JP2013057436A - Heat supply system - Google Patents

Heat supply system Download PDF

Info

Publication number
JP2013057436A
JP2013057436A JP2011195326A JP2011195326A JP2013057436A JP 2013057436 A JP2013057436 A JP 2013057436A JP 2011195326 A JP2011195326 A JP 2011195326A JP 2011195326 A JP2011195326 A JP 2011195326A JP 2013057436 A JP2013057436 A JP 2013057436A
Authority
JP
Japan
Prior art keywords
hot water
heat
storage tank
water storage
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011195326A
Other languages
Japanese (ja)
Inventor
Hideki Yamaguchi
秀樹 山口
Shin Iwata
伸 岩田
Masayuki Ushio
雅之 牛尾
Teru Morita
輝 森田
Hideki Hayakawa
秀樹 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011195326A priority Critical patent/JP2013057436A/en
Publication of JP2013057436A publication Critical patent/JP2013057436A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain further energy saving by effectively utilizing exhaust heat of a fuel cell device even if the capacity of a hot water storage tank in each of a plurality of fuel cell systems is reduced.SOLUTION: Each of a plurality of fuel cell systems 1 includes: a hot water storage tank 3 which stores hot water in a state where temperature stratification is formed; a heat exchanger 14 which performs heat exchange between the hot water in the hot water storage tank 3 and a common heat medium; common-use heat medium circulation means 10, 22 which circulate the common-use heat medium in a common-use heat medium circulation path 9; and a to-heat exchanger supply path 15 which supplies the common-use heat medium of the common-use heat medium circulation path 9 to the heat exchanger 14 and returns it to the common-use heat medium circulation path 9, being equipped corresponding to each of the plurality of heat exchangers 14.

Description

本発明は、燃料電池装置と、その燃料電池装置と貯湯タンクとの間で湯水を循環させて前記燃料電池装置の排熱にて加熱された湯水を前記貯湯タンクに貯湯する排熱回収手段と、その排熱回収手段にて前記貯湯タンクから前記燃料電池装置に供給する湯水が有する熱を放熱させる放熱器とを備えた燃料電池システムが複数備えられている熱供給システムに関する。   The present invention provides a fuel cell device, and waste heat recovery means for circulating hot water between the fuel cell device and a hot water storage tank to store hot water heated by the exhaust heat of the fuel cell device in the hot water storage tank. The present invention relates to a heat supply system including a plurality of fuel cell systems including a radiator that dissipates heat of hot water supplied from the hot water storage tank to the fuel cell device by the exhaust heat recovery means.

上記の熱供給システムでは、例えば、マンション等の複数の住戸が集合している集合住宅に適応して、複数の住戸の夫々に燃料電池システムを備えることが考えられている(例えば、特許文献1参照。)。各住戸では、排熱回収手段が燃料電池装置の排ガスと貯湯タンクの湯水とを熱交換させて燃料電池装置の排熱にて加熱された湯水を貯湯タンクに貯湯している。このようにして、燃料電池装置にて発電される電力を電力消費機器に用いるとともに、貯湯タンクの湯水を給湯や暖房等に用いて、燃料電池装置にて発生される電力及び排熱を有効に活用して省エネルギー化を図るようにしている。   In the above-described heat supply system, for example, it is considered to be equipped with a fuel cell system in each of the plurality of dwelling units in order to adapt to a housing complex in which a plurality of dwelling units such as an apartment are gathering (for example, Patent Document 1). reference.). In each dwelling unit, the exhaust heat recovery means exchanges heat between the exhaust gas of the fuel cell device and the hot water of the hot water storage tank, and stores the hot water heated by the exhaust heat of the fuel cell device in the hot water storage tank. In this way, the electric power generated by the fuel cell device is used for power consuming equipment, and the hot water in the hot water storage tank is used for hot water supply, heating, etc., and the electric power and exhaust heat generated by the fuel cell device are effectively used. It is used to save energy.

特開2011−12906号公報JP 2011-12906 A

燃料電池システムは、燃料電池装置の排熱を貯湯タンクに蓄熱する一方で、貯湯タンクから燃料電池装置に供給する湯水が有する熱を放熱させる放熱器(本願に係る図1に示す例ではラジエータ5がこの放熱器に相当する)を備えており、その放熱器にて放熱することで、貯湯タンクから燃料電池装置に供給する湯水の温度が上限設定温度(例えば、40℃)未満となるようにしている。   The fuel cell system stores the exhaust heat of the fuel cell device in the hot water storage tank, while dissipating the heat of the hot water supplied from the hot water storage tank to the fuel cell device (in the example shown in FIG. 1 according to the present application, the radiator 5). The temperature of the hot water supplied from the hot water storage tank to the fuel cell device is less than the upper limit set temperature (for example, 40 ° C.). ing.

この点について説明する。
燃料電池装置では、例えば、天然ガス等の炭化水素を原燃料として用いる場合、原燃料に水蒸気を混合させて、COとH2に改質させてから燃料電池にて反応されている。このときのH2Oは、改質反応に必要なことから改質水と呼ばれている。そして、水道水等を改質水として用いると、不純物が多く含まれていることから、水浄化装置が必要になるので、主として、燃料電池装置の排ガスを貯湯タンクから供給される湯水にて冷却して凝縮水を生成し、その凝縮水を改質水として用いている。そこで、燃料電池装置の排ガスを凝縮させるまで冷却させるには、貯湯タンクから燃料電池装置に供給する湯水の温度を排ガスの凝縮温度よりも低温にすることが必要となる。したがって、貯湯タンクから燃料電池装置に供給する湯水の温度が上限設定温度(例えば、40℃)以上である場合には、放熱器にて湯水が有する熱を放熱させて、湯水の温度を上限設定温度(例えば、40℃)未満に低下させるようにしている。
This point will be described.
In a fuel cell device, for example, when a hydrocarbon such as natural gas is used as a raw fuel, the raw fuel is mixed with water vapor and reformed into CO and H 2 and then reacted in the fuel cell. H 2 O at this time is called reformed water because it is necessary for the reforming reaction. When tap water or the like is used as reformed water, it contains a large amount of impurities, so a water purification device is required. Therefore, the exhaust gas of the fuel cell device is mainly cooled with hot water supplied from a hot water storage tank. Thus, condensed water is generated, and the condensed water is used as reforming water. Therefore, in order to cool the exhaust gas of the fuel cell device until it is condensed, the temperature of the hot water supplied from the hot water storage tank to the fuel cell device needs to be lower than the condensation temperature of the exhaust gas. Therefore, when the temperature of the hot water supplied from the hot water storage tank to the fuel cell device is equal to or higher than the upper limit set temperature (for example, 40 ° C.), the heat of the hot water is radiated by the radiator to set the upper limit temperature of the hot water. The temperature is reduced to less than 40 ° C. (for example, 40 ° C.).

ここで、例えば、熱供給システムを集合住宅に適応させて、各住戸に燃料電池システムを備える場合に、貯湯タンクの容量が大きくなれば設置スペースの確保が難しくなる等の理由から、貯湯タンクの容量を小さくすることが望まれている。しかしながら、貯湯タンクの容量を小さくすれば、貯湯タンク全体の湯水の温度が高温になり易くなるので、貯湯タンクの湯水が上限設定温度(例えば、40℃)以上となり、上述の如く、その湯水が有する熱を放熱器にて放熱してしまい、燃料電池装置の排熱を有効に活用できない場合がある。   Here, for example, when the heat supply system is adapted to a housing complex and each unit is equipped with a fuel cell system, if the capacity of the hot water storage tank is increased, it becomes difficult to secure the installation space. It is desired to reduce the capacity. However, if the capacity of the hot water storage tank is reduced, the temperature of the hot water in the entire hot water storage tank is likely to become high, so that the hot water in the hot water storage tank exceeds the upper limit set temperature (for example, 40 ° C.). In some cases, the heat that is contained is dissipated by the radiator, and the exhaust heat of the fuel cell device cannot be used effectively.

本発明は、かかる点に着目してなされたものであり、その目的は、複数の燃料電池システムの夫々における貯湯タンクの容量を小さくしても、その燃料電池装置の排熱を有効に活用して、更なる省エネルギー化を図ることができる熱供給システムを提供する点にある。   The present invention has been made paying attention to such a point, and its purpose is to effectively utilize the exhaust heat of the fuel cell device even if the capacity of the hot water storage tank in each of the plurality of fuel cell systems is reduced. Therefore, it is to provide a heat supply system that can further save energy.

この目的を達成するために、本発明に係る熱供給システムの特徴構成は、燃料電池装置と、その燃料電池装置と貯湯タンクとの間で湯水を循環させて前記燃料電池装置の排熱にて加熱された湯水を前記貯湯タンクに貯湯する排熱回収手段と、その排熱回収手段にて前記貯湯タンクから前記燃料電池装置に供給する湯水が有する熱を放熱させる放熱器とを備えた燃料電池システムが複数備えられている熱供給システムにおいて、
複数の前記燃料電池システムの夫々には、温度成層を形成する状態で湯水を貯湯する前記貯湯タンクと、その貯湯タンクの下部の湯水と共用熱媒体とを熱交換させる熱交換部が備えられ、共用熱媒体を共用熱媒体循環路にて循環させる共用熱媒体循環手段と、複数の前記熱交換部の夫々に対応して備えられ、前記共用熱媒体循環路の共用熱媒体を前記熱交換部に供給して前記共用熱媒体循環路に戻す熱交換部供給路とが備えられている点にある。
In order to achieve this object, the characteristic configuration of the heat supply system according to the present invention is that the hot water is circulated between the fuel cell device and the fuel cell device and the hot water storage tank, and the exhaust heat of the fuel cell device is used. A fuel cell comprising: exhaust heat recovery means for storing heated hot water in the hot water storage tank; and a radiator for radiating heat of hot water supplied from the hot water storage tank to the fuel cell device by the exhaust heat recovery means. In a heat supply system provided with a plurality of systems,
Each of the plurality of fuel cell systems includes a hot water storage tank for storing hot water in a state in which temperature stratification is formed, and a heat exchanging section for exchanging heat between the hot water at the bottom of the hot water storage tank and a common heat medium, A shared heat medium circulating means for circulating the shared heat medium in the shared heat medium circulation path and a plurality of the heat exchange sections are provided correspondingly, and the shared heat medium in the shared heat medium circulation path is provided in the heat exchange section. And a heat exchanging section supply path that returns to the shared heat medium circulation path.

本特徴構成によれば、貯湯タンクでは、温度成層を形成して湯水を貯湯するので、温度が高い湯水(温水)は上方側に且つ温度が低い湯水は下方側に存在することになる。よって、貯湯タンクの下部の湯水の温度は、基本的に低温となっており、貯湯タンクの蓄熱量が一杯となった場合等に、貯湯タンクの下部の湯水の温度も上昇することになる。そして、複数の燃料電池システムの夫々において、熱交換部供給路によって熱交換部に共用熱媒体が供給され、熱交換部における共用熱媒体と貯湯タンクの下部の湯水との熱交換を行うことができる。   According to this characteristic configuration, in the hot water storage tank, hot water is stored by forming a temperature stratification, so that hot water having a high temperature (hot water) is present on the upper side and hot water having a lower temperature is present on the lower side. Therefore, the temperature of the hot water in the lower part of the hot water storage tank is basically low, and the temperature of the hot water in the lower part of the hot water storage tank also rises when the amount of heat stored in the hot water storage tank becomes full. Then, in each of the plurality of fuel cell systems, a common heat medium is supplied to the heat exchange unit through the heat exchange unit supply path, and heat exchange between the common heat medium in the heat exchange unit and the hot water in the lower part of the hot water storage tank can be performed. it can.

貯湯タンクの蓄熱量が一杯となった場合等、貯湯タンクの下部の湯水の温度が上昇した場合には、貯湯タンクの下部の湯水の方が共用熱媒体よりも高温となって、熱交換部において貯湯タンクの下部の湯水にて共用熱媒体を加熱して、貯湯タンクの湯水が有する熱を共用熱媒体に供給することができる。
逆に、貯湯タンクの下部の湯水の温度が低温である場合には、貯湯タンクの下部の湯水の温度が共用熱媒体よりも低温となって、熱交換部において共用熱媒体にて貯湯タンクの下部の湯水を加熱することができる。そして、加熱された貯湯タンクの湯水は、温度成層を形成するように上方側に移動するので、貯湯タンクの下部の湯水の温度は低温に維持され、熱交換部において共用熱媒体にて貯湯タンクの下部の湯水を加熱することを継続して行うことができる。
When the temperature of hot water in the lower part of the hot water tank rises, such as when the amount of heat stored in the hot water tank becomes full, the hot water in the lower part of the hot water tank becomes hotter than the shared heat medium, and the heat exchange section The hot water in the lower part of the hot water storage tank is heated by the hot water in the hot water storage tank, and the heat of the hot water in the hot water storage tank can be supplied to the shared heat medium.
Conversely, when the temperature of the hot water at the lower part of the hot water storage tank is low, the temperature of the hot water at the lower part of the hot water storage tank is lower than that of the shared heat medium, and the hot water tank is Lower hot water can be heated. And since the hot water in the heated hot water storage tank moves upward so as to form temperature stratification, the temperature of the hot water in the lower part of the hot water storage tank is maintained at a low temperature, and the hot water storage tank is used as a shared heat medium in the heat exchange section. It is possible to continuously heat the hot water in the lower part of the water.

これにより、貯湯タンクに形成される温度成層を活用して、熱交換部に共用熱媒体を供給するという簡易な構成を備えるだけで、複数の燃料電池システムの夫々において、熱交換部において貯湯タンクの下部の湯水と共用熱媒体との間で熱の授受を行い、燃料電池システムから共用熱媒体への熱の供給及び共用熱媒体から燃料電池システムへの熱の取り込みを行うことができる。したがって、複数の燃料電池システムの夫々において、燃料電池装置の排熱を無駄に放熱器にて放熱することなく、給湯や暖房等に用いることができる。また、例えば、ある燃料電池システムにて放熱器にて放熱されていた熱を、共用熱媒体を介して、他の燃料電池システムにて用いることができ、システム全体として熱の有効活用を図ることができる。   As a result, by using the temperature stratification formed in the hot water storage tank and simply providing a common heat medium to the heat exchanging section, the hot water storage tank in the heat exchanging section is provided in each of the plurality of fuel cell systems. It is possible to transfer heat between the hot water at the lower part of the battery and the common heat medium, supply heat from the fuel cell system to the common heat medium, and take in heat from the common heat medium to the fuel cell system. Therefore, in each of the plurality of fuel cell systems, the exhaust heat of the fuel cell device can be used for hot water supply, heating, or the like without wasting heat with a radiator. In addition, for example, the heat radiated by a radiator in a certain fuel cell system can be used in another fuel cell system through a common heat medium, and the system as a whole can effectively use the heat. Can do.

以上のことから、複数の燃料電池システムの夫々における貯湯タンクの容量を小さくしても、複数の燃料電池システムの夫々における燃料電池装置の排熱を有効活用して、更なる省エネルギー化を図るとともに、システム全体としても熱の有効活用を図ることができる。しかも、熱交換部において貯湯タンクの下部の湯水と共用熱媒体との間で熱の授受を行うに当たり、貯湯タンクに形成される温度成層を活用して、構成の簡素化を図りながら、更なる省エネルギー化を図ることができる。   From the above, even if the capacity of the hot water storage tank in each of the plurality of fuel cell systems is reduced, the exhaust heat of the fuel cell device in each of the plurality of fuel cell systems is effectively utilized to further save energy. Therefore, the heat can be effectively used for the entire system. In addition, when transferring heat between the hot water at the bottom of the hot water storage tank and the shared heat medium in the heat exchange section, the thermal stratification formed in the hot water storage tank is utilized to further simplify the configuration, and further Energy saving can be achieved.

本発明に係る熱供給システムの更なる特徴構成は、共用熱媒体を共用熱媒体加熱部にて加熱する共用熱媒体加熱手段が備えられている点にある。   The further characteristic structure of the heat supply system which concerns on this invention exists in the point provided with the shared heat medium heating means which heats a shared heat medium in a shared heat medium heating part.

本特徴構成によれば、共用熱媒体加熱手段は、共用熱媒体を共用熱媒体加熱部にて加熱することができるので、共用熱媒体加熱部から取得した熱をも共用熱媒体に供給することができる。したがって、共用熱媒体が有する熱を複数の燃料電池システムにて有効に活用することができ、システム全体での省エネルギー化を適切に図ることができる。   According to this characteristic configuration, the shared heat medium heating means can heat the shared heat medium in the shared heat medium heating unit, so that the heat acquired from the shared heat medium heating unit is also supplied to the shared heat medium. Can do. Therefore, the heat of the shared heat medium can be effectively used in a plurality of fuel cell systems, and energy saving in the entire system can be appropriately achieved.

本発明に係る熱供給システムの更なる特徴構成は、前記排熱回収手段は、前記貯湯タンクの下部から取り出した湯水を前記燃料電池装置の排熱にて加熱させ、その加熱された湯水を前記貯湯タンクの上部に戻すように構成されている点にある。   According to a further characteristic configuration of the heat supply system according to the present invention, the exhaust heat recovery means heats the hot water taken out from the lower part of the hot water storage tank by the exhaust heat of the fuel cell device, and the heated hot water is It is in the point which is constituted so that it may return to the upper part of a hot water storage tank.

本特徴構成によれば、排熱回収手段は、温度成層を形成して湯水を貯湯する貯湯タンクの下部から湯水を取り出すので、貯湯タンクにおいてより低温の湯水を取り出すことができる。排熱回収手段は、その取り出した湯水を燃料電池装置の排熱にて加熱するので、燃料電池装置の排熱を効率よく回収して高温の湯水とし、その高温の湯水を元々高温の湯水が存在する貯湯タンクの上部に戻している。このように、貯湯タンクに形成される温度成層を乱さないようにしながら、燃料電池装置の排熱を効率よく回収して貯湯タンクに蓄熱することができる。そして、上述の如く、熱交換部は、貯湯タンクの下部の湯水と共用熱媒体を熱交換させるので、貯湯タンクの下部の湯水の温度が上昇している場合には、熱交換部における熱交換によって貯湯タンクの下部の温度が低下される。これにより、排熱回収手段が、貯湯タンクから取り出す湯水の温度を低温とすることができ、貯湯タンクから取り出す湯水の温度が上限設定温度以上となって放熱器にて放熱されるのを適切に防止しながら、燃料電池装置の排熱を効率よく回収することができる。   According to this characteristic configuration, the exhaust heat recovery means takes out hot water from the lower part of the hot water storage tank that forms temperature stratification and stores hot water, so that hot water can be taken out from the hot water storage tank. Since the exhaust heat recovery means heats the extracted hot water with the exhaust heat of the fuel cell device, the exhaust heat of the fuel cell device is efficiently recovered to form hot hot water, and the hot hot water is originally converted into hot water. It is returned to the upper part of the existing hot water storage tank. In this way, the exhaust heat of the fuel cell device can be efficiently recovered and stored in the hot water storage tank without disturbing the temperature stratification formed in the hot water storage tank. As described above, the heat exchanging unit exchanges heat between the hot water in the lower part of the hot water storage tank and the shared heat medium. Therefore, when the temperature of the hot water in the lower part of the hot water storing tank is increased, the heat exchange in the heat exchanging part. As a result, the temperature at the bottom of the hot water storage tank is lowered. As a result, the temperature of the hot water taken out from the hot water storage tank can be lowered by the exhaust heat recovery means, and the temperature of the hot water taken out from the hot water storage tank becomes higher than the upper limit set temperature, and is appropriately radiated by the radiator. The waste heat of the fuel cell device can be efficiently recovered while preventing it.

本発明に係る熱供給システムの更なる特徴構成は、前記熱交換部は、前記貯湯タンクの内部の下部位置に配置され、前記熱交換部供給路にて供給される共用熱媒体を通流させる内部熱交換器にて構成されている点にある。   According to a further characteristic configuration of the heat supply system according to the present invention, the heat exchanging unit is disposed at a lower position inside the hot water storage tank and allows a common heat medium supplied through the heat exchanging unit supply path to flow therethrough. It is in the point comprised with an internal heat exchanger.

本特徴構成によれば、貯湯タンクの内部の下部位置に配置された内部熱交換器に共用熱媒体を通流させることで、その通流される共用熱媒体と貯湯タンクの下部の湯水を熱交換させることができる。これにより、貯湯タンクの内部に内部熱交換器を配置するという簡素な構成により、貯湯タンクの下部の湯水と共用熱媒体との間での熱の授受を的確に行うことができる。   According to this configuration, the common heat medium is passed through the internal heat exchanger located at the lower position inside the hot water tank, so that the shared heat medium and the hot water at the lower part of the hot water tank are exchanged with each other. Can be made. Thus, heat can be accurately exchanged between the hot water in the lower part of the hot water storage tank and the common heat medium with a simple configuration in which the internal heat exchanger is arranged inside the hot water storage tank.

本発明に係る熱供給システムの更なる特徴構成は、前記貯湯タンクの下部から湯水を前記貯湯タンクの外部に取り出して前記貯湯タンクの下部に戻す取り出し循環路が備えられ、前記熱交換部は、その取り出し循環路の湯水と前記熱交換部供給路にて供給される共用熱媒体とを熱交換させる外部熱交換器にて構成されている点にある。   A further characteristic configuration of the heat supply system according to the present invention is provided with a take-out circulation path for taking out hot water from the lower part of the hot water storage tank to the outside of the hot water storage tank and returning it to the lower part of the hot water storage tank, It is in the point comprised with the external heat exchanger which heat-exchanges the hot water of the taking-out circulation path, and the shared heat medium supplied in the said heat exchange part supply path.

本特徴構成によれば、取り出し循環路にて貯湯タンクの下部の湯水を取り出すことができ、外部熱交換器においてその取り出した湯水と共用熱媒体を熱交換させることができる。そして、外部熱交換器にて熱交換された湯水は、取り出し循環路により貯湯タンクの下部に戻される。これにより、貯湯タンクに形成される温度成層に影響を与えることなく、貯湯タンクの外部において貯湯タンクの下部の湯水と共用熱媒体との間での熱の授受を的確に行うことができる。   According to this characteristic configuration, the hot water in the lower part of the hot water storage tank can be taken out in the take-out circulation path, and the hot water and the shared heat medium can be heat-exchanged in the external heat exchanger. And the hot water heat-exchanged with the external heat exchanger is returned to the lower part of a hot water storage tank by a taking-out circulation path. Thus, heat can be accurately exchanged between the hot water at the lower part of the hot water storage tank and the common heat medium outside the hot water storage tank without affecting the temperature stratification formed in the hot water storage tank.

本発明に係る熱供給システムの更なる特徴構成は、前記熱交換部は、前記貯湯タンクの内部の下部位置に前記熱交換部供給路にて供給される共用熱媒体を導入する導入部と、前記貯湯タンクの下部位置から前記貯湯タンクの外部に共用熱媒体又は共用熱媒体と湯水の混合流体を排出する排出部とを備えている点にある。   According to a further feature of the heat supply system according to the present invention, the heat exchanging unit introduces a common heat medium supplied through the heat exchanging unit supply path to a lower position inside the hot water storage tank, and In the point which is equipped with the discharge part which discharges the common heat medium or the mixed heat medium, and the mixed fluid of hot water from the lower position of the hot water storage tank outside the hot water storage tank.

本特徴構成によれば、導入部にて貯湯タンクの内部の下部位置に共用熱媒体が導入されるので、貯湯タンクの内部において導入された共用熱媒体と湯水を混合させて、貯湯タンクの下部の湯水と共用熱媒体との間での熱の授受を行うことができる。そして、熱交換された共用熱媒体又は共用熱媒体と湯水の混合流体は、排出部にて貯湯タンクの外部に排出される。このようにして、単に、導入部と排出部を備えるという簡易な構成により、貯湯タンクの下部の湯水と共用熱媒体との間での熱の授受を的確に行うことができる。   According to this characteristic configuration, since the common heat medium is introduced into the lower position inside the hot water storage tank at the introduction section, the common heat medium introduced in the hot water storage tank and hot water are mixed together to form the lower part of the hot water storage tank. Heat can be exchanged between the hot water and the common heat medium. Then, the heat exchanged shared heat medium or the mixed fluid of the shared heat medium and hot water is discharged to the outside of the hot water storage tank at the discharge portion. In this way, heat can be accurately exchanged between the hot water at the lower part of the hot water storage tank and the common heat medium with a simple configuration of simply including the introduction part and the discharge part.

熱供給システムの概略構成を示す図Diagram showing schematic configuration of heat supply system 貯湯タンクの温度成層及び熱交換部を示す図Diagram showing temperature stratification and heat exchange part of hot water storage tank 別実施形態における熱交換部を示す図The figure which shows the heat exchange part in another embodiment

本発明に係る熱供給システムの実施形態を図面に基づいて説明する。
この熱供給システム100は、図1に示すように、複数の燃料電池システム1を備えており、例えば、マンション等の複数の住戸が集合している集合住宅に適応して、複数の住戸の夫々に燃料電池システム1を備えさせている。
An embodiment of a heat supply system according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the heat supply system 100 includes a plurality of fuel cell systems 1. For example, the heat supply system 100 is adapted to a housing complex in which a plurality of dwelling units such as an apartment are gathered. Is provided with a fuel cell system 1.

(燃料電池システムの構成)
複数の燃料電池システム1の夫々は、燃料電池装置2と、その燃料電池装置2と貯湯タンク3との間で湯水を循環させて燃料電池装置2の排熱にて加熱された湯水を貯湯タンク3に貯湯する排熱回収手段4と、その排熱回収手段4にて貯湯タンク3から燃料電池装置2に供給する湯水が有する熱を放熱させるラジエータ(放熱器に相当する)5とを備えている。
(Configuration of fuel cell system)
Each of the plurality of fuel cell systems 1 is configured to circulate hot water between the fuel cell device 2 and the fuel cell device 2 and the hot water storage tank 3 and supply hot water heated by the exhaust heat of the fuel cell device 2 to the hot water storage tank. 3 is provided with exhaust heat recovery means 4 for storing hot water, and a radiator (corresponding to a radiator) 5 for radiating the heat of hot water supplied from the hot water storage tank 3 to the fuel cell device 2 by the exhaust heat recovery means 4. Yes.

燃料電池装置2は、水素を含む水素含有ガスと酸素を含む酸素含有ガスとを反応させて発電しており、例えば、固体酸化物型にて構成されている。貯湯タンク3は、例えば、密閉型のタンクにて構成されており、温度が高い湯水(温水)は上方側に且つ温度が低い湯水は下方側に温度成層を形成する状態で湯水を貯留自在に構成されている。図示は省略するが、貯湯タンク3に貯湯されている湯水は、給湯栓等の給湯利用箇所に供給自在であるとともに、暖房や風呂の追焚の熱源としても利用可能に構成されている。貯湯タンク3には、その貯湯タンク3の蓄熱量を検出する等のために、複数の温度センサT1〜T4が上下方向に間隔を隔てて設けられている。第1温度センサT1は、貯湯タンク3の上部部位の湯水の温度を検出し、第2温度センサT2は、貯湯タンク3の中間上部部位の湯水の温度を検出し、第3温度センサT3は、貯湯タンク3の中間下部部位の湯水の温度を検出し、第4温度センサT4は、貯湯タンク3の下部部位の湯水の温度を検出している。   The fuel cell device 2 generates power by reacting a hydrogen-containing gas containing hydrogen and an oxygen-containing gas containing oxygen, and is configured, for example, as a solid oxide type. The hot water storage tank 3 is constituted by, for example, a sealed tank, and hot water with high temperature (hot water) can be stored freely in a state where temperature stratification is formed on the upper side and hot water with low temperature is formed on the lower side. It is configured. Although illustration is omitted, the hot water stored in the hot water storage tank 3 can be freely supplied to hot water use places such as a hot water tap, and can also be used as a heat source for heating and bathing. In the hot water storage tank 3, a plurality of temperature sensors T <b> 1 to T <b> 4 are provided at intervals in the vertical direction in order to detect the amount of heat stored in the hot water storage tank 3. The first temperature sensor T1 detects the temperature of the hot water in the upper part of the hot water storage tank 3, the second temperature sensor T2 detects the temperature of the hot water in the middle upper part of the hot water storage tank 3, and the third temperature sensor T3 The temperature of the hot water in the intermediate lower part of the hot water storage tank 3 is detected, and the fourth temperature sensor T4 detects the temperature of the hot water in the lower part of the hot water storage tank 3.

排熱回収手段4は、貯湯タンク3の下部から取り出した湯水を燃料電池装置2に供給して貯湯タンク3の上部に戻す湯水循環路6と、その湯水循環路6にて湯水を循環させる湯水循環ポンプ7とを備えている。そして、排熱回収手段4は、燃料電池装置2の排ガスと湯水循環路6の湯水とを熱交換させて燃料電池装置2の排熱にて湯水循環路6の湯水を加熱し、その加熱された湯水を貯湯タンク3に戻して貯湯するように構成されている。ラジエータ5は、湯水循環路6において貯湯タンク3と燃料電池装置2との間の部位に備えられており、貯湯タンク3から燃料電池装置2に供給する湯水が有する熱を放熱自在に構成されている。   The exhaust heat recovery means 4 supplies hot water extracted from the lower part of the hot water tank 3 to the fuel cell device 2 and returns it to the upper part of the hot water tank 3, and hot water for circulating hot water in the hot water circuit 6. A circulation pump 7 is provided. The exhaust heat recovery means 4 exchanges heat between the exhaust gas of the fuel cell device 2 and the hot water in the hot water circulation path 6 to heat the hot water in the hot water circulation path 6 with the exhaust heat of the fuel cell device 2 and is heated. The hot water is returned to the hot water storage tank 3 for hot water storage. The radiator 5 is provided in a portion of the hot water circulation path 6 between the hot water storage tank 3 and the fuel cell device 2, and is configured to freely dissipate heat of hot water supplied from the hot water storage tank 3 to the fuel cell device 2. Yes.

(共用熱媒体を循環する構成)
熱供給システム100は、燃料電池システム1とは別に、共用熱媒体(例えば、湯水)を貯留する共用タンク8と、その共用タンク8の共用熱媒体を循環させる共用熱媒体循環路9と、共用タンク8から取り出した共用熱媒体を共用熱媒体循環路9にて循環させて共用タンク8に戻す共用熱媒体循環ポンプ10(共用熱媒体循環手段に相当する)とを備えている。共用タンク8は、例えば、密閉型のタンクにて構成されており、温度が高い共用熱媒体(温水)は上方側に且つ温度が低い共用熱媒体は下方側に温度成層を形成する状態で共用熱媒体を貯留自在に構成されている。共用熱媒体循環路9は、共用タンク8の上部から共用熱媒体を取り出して通流させる取り出し側部位9aと、その取り出し側部位9aを通流した共用熱媒体を共用タンク8の下部に戻す戻し側部位9bとから構成されている。
(Configuration to circulate shared heat medium)
In addition to the fuel cell system 1, the heat supply system 100 is shared with a shared tank 8 that stores a shared heat medium (for example, hot water), and a shared heat medium circuit 9 that circulates the shared heat medium of the shared tank 8. A common heat medium circulation pump 10 (corresponding to a common heat medium circulation means) that circulates the common heat medium taken out from the tank 8 in the common heat medium circulation path 9 and returns the common heat medium to the common tank 8 is provided. The shared tank 8 is configured by, for example, a sealed tank, and a shared heat medium (hot water) having a high temperature is shared on the upper side and a shared heat medium having a low temperature is formed on the lower side in a state where temperature stratification is formed. The heat medium can be stored freely. The shared heat medium circulation path 9 takes out the shared heat medium from the upper part of the shared tank 8 and allows it to flow, and returns the shared heat medium flowing through the removed side part 9 a back to the lower part of the shared tank 8. It is comprised from the side part 9b.

共用熱媒体と貯湯タンク3の下部の湯水との間での熱の授受を行うために、共用タンク8の共用熱媒体と貯湯タンク3の下部の湯水とを熱交換させる熱交換部14が備えられている。この熱交換部14は、図2に示すように、貯湯タンク3の内部の下部位置に配置され、熱交換部供給路15にて供給される共用熱媒体を通流させる内部熱交換器(例えば、伝熱コイル型の熱交換器)にて構成されている。そして、図1に戻り、熱交換部14に共用熱媒体を供給するために、複数の熱交換部14の夫々に対応して、共用熱媒体循環路9の共用熱媒体を熱交換部14に供給して共用熱媒体循環路9に戻す熱交換部供給路15が備えられている。この熱交換部供給路15は、その上流側端部が共用熱媒体循環路9の取り出し側部位9aに接続され、その途中部位に熱交換部14を備え、その下流側端部が共用熱媒体循環路9の戻し側部位9bに接続されている。この熱交換部供給路15には、特に共用熱媒体の通流を断続する弁等を設けておらず、熱交換部供給路15によって、常時、熱交換部14に共用熱媒体が供給されている。   In order to transfer heat between the common heat medium and the hot water in the lower part of the hot water storage tank 3, a heat exchanging unit 14 for exchanging heat between the common heat medium in the common tank 8 and the hot water in the lower part of the hot water storage tank 3 is provided. It has been. As shown in FIG. 2, the heat exchanging unit 14 is disposed at a lower position inside the hot water storage tank 3, and an internal heat exchanger (for example, a flow of common heat medium supplied through the heat exchanging unit supply path 15 (for example, , Heat transfer coil type heat exchanger). Then, returning to FIG. 1, in order to supply the common heat medium to the heat exchanging unit 14, the common heat medium in the common heat medium circuit 9 is supplied to the heat exchanging unit 14 corresponding to each of the plurality of heat exchanging units 14. A heat exchange section supply path 15 that is supplied and returned to the shared heat medium circulation path 9 is provided. The heat exchange section supply path 15 is connected at its upstream end to the take-out side section 9a of the common heat medium circulation path 9, and is provided with a heat exchange section 14 in the middle of the heat exchange section supply path 15, with its downstream end at the common heat medium. The return path 9b of the circulation path 9 is connected. The heat exchange section supply path 15 is not provided with a valve that interrupts the flow of the shared heat medium, and the shared heat medium is always supplied to the heat exchange section 14 by the heat exchange section supply path 15. Yes.

このようにして、燃料電池システム1は、燃料電池装置2、排熱回収手段4及びラジエータ5に加えて、熱交換部14及び熱交換部供給路15を備えている。これにより、熱交換部14において貯湯タンク3の下部の湯水と共用熱媒体との熱交換を行うようにしている。そして、熱交換部14において貯湯タンク3の下部の湯水にて共用熱媒体を加熱することで、貯湯タンク3に蓄熱されている熱を燃料電池システム1から共用熱媒体に供給することができる。逆に、熱交換部14において共用熱媒体にて貯湯タンク3の下部の湯水を加熱することで、共用熱媒体が有する熱を燃料電池システム1に取り込んで貯湯タンク3に蓄熱することができる。   Thus, the fuel cell system 1 includes the heat exchange unit 14 and the heat exchange unit supply path 15 in addition to the fuel cell device 2, the exhaust heat recovery means 4, and the radiator 5. Thus, heat exchange between the hot water at the lower part of the hot water storage tank 3 and the shared heat medium is performed in the heat exchanging unit 14. Then, the heat stored in the hot water storage tank 3 can be supplied from the fuel cell system 1 to the shared heat medium by heating the shared heat medium with the hot water in the lower part of the hot water storage tank 3 in the heat exchange unit 14. Conversely, by heating the hot water in the lower part of the hot water storage tank 3 with the shared heat medium in the heat exchange unit 14, the heat of the shared heat medium can be taken into the fuel cell system 1 and stored in the hot water storage tank 3.

共用熱媒体循環路9において、取り出し側部位9aの上流側部位と戻し側部位9bの下流側部位とを接続するバイパス路12が備えられ、取り出し側部位9aとバイパス路12との接続箇所には第1三方弁13が備えられている。取り出し側部位9aとバイパス路12との接続箇所は、取り出し側部位9aと熱交換部供給路15との接続箇所よりも上流側となっている。そして、共用熱媒体循環路9において、取り出し側部位9aとバイパス路12との接続箇所と取り出し側部位9aと熱交換部供給路15との接続箇所の間に共用熱媒体循環ポンプ10が備えられている。また、共用熱媒体循環路9において、取り出し側部位9aと戻し側部位9bとの間に第1制御弁11が備えられている。   In the common heat medium circulation path 9, a bypass path 12 is provided to connect the upstream side part of the take-out side part 9a and the downstream side part of the return side part 9b, and the connection part between the take-out side part 9a and the bypass path 12 is provided. A first three-way valve 13 is provided. The connection location between the extraction side portion 9a and the bypass path 12 is upstream of the connection location between the extraction side portion 9a and the heat exchange section supply path 15. In the common heat medium circulation path 9, a common heat medium circulation pump 10 is provided between the connection part between the take-out side part 9 a and the bypass path 12 and the connection part between the take-out part 9 a and the heat exchange part supply path 15. ing. In the common heat medium circulation path 9, a first control valve 11 is provided between the take-out side portion 9a and the return side portion 9b.

共用タンク8の共用熱媒体を加熱するために、共用タンク8から取り出した共用熱媒体を共用熱媒体加熱部17にて加熱して共用タンク8に戻す共用熱媒体加熱手段18が備えられている。この例では、共用熱媒体加熱部17は、太陽熱を集熱して共用熱媒体を加熱する太陽熱集熱器にて構成されている。共用熱媒体加熱手段18は、共用タンク8の下部から取り出した共用熱媒体を共用熱媒体加熱部17に供給して共用熱媒体加熱部17にて加熱された共用熱媒体を共用タンク8の上部に戻す加熱用循環路19と、その加熱用循環路19にて共用熱媒体を循環させる加熱用循環ポンプ20とを備えている。   In order to heat the shared heat medium in the shared tank 8, a shared heat medium heating means 18 is provided that heats the shared heat medium taken out from the shared tank 8 by the shared heat medium heating unit 17 and returns it to the shared tank 8. . In this example, the shared heat medium heating unit 17 is configured by a solar heat collector that collects solar heat and heats the shared heat medium. The common heat medium heating means 18 supplies the common heat medium taken out from the lower part of the common tank 8 to the common heat medium heating part 17 and supplies the common heat medium heated by the common heat medium heating part 17 to the upper part of the common tank 8. And a heating circulation pump 20 that circulates the common heat medium in the heating circulation path 19.

複数の燃料電池システム1の夫々には、その運転を制御する燃料電池側制御部21が備えられている。この燃料電池側制御部21は、燃料電池装置2や排熱回収手段4の作動を制御するように構成されている。つまり、燃料電池側制御部21は、例えば、電力需要に応じて燃料電池装置2の出力等を制御している。燃料電池側制御部21は、燃料電池装置2を作動させる場合に、湯水循環ポンプ7を作動させて、貯湯タンク3の下部から取り出した湯水を湯水循環路6にて燃料電池装置2に供給して燃料電池装置2の排ガスにてその湯水を加熱し、その加熱された湯水を湯水循環路6にて貯湯タンク3に戻して貯湯している。燃料電池装置2は、例えば、天然ガス等の炭化水素を原燃料としており、その原燃料に水蒸気を混合させてCOとH2に改質させてから燃料電池にて反応させている。燃料電池装置2の排ガスにて湯水循環路6の湯水を加熱することで、燃料電池装置2の排ガスを凝縮させて凝縮水を得ており、その凝縮水を上述の改質反応に必要な改質水として用いている。そこで、改質水としての凝縮水を得るために、貯湯タンク3から燃料電池装置2に供給する湯水の温度に上限設定温度(例えば、40℃)が設定されている。燃料電池側制御部21は、第4温度センサT4の検出温度が上限設定温度以上であると、ラジエータ5を作動させて、湯水循環路6にて貯湯タンク3から燃料電池装置2に供給する湯水の温度を上限設定温度未満となるようにしている。 Each of the plurality of fuel cell systems 1 is provided with a fuel cell side control unit 21 for controlling the operation thereof. The fuel cell side control unit 21 is configured to control the operation of the fuel cell device 2 and the exhaust heat recovery means 4. That is, the fuel cell side control unit 21 controls, for example, the output of the fuel cell device 2 according to the power demand. When the fuel cell device 2 is operated, the fuel cell side control unit 21 operates the hot water circulation pump 7 to supply hot water taken out from the lower part of the hot water storage tank 3 to the fuel cell device 2 through the hot water circulation path 6. Then, the hot water is heated by the exhaust gas of the fuel cell device 2, and the heated hot water is returned to the hot water storage tank 3 through the hot water circulation path 6 to store hot water. The fuel cell device 2 uses, for example, a hydrocarbon such as natural gas as a raw fuel. The raw fuel is mixed with water vapor and reformed into CO and H 2 and then reacted in the fuel cell. The hot water of the hot water circulation path 6 is heated with the exhaust gas of the fuel cell device 2 to condense the exhaust gas of the fuel cell device 2 to obtain condensed water, and the condensed water is modified for the above reforming reaction. Used as quality water. Therefore, in order to obtain condensed water as reformed water, an upper limit set temperature (for example, 40 ° C.) is set for the temperature of hot water supplied from the hot water storage tank 3 to the fuel cell device 2. When the detected temperature of the fourth temperature sensor T4 is equal to or higher than the upper limit set temperature, the fuel cell side control unit 21 operates the radiator 5 and supplies hot water supplied from the hot water storage tank 3 to the fuel cell device 2 through the hot water circulation path 6. Is set to be lower than the upper limit temperature.

また、共用熱媒体循環路9における共用熱媒体の循環状態を制御する共用側制御部22が備えられており、燃料電池側制御部21と共用側制御部22との間では各種の情報が通信自在に構成されている。この共用側制御部22(共用熱媒体循環手段に相当する)は、共用熱媒体循環ポンプ10及び第1三方弁13の作動を制御することで、共用熱媒体循環路9における共用熱媒体の循環状態を制御するとともに、共用熱媒体加熱手段18の作動をも制御するように構成されている。つまり、共用側制御部22は、例えば、複数の燃料電池システム1の全てが運転停止している場合等には、燃料電池側制御部21との間での通信によりその運転停止の情報を取得すると、共用熱媒体循環ポンプ10を作動停止させ、それ以外の場合には、共用熱媒体循環ポンプ10を作動させている。また、共用側制御部22は、例えば、昼間等の太陽熱を取得できる時間帯等に、加熱用循環ポンプ20を作動させて、加熱用循環路19によって、共用タンク8の下部から取り出した共用熱媒体を共用熱媒体加熱部17に供給し、共用熱媒体加熱部17にて加熱された共用熱媒体を共用タンク8の上部に戻すようにしている。   In addition, a shared-side control unit 22 that controls the circulation state of the shared heat medium in the shared heat-medium circulation path 9 is provided, and various information is communicated between the fuel cell-side control unit 21 and the shared-side control unit 22. It is configured freely. The shared-side control unit 22 (corresponding to the shared heat medium circulation means) controls the operations of the shared heat medium circulation pump 10 and the first three-way valve 13, thereby circulating the shared heat medium in the shared heat medium circulation path 9. While controlling a state, it is comprised so that the action | operation of the shared heat medium heating means 18 may also be controlled. That is, for example, when all of the plurality of fuel cell systems 1 are stopped, the shared-side control unit 22 acquires information on the operation stop through communication with the fuel cell-side control unit 21. Then, the operation of the shared heat medium circulation pump 10 is stopped, and in other cases, the shared heat medium circulation pump 10 is operated. In addition, the shared-side control unit 22 operates the heating circulation pump 20 in a time zone where solar heat can be acquired, such as during the daytime, and the shared heat extracted from the lower portion of the shared tank 8 by the heating circulation path 19. The medium is supplied to the common heat medium heating unit 17, and the common heat medium heated by the common heat medium heating unit 17 is returned to the upper part of the common tank 8.

(熱交換部における熱交換)
図2に示すように、貯湯タンク3では、温度成層を形成して湯水を貯湯するので、温度が高い湯水(温水)(図2中黒色の濃い領域)は上方側に且つ温度が低い湯水(図2中黒色の薄い領域)は下方側に存在することになる。よって、貯湯タンク3の下部の湯水の温度は、基本的に低温となっており、貯湯タンク3の蓄熱量が一杯となった場合等に、貯湯タンク3の下部の湯水の温度も上昇することになる。
(Heat exchange in the heat exchange section)
As shown in FIG. 2, in the hot water storage tank 3, hot water is stored by forming a temperature stratification. Therefore, hot water (hot water) having a high temperature (black dark area in FIG. 2) The black thin area in FIG. 2 exists on the lower side. Therefore, the temperature of the hot water in the lower part of the hot water storage tank 3 is basically low, and the temperature of the hot water in the lower part of the hot water storage tank 3 rises when the amount of heat stored in the hot water storage tank 3 becomes full. become.

複数の燃料電池システム1の夫々において、熱交換部14は、貯湯タンク3の内部の下部位置に配置され、熱交換部供給路15にて供給される共用熱媒体を通流させる内部熱交換器として構成されており、その熱交換部14に熱交換部供給路15によって共用熱媒体を供給している。これにより、貯湯タンク3の下部の湯水の温度が上昇した場合には、貯湯タンク3の下部の湯水の方が共用熱媒体よりも高温となって、熱交換部14において貯湯タンク3の下部の湯水にて共用熱媒体を加熱し、貯湯タンク3の湯水が有する熱を共用熱媒体に供給することができる。したがって、貯湯タンク3の蓄熱量が一杯となった場合等、貯湯タンク3の下部の湯水の温度が上昇する場合であっても、その貯湯タンク3の下部の湯水の温度を低下させることができる。その結果、貯湯タンク3の下部から湯水循環路6に取り出される湯水の温度を低温とすることができ、その湯水の温度が上限設定温度以上となって、ラジエータ5にて放熱されるのを防止することができる。   In each of the plurality of fuel cell systems 1, the heat exchange unit 14 is disposed at a lower position inside the hot water storage tank 3, and an internal heat exchanger that allows a common heat medium supplied through the heat exchange unit supply path 15 to flow therethrough. The common heat medium is supplied to the heat exchanging unit 14 through the heat exchanging unit supply path 15. Thereby, when the temperature of the hot water in the lower part of the hot water storage tank 3 rises, the hot water in the lower part of the hot water storage tank 3 becomes hotter than the common heat medium, and the heat exchange unit 14 The common heat medium can be heated with hot water, and the heat of the hot water in the hot water storage tank 3 can be supplied to the common heat medium. Therefore, even when the temperature of hot water in the lower part of the hot water storage tank 3 rises, such as when the amount of heat stored in the hot water storage tank 3 becomes full, the temperature of the hot water in the lower part of the hot water storage tank 3 can be lowered. . As a result, the temperature of the hot water taken out from the lower part of the hot water storage tank 3 to the hot water circulation path 6 can be lowered, and the temperature of the hot water becomes higher than the upper limit set temperature to prevent the radiator 5 from radiating heat. can do.

逆に、貯湯タンク3の下部の湯水の温度が低温である場合には、貯湯タンク3の下部の湯水の温度が共用熱媒体よりも低温となって、熱交換部14において共用熱媒体にて貯湯タンク3の下部の湯水を加熱することができる。そして、加熱された貯湯タンク3の湯水は、温度成層を形成するように上方側に移動するので、貯湯タンク3の下部の湯水の温度は低温に維持され、熱交換部14において共用熱媒体にて貯湯タンク3の下部の湯水を加熱することを継続して行うことができる。
そして、熱交換部供給路15には、共用熱媒体の通流を断続する弁等が設けられていないので、共用熱媒体循環ポンプ10を作動させている状態では、熱交換部供給路15によって、常時、熱交換部14に共用熱媒体が供給されて、上述のような、貯湯タンク3の下部の湯水から共用熱媒体への熱の供給、及び、共用熱媒体から貯湯タンク3への熱の取り込みを自動的に行うことができる。したがって、このような熱の授受の管理は、実質的に、共用熱媒体循環ポンプ10を作動させるか否かの共用熱媒体の循環管理のみによって実現できる。
On the contrary, when the temperature of the hot water in the lower part of the hot water storage tank 3 is low, the temperature of the hot water in the lower part of the hot water storage tank 3 becomes lower than that of the shared heat medium, and the heat exchange unit 14 uses the shared heat medium. The hot water in the lower part of the hot water storage tank 3 can be heated. Then, since the heated hot water in the hot water storage tank 3 moves upward so as to form temperature stratification, the temperature of the hot water in the lower part of the hot water storage tank 3 is maintained at a low temperature and becomes a common heat medium in the heat exchanging unit 14. Thus, it is possible to continuously heat the hot water in the lower part of the hot water storage tank 3.
Since the heat exchange section supply path 15 is not provided with a valve or the like for interrupting the flow of the shared heat medium, the heat exchange section supply path 15 causes the heat exchange section supply path 15 to operate when the shared heat medium circulation pump 10 is in operation. The common heat medium is always supplied to the heat exchanging unit 14 to supply the heat from the hot water at the lower part of the hot water storage tank 3 to the common heat medium and the heat from the common heat medium to the hot water storage tank 3 as described above. Can be automatically imported. Therefore, such management of heat transfer can be substantially realized only by the circulation management of the shared heat medium whether or not to operate the shared heat medium circulation pump 10.

このようにして、本実施形態の熱供給システム100では、複数の燃料電池システム1の夫々において、貯湯タンク3に蓄熱されている熱を、ラジエータ5にて無駄に放熱することなく、共用熱媒体に供給して共用タンク8に蓄熱させておくことができる。そして、共用熱媒体が有する熱を貯湯タンク3に取り込んで、その取り込んだ熱を給湯や暖房等に利用することができる。これにより、複数の燃料電池システム1の夫々において、貯湯タンク3の容量を小さくすることができながら、貯湯タンク3の下部の湯水と共用熱媒体との間で熱の授受を行い、燃料電池装置2の排熱を無駄に放熱することなく、給湯や暖房等に有効に活用することができる。しかも、共用熱媒体は、複数の燃料電池システム1の夫々に備えられた熱交換部14にて貯湯タンク3の下部の湯水と熱交換できるので、ある住戸にて余剰な燃料電池装置2の排熱を他の住戸にて給湯や暖房等に用いることができ、集合住宅の全体としてエネルギーの有効活用を図ることができる。更に、熱交換部14に共用熱媒体を供給するという簡易な構成を備えるだけで、貯湯タンク3に形成される温度成層を活用して、熱交換部14における熱の授受を適切に行うことができる。   In this manner, in the heat supply system 100 of the present embodiment, the heat stored in the hot water storage tank 3 in each of the plurality of fuel cell systems 1 is not dissipated in the radiator 5, and the common heat medium is used. Can be stored in the common tank 8. And the heat which a shared heat medium has can be taken in into the hot water storage tank 3, and the taken-in heat can be utilized for hot water supply, heating, etc. As a result, in each of the plurality of fuel cell systems 1, while the capacity of the hot water storage tank 3 can be reduced, heat is transferred between the hot water in the lower part of the hot water storage tank 3 and the common heat medium, thereby the fuel cell device. The waste heat of 2 can be effectively utilized for hot water supply, heating, etc. without wasting heat. In addition, the shared heat medium can exchange heat with the hot water in the lower part of the hot water storage tank 3 by the heat exchanging unit 14 provided in each of the plurality of fuel cell systems 1. Heat can be used for hot water supply or heating in other dwelling units, and energy can be effectively utilized as a whole of the apartment house. Furthermore, it is possible to appropriately transfer heat in the heat exchanging unit 14 by using the temperature stratification formed in the hot water storage tank 3 only by providing a simple configuration of supplying the common heat medium to the heat exchanging unit 14. it can.

〔別実施形態〕
(1)上記実施形態では、熱交換部14として、図2に示すように、貯湯タンク3の内部の下部位置に配置された内部熱交換器にて構成されている例を示している。これに代えて、図3(a)に示すように、貯湯タンク3の下部から湯水を貯湯タンク3の外部に取り出して貯湯タンク3の下部に戻す取り出し循環路23が備えられ、熱交換部14を、その取り出し循環路23の湯水と熱交換部供給路15にて供給される共用熱媒体とを熱交換させる外部熱交換器にて構成することもできる。取り出し循環路23には、取り出し用循環ポンプ24が備えられ、その取り出し用循環ポンプ24を作動させることで、外部熱交換器としての熱交換部14における貯湯タンク3の下部の湯水と共用熱媒体の熱交換を行うようにしている。
[Another embodiment]
(1) In the said embodiment, as shown in FIG. 2, as the heat exchange part 14, the example comprised by the internal heat exchanger arrange | positioned in the lower position inside the hot water storage tank 3 is shown. Instead, as shown in FIG. 3A, a heat extraction section 23 is provided that takes out hot water from the lower part of the hot water storage tank 3 to the outside of the hot water storage tank 3 and returns it to the lower part of the hot water storage tank 3. Can also be configured by an external heat exchanger that exchanges heat between the hot water in the take-out circulation path 23 and the shared heat medium supplied in the heat exchange section supply path 15. The take-out circulation path 23 is provided with a take-out circulation pump 24. By operating the take-out circulation pump 24, the hot water and the common heat medium at the lower part of the hot water storage tank 3 in the heat exchanging section 14 as an external heat exchanger are provided. Heat exchange.

また、図3(b)に示すように、熱交換部14は、貯湯タンク3の内部の下部位置(下端部位)に熱交換部供給路15にて供給される共用熱媒体を導入する導入部25と、貯湯タンク3の下部位置(下端部位)から貯湯タンク3の外部に共用熱媒体又は共用熱媒体と湯水の混合流体を排出する排出部26とを備えて構成することもできる。この場合には、導入部25にて貯湯タンク3の内部の下部位置に共用熱媒体が導入されるので、貯湯タンク3の内部において導入された共用熱媒体と湯水を混合させて、貯湯タンク3の下部の湯水と共用熱媒体との間での熱の授受を行うことができる。そして、熱交換された共用熱媒体又は共用熱媒体と湯水の混合流体は、排出部26にて貯湯タンク3の外部に排出される。そして、貯湯タンク3の下部位置には、導入部25から導入される共用熱媒体の貯湯タンク3の上方側への移動を規制する規制体27が備えられている。この規制体27は、貯湯タンク3の上下方向において導入部25に対向する位置に配置されており、共用熱媒体の貯湯タンク3の上方側への移動を規制しつつ、共用熱媒体を貯湯タンク3の横幅方向に案内するコ字状に形成されている。これにより、貯湯タンク3の内部において導入された共用熱媒体と貯湯タンク3の下部の湯水を混合させて、貯湯タンク3の下部の湯水と共用熱媒体との間での熱の授受を適切に行えるようにしている。   Further, as shown in FIG. 3B, the heat exchanging unit 14 introduces a common heat medium supplied to the lower position (lower end part) of the hot water storage tank 3 through the heat exchanging unit supply path 15. 25 and a discharge part 26 that discharges the shared heat medium or a mixed fluid of the shared heat medium and hot water from the lower position (lower end portion) of the hot water storage tank 3 to the outside of the hot water storage tank 3. In this case, since the common heat medium is introduced into the lower position inside the hot water storage tank 3 by the introduction unit 25, the common heat medium introduced in the hot water storage tank 3 and hot water are mixed to obtain the hot water storage tank 3. Heat can be exchanged between the hot water and the common heat medium at the bottom. Then, the heat exchanged common heat medium or a mixed fluid of the common heat medium and hot water is discharged to the outside of the hot water storage tank 3 by the discharge unit 26. A regulating body 27 is provided at a lower position of the hot water storage tank 3 to restrict the movement of the shared heat medium introduced from the introduction unit 25 to the upper side of the hot water storage tank 3. The restricting body 27 is disposed at a position facing the introduction portion 25 in the vertical direction of the hot water storage tank 3, and restricts the movement of the common heat medium to the upper side of the hot water storage tank 3, while the common heat medium is used as the hot water storage tank. 3 is formed in a U-shape to be guided in the lateral width direction. Thereby, the common heat medium introduced in the hot water storage tank 3 and the hot water in the lower part of the hot water tank 3 are mixed, and heat transfer between the hot water in the lower part of the hot water tank 3 and the common heat medium is appropriately performed. I can do it.

(2)上記実施形態では、共用熱媒体加熱部17として、太陽熱集熱器を採用した場合を例示したが、例えば、集合住宅における共用部の電灯等の消費電力だけを賄うことができる小型のコージェネレーションシステムを備え、その小型のコージェネレーションシステムを共用熱媒体加熱部として採用して、小型のコージェネレーションシステムから発生する排熱にて共用熱媒体を加熱することも可能である。 (2) In the above embodiment, a case where a solar heat collector is employed as the common heat medium heating unit 17 is exemplified. However, for example, a small-sized one that can cover only power consumption of an electric lamp or the like of the common unit in an apartment house. It is also possible to provide a cogeneration system and employ the small cogeneration system as a common heat medium heating unit to heat the common heat medium with exhaust heat generated from the small cogeneration system.

(3)上記実施形態では、熱交換部供給路15に共用熱媒体の通流を断続する弁等を設けていないが、熱交換部供給路15に共用熱媒体の通流を断続する弁等を設けることもできる。このような弁等があれば、各住戸個別で、燃料電池システムから共用熱媒体への熱の供給及び共用熱媒体から燃料電池システムへの熱の取り込みを行うことが可能になるので、給湯による熱の払出後、給湯需要が見込めない場合等には、弁を閉じて熱の取り込みを禁止し、他の住戸で熱の取込量を大きくする等の効果を大きくすることが可能となる。 (3) In the above embodiment, a valve or the like for interrupting the flow of the shared heat medium is not provided in the heat exchange part supply path 15, but a valve or the like for interrupting the flow of the shared heat medium to the heat exchange part supply path 15. Can also be provided. If there is such a valve, it becomes possible to supply heat from the fuel cell system to the shared heat medium and to take heat from the shared heat medium into the fuel cell system individually by each unit. When the demand for hot water supply cannot be expected after the heat is discharged, it is possible to increase the effect of closing the valve and prohibiting the heat intake and increasing the heat intake amount in other dwelling units.

本発明は、燃料電池装置と、その燃料電池装置と貯湯タンクとの間で湯水を循環させて前記燃料電池装置の排熱にて加熱された湯水を前記貯湯タンクに貯湯する排熱回収手段と、その排熱回収手段にて前記貯湯タンクから前記燃料電池装置に供給する湯水が有する熱を放熱させる放熱器とを備えた燃料電池システムが複数備えられ、複数の燃料電池システムの夫々における貯湯タンクの容量を小さくしても、その燃料電池装置の排熱を有効に活用して、更なる省エネルギー化を図ることができる各種の熱供給システムに適応可能である。   The present invention provides a fuel cell device, and waste heat recovery means for circulating hot water between the fuel cell device and a hot water storage tank to store hot water heated by the exhaust heat of the fuel cell device in the hot water storage tank. And a plurality of fuel cell systems each including a heat radiator that dissipates heat of the hot water supplied from the hot water storage tank to the fuel cell device by the exhaust heat recovery means. The hot water storage tanks in each of the plurality of fuel cell systems Even if the capacity of the fuel cell is reduced, it can be applied to various heat supply systems that can effectively utilize the exhaust heat of the fuel cell device to further save energy.

1 燃料電池システム
2 燃料電池装置
3 貯湯タンク
4 排熱回収手段
5 ラジエータ(放熱器)
9 共用熱媒体循環路
10 共用熱媒体循環ポンプ(共用熱媒体循環手段)
14 熱交換部
15 熱交換部供給路
17 共用熱媒体加熱部
18 共用熱媒体加熱手段
22 共用側制御部(共用熱媒体循環手段)
DESCRIPTION OF SYMBOLS 1 Fuel cell system 2 Fuel cell apparatus 3 Hot water storage tank 4 Waste heat recovery means 5 Radiator (radiator)
9 Common heat medium circulation path 10 Common heat medium circulation pump (Common heat medium circulation means)
14 Heat Exchanger 15 Heat Exchanger Supply Path 17 Shared Heat Medium Heating Unit 18 Shared Heat Medium Heating Unit 22 Shared Side Control Unit (Shared Heat Medium Circulating Unit)

Claims (6)

燃料電池装置と、その燃料電池装置と貯湯タンクとの間で湯水を循環させて前記燃料電池装置の排熱にて加熱された湯水を前記貯湯タンクに貯湯する排熱回収手段と、その排熱回収手段にて前記貯湯タンクから前記燃料電池装置に供給する湯水が有する熱を放熱させる放熱器とを備えた燃料電池システムが複数備えられている熱供給システムであって、
複数の前記燃料電池システムの夫々には、温度成層を形成する状態で湯水を貯湯する前記貯湯タンクと、その貯湯タンクの下部の湯水と共用熱媒体とを熱交換させる熱交換部が備えられ、共用熱媒体を共用熱媒体循環路にて循環させる共用熱媒体循環手段と、複数の前記熱交換部の夫々に対応して備えられ、前記共用熱媒体循環路の共用熱媒体を前記熱交換部に供給して前記共用熱媒体循環路に戻す熱交換部供給路とが備えられている熱供給システム。
A fuel cell device, waste heat recovery means for circulating hot water between the fuel cell device and a hot water storage tank and storing hot water heated by the exhaust heat of the fuel cell device in the hot water storage tank, and waste heat thereof A heat supply system including a plurality of fuel cell systems including a radiator that dissipates heat of hot water supplied from the hot water storage tank to the fuel cell device by a recovery unit,
Each of the plurality of fuel cell systems includes a hot water storage tank for storing hot water in a state in which temperature stratification is formed, and a heat exchanging section for exchanging heat between the hot water at the bottom of the hot water storage tank and a common heat medium, A shared heat medium circulating means for circulating the shared heat medium in the shared heat medium circulation path and a plurality of the heat exchange sections are provided correspondingly, and the shared heat medium in the shared heat medium circulation path is provided in the heat exchange section. And a heat exchange section supply path that returns to the shared heat medium circulation path.
共用熱媒体を共用熱媒体加熱部にて加熱する共用熱媒体加熱手段が備えられている請求項1に記載の熱供給システム。   The heat supply system according to claim 1, further comprising a common heat medium heating unit that heats the common heat medium in the common heat medium heating unit. 前記排熱回収手段は、前記貯湯タンクの下部から取り出した湯水を前記燃料電池装置の排熱にて加熱させ、その加熱された湯水を前記貯湯タンクの上部に戻すように構成されている請求項1又は2に記載の熱供給システム。   The exhaust heat recovery means is configured to heat the hot water taken out from the lower part of the hot water storage tank by the exhaust heat of the fuel cell device and return the heated hot water to the upper part of the hot water storage tank. The heat supply system according to 1 or 2. 前記熱交換部は、前記貯湯タンクの内部の下部位置に配置され、前記熱交換部供給路にて供給される共用熱媒体を通流させる内部熱交換器にて構成されている請求項1〜3の何れか1項に記載の熱供給システム。   The said heat exchange part is arrange | positioned in the lower position inside the said hot water storage tank, and is comprised with the internal heat exchanger which flows the common heat medium supplied in the said heat exchange part supply path. 4. The heat supply system according to claim 1. 前記貯湯タンクの下部から湯水を前記貯湯タンクの外部に取り出して前記貯湯タンクの下部に戻す取り出し循環路が備えられ、前記熱交換部は、その取り出し循環路の湯水と前記熱交換部供給路にて供給される共用熱媒体とを熱交換させる外部熱交換器にて構成されている請求項1〜3の何れか1項に記載の熱供給システム。   There is provided a take-out circulation path for removing hot water from the lower part of the hot water storage tank to the outside of the hot water storage tank and returning it to the lower part of the hot water storage tank, and the heat exchanging section is connected to the hot water and the heat exchanging section supply path The heat supply system of any one of Claims 1-3 comprised by the external heat exchanger which heat-exchanges with the shared heat medium supplied in this way. 前記熱交換部は、前記貯湯タンクの内部の下部位置に前記熱交換部供給路にて供給される共用熱媒体を導入する導入部と、前記貯湯タンクの下部位置から前記貯湯タンクの外部に共用熱媒体又は共用熱媒体と湯水の混合流体を排出する排出部とを備えている請求項1〜3の何れか1項に記載の熱供給システム。   The heat exchanging unit introduces a common heat medium supplied by the heat exchanging unit supply path into a lower position inside the hot water storage tank, and is shared from the lower position of the hot water storage tank to the outside of the hot water storage tank. The heat supply system of any one of Claims 1-3 provided with the discharge part which discharges the heat medium or the mixed heat medium, and the mixed fluid of hot water.
JP2011195326A 2011-09-07 2011-09-07 Heat supply system Pending JP2013057436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195326A JP2013057436A (en) 2011-09-07 2011-09-07 Heat supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195326A JP2013057436A (en) 2011-09-07 2011-09-07 Heat supply system

Publications (1)

Publication Number Publication Date
JP2013057436A true JP2013057436A (en) 2013-03-28

Family

ID=48133471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195326A Pending JP2013057436A (en) 2011-09-07 2011-09-07 Heat supply system

Country Status (1)

Country Link
JP (1) JP2013057436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010804A (en) * 2013-07-01 2015-01-19 矢崎エナジーシステム株式会社 Hybrid hot water supply system
JP2016023869A (en) * 2014-07-22 2016-02-08 大和ハウス工業株式会社 Heat utilization system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414546A (en) * 1987-07-08 1989-01-18 Matsushita Electric Ind Co Ltd Reservation hot water feeding system
JPS6467558A (en) * 1987-09-07 1989-03-14 Matsushita Electric Ind Co Ltd Feed hot water reservation system
JP2005093127A (en) * 2003-09-12 2005-04-07 Fuji Electric Holdings Co Ltd Fuel cell cogeneration system and its operation method
JP2005257195A (en) * 2004-03-12 2005-09-22 Yazaki Corp Hybrid hot water supply system
JP2007101004A (en) * 2005-09-30 2007-04-19 Kawamura Electric Inc Cogeneration system for multiple dwelling house
JP2011163680A (en) * 2010-02-10 2011-08-25 Osaka Gas Co Ltd Heat source water supply system
JP2013002705A (en) * 2011-06-15 2013-01-07 Chofu Seisakusho Co Ltd Hot water supply facility for multiple dwelling house

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414546A (en) * 1987-07-08 1989-01-18 Matsushita Electric Ind Co Ltd Reservation hot water feeding system
JPS6467558A (en) * 1987-09-07 1989-03-14 Matsushita Electric Ind Co Ltd Feed hot water reservation system
JP2005093127A (en) * 2003-09-12 2005-04-07 Fuji Electric Holdings Co Ltd Fuel cell cogeneration system and its operation method
JP2005257195A (en) * 2004-03-12 2005-09-22 Yazaki Corp Hybrid hot water supply system
JP2007101004A (en) * 2005-09-30 2007-04-19 Kawamura Electric Inc Cogeneration system for multiple dwelling house
JP2011163680A (en) * 2010-02-10 2011-08-25 Osaka Gas Co Ltd Heat source water supply system
JP2013002705A (en) * 2011-06-15 2013-01-07 Chofu Seisakusho Co Ltd Hot water supply facility for multiple dwelling house

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010804A (en) * 2013-07-01 2015-01-19 矢崎エナジーシステム株式会社 Hybrid hot water supply system
JP2016023869A (en) * 2014-07-22 2016-02-08 大和ハウス工業株式会社 Heat utilization system

Similar Documents

Publication Publication Date Title
JP2015002093A (en) Fuel cell system
JP6575867B2 (en) Fuel cell system
JP4776391B2 (en) Waste heat utilization system
JP4855921B2 (en) Cogeneration system
WO2010109790A1 (en) Fuel cell system and method for operating fuel cell system
JP4649090B2 (en) Fuel cell power generation system
KR100832851B1 (en) Latent heat storage type heat storage system for fuel cell using phase change materials
JP2013057436A (en) Heat supply system
JP2013057435A (en) Heat supply system
JP2014182923A (en) Fuel cell system and operation method thereof
JP4833707B2 (en) Waste heat recovery device
JP5593808B2 (en) Fuel cell hot water supply system
JP2016110723A (en) Fuel battery cogeneration system
JP2011257130A (en) Apparatus for recovering exhaust heat
JP6229484B2 (en) Cogeneration system
JP5873962B2 (en) Power generation system
JP2012221723A (en) Fuel cell system
JP2010021061A (en) Fuel cell power generation system
WO2010007759A1 (en) Fuel cell system
JP5919939B2 (en) Hot water storage heater
JP2018173184A (en) Hot water supply system, hot water supply program, and cogeneration system
JP2013016354A (en) Fuel cell system and method for operating the same
JP2024027818A (en) fuel cell device
KR20050112966A (en) Cogeneration heating system
KR20160122288A (en) Fuel cell system with excellent cooling efficiency and method of operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150618