Withdrawn JP2013058336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194982A JP2013058336A (en) 2011-09-07 2011-09-07 Metal-air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194982A JP2013058336A (en) 2011-09-07 2011-09-07 Metal-air battery

Publications (1)

Publication Number Publication Date
JP2013058336A true JP2013058336A (en) 2013-03-28

Family

ID=48134047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194982A Withdrawn JP2013058336A (en) 2011-09-07 2011-09-07 Metal-air battery

Country Status (1)

Country Link
JP (1) JP2013058336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002156A (en) * 2013-06-18 2015-01-05 日本電信電話株式会社 Lithium air battery
JP2017195067A (en) * 2016-04-19 2017-10-26 株式会社ギャラキシー Vanadium air cell
CN108011113A (en) * 2016-11-01 2018-05-08 三星电子株式会社 Cathode for metal-air battery and the metal-air battery including it
US10283827B2 (en) 2016-01-21 2019-05-07 Samsung Electronics Co., Ltd. Electrochemical cell, battery module including the same, and battery pack including the same
US10381697B2 (en) 2017-04-12 2019-08-13 Samsung Electronics Co., Ltd. Metal-air battery including cathode with air path

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002156A (en) * 2013-06-18 2015-01-05 日本電信電話株式会社 Lithium air battery
US10283827B2 (en) 2016-01-21 2019-05-07 Samsung Electronics Co., Ltd. Electrochemical cell, battery module including the same, and battery pack including the same
JP2017195067A (en) * 2016-04-19 2017-10-26 株式会社ギャラキシー Vanadium air cell
CN108011113A (en) * 2016-11-01 2018-05-08 三星电子株式会社 Cathode for metal-air battery and the metal-air battery including it
US10381697B2 (en) 2017-04-12 2019-08-13 Samsung Electronics Co., Ltd. Metal-air battery including cathode with air path

Similar Documents

Publication Publication Date Title
US9680192B2 (en) Air battery and air battery stack
US8980485B2 (en) Rechargeable, thin-film, all solid-state metal-air battery
JP5942549B2 (en) Air battery, method of using air battery, and electronic device
CN107017451B (en) Electrochemical cell, battery module including the same, and battery pack including the same
US9722279B2 (en) All-solid-state metal-metal battery comprising ion conducting ceramic as electrolyte
JP5626872B2 (en) Hydrogen / air secondary battery
JP2016081572A (en) Air battery
US20150162571A1 (en) Concave cell design for an alkaline battery with a comb spacer
KR20160011587A (en) Silicon secondary battery
JP2013058336A (en) Metal-air battery
KR20150057260A (en) positive active electrode for lithium air battery, and lithium air battery employing the same
Sun et al. Recent advances in solid‐state metal–air batteries
JP2014072079A (en) Air electrode for metal-air battery
JPWO2013047379A1 (en) Lithium secondary battery and manufacturing method thereof
KR20200031444A (en) Metal-air battery
JP5880224B2 (en) Air batteries and electronics
US20150162601A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
DK2727171T3 (en) LITHIUM ACCUMULATOR
CN116014225A (en) Sodium ion battery
JP2020080247A (en) Solid-state battery
JP5636901B2 (en) Negative electrode for secondary battery and air secondary battery
CN114284463B (en) Composite lithium supplementing sheet and battery cell and battery provided with same
US9843080B2 (en) Magnesium-based methods, systems, and devices
WO2018105280A1 (en) Electrochemical device system
JP2013069493A (en) Method for manufacturing laminated air cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202