JP2013055413A - Power amplifier circuit - Google Patents

Power amplifier circuit Download PDF

Info

Publication number
JP2013055413A
JP2013055413A JP2011190754A JP2011190754A JP2013055413A JP 2013055413 A JP2013055413 A JP 2013055413A JP 2011190754 A JP2011190754 A JP 2011190754A JP 2011190754 A JP2011190754 A JP 2011190754A JP 2013055413 A JP2013055413 A JP 2013055413A
Authority
JP
Japan
Prior art keywords
power
heat
temperature
elements
power amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011190754A
Other languages
Japanese (ja)
Inventor
Kimiharu Hattori
公春 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011190754A priority Critical patent/JP2013055413A/en
Publication of JP2013055413A publication Critical patent/JP2013055413A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power amplifier circuit that allows improving efficiency without reducing gain by a simple configuration.SOLUTION: A heat-sensitive-type distributor 2, power amplifier elements 3a and 3b, and a synthesizer 4 are provided on a substrate 1. The heat-sensitive-type distributor 2 distributes an input signal into up to two signals. The power amplifier elements 3a and 3b power-amplify the distributed input signals. The synthesizer 4 synthesizes output signals from the power amplifier elements 3a and 3b to one signal. The heat generated in the power amplifier elements 3a and 3b transmits to the heat-sensitive-type distributor 2 via the substrate 1. The heat-sensitive-type distributor 2 distributes the input signal to more of the power amplifier elements 3a and 3b as the temperature becomes higher.

Description

本発明は、無線通信機などに組み込まれる電力増幅回路に関し、特に簡単な構成により利得を下げずに効率を向上させることができる電力増幅回路に関する。   The present invention relates to a power amplifier circuit incorporated in a wireless communication device or the like, and more particularly to a power amplifier circuit capable of improving efficiency without reducing gain by a simple configuration.

W−CDMA(Wideband Code Division Multiple Access)やLTE(Long Term Evolution)等の変調方式では、基地局と移動機の間の距離や伝搬経路に応じてダイナミックに電力の制御を行う(例えば、特許文献1参照)。高周波増幅器は、飽和電力(最大出力電力)付近では効率が良いが、低出力時には効率が大きく低下して、電力損失が大きくなる。そこで、従来は、Doherty型増幅回路や、システムでバイアス制御を行うことにより、低出力時の効率を向上させていた。   In modulation schemes such as W-CDMA (Wideband Code Division Multiple Access) and LTE (Long Term Evolution), power is dynamically controlled according to the distance between the base station and the mobile station and the propagation path (for example, Patent Documents). 1). The high-frequency amplifier has good efficiency in the vicinity of saturation power (maximum output power), but at low output, the efficiency is greatly reduced and the power loss is increased. Therefore, conventionally, the efficiency at the time of low output has been improved by performing bias control in the Doherty amplifier circuit or the system.

特開平9−312534号公報JP-A-9-31534

Doherty型増幅回路は2つ以上の電力増幅素子と分配器を有し、その分配器は動作していない電力増幅素子にも電力を均等に分配する。このため、一部の電力増幅素子が動作していない低出力時に利得が低下する。   The Doherty amplifier circuit has two or more power amplifying elements and a distributor, and the distributor distributes power evenly to power amplifying elements that are not operating. For this reason, the gain decreases at the time of low output when some of the power amplification elements are not operating.

また、バイアス制御の場合には、コントロールLSI等に制御用のテーブルを持たせてDACにより電源回路に供給される基準電圧を制御するか、自動制御の場合は検波回路を設ける必要があり、回路が大きく複雑になる。   In the case of bias control, it is necessary to provide a control table in a control LSI or the like to control the reference voltage supplied to the power supply circuit by the DAC, or in the case of automatic control, a detection circuit must be provided. Becomes large and complex.

本発明は、上述のような課題を解決するためになされたもので、その目的は簡単な構成により利得を下げずに効率を向上させることができる電力増幅回路を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power amplifier circuit capable of improving efficiency without reducing gain by a simple configuration.

本発明に係る電力増幅回路は、入力信号を最大でn個(nは2以上の自然数)に分配する熱感応式分配器と、分配された前記入力信号をそれぞれ電力増幅するn個の電力増幅素子と、前記n個の電力増幅素子の出力信号を1つに合成する合成器と、前記熱感応式分配器と前記n個の電力増幅素子が設けられた基板とを備え、前記n個の電力増幅素子で発生した熱が前記基板を介して前記熱感応式分配器に伝わり、前記熱感応式分配器は、温度が高くなるほど多くの前記電力増幅素子に前記入力信号を分配することを特徴とする。   A power amplifier circuit according to the present invention includes a heat-sensitive distributor that distributes an input signal to n (n is a natural number of 2 or more) and n power amplifiers that respectively amplify the distributed input signal. And a combiner that combines the output signals of the n power amplification elements into one, a substrate on which the heat-sensitive distributor and the n power amplification elements are provided, Heat generated in the power amplifying element is transferred to the heat-sensitive distributor through the substrate, and the heat-sensitive distributor distributes the input signal to more power amplifying elements as the temperature increases. And

本発明により、簡単な構成により利得を下げずに効率を向上させることができる。   According to the present invention, the efficiency can be improved without reducing the gain with a simple configuration.

本発明の実施の形態1に係る電力増幅回路の低出力時を示す平面図である。It is a top view which shows the time of the low output of the power amplifier circuit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電力増幅回路の高出力時を示す平面図である。It is a top view which shows the time of the high output of the power amplifier circuit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る温度スイッチを示す断面図である。It is sectional drawing which shows the temperature switch which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電力増幅回路の効率を示す図である。It is a figure which shows the efficiency of the power amplifier circuit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電力増幅回路の利得を示す図である。It is a figure which shows the gain of the power amplifier circuit which concerns on Embodiment 1 of this invention. Doherty型増幅回路の利得を示す図である。It is a figure which shows the gain of a Doherty type | mold amplifier circuit. 本発明の実施の形態2に係る電力増幅回路の中出力時を示す平面図である。It is a top view which shows the time of medium output of the power amplifier circuit which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る電力増幅回路の高出力時を示す平面図である。It is a top view which shows the time of the high output of the power amplifier circuit which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る電力増幅回路の効率を示す図である。It is a figure which shows the efficiency of the power amplifier circuit which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る電力増幅回路の利得を示す図である。It is a figure which shows the gain of the power amplifier circuit which concerns on Embodiment 2 of this invention.

本発明の実施の形態に係る電力増幅回路について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。   A power amplifier circuit according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.

実施の形態1.
図1は本発明の実施の形態1に係る電力増幅回路の低出力時を示す平面図であり、図2は高出力時を示す平面図である。基板1上に、熱感応式分配器2、電力増幅素子3a,3b、及び合成器4が設けられている。熱感応式分配器2は、入力信号を最大で2つに分配する。電力増幅素子3a,3bは、分配された入力信号をそれぞれ電力増幅する。合成器4は、電力増幅素子3a,3bの出力信号を1つに合成する。電力増幅素子3a,3bで発生した熱が、基板1を介して熱感応式分配器2に伝わる。熱感応式分配器2は温度が高くなるほど多くの電力増幅素子3a,3bに入力信号を分配する。
Embodiment 1 FIG.
FIG. 1 is a plan view showing a low output of the power amplifier circuit according to Embodiment 1 of the present invention, and FIG. 2 is a plan view showing a high output. On the substrate 1, a heat sensitive distributor 2, power amplifying elements 3a and 3b, and a synthesizer 4 are provided. The heat sensitive distributor 2 distributes the input signal into a maximum of two. The power amplifying elements 3a and 3b amplify the power of the distributed input signals, respectively. The combiner 4 combines the output signals of the power amplification elements 3a and 3b into one. Heat generated in the power amplifying elements 3 a and 3 b is transmitted to the heat sensitive distributor 2 through the substrate 1. The heat-sensitive distributor 2 distributes the input signal to many power amplifying elements 3a and 3b as the temperature increases.

熱感応式分配器2の入力端子5に入力信号が入力される。熱感応式分配器2の出力端子6a,6bが電力増幅素子3a,3bにそれぞれ接続されている。入力端子5と出力端子6aは配線7により常に接続されている。一方、入力端子5と出力端子6bとの間には温度スイッチ8aが接続されている。   An input signal is input to the input terminal 5 of the heat sensitive distributor 2. Output terminals 6a and 6b of the heat sensitive distributor 2 are connected to the power amplifying elements 3a and 3b, respectively. The input terminal 5 and the output terminal 6 a are always connected by the wiring 7. On the other hand, a temperature switch 8a is connected between the input terminal 5 and the output terminal 6b.

図3は、本発明の実施の形態1に係る温度スイッチを示す断面図である。温度スイッチ8aは、熱膨張率の異なる2種類の金属板9,10を張り合わせたバイメタルスイッチである。温度スイッチ8aは、温度が閾値温度より低いとOFFとなり、温度が閾値温度以上になるとONとなる。   FIG. 3 is a cross-sectional view showing the temperature switch according to Embodiment 1 of the present invention. The temperature switch 8a is a bimetallic switch in which two types of metal plates 9 and 10 having different thermal expansion coefficients are bonded together. The temperature switch 8a is turned off when the temperature is lower than the threshold temperature, and turned on when the temperature is equal to or higher than the threshold temperature.

続いて、実施の形態1に係る電力増幅回路の動作を説明する。低出力時には電力増幅素子3a,3bの発熱量が小さいため、熱感応式分配器2の温度が低い。従って、図1に示すように、温度スイッチ8aがOFFとなり、熱感応式分配器2は入力信号を分配せずに電力増幅素子3aだけに供給する。   Subsequently, the operation of the power amplifier circuit according to the first embodiment will be described. At the time of low output, since the heat generation amount of the power amplifying elements 3a and 3b is small, the temperature of the heat sensitive distributor 2 is low. Therefore, as shown in FIG. 1, the temperature switch 8a is turned OFF, and the heat sensitive distributor 2 supplies only the power amplifying element 3a without distributing the input signal.

入力電力が増大して電力増幅素子3aが飽和電力に近づいて発熱量が増すと、熱感応式分配器2の温度が閾値温度以上になる。従って、図2に示すように、温度スイッチ8aがONとなり、熱感応式分配器2が1:1の電力分配器になるため、電力増幅素子3a,3bの両方に電力が均等に分配される。飽和電力になる入力電力から3dB低い入力電力が電力増幅素子3a,3bに供給され、電力増幅素子3a,3bの線形性が回復する。また、出力電力の総和は、電力増幅素子3a,3bの出力の和なので、電力増幅素子3a,3bの飽和電力が同じ場合には、最大出力電力を3dB向上させることができる。   When the input power increases and the power amplifying element 3a approaches the saturated power and the heat generation amount increases, the temperature of the heat sensitive distributor 2 becomes equal to or higher than the threshold temperature. Therefore, as shown in FIG. 2, since the temperature switch 8a is turned on and the heat sensitive distributor 2 becomes a 1: 1 power distributor, the power is evenly distributed to both the power amplifying elements 3a and 3b. . Input power 3 dB lower than the input power that becomes saturated power is supplied to the power amplifying elements 3a and 3b, and the linearity of the power amplifying elements 3a and 3b is restored. Further, since the sum of the output powers is the sum of the outputs of the power amplification elements 3a and 3b, the maximum output power can be improved by 3 dB when the saturation powers of the power amplification elements 3a and 3b are the same.

図4は、本発明の実施の形態1に係る電力増幅回路の効率を示す図である。上述の熱感応式分配器2の動作により、最大出力電力から3dBバックオフ時の効率が、最大出力時と同等の高い数値になることが分かる。   FIG. 4 is a diagram showing the efficiency of the power amplifier circuit according to Embodiment 1 of the present invention. It can be seen that the efficiency at the time of 3 dB back-off from the maximum output power becomes a high numerical value equivalent to that at the maximum output by the operation of the heat sensitive distributor 2 described above.

図5は、本発明の実施の形態1に係る電力増幅回路の利得を示す図である。図6は、Doherty型増幅回路の利得を示す図である。Doherty型増幅回路では低出力時に利得が下がるが、実施の形態1では利得が下がらないことが分かる。   FIG. 5 is a diagram showing the gain of the power amplifier circuit according to Embodiment 1 of the present invention. FIG. 6 is a diagram illustrating the gain of the Doherty amplifier circuit. In the Doherty type amplifier circuit, the gain decreases at the time of low output, but it can be seen that the gain does not decrease in the first embodiment.

以上説明したように、熱感応式分配器2は、温度が高くなるほど多くの電力増幅素子3a,3bに入力信号を分配する。そして、電力増幅素子3a,3bの出力電力が高いほど、その発熱量が多くなるため、熱感応式分配器2の温度が高くなる。従って、熱感応式分配器2は、電力増幅素子3a,3bの出力電力に応じて、各電力増幅素子3a,3bに分配する電力を自動的に最適化する。これにより、効率を向上させることができる。この際に、利得を下げることなく動作が可能である。また、熱感応式分配器2の動作に外部からの制御を必要としないため、回路構成が簡単である。   As described above, the heat-sensitive distributor 2 distributes the input signal to more power amplifying elements 3a and 3b as the temperature increases. And the higher the output power of the power amplifying elements 3a, 3b, the greater the amount of heat generated, so the temperature of the heat sensitive distributor 2 increases. Therefore, the heat sensitive distributor 2 automatically optimizes the power distributed to the power amplifying elements 3a and 3b according to the output power of the power amplifying elements 3a and 3b. Thereby, efficiency can be improved. At this time, the operation is possible without reducing the gain. In addition, since the operation of the heat-sensitive distributor 2 does not require external control, the circuit configuration is simple.

実施の形態2.
図7は本発明の実施の形態2に係る電力増幅回路の中出力時を示す平面図であり、図8は高出力時を示す平面図である。3つの電力増幅素子3a,3b,3cが設けられている。熱感応式分配器2の出力端子6cが電力増幅素子3cに接続され、入力端子5と出力端子6cとの間に温度スイッチ8bが接続されている。温度スイッチ8a,8bは互いに異なる閾値温度を持つ。その他の構成は実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 7 is a plan view showing a middle output of the power amplifier circuit according to Embodiment 2 of the present invention, and FIG. 8 is a plan view showing a high output. Three power amplification elements 3a, 3b, and 3c are provided. An output terminal 6c of the heat sensitive distributor 2 is connected to the power amplification element 3c, and a temperature switch 8b is connected between the input terminal 5 and the output terminal 6c. The temperature switches 8a and 8b have different threshold temperatures. Other configurations are the same as those of the first embodiment.

続いて、実施の形態2に係る電力増幅回路の動作を説明する。低出力時には、温度スイッチ8a,8bがOFFとなり、熱感応式分配器2は入力信号を分配せずに電力増幅素子3aだけに供給する。   Subsequently, the operation of the power amplifier circuit according to the second embodiment will be described. At the time of low output, the temperature switches 8a and 8b are turned off, and the heat sensitive distributor 2 supplies only the power amplification element 3a without distributing the input signal.

入力電力が増大して電力増幅素子3aが飽和電力に近づいて発熱量が増すと、熱感応式分配器2の温度が第1の閾値温度以上になる。従って、図7に示すように、温度スイッチ8aがONとなり、熱感応式分配器2が1:1:0の電力分配器になるため、電力増幅素子3a,3bの両方に電力が均等に分配される。飽和電力になる入力電力から3dB低い入力電力が電力増幅素子3a,3bに供給され、電力増幅素子3a,3bの線形性が回復する。   When the input power increases and the power amplifying element 3a approaches the saturated power and the heat generation amount increases, the temperature of the heat sensitive distributor 2 becomes equal to or higher than the first threshold temperature. Accordingly, as shown in FIG. 7, since the temperature switch 8a is turned on and the heat sensitive distributor 2 becomes a 1: 1: 0 power distributor, power is evenly distributed to both the power amplifying elements 3a and 3b. Is done. Input power 3 dB lower than the input power that becomes saturated power is supplied to the power amplifying elements 3a and 3b, and the linearity of the power amplifying elements 3a and 3b is restored.

さらに入力電力が増大して発熱量が増すと、熱感応式分配器2の温度が第2の閾値温度以上になる。従って、図8に示すように、温度スイッチ8bもONとなり、3つ目の電力増幅素子3cにも電力が分配される。ここで、電力増幅素子3a,3b,3cのトランジスタの大きさ又は最大飽和電力の大きさを1:1:2とし、熱感応式分配器2の分配比率を1:1:2とする。また、出力電力の総和は、電力増幅素子3a,3b,3cの出力の和なので、最大出力電力を6dB向上させることができる。   When the input power further increases and the amount of heat generation increases, the temperature of the heat-sensitive distributor 2 becomes equal to or higher than the second threshold temperature. Therefore, as shown in FIG. 8, the temperature switch 8b is also turned ON, and the power is distributed to the third power amplifying element 3c. Here, the size of the transistors or the maximum saturation power of the power amplifying elements 3a, 3b, and 3c is 1: 1: 2, and the distribution ratio of the heat sensitive distributor 2 is 1: 1: 2. Further, since the total output power is the sum of the outputs of the power amplifying elements 3a, 3b, 3c, the maximum output power can be improved by 6 dB.

図9は、本発明の実施の形態2に係る電力増幅回路の効率を示す図である。最大出力電力から6dBバックオフ時の効率が、最大出力時と同等の高い数値になることが分かる。図10は、本発明の実施の形態2に係る電力増幅回路の利得を示す図である。実施の形態1では利得が下がらないことが分かる。   FIG. 9 is a diagram showing the efficiency of the power amplifier circuit according to Embodiment 2 of the present invention. From the maximum output power, it can be seen that the efficiency at the time of 6 dB back-off becomes a high numerical value equivalent to that at the maximum output. FIG. 10 is a diagram showing the gain of the power amplifier circuit according to Embodiment 2 of the present invention. It can be seen that the gain does not decrease in the first embodiment.

以上説明したように、熱感応式分配器2は、温度が高くなるほど多くの電力増幅素子3a,3b,3cに入力信号を分配する。これにより、実施の形態1と同様に、簡単な構成により利得を下げずに効率を向上させることができる。   As described above, the heat-sensitive distributor 2 distributes the input signal to more power amplifying elements 3a, 3b, 3c as the temperature increases. Thereby, as in the first embodiment, the efficiency can be improved without reducing the gain with a simple configuration.

なお、実施の形態1は電力増幅素子が2つの場合であり、実施の形態2は電力増幅素子が3つの場合であるが、これに限らず電力増幅素子がn個(nは2以上の自然数)の場合に本発明を適用することができる。この場合、温度スイッチは(n−1)個となり、これらは互いに異なる閾値温度を持つ。例えば3つの温度スイッチが有る場合に、出力電力10W、20W、40W時の温度にそれぞれの温度スイッチの閾値温度を設定する。   The first embodiment is a case where there are two power amplifying elements, and the second embodiment is a case where there are three power amplifying elements. However, the present invention is not limited to this, and there are n power amplifying elements (n is a natural number of 2 or more). ), The present invention can be applied. In this case, there are (n−1) temperature switches, and these have different threshold temperatures. For example, when there are three temperature switches, the threshold temperature of each temperature switch is set to the temperature when the output power is 10 W, 20 W, and 40 W.

1 基板
2 熱感応式分配器
3a,3b,3c 電力増幅素子
4 合成器
5 入力端子
6a,6b,6c 出力端子
7 配線
8a,8b 温度スイッチ
9,10 金属板
DESCRIPTION OF SYMBOLS 1 Substrate 2 Heat sensitive distributor 3a, 3b, 3c Power amplification element 4 Synthesizer 5 Input terminal 6a, 6b, 6c Output terminal 7 Wiring 8a, 8b Temperature switch 9, 10 Metal plate

Claims (3)

入力信号を最大でn個(nは2以上の自然数)に分配する熱感応式分配器と、
分配された前記入力信号をそれぞれ電力増幅するn個の電力増幅素子と、
前記n個の電力増幅素子の出力信号を1つに合成する合成器と、
前記熱感応式分配器と前記n個の電力増幅素子が設けられた基板とを備え、
前記n個の電力増幅素子で発生した熱が前記基板を介して前記熱感応式分配器に伝わり、
前記熱感応式分配器は、温度が高くなるほど多くの前記電力増幅素子に前記入力信号を分配することを特徴とする電力増幅回路。
A heat-sensitive distributor that distributes the input signal into a maximum of n (n is a natural number of 2 or more);
N power amplifying elements for power amplifying the distributed input signals, respectively;
A combiner that combines the output signals of the n power amplification elements into one;
The heat-sensitive distributor and a substrate provided with the n power amplification elements;
Heat generated by the n power amplification elements is transferred to the heat-sensitive distributor through the substrate;
The heat sensitive distributor distributes the input signal to more power amplifying elements as the temperature becomes higher.
前記n個の電力増幅素子は、第1から第nの電力増幅素子を有し、
前記熱感応式分配器は、
前記入力信号が入力される入力端子と、
前記第1から第nの電力増幅素子にそれぞれ接続された第1から第nの出力端子と、
前記入力端子と前記第1の出力端子を接続する配線と、
前記入力端子と前記第2から第nの出力端子との間にそれぞれ接続された(n−1)個の温度スイッチとを有し、
前記(n−1)個の温度スイッチは、互いに異なる閾値温度を持ち、温度が前記閾値温度より低いとOFFとなり、温度が前記閾値温度以上になるとONとなることを特徴とする請求項1に記載の電力増幅回路。
The n power amplification elements include first to nth power amplification elements,
The heat sensitive distributor is:
An input terminal to which the input signal is input;
First to nth output terminals respectively connected to the first to nth power amplifier elements;
A wiring connecting the input terminal and the first output terminal;
(N-1) temperature switches respectively connected between the input terminal and the second to nth output terminals;
The (n-1) temperature switches have different threshold temperatures, and are turned off when the temperature is lower than the threshold temperature, and turned on when the temperature is equal to or higher than the threshold temperature. The power amplifier circuit described.
前記(n−1)個の温度スイッチは、熱膨張率の異なる2種類の金属板を張り合わせたバイメタルスイッチであることを特徴とする請求項2に記載の電力増幅回路。   The power amplification circuit according to claim 2, wherein the (n−1) temperature switches are bimetallic switches in which two types of metal plates having different thermal expansion coefficients are bonded together.
JP2011190754A 2011-09-01 2011-09-01 Power amplifier circuit Withdrawn JP2013055413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190754A JP2013055413A (en) 2011-09-01 2011-09-01 Power amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190754A JP2013055413A (en) 2011-09-01 2011-09-01 Power amplifier circuit

Publications (1)

Publication Number Publication Date
JP2013055413A true JP2013055413A (en) 2013-03-21

Family

ID=48132061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190754A Withdrawn JP2013055413A (en) 2011-09-01 2011-09-01 Power amplifier circuit

Country Status (1)

Country Link
JP (1) JP2013055413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064185A (en) * 2012-09-21 2014-04-10 Asahi Kasei Electronics Co Ltd Doherty amplification device
CN117118369A (en) * 2023-10-24 2023-11-24 四川省华盾防务科技股份有限公司 Broadband high-power synthesis control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064185A (en) * 2012-09-21 2014-04-10 Asahi Kasei Electronics Co Ltd Doherty amplification device
CN117118369A (en) * 2023-10-24 2023-11-24 四川省华盾防务科技股份有限公司 Broadband high-power synthesis control system
CN117118369B (en) * 2023-10-24 2024-01-30 四川省华盾防务科技股份有限公司 Broadband high-power synthesis control system

Similar Documents

Publication Publication Date Title
US7952431B2 (en) Linearization circuits and methods for power amplification
JP3841416B2 (en) Transmission device, transmission output control method, and wireless communication device
EP1898521B1 (en) Power amplifying apparatus and mobile communication terminal
EP1887686B1 (en) Multi-path Doherty amplifier and control method of a multi-path Doherty amplifier
Jeong et al. High-efficiency WCDMA envelope tracking base-station amplifier implemented with GaAs HVHBTs
GB2575747A (en) Apparatus and methods for bias switching of power amplifiers
JP2004007405A (en) Efficient power amplifier
JP2007116694A (en) Power amplifier in high-efficiency mixed mode
JP2001244757A (en) Power amplifier using incoming signal information
JP2004221646A (en) Doherty amplifier
JP2006197556A (en) Amplifier
EP2963810B1 (en) Doherty power amplification circuit and power amplifier
JP2006303744A (en) High frequency power amplifier apparatus
KR20010051821A (en) System and method for producing an amplified signal
JPWO2009004733A1 (en) MIMO transmitter
JP2004222151A (en) Doherty amplifier
JP2010041634A (en) High frequency power amplifier, and high frequency transmission module and transceiving module using it
JP2013055413A (en) Power amplifier circuit
WO2010076845A1 (en) Polar modulation apparatus and communication device
WO2005029695A1 (en) Amplifier
JP2007124460A (en) Amplifier
US8803607B2 (en) Power amplifier
TWI572134B (en) Power control method of amplifier module
JPWO2008035396A1 (en) Power amplifier
JP6384105B2 (en) Power amplifier

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104