JP2013055755A - Rotor core - Google Patents

Rotor core Download PDF

Info

Publication number
JP2013055755A
JP2013055755A JP2011191249A JP2011191249A JP2013055755A JP 2013055755 A JP2013055755 A JP 2013055755A JP 2011191249 A JP2011191249 A JP 2011191249A JP 2011191249 A JP2011191249 A JP 2011191249A JP 2013055755 A JP2013055755 A JP 2013055755A
Authority
JP
Japan
Prior art keywords
permanent magnet
peripheral surface
gap
outer peripheral
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011191249A
Other languages
Japanese (ja)
Inventor
Keiji Aota
桂治 青田
Yoshinari Asano
能成 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2011191249A priority Critical patent/JP2013055755A/en
Publication of JP2013055755A publication Critical patent/JP2013055755A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for an IPM motor, capable of reducing an amount of a heavy rare-earth element to be added and a component cost without degrading motor efficiency.SOLUTION: A rotor core 10 which extends in a rotary shaft direction and holds a permanent magnet 95 extending in the rotary shaft direction comprises: an inner peripheral surface 12 along which a shaft penetrates; an outer peripheral surface 14 arranged farther than the inner peripheral surface 12 from a rotary shaft Q; a first surface 16 arranged between the inner and outer peripheral surfaces 12 and 14, and exposed at the side of the outer peripheral surface 14; a second surface 18 arranged between the inner and outer peripheral surfaces 12 and 14, exposed at the side of the inner peripheral surface 12, and holding the permanent magnet 95 between the first surface 16 and itself; a fixing part 20a for fixing the permanent magnet 95 to either the first surface 16 or the second surface 18; a plurality of comb-tooth parts 22 exposed at a farther side from the permanent magnet 95 at a side of either the first surface 16 or the second surface 18, where the permanent magnet 95 is fixed, between the inner and outer peripheral surfaces 12 and 14; and a third surface 24 for facing the comb-tooth parts 22 via a gap and penetrating in the rotary shaft direction.

Description

本発明は、ラジアルギャップ型回転電機に搭載される回転子用コアに関し、特に回転子の鉄心の内部に永久磁石が埋め込まれるIPM(Interior Permanent Magnet)モータの回転子用コアに関するものである。   The present invention relates to a rotor core mounted on a radial gap type rotating electrical machine, and more particularly to a rotor core of an IPM (Interior Permanent Magnet) motor in which a permanent magnet is embedded in an iron core of a rotor.

図7は従来のIPMモータ9を例示する平面図である。図7に示すように、IPMモータ9は、固定子コイル91を有して所定の軸Qの周囲に環状に配設される電機子92と、当該電機子92の内側で当該軸Qを回転軸として回転する回転子たる界磁子93とを備えている。当該界磁子93はコア94と永久磁石95とを有している。コア94には軸Qの周囲に軸Q方向に延在する孔が設けられており、当該孔に永久磁石95がその磁極面を軸Qを中心とする径方向に向けて収容されている。   FIG. 7 is a plan view illustrating a conventional IPM motor 9. As shown in FIG. 7, the IPM motor 9 has a stator coil 91 and an armature 92 that is annularly disposed around a predetermined axis Q, and rotates the axis Q inside the armature 92. And a field element 93 as a rotor rotating as an axis. The field element 93 has a core 94 and a permanent magnet 95. The core 94 is provided with a hole extending in the direction of the axis Q around the axis Q, and a permanent magnet 95 is accommodated in the hole with its magnetic pole surface oriented in the radial direction about the axis Q.

永久磁石95としてはフェライト磁石や希土類磁石が採用される。IPMモータ9が圧縮機(例えば熱媒を圧縮する圧縮機)に搭載される場合には、圧縮機の内部が高温になるため、当該圧縮機の内部に収容されるIPMモータ9も当然に高温になる。フェライト磁石はその温度が高くなると磁束密度が低下するという特性を有している。これに対して、希土類磁石はその温度が高くなっても磁束密度が低下しない。そのため、圧縮機等に搭載される場合には、耐熱性の観点から、永久磁石95としてフェライト磁石よりも希土類磁石を採用することが好ましい。   As the permanent magnet 95, a ferrite magnet or a rare earth magnet is employed. When the IPM motor 9 is mounted on a compressor (for example, a compressor that compresses a heat medium), the inside of the compressor becomes high temperature, so that the IPM motor 9 accommodated in the compressor naturally has a high temperature. become. Ferrite magnets have the property that the magnetic flux density decreases as the temperature increases. On the other hand, the magnetic flux density of the rare earth magnet does not decrease even when the temperature is increased. Therefore, when mounted on a compressor or the like, it is preferable to employ a rare earth magnet as the permanent magnet 95 rather than a ferrite magnet from the viewpoint of heat resistance.

IPMモータ9においては、界磁子93の内部で磁束密度分布に偏りが発生し、永久磁石95の表面に高調波磁束が発生する。また、固定子コイル91への供給電源としてPWM制御によるインバータを採用した場合には、PWM制御による高調波が発生し、当該高調波による影響がコア94の外周表面付近に集中する。もって当該外周表面付近が発熱し、鉄損の増加を招来する。ひいてはモータ効率の低下を招来する。また、希土類磁石の耐熱性を更に高めるために、ジスプロシウム等のいわゆる重希土類元素の添加量を増量させることが提案されている。ただし、これらの重希土類元素は産出地域に偏りがあり、しかも高価である。   In the IPM motor 9, the magnetic flux density distribution is biased inside the field element 93, and a harmonic magnetic flux is generated on the surface of the permanent magnet 95. Further, when an inverter by PWM control is employed as the power supply to the stator coil 91, harmonics by PWM control are generated, and the influence of the harmonics is concentrated near the outer peripheral surface of the core 94. Accordingly, the vicinity of the outer peripheral surface generates heat, leading to an increase in iron loss. As a result, the motor efficiency is reduced. In order to further increase the heat resistance of the rare earth magnet, it has been proposed to increase the amount of so-called heavy rare earth elements such as dysprosium. However, these heavy rare earth elements are biased in the production area and are expensive.

そこで、モータ効率を低下させることなく永久磁石の使用量の低減を図る技術が下記特許文献1に開示されている。また、コアが永久磁石の冷却に資するような空隙を呈する技術が下記特許文献2−5等に開示されている。   Therefore, a technique for reducing the amount of permanent magnets used without reducing motor efficiency is disclosed in Patent Document 1 below. Moreover, the technique which exhibits the space | gap which a core contributes to cooling of a permanent magnet is disclosed by the following patent documents 2-5.

特許第3602392号公報Japanese Patent No. 3606022 特開2004−254466号公報JP 2004-254466 A 特開2007−300796号公報JP 2007-300796 A 特開2007−244017号公報JP 2007-244017 A 特開2007−104888号公報JP 2007-104888 A

上記特許文献1−5に開示の技術では、コアに設けられた空隙が、磁束の流れを阻害する位置に設けられており、モータ効率の低下を招いており、モータ効率低下の回避に対する対策が不十分である。また、上記特許文献1−5に開示の技術では、永久磁石の冷却効率も不十分である。   In the technique disclosed in Patent Documents 1-5, the gap provided in the core is provided at a position where the flow of magnetic flux is hindered, causing a reduction in motor efficiency. It is insufficient. In addition, with the technique disclosed in Patent Documents 1-5, the cooling efficiency of the permanent magnet is insufficient.

本発明は、上記課題に鑑み、IPMモータにおいて磁束の流れを阻害しにくい構造で永久磁石を冷却し、もってモータ効率を向上することを目的とする。   In view of the above problems, an object of the present invention is to cool a permanent magnet with a structure that hardly inhibits the flow of magnetic flux in an IPM motor, thereby improving motor efficiency.

上記課題を解決すべく、本発明に係る回転子用コアの第1の態様は、シャフトの回転軸(Q)に沿った回転軸方向に延在し、前記回転軸方向に延在する永久磁石を保持する回転子用コア(10,10A,10B,10C)であって、前記シャフトが貫通する内周面(12)と、前記内周面よりも前記回転軸から遠い外周面(14)と、前記内周面と前記外周面との間で前記外周面側が露出する第1面(16)と、前記内周面と前記外周面との間で前記内周面側が露出し、前記第1面との間で前記永久磁石を保持する第2面(18)と、前記永久磁石を前記第1面又は前記第2面のいずれかに固定する固定部(20a,20b)と、前記内周面と前記外周面との間の前記第1面又は前記第2面のうち前記永久磁石が固定されている側において、前記永久磁石から離れて遠い側で露出する櫛歯部(22,22A,22B,22C)の複数と、空隙を介して前記櫛歯部と対向してかつ前記回転軸方向に貫通する第3面(24,24A,24B,24C)とを備える、回転子用コアである。   In order to solve the above problems, a first aspect of the rotor core according to the present invention is a permanent magnet that extends in the direction of the rotation axis along the rotation axis (Q) of the shaft and extends in the direction of the rotation axis. A rotor core (10, 10A, 10B, 10C) for holding a shaft, an inner peripheral surface (12) through which the shaft passes, and an outer peripheral surface (14) farther from the rotating shaft than the inner peripheral surface The first surface (16) where the outer peripheral surface side is exposed between the inner peripheral surface and the outer peripheral surface, and the inner peripheral surface side is exposed between the inner peripheral surface and the outer peripheral surface, and the first surface A second surface (18) for holding the permanent magnet between the surface, a fixing portion (20a, 20b) for fixing the permanent magnet to either the first surface or the second surface, and the inner circumference On the side of the first surface or the second surface between the surface and the outer peripheral surface where the permanent magnet is fixed, A plurality of comb teeth (22, 22A, 22B, 22C) exposed on the far side away from the permanent magnet, and a third surface penetrating in the direction of the rotation axis, facing the comb teeth via a gap (24, 24A, 24B, 24C).

本発明に係る回転子用コアの第2の態様は、その第1の態様であって、前記固定部(20a)は、前記永久磁石を前記第1面(16)に固定し、前記櫛歯部(22)は前記内周面(12)側で露出する。   The 2nd aspect of the core for rotors which concerns on this invention is the 1st aspect, Comprising: The said fixing | fixed part (20a) fixes the said permanent magnet to the said 1st surface (16), The said comb teeth The part (22) is exposed on the inner peripheral surface (12) side.

本発明に係る回転子用コアの第3の態様は、その第2の態様であって、前記櫛歯部(22D)の複数同士は互いに前記回転軸方向に沿って隣接する。   The 3rd aspect of the core for rotors which concerns on this invention is the 2nd aspect, Comprising: A plurality of said comb-tooth parts (22D) mutually adjoin each other along the said rotating shaft direction.

本発明に係る回転子用コアの第4の態様は、その第1の態様であって、前記固定部(20b)は、前記永久磁石を前記第2面(18)に固定し、前記櫛歯部(22A,22B,22C)は、前記第2面に対して前記回転軸(Q)を中心とする回転方向の一方側において、前記外周面(14)又は前記回転方向の前記一方側で露出する。   The 4th aspect of the core for rotors which concerns on this invention is the 1st aspect, Comprising: The said fixing | fixed part (20b) fixes the said permanent magnet to the said 2nd surface (18), The said comb-tooth The part (22A, 22B, 22C) is exposed on the outer peripheral surface (14) or on the one side of the rotation direction on one side of the rotation direction around the rotation axis (Q) with respect to the second surface. To do.

本発明に係る回転子用コアの第5の態様は、その第4の態様であって、前記回転軸方向からの平面視で、前記第1面(16)が延在する方向の一方側の当該第1面の第1の端部(30C)を起点として前記外周面(14)へと向かって延在してかつ前記回転軸方向に貫通する第4面(32C)と、前記第2面(18)が延在する方向の前記第1の端部に直近の当該第2面の第2の端部(34C)を起点として前記第4面と対向する第5面(36C)とを更に備え、前記第3面(22C)は前記第5面と接続される。   The 5th aspect of the core for rotors which concerns on this invention is the 4th aspect, Comprising: On the one side of the direction where the said 1st surface (16) extends by planar view from the said rotating shaft direction A fourth surface (32C) extending from the first end (30C) of the first surface toward the outer peripheral surface (14) and penetrating in the direction of the rotation axis; and the second surface A fifth surface (36C) facing the fourth surface starting from the second end (34C) of the second surface closest to the first end in the direction in which (18) extends The third surface (22C) is connected to the fifth surface.

本発明に係る回転子用コアの第1の態様によれば、熱媒と永久磁石との熱交換が促進され、永久磁石の熱減磁が回避又は抑制される。もって回転電機の運転効率向上に資する。   According to the first aspect of the rotor core according to the present invention, heat exchange between the heat medium and the permanent magnet is promoted, and thermal demagnetization of the permanent magnet is avoided or suppressed. This contributes to improving the operating efficiency of rotating electrical machines.

本発明に係る回転子用コアの第2の態様によれば、回転電機に採用しても磁束の流れを妨げないので、回転電機の運転効率向上に資する。   According to the second aspect of the rotor core according to the present invention, even if it is adopted in a rotating electrical machine, the flow of magnetic flux is not hindered, which contributes to an improvement in operating efficiency of the rotating electrical machine.

本発明に係る回転子用コアの第3の態様によれば、第1の態様による効果を得ることができる。また、複数の鋼板を回転軸方向に積層することによって回転子用コアを形成する場合には、2種類の異なる大きさの孔が設けられた鋼板を交互に積層することによって櫛歯部を形成できるので、櫛歯状の孔を設ける場合よりもコスト抑制に資する。   According to the 3rd aspect of the core for rotors which concerns on this invention, the effect by a 1st aspect can be acquired. In addition, when a rotor core is formed by laminating a plurality of steel plates in the rotation axis direction, comb teeth are formed by alternately laminating steel plates provided with two different sizes of holes. As a result, it contributes to cost reduction as compared with the case where comb-like holes are provided.

本発明に係る回転子用コアの第4の態様によれば、当該回転子用コアを採用して回転方向の他方側に回転する回転子において、櫛歯部が磁束の流れを妨げることを回避又は抑制できる。   According to the fourth aspect of the rotor core according to the present invention, in the rotor that employs the rotor core and rotates to the other side in the rotation direction, the comb tooth portion is prevented from obstructing the flow of magnetic flux. Or it can be suppressed.

本発明に係る回転子用コアの第5の態様によれば、主に永久磁石に加わる応力を緩和するために設けられる空隙(第4面及び第5面によって形成される空隙)と、櫛歯部及び第3面によって形成される空隙とを一体に形成できる。もって永久磁石への応力緩和、磁束の流れの妨げの回避又は抑制、熱媒と永久磁石との熱交換の促進に資する。   According to the 5th aspect of the rotor core which concerns on this invention, the space | gap (space formed by the 4th surface and the 5th surface) provided in order to relieve the stress mainly applied to a permanent magnet, and a comb tooth The gap formed by the portion and the third surface can be formed integrally. Therefore, it contributes to stress relaxation to the permanent magnet, avoidance or suppression of hindrance to the flow of magnetic flux, and promotion of heat exchange between the heat medium and the permanent magnet.

本発明の第1実施形態に係る回転子用コアの部分平面図である。It is a partial top view of the core for rotors which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る回転子用コアの部分平面図である。It is a partial top view of the core for rotors concerning 2nd Embodiment of this invention. 本発明の第3実施形態に係る回転子用コアの部分平面図である。It is a fragmentary top view of the core for rotors concerning 3rd Embodiment of this invention. 本発明の第4実施形態に係る回転子用コアの部分平面図である。It is a fragmentary top view of the core for rotors concerning 4th Embodiment of this invention. 本発明の第5実施形態に係る回転子用コアの部分平面図である。It is a partial top view of the core for rotors concerning 5th Embodiment of this invention. 図5の断面図である。It is sectional drawing of FIG. 従来のIPMモータを例示する平面図である。It is a top view which illustrates the conventional IPM motor.

以下、本発明の好適な実施の形態について、図面を参照しながら説明する。なお、図1を初めとする以下の図には、本発明に関係する要素のみを示す。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following drawings including FIG. 1, only elements related to the present invention are shown.

〈第1実施形態〉
図1は本発明の第1実施形態に係る回転子用コア10の部分平面図であり、図7中の一点鎖線で囲んだ扇形領域Pに対応する部位を示している。図1に示すように、回転子用コア10は、回転軸方向からの平面視で略円筒形状を呈し、内周面12と外周面14とを呈する。内周面12の内側で回転軸方向にシャフト(図示省略)が回転子用コア10を貫通する。外周面14はその外側で空隙を介して電機子92(図7参照)と対向する。
<First Embodiment>
FIG. 1 is a partial plan view of a rotor core 10 according to the first embodiment of the present invention, and shows a portion corresponding to a sector region P surrounded by a one-dot chain line in FIG. As shown in FIG. 1, the rotor core 10 has a substantially cylindrical shape in a plan view from the rotation axis direction, and has an inner peripheral surface 12 and an outer peripheral surface 14. A shaft (not shown) passes through the rotor core 10 in the direction of the rotation axis inside the inner peripheral surface 12. The outer peripheral surface 14 is opposed to the armature 92 (see FIG. 7) through a gap on the outer side.

回転子用コア10は内周面12と外周面14との間の領域において永久磁石を収容する複数の空隙を呈する。具体的には、回転子用コア10は、当該領域で外周面14側が露出する第1面16と、当該領域で内周面12側が露出する第2面18とを呈する。より具体的には例えば、回転子用コア10は、回転軸方向からの平面視で、回転軸Qを中心とする第1の径方向R1に垂直な接線方向(以下、「第1の接線方向」とも称する)T1に略沿って延在する第1の空隙U1と、第1の空隙U1の一方側の端部近傍における第2の径方向R2に略沿って当該一方側の端部から外周面14へと向かって延在する第2の空隙U2と、第1の空隙U1の他方側の端部(課題を解決するための手段における「第1の端部」に相当)30C近傍における第3の径方向R3に略沿って当該他方側の端部から外周面14へと向かって延在する第3の空隙U3とを呈する。第1及び第2の空隙U1,U2は、第1の空隙U1の当該一方側の端部において連なっており、あるいは近接している。第1及び第3の空隙U1,U3は、第1の空隙U1の当該他方側の端部30Cにおいて連なっており、あるいは近接している。これら第2及び第3の空隙U2,U3は主として、永久磁石95が発生する界磁が回転子用コア10内で短絡することを回避することに資する。また、永久磁石95に加わる応力の緩和にも資する。   The rotor core 10 exhibits a plurality of gaps that accommodate permanent magnets in a region between the inner peripheral surface 12 and the outer peripheral surface 14. Specifically, the rotor core 10 presents a first surface 16 that exposes the outer peripheral surface 14 side in the region and a second surface 18 that exposes the inner peripheral surface 12 side in the region. More specifically, for example, the rotor core 10 has a tangential direction (hereinafter referred to as “first tangential direction”) perpendicular to the first radial direction R1 centered on the rotation axis Q in plan view from the rotation axis direction. The first gap U1 extending substantially along T1, and the outer circumference from the end on the one side substantially along the second radial direction R2 in the vicinity of the end on one side of the first gap U1. A second gap U2 extending toward the surface 14, and an end on the other side of the first gap U1 (corresponding to a “first end” in the means for solving the problem) in the vicinity of 30C. And a third gap U3 extending from the other end to the outer peripheral surface 14 substantially along the radial direction R3. The first and second gaps U1 and U2 are continuous or close to each other at one end of the first gap U1. The first and third gaps U1 and U3 are continuous or close to each other at the other end 30C of the first gap U1. These second and third gaps U2 and U3 mainly contribute to avoiding a short circuit in the rotor core 10 by the field generated by the permanent magnet 95. Further, it contributes to the relaxation of stress applied to the permanent magnet 95.

そして、第1の空隙U1が、外周面14側を露出する第1面16と、内周面12側を露出する第2面18とを呈し、第1面16と第2面18との間で永久磁石95を保持する。永久磁石95は第1の空隙U1内で第1面16又は第2面18のいずれかに固定されて保持される。具体的には例えば、回転子用コア10が固定部20aを備え、固定部20aが永久磁石95を第1面16に接触させる。より具体的には、永久磁石95が呈する内周面12側の磁極面全体を第1面16に接触させる。なお、本実施形態では、第1の空隙U1内に永久磁石95を圧入しており、第2面18が固定部20aを兼ねているが、回転子用コア10が、係止部(図示省略)等を別途に備えて、永久磁石95を第1面16に固定しても良い。   And the 1st space | gap U1 exhibits the 1st surface 16 which exposes the outer peripheral surface 14 side, and the 2nd surface 18 which exposes the inner peripheral surface 12 side, Between the 1st surface 16 and the 2nd surface 18 The permanent magnet 95 is held. The permanent magnet 95 is fixed and held on either the first surface 16 or the second surface 18 in the first gap U1. Specifically, for example, the rotor core 10 includes a fixed portion 20 a, and the fixed portion 20 a brings the permanent magnet 95 into contact with the first surface 16. More specifically, the entire magnetic pole surface on the inner peripheral surface 12 side that the permanent magnet 95 exhibits is brought into contact with the first surface 16. In the present embodiment, the permanent magnet 95 is press-fitted into the first gap U1 and the second surface 18 also serves as the fixing portion 20a. However, the rotor core 10 is provided with a locking portion (not shown). ) Etc. may be provided separately, and the permanent magnet 95 may be fixed to the first surface 16.

回転子用コア10はまた、内周面12と外周面14との間の第1面16又は第2面18のうち永久磁石95が接触している側において、第1の空隙U1から離れて遠い側で露出する櫛歯部22の複数と、空隙を介して櫛歯部22と対向してかつ回転軸方向に貫通する第3面24とを備えている。櫛歯部22は回転軸方向からの平面視で、第3面24に対する凹凸を呈している。本実施形態に即していえば、内周面12と第1面16との間で、第1面16から離れて、第1の径方向R1に沿って内周面12へと突出し、内周面12側で露出する複数の櫛歯部22と、空隙を介して櫛歯部22と対向してかつ回転軸方向に貫通する第3面24とを備えている。櫛歯部22及び第3面24は第1面16よりも内周面12側に設けられ、しかも櫛歯部22は永久磁石95から遠離る方向に延在する。   The rotor core 10 is also separated from the first gap U1 on the side of the first surface 16 or the second surface 18 between the inner peripheral surface 12 and the outer peripheral surface 14 where the permanent magnet 95 is in contact. A plurality of comb teeth 22 exposed on the far side, and a third surface 24 facing the comb teeth 22 through a gap and penetrating in the rotation axis direction are provided. The comb-tooth portion 22 has irregularities with respect to the third surface 24 in a plan view from the rotation axis direction. According to the present embodiment, between the inner peripheral surface 12 and the first surface 16, the first outer surface 16 protrudes toward the inner peripheral surface 12 along the first radial direction R <b> 1. A plurality of comb-tooth portions 22 exposed on the surface 12 side, and a third surface 24 that faces the comb-tooth portions 22 through a gap and penetrates in the rotation axis direction are provided. The comb tooth portion 22 and the third surface 24 are provided closer to the inner peripheral surface 12 than the first surface 16, and the comb tooth portion 22 extends away from the permanent magnet 95.

上述の櫛歯部22と第3面24との配置は、例えば第1の空隙U1内に永久磁石95を圧入するなどして、第1面16及び第2面18のいずれにも永久磁石95が接触する場合にも採用できる。あるいは、当該配置は、第2面18が固定部20aを兼ねずに永久磁石95が第2面18には実質的に接触していない場合にも採用できる。   The arrangement of the comb-tooth portion 22 and the third surface 24 described above is achieved by, for example, pressing the permanent magnet 95 into the first gap U1 so that the permanent magnet 95 is applied to both the first surface 16 and the second surface 18. It can also be used when the contacts. Alternatively, this arrangement can also be employed when the second surface 18 does not serve as the fixed portion 20 a and the permanent magnet 95 is not substantially in contact with the second surface 18.

回転子用コア10がこのような構造を呈することにより、回転子用コア10を備える回転電機を熱媒を圧縮する圧縮機に搭載すれば、櫛歯部22と第3面24との間の空隙を熱媒が流れることになる。当該空隙内を熱媒が流れれば、熱媒と永久磁石95との熱交換が促進され、永久磁石の熱減磁が回避又は抑制される。もって回転電機の運転効率向上に資する。しかも、櫛歯部22の形状は、熱媒と回転子用コア10との間の熱交換に資する面積を、櫛歯部22が配置される領域が占める面積と比較して大きくしやすいので、熱交換を促進する効果も大きい。   When the rotor core 10 has such a structure, if the rotating electrical machine including the rotor core 10 is mounted on a compressor that compresses the heat medium, the rotor core 10 is disposed between the comb tooth portion 22 and the third surface 24. The heat medium will flow through the gap. If the heat medium flows in the gap, heat exchange between the heat medium and the permanent magnet 95 is promoted, and thermal demagnetization of the permanent magnet is avoided or suppressed. This contributes to improving the operating efficiency of rotating electrical machines. Moreover, since the shape of the comb tooth portion 22 is easy to increase the area contributing to heat exchange between the heating medium and the rotor core 10 as compared with the area occupied by the region where the comb tooth portion 22 is disposed, The effect of promoting heat exchange is also great.

また、永久磁石の耐熱性を高める必要性を減少させることができるので、永久磁石95の材料への重希土類元素の添加量を増量する必要性も低減でき、部品コストの低減に資する。   In addition, since the necessity for increasing the heat resistance of the permanent magnet can be reduced, the necessity for increasing the amount of heavy rare earth element added to the material of the permanent magnet 95 can be reduced, which contributes to a reduction in component costs.

さらにまた、回転子用コア10を回転電機に採用しても、櫛歯部22及び第3面24が第1面16よりも内周面12側に設けられていれば、櫛歯部22と第3面24との間の空隙は、回転子用コア10を採用した界磁子と電機子92との間での磁束の流れを妨げないので、回転電機の運転効率向上に資する。   Furthermore, even if the rotor core 10 is employed in a rotating electrical machine, if the comb tooth portion 22 and the third surface 24 are provided closer to the inner peripheral surface 12 than the first surface 16, the comb tooth portion 22 and The air gap between the third surface 24 does not hinder the flow of magnetic flux between the field element employing the rotor core 10 and the armature 92, which contributes to the improvement of the operation efficiency of the rotating electric machine.

なお、回転子用コア10は、図7の扇形領域Pにおいてのみ本実施形態に示した態様を呈しても良いし、すべての領域にわたって当該態様を呈しても良い。   Note that the rotor core 10 may exhibit the mode shown in the present embodiment only in the sector region P of FIG. 7 or may exhibit the mode over all regions.

〈第2実施形態〉
次に本発明の第2実施形態について説明する。なお、以下の実施形態において既述の実施形態と同様の機能を有する要素については、同一符号を付してその説明を省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described. In the following embodiments, elements having the same functions as those of the above-described embodiments are denoted by the same reference numerals and description thereof is omitted.

図2に示すように、本実施形態では、永久磁石95が第2面18に接触している。具体的には、回転子用コア10Aが固定部20bを備え、固定部20bが永久磁石95を第2面18に接触させることにより、永久磁石95を固定する。より具体的には、永久磁石95が呈する外周面14側の磁極面を第2面18に接触させる。なお、本実施形態でも、第1の空隙U1内に永久磁石95を圧入しており、第1面16が固定部20bを兼ねている。   As shown in FIG. 2, in this embodiment, the permanent magnet 95 is in contact with the second surface 18. Specifically, the rotor core 10 </ b> A includes a fixed portion 20 b, and the fixed portion 20 b fixes the permanent magnet 95 by bringing the permanent magnet 95 into contact with the second surface 18. More specifically, the magnetic pole surface on the outer peripheral surface 14 side that the permanent magnet 95 exhibits is brought into contact with the second surface 18. Also in this embodiment, the permanent magnet 95 is press-fitted into the first gap U1, and the first surface 16 also serves as the fixed portion 20b.

回転子用コア10Aは、上記第1実施形態での第3の空隙U3に替えて第4の空隙U4を呈する。具体的には、第4の空隙U4は第1の空隙U1の端部のうち第2の空隙U2に連なっていない(あるいは近接していない)側の端部30Cを起点として当該端部30Cの近傍における第3の径方向R3に略沿って外周面14へと向かって延在する。   The rotor core 10A presents a fourth gap U4 instead of the third gap U3 in the first embodiment. Specifically, the fourth gap U4 starts from the end 30C on the side not connected (or not adjacent to) the second gap U2 among the ends of the first gap U1. It extends toward the outer peripheral surface 14 substantially along the third radial direction R3 in the vicinity.

そして、第4の空隙U4を規定する面の一部に櫛歯部22Aの複数を備え、当該面の他の一部が第3面24Aを呈する。具体的には、第4の空隙U4は、当該第4の空隙U4がこれに第1の空隙U1を介して連なる(あるいは近接する)第2の空隙U2に近い側に複数の櫛歯部22Aを備え、当該第2の空隙U2から遠い側で第3面24Aを呈する。より具体的には、第1の空隙U1を規定する第2面18のうち、第1の接線方向T1の他方側(第2の空隙U2に連なる、若しくは近接する側とは反対側)の端部(課題を解決するための手段における「第2の端部」に相当)34Cを起点として外周面14へと向かう面が複数の櫛歯部22Aを呈する。   A part of the surface defining the fourth gap U4 includes a plurality of comb teeth 22A, and the other part of the surface presents the third surface 24A. Specifically, the fourth gap U4 includes a plurality of comb teeth 22A on the side close to the second gap U2 that is connected (or close) to the fourth gap U4 via the first gap U1. The third surface 24A is presented on the side far from the second gap U2. More specifically, the end of the second surface 18 defining the first gap U1 on the other side in the first tangential direction T1 (on the opposite side to the side adjacent to or adjacent to the second gap U2). The part (corresponding to the “second end” in the means for solving the problem) 34C as a starting point toward the outer peripheral surface 14 presents a plurality of comb teeth 22A.

複数の櫛歯部22Aのそれぞれは、第3の径方向R3に垂直な接線方向(以下、「第3の接線方向」とも称する)T3に沿って、第2の空隙U2から遠離る方向へと向かって突出する。つまり複数の櫛歯部22Aが第3の接線方向T3に沿って延在する。なお、複数の櫛歯部22Aが遠離る第2の空隙U2は、当該櫛歯部22Aが第1の空隙U1を介して連なる(若しくは近接する)第2の空隙U2を指す。要するに、本実施形態に係る回転子用コア10Aは、上記第1実施形態での第3の空隙U3に櫛歯部22及び第3面24とを設けてそれぞれ櫛歯部22A及び第3面24Aとし、しかも複数の櫛歯部22Aを第4の空隙U4が第1の空隙U1を介して連なる(若しくは近接する)第2の空隙U2から遠離る方向へと向かって突出させる態様である。   Each of the plurality of comb-tooth portions 22A extends in a direction away from the second gap U2 along a tangential direction (hereinafter also referred to as “third tangential direction”) T3 perpendicular to the third radial direction R3. Protrusively. That is, the plurality of comb tooth portions 22A extend along the third tangential direction T3. In addition, the 2nd space | gap U2 from which the several comb-tooth part 22A leaves | separates points out the 2nd space | gap U2 which the said comb-tooth part 22A continues (or adjoins) via the 1st space | gap U1. In short, the rotor core 10A according to the present embodiment is provided with the comb teeth portion 22 and the third surface 24 in the third gap U3 in the first embodiment, and the comb teeth portion 22A and the third surface 24A, respectively. In addition, the plurality of comb-tooth portions 22A are protruded in a direction away from the second gap U2 in which the fourth gap U4 continues (or is close to) the first gap U1.

このような構造を呈する回転子用コア10Aを回転電機に搭載する場合には、第2の空隙U2が回転方向の前方側となるように回転子を回転させることが望ましい。図2では反時計回り方向の矢印で回転子の回転方向を示している。図2で矢印で示した方向に回転子を回転させた場合には、永久磁石95から電機子92(図7参照)へと向かう磁束が図2で破線で示したように第3の空隙U3よりも第2の空隙U2に近い方を流れる。なお、図2では一の永久磁石95についてのみ磁束の流れを破線で示している。   When the rotor core 10A having such a structure is mounted on a rotating electrical machine, it is desirable to rotate the rotor so that the second gap U2 is on the front side in the rotation direction. In FIG. 2, the direction of rotation of the rotor is indicated by an arrow in the counterclockwise direction. When the rotor is rotated in the direction indicated by the arrow in FIG. 2, the magnetic flux directed from the permanent magnet 95 to the armature 92 (see FIG. 7) is the third gap U3 as indicated by the broken line in FIG. Rather than the second gap U2. In FIG. 2, the flow of magnetic flux is indicated by a broken line only for one permanent magnet 95.

本実施形態では磁束が多く流れるところを回避して複数の櫛歯部22Aを第4の空隙U4に設けることにより、永久磁石95の過熱を回避又は抑制しつつ、複数の櫛歯部22Aが磁束の流れを妨げることを回避又は抑制できる。また、第4の空隙U4が櫛歯部22A及び第3面24Aを備えているので、永久磁石95が発生する界磁の回転子用コア10A内で短絡することの回避、永久磁石95への応力緩和、磁束の流れの妨げの回避又は抑制、熱媒と永久磁石95との熱交換の促進に一挙に資する。また、永久磁石の耐熱性を高める必要性を減少させることができるので、部品コストの低減に資する。さらに、上記第1実施形態のように第3の空隙U3と、櫛歯部22及び第3面24とを分けて形成する必要がないので、製造工程の簡略化に資する。   In the present embodiment, a plurality of comb teeth 22A are provided in the fourth gap U4 while avoiding a place where a large amount of magnetic flux flows, so that overheating of the permanent magnet 95 is avoided or suppressed and the plurality of comb teeth 22A are magnetic flux. Can be avoided or suppressed. In addition, since the fourth gap U4 includes the comb tooth portion 22A and the third surface 24A, it is possible to avoid a short circuit in the rotor core 10A of the field generated by the permanent magnet 95, and to the permanent magnet 95. This contributes to stress relaxation, avoidance or suppression of hindrance to the flow of magnetic flux, and promotion of heat exchange between the heat medium and the permanent magnet 95. Moreover, since the necessity for improving the heat resistance of a permanent magnet can be reduced, it contributes to the reduction of component cost. Furthermore, since it is not necessary to separately form the third gap U3, the comb tooth portion 22 and the third surface 24 as in the first embodiment, this contributes to simplification of the manufacturing process.

〈第3実施形態〉
図3に示すように、上記第1実施形態における第3の空隙U3に替えて、回転子用コア10Bが第5の空隙U5を呈し、第5の空隙U5の外周面14側で複数の櫛歯部22B及び第3面24Bを呈する。より具体的には、第5の空隙U5は第3の空隙U3よりも第3の径方向R3に沿った長さが短い(例えば第5の空隙U5の第3の径方向R3に沿った長さは、第3の空隙U3の同方向の長さの半分程度)。そして、第5の空隙U5から離れて外周面14側で露出する櫛歯部22Bが、第3の径方向R3と第2の径方向R2との第3の接線方向T3における間で、第3の接線方向T3に沿って複数設けられる。このように複数の櫛歯部22B及び第3面24と、第5の空隙U5とが分かれている。複数の櫛歯部22Bのそれぞれは第3の径方向R3に沿って突出し、空隙を介して第3面24Bと対向する。第3面24Bは内周面12側で露出する。
<Third Embodiment>
As shown in FIG. 3, in place of the third gap U3 in the first embodiment, the rotor core 10B exhibits a fifth gap U5, and a plurality of combs are provided on the outer peripheral surface 14 side of the fifth gap U5. The tooth portion 22B and the third surface 24B are presented. More specifically, the fifth gap U5 has a shorter length along the third radial direction R3 than the third gap U3 (for example, the length along the third radial direction R3 of the fifth gap U5). Is about half the length of the third gap U3 in the same direction). And the comb-tooth part 22B which leaves | separates from the 5th space | gap U5 and is exposed by the outer peripheral surface 14 side is 3rd between the 3rd tangential directions T3 of 3rd radial direction R3 and 2nd radial direction R2. Are provided along the tangential direction T3. In this way, the plurality of comb teeth portions 22B and the third surface 24 and the fifth gap U5 are separated. Each of the plurality of comb-tooth portions 22B protrudes along the third radial direction R3, and faces the third surface 24B via a gap. The third surface 24B is exposed on the inner peripheral surface 12 side.

このような構造を呈する回転子用コア10Bを回転電機に搭載する場合にも、第2の空隙U2が回転方向の前方側となるように回転子を回転させることが望ましい。図3では反時計回り方向の矢印で回転子の回転方向を示している。この場合にも永久磁石95から電機子92(図7参照)へと向かう磁束は図2で破線で示したように流れるので、永久磁石95の過熱を回避又は抑制しつつ、複数の櫛歯部22Bが磁束の流れを妨げることを回避又は抑制できる。また、永久磁石の耐熱性を高める必要性を減少させることができるので、部品コストの低減に資する。また、複数の櫛歯部22Bが永久磁石95から遠離る方向に延在するので、熱媒と回転子用コア10B、特に永久磁石95との間の熱交換に資する面積を、櫛歯部22Bが配置される領域が占める面積と比較して大きくしやすいので、冷却効率の向上に資する。また、櫛歯部22Bと永久磁石95との距離を、上記第2実施形態での回転軸Q側の櫛歯部22Aと永久磁石95との間の距離よりも大きくとれるので、上記第2実施形態よりも磁束の流れを妨げることがない。   Even when the rotor core 10B having such a structure is mounted on a rotating electrical machine, it is desirable to rotate the rotor so that the second gap U2 is on the front side in the rotation direction. In FIG. 3, the direction of rotation of the rotor is indicated by a counterclockwise arrow. Also in this case, the magnetic flux from the permanent magnet 95 toward the armature 92 (see FIG. 7) flows as indicated by the broken line in FIG. It can avoid or suppress that 22B prevents the flow of magnetic flux. Moreover, since the necessity for improving the heat resistance of a permanent magnet can be reduced, it contributes to the reduction of component cost. Further, since the plurality of comb teeth portions 22B extend in a direction away from the permanent magnet 95, the area contributing to heat exchange between the heat medium and the rotor core 10B, in particular, the permanent magnet 95, is defined as the comb teeth portion 22B. Since it is easy to enlarge compared with the area which the area | region which arrange | positions is arrange | positioned, it contributes to the improvement of cooling efficiency. Further, since the distance between the comb tooth portion 22B and the permanent magnet 95 can be made larger than the distance between the comb tooth portion 22A on the rotating shaft Q side and the permanent magnet 95 in the second embodiment, the second embodiment described above. The flow of magnetic flux is not hindered than the form.

〈第4実施形態〉
図4に示すように、回転子用コア10Cは、回転軸方向からの平面視で、第1の空隙U1の第1の端部30Cを起点とする第4面32Cと、第2の端部34Cを起点とする第5面36Cとを呈する。第1の端部30Cは、第1の空隙U1を規定する第1面16のうち、第1の接線方向T1の端部のうち第2の空隙U2とは反対側の端部であり、第4面32Cは第1の端部30Cを起点として外周面14へと向かって延在してかつ回転軸方向に貫通する。また、第2の端部34Cは、第1の空隙U1を規定する第2面18のうち、第1の接線方向T1の端部のうち第2の空隙U2とは反対側の端部であり、第5面36Cは回転軸方向にわたって第4面32Cと対向する。
<Fourth embodiment>
As shown in FIG. 4, the rotor core 10 </ b> C includes a fourth surface 32 </ b> C starting from the first end 30 </ b> C of the first gap U <b> 1 and a second end in a plan view from the rotation axis direction. A fifth surface 36C starting from 34C is presented. The first end 30C is the end of the first surface 16 that defines the first gap U1 on the side opposite to the second gap U2 among the ends in the first tangential direction T1, The four surfaces 32C extend from the first end 30C toward the outer peripheral surface 14 and penetrate in the direction of the rotation axis. The second end 34C is an end of the second surface 18 that defines the first gap U1 that is opposite to the second gap U2 among the ends in the first tangential direction T1. The fifth surface 36C faces the fourth surface 32C over the rotation axis direction.

そして、第5面36Cの一部が、第3の径方向R3に沿って延在する櫛歯部22Cに接続される。また、第5面36Cの他の一部が、櫛歯部22Cと空隙を介して対向する第3面22Cに接続される。要するに本第4実施形態の態様は、上記第3実施形態の第5の空隙U5の永久磁石95側の一面に櫛歯部22B及び第3面24Bを設けた態様である。   A part of the fifth surface 36C is connected to the comb-tooth portion 22C extending along the third radial direction R3. The other part of the fifth surface 36C is connected to the third surface 22C facing the comb tooth portion 22C via a gap. In short, the aspect of the fourth embodiment is an aspect in which the comb tooth portion 22B and the third surface 24B are provided on one surface of the fifth gap U5 of the third embodiment on the permanent magnet 95 side.

このような構造を呈する回転子用コア10Cを回転電機に搭載する場合にも、第2の空隙U2が回転方向の前方側となるように回転子を回転させることが望ましい。図4では反時計回り方向の矢印で回転子の回転方向を示している。この場合にも永久磁石95から電機子92(図7参照)へと向かう磁束は図2で破線で示したように流れるので、永久磁石95への応力緩和、磁束の流れの妨げの回避又は抑制、熱媒と永久磁石95との熱交換の促進に一挙に資する。また、永久磁石の耐熱性を高める必要性を減少させることができるので、部品コストの低減に資する。さらに、上記第3実施形態のように第5の空隙U5と、櫛歯部22B及び第3面24Bとを分けて形成する必要がないので、製造工程の簡略化に資する。さらにまた、複数の櫛歯部22Cが永久磁石95から遠離る方向に延在するので、冷却効率の向上に資する。   Even when the rotor core 10C having such a structure is mounted on a rotating electrical machine, it is desirable to rotate the rotor so that the second gap U2 is on the front side in the rotation direction. In FIG. 4, the rotation direction of the rotor is indicated by an arrow in the counterclockwise direction. Also in this case, since the magnetic flux from the permanent magnet 95 to the armature 92 (see FIG. 7) flows as shown by the broken line in FIG. 2, stress relaxation to the permanent magnet 95 and avoidance or suppression of hindrance to the flow of magnetic flux This contributes to the promotion of heat exchange between the heat medium and the permanent magnet 95. Moreover, since the necessity for improving the heat resistance of a permanent magnet can be reduced, it contributes to the reduction of component cost. Furthermore, unlike the third embodiment, it is not necessary to separately form the fifth gap U5, the comb tooth portion 22B, and the third surface 24B, which contributes to simplification of the manufacturing process. Furthermore, since the plurality of comb-tooth portions 22C extend away from the permanent magnet 95, the cooling efficiency is improved.

〈第5実施形態〉
上記第1−第4実施形態では、複数の櫛歯部22,22A,22B,22Cが回転軸方向に垂直な方向に並ぶ態様について説明したが、以下では櫛歯部が回転軸方向に沿って並ぶ態様を説明する。例えば図5,6に示すような態様である。なお、図6は、図5のA−A断面図である。
<Fifth Embodiment>
In the first to fourth embodiments, the mode in which the plurality of comb teeth portions 22, 22 </ b> A, 22 </ b> B, and 22 </ b> C are arranged in the direction perpendicular to the rotation axis direction has been described. The arrangement mode will be described. For example, it is an embodiment as shown in FIGS. 6 is a cross-sectional view taken along the line AA in FIG.

具体的には例えば、回転子用コア10Dは、上記第1実施形態と同様に内周面12と第1面16との間の領域で、永久磁石95から離れて遠い側で露出する櫛歯部22Dの複数と、空隙を介して櫛歯部22Dと対向してかつ回転軸方向に貫通する第3面24とを備えている。そして、櫛歯部22Dの複数は、回転軸方向に沿って隣接する。櫛歯部22Dは回転軸方向に平行な断面視上で、第3面24に対する凹凸を呈している。   Specifically, for example, the rotor core 10D is a comb tooth that is exposed on the far side away from the permanent magnet 95 in the region between the inner peripheral surface 12 and the first surface 16 as in the first embodiment. A plurality of portions 22D and a third surface 24 that is opposed to the comb-tooth portion 22D through a gap and penetrates in the rotation axis direction are provided. A plurality of comb teeth 22D are adjacent to each other along the rotation axis direction. The comb-tooth portion 22 </ b> D has unevenness with respect to the third surface 24 in a cross-sectional view parallel to the rotation axis direction.

このような回転子用コア10Dは例えば以下のようにして形成できる。すなわち、第1の鋼板P1と第2の鋼板P2とを交互に積層する。第1の鋼板P1は環状の鋼板において第6の空隙V0を呈し、かつ第7の空隙V1を有する。第6の空隙V0は平面視で第1ないし第3の空隙U1−U3に対応する位置に配せられる。第7の空隙V1は矩形状であって、内周面12に対応する内側の端部12eから予め定められた位置Fを起点として第1の幅W1を呈する。第2の鋼板P2は環状の鋼板において第6の空隙V0を呈し、かつ第8の空隙V2を有する。第8の空隙V2は矩形状であって、位置Fを起点として第2の幅W2(ただし、W2<W1)を呈する。第1及び第2の鋼板P1,P2を交互に積層することにより、櫛歯部22Dの複数が回転軸方向に隣接する回転子用コア10Dを形成できる。なお、図6では一の鋼板P2が一の櫛歯部22Dを構成する態様を示しているが、複数の鋼板P2が一の櫛歯部22Dを構成するようにしても良い。   Such a rotor core 10D can be formed as follows, for example. That is, the 1st steel plate P1 and the 2nd steel plate P2 are laminated | stacked alternately. The 1st steel plate P1 exhibits the 6th space | gap V0 in a cyclic | annular steel plate, and has the 7th space | gap V1. The sixth gap V0 is arranged at a position corresponding to the first to third gaps U1-U3 in plan view. The seventh gap V <b> 1 has a rectangular shape and exhibits a first width W <b> 1 starting from a predetermined position F from the inner end 12 e corresponding to the inner peripheral surface 12. The 2nd steel plate P2 exhibits the 6th space | gap V0 in an annular steel plate, and has the 8th space | gap V2. The eighth gap V2 has a rectangular shape and exhibits a second width W2 (where W2 <W1) starting from the position F. By alternately laminating the first and second steel plates P1 and P2, a rotor core 10D in which a plurality of comb teeth portions 22D are adjacent in the rotation axis direction can be formed. In addition, although the one steel plate P2 has shown the aspect which comprises one comb-tooth part 22D in FIG. 6, you may make it the some steel plate P2 comprise one comb-tooth part 22D.

このような構造を呈する回転子用コア10Dであれば、上記第1実施形態で得られる効果に加えて、次のような効果を得ることができる。すなわち、櫛歯形状の空隙を形成するよりも矩形状の空隙(第6及び第7の空隙V1,V2)を形成する方が簡単なので、製造コストの抑制に資する。また、第1実施形態,5に示した回転子用コア10,10Dであれば、回転子の回転方向によらず、永久磁石95を冷却できる。   In the rotor core 10D having such a structure, the following effects can be obtained in addition to the effects obtained in the first embodiment. That is, it is easier to form rectangular gaps (sixth and seventh gaps V1 and V2) than to form a comb-shaped gap, which contributes to a reduction in manufacturing cost. Further, with the rotor cores 10 and 10D shown in the first and fifth embodiments, the permanent magnet 95 can be cooled regardless of the rotation direction of the rotor.

〈変形例〉
以上、本発明の好適な態様について説明したが、本発明はこれに限定されるものではない。例えば、上記第1−第5実施形態を適宜に組合せても良い。また、上記第1−第5実施形態ではインナーロータ型の回転電機に搭載する回転子用コア10,10A,10B,10C,10Dについて説明したが、本発明は、アウターロータ型の回転電機に搭載する回転子用コアにも採用できる。
<Modification>
As mentioned above, although the suitable aspect of this invention was demonstrated, this invention is not limited to this. For example, the first to fifth embodiments may be appropriately combined. In the first to fifth embodiments, the rotor cores 10, 10A, 10B, 10C, and 10D mounted on the inner rotor type rotating electrical machine have been described. However, the present invention is mounted on the outer rotor type rotating electrical machine. It can also be used for rotor cores.

Q 回転軸
10,10A,10B,10C 回転子用コア
12 内周面
14 外周面
16 第1面
18 第2面
20a,20b 固定部
22,22A,22B,22C,22D 櫛歯部
24,24A,24B,24C 第3面
30C 第1の端部
32C 第4面
34C 第2の端部
36C 第5面
Q Rotating shaft 10, 10A, 10B, 10C Rotor core 12 Inner peripheral surface 14 Outer peripheral surface 16 First surface 18 Second surface 20a, 20b Fixed portion 22, 22A, 22B, 22C, 22D Comb teeth portion 24, 24A, 24B, 24C 3rd surface 30C 1st edge part 32C 4th surface 34C 2nd edge part 36C 5th surface

Claims (5)

シャフトの回転軸(Q)に沿った回転軸方向に延在し、前記回転軸方向に延在する永久磁石を保持する回転子用コア(10,10A,10B,10C)であって、
前記シャフトが貫通する内周面(12)と、
前記内周面よりも前記回転軸から遠い外周面(14)と、
前記内周面と前記外周面との間で前記外周面側が露出する第1面(16)と、
前記内周面と前記外周面との間で前記内周面側が露出し、前記第1面との間で前記永久磁石を保持する第2面(18)と、
前記永久磁石を前記第1面又は前記第2面のいずれかに固定する固定部(20a,20b)と、
前記内周面と前記外周面との間の前記第1面又は前記第2面のうち前記永久磁石が固定されている側において、前記永久磁石から離れて遠い側で露出する櫛歯部(22,22A,22B,22C)の複数と、
空隙を介して前記櫛歯部と対向してかつ前記回転軸方向に貫通する第3面(24,24A,24B,24C)と
を備える、
回転子用コア。
A rotor core (10, 10A, 10B, 10C) that extends in a rotation axis direction along a rotation axis (Q) of the shaft and holds a permanent magnet extending in the rotation axis direction;
An inner peripheral surface (12) through which the shaft passes;
An outer peripheral surface (14) farther from the rotation axis than the inner peripheral surface;
A first surface (16) where the outer peripheral surface side is exposed between the inner peripheral surface and the outer peripheral surface;
A second surface (18) that exposes the inner peripheral surface side between the inner peripheral surface and the outer peripheral surface, and holds the permanent magnet between the first surface;
A fixing portion (20a, 20b) for fixing the permanent magnet to either the first surface or the second surface;
On the side where the permanent magnet is fixed on the first surface or the second surface between the inner peripheral surface and the outer peripheral surface, a comb tooth portion (22 which is exposed on the far side away from the permanent magnet) , 22A, 22B, 22C),
A third surface (24, 24A, 24B, 24C) that opposes the comb-tooth portion through a gap and penetrates in the direction of the rotation axis;
Rotor core.
前記固定部(20a)は、前記永久磁石を前記第1面(16)に固定し、
前記櫛歯部(22)は前記内周面(12)側で露出する、
請求項1記載の回転子用コア(10)。
The fixing portion (20a) fixes the permanent magnet to the first surface (16),
The comb tooth portion (22) is exposed on the inner peripheral surface (12) side,
The rotor core (10) according to claim 1.
前記櫛歯部(22D)の複数同士は互いに前記回転軸方向に沿って隣接する、
請求項2記載の回転子用コア(10D)。
The plurality of comb teeth (22D) are adjacent to each other along the rotation axis direction.
The rotor core (10D) according to claim 2.
前記固定部(20b)は、前記永久磁石を前記第2面(18)に固定し、
前記櫛歯部(22A,22B,22C)は、前記第2面に対して前記回転軸(Q)を中心とする回転方向の一方側において、前記外周面(14)又は前記回転方向の前記一方側で露出する、
請求項1記載の回転子用コア(10A,10B,10C)。
The fixing portion (20b) fixes the permanent magnet to the second surface (18),
The comb teeth (22A, 22B, 22C) are arranged on one side of the rotation direction around the rotation axis (Q) with respect to the second surface, the outer peripheral surface (14) or the one of the rotation directions. Exposed at the side,
The rotor core (10A, 10B, 10C) according to claim 1.
前記回転軸方向からの平面視で、
前記第1面(16)が延在する方向の一方側の当該第1面の第1の端部(30C)を起点として前記外周面(14)へと向かって延在してかつ前記回転軸方向に貫通する第4面(32C)と、
前記第2面(18)が延在する方向の前記第1の端部に直近の当該第2面の第2の端部(34C)を起点として前記第4面と対向する第5面(36C)と
を更に備え、
前記第3面(22C)は前記第5面と接続される、
請求項4記載の回転子用コア(10C)。
In a plan view from the direction of the rotation axis,
The first shaft (16) extends toward the outer peripheral surface (14) from the first end (30C) of the first surface on one side in the direction in which the first surface (16) extends, and the rotating shaft A fourth surface (32C) penetrating in the direction;
A fifth surface (36C) facing the fourth surface starting from the second end (34C) of the second surface closest to the first end in the direction in which the second surface (18) extends. )
The third surface (22C) is connected to the fifth surface,
The rotor core (10C) according to claim 4.
JP2011191249A 2011-09-02 2011-09-02 Rotor core Withdrawn JP2013055755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191249A JP2013055755A (en) 2011-09-02 2011-09-02 Rotor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191249A JP2013055755A (en) 2011-09-02 2011-09-02 Rotor core

Publications (1)

Publication Number Publication Date
JP2013055755A true JP2013055755A (en) 2013-03-21

Family

ID=48132281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191249A Withdrawn JP2013055755A (en) 2011-09-02 2011-09-02 Rotor core

Country Status (1)

Country Link
JP (1) JP2013055755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098942A4 (en) * 2014-03-04 2017-08-16 Daikin Industries, Ltd. Rotor
CN113131642A (en) * 2019-12-30 2021-07-16 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098942A4 (en) * 2014-03-04 2017-08-16 Daikin Industries, Ltd. Rotor
US9800106B2 (en) 2014-03-04 2017-10-24 Daikin Industries, Ltd. Rotor
CN113131642A (en) * 2019-12-30 2021-07-16 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle

Similar Documents

Publication Publication Date Title
JP4660406B2 (en) Rotating electric machine
US7705503B2 (en) Rotating electrical machine
JP5851365B2 (en) Rotating electric machine
KR100989378B1 (en) Permanent magnet type rotary electric machine and permanent magnet type rotary electric device
JP6013062B2 (en) Induction motor and railway vehicle using the same
JP5244290B2 (en) Rotor structure of rotating electrical machine
JP2012186889A (en) Rotary electric machine
JP2008131813A (en) Permanent magnet electrical rotating machine, wind power generation system, and magnetization method of permanent magnet
JPWO2011002043A1 (en) Permanent magnet type rotating electric machine
JP6048191B2 (en) Multi-gap rotating electric machine
JP6157340B2 (en) Permanent magnet rotating electric machine
JP2008278591A (en) Rotor of rotating electric machine and rotating electric machine
JP6229147B2 (en) Electric motor and compressor equipped with the same
JP6406355B2 (en) Double stator type rotating machine
JP2011217444A (en) Rotating electric machine
JP2011109774A (en) Rotating electric machine
JP6025998B2 (en) Magnetic inductor type electric motor
JP5439904B2 (en) Rotating electric machine
WO2010110150A1 (en) Permanent magnet-embedded motor
JP5390752B2 (en) Embedded magnet motor
JP5264551B2 (en) Electric motor, blower and compressor
JP2013055755A (en) Rotor core
JP7132729B2 (en) Rotating electric machine
JP2009106001A (en) Rotary electric machine
JP6485844B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104