JP2013053366A - Ferritic stainless steel sheet excellent in ridging resistance and method for producing the same - Google Patents

Ferritic stainless steel sheet excellent in ridging resistance and method for producing the same Download PDF

Info

Publication number
JP2013053366A
JP2013053366A JP2012135082A JP2012135082A JP2013053366A JP 2013053366 A JP2013053366 A JP 2013053366A JP 2012135082 A JP2012135082 A JP 2012135082A JP 2012135082 A JP2012135082 A JP 2012135082A JP 2013053366 A JP2013053366 A JP 2013053366A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
ridging resistance
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012135082A
Other languages
Japanese (ja)
Other versions
JP5921352B2 (en
Inventor
Ken Kimura
謙 木村
Shinichi Teraoka
慎一 寺岡
Masaharu Hatano
正治 秦野
Eiichiro Ishimaru
詠一朗 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012135082A priority Critical patent/JP5921352B2/en
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to BR112013032272A priority patent/BR112013032272A2/en
Priority to ES12800133T priority patent/ES2788506T3/en
Priority to KR1020157017975A priority patent/KR101688353B1/en
Priority to PCT/JP2012/065507 priority patent/WO2012173272A1/en
Priority to TW101121773A priority patent/TWI480391B/en
Priority to US14/126,083 priority patent/US9771640B2/en
Priority to EP12800133.6A priority patent/EP2722411B1/en
Priority to CN201510360013.4A priority patent/CN104975237B/en
Priority to CN201280029571.7A priority patent/CN103608479B/en
Priority to KR1020137032607A priority patent/KR101600156B1/en
Publication of JP2013053366A publication Critical patent/JP2013053366A/en
Application granted granted Critical
Publication of JP5921352B2 publication Critical patent/JP5921352B2/en
Priority to US15/683,503 priority patent/US10358707B2/en
Priority to US16/384,200 priority patent/US10513763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve ridging resistance in a ferritic stainless steel which forms two phases of α+γ in a hot-rolling temperature region.SOLUTION: The ferritic stainless steel sheet excellent in ridging resistance contains, by mass, 0.001 to 0.30% C, 0.01 to 1.00% Si, 0.01 to 2.00% Mn, 0.050% or less P, 0.020% or less S, 11.0 to 22.0% Cr, 0.001 to 0.10% N, and the balance Fe with inevitable impurities, wherein Ap defined by formula (3) satisfies formula (2); and the amount of Sn satisfies formula (1); and has a metal structure being a ferrite single phase, wherein formula (1): 0.060≤Sn≤0.634-0.0082Ap, formuls (2): 10≤Ap≤70, formula (3): Ap=420C+470N+23Ni+9Cu+7Mn-11.5(Cr+Si)-12Mo-52Al-47Nb-49Ti+189, and Sn, C, N, Ni, Cu, Mn, Cr, Si, Mo, Al, Nb, and Ti each denote the content of each element.

Description

本発明は、耐リジング性に優れたフェライト系ステンレス鋼板及びその製造方法に関するものである。本発明によれば、優れた耐リジング性を有するフェライト系ステンレス鋼板を提供することができるので、従来必要であった研磨工程等を省略でき、地球環境保全に貢献し得るものである。   The present invention relates to a ferritic stainless steel sheet having excellent ridging resistance and a method for producing the same. According to the present invention, it is possible to provide a ferritic stainless steel sheet having excellent ridging resistance, so that it is possible to omit the polishing step and the like that have been necessary in the past, and to contribute to global environmental conservation.

SUS430に代表されるフェライト系ステンレス鋼は、家電や厨房品等に広く使用されている。ステンレス鋼は、その優れた耐食性に最大の特徴があり、そのため、表面処理を施すことなく、金属地のまま製品化される場合が多い。   Ferritic stainless steel represented by SUS430 is widely used in home appliances, kitchenware, and the like. Stainless steel has the greatest feature in its excellent corrosion resistance. Therefore, it is often produced as a metal base without surface treatment.

フェライト系ステンレス鋼を成形した場合、その表面に、リジングという表面欠陥が発生する場合がある。鋼表面にリジングが発生すると、表面美観が劣化するし、また、それを除去するための研磨が必要となったりする。SUS430のように、熱間圧延温度域でα+γの2相となる鋼種において耐リジング性を改善する手法として、例えば、特許文献1〜4に開示の手法が知られている。   When ferritic stainless steel is formed, surface defects called ridging may occur on the surface. When ridging occurs on the steel surface, the surface aesthetics deteriorate, and polishing for removing the surface may be required. As a technique for improving ridging resistance in a steel type that has two phases of α + γ in a hot rolling temperature range as in SUS430, for example, techniques disclosed in Patent Documents 1 to 4 are known.

特許文献1には、鋼中のAl量とN量を規定し、熱間圧延途中に曲げ加工を施し、その後の再結晶により結晶方位を変化させる手法が開示されている。特許文献2には、熱間仕上げ圧延時の圧下率を規定する手法が示されている。   Patent Document 1 discloses a technique in which the amount of Al and the amount of N in steel are defined, bending is performed during hot rolling, and the crystal orientation is changed by subsequent recrystallization. Patent Document 2 discloses a technique for defining the rolling reduction during hot finish rolling.

特許文献3には、1パス当りの圧下率を40%以上として、大きな歪を与えて、フェライトバンドを分断する手法が開示されている。特許文献4には、成分組成より計算されるオーステナイト相率に調整し、加熱温度、仕上げ圧延速度及び温度等を規定する手法が開示されている。   Patent Document 3 discloses a technique of dividing a ferrite band by giving a large strain by setting a rolling reduction per pass to 40% or more. Patent Document 4 discloses a method of adjusting the austenite phase ratio calculated from the component composition and defining the heating temperature, finish rolling speed, temperature, and the like.

しかし、特許文献1、2、及び、4に開示の手法では、鋼種によっては、必ずしも、耐リジング性が向上しない場合がある。また、特許文献3に開示の手法においては、圧延時に焼きつき疵が発生する場合がある。この場合、生産性が低下する。以上のように、熱間圧延温度域でα+γの2相となる鋼種において、耐リジング性を改善する手法は確立していないのが現状である。   However, in the methods disclosed in Patent Documents 1, 2, and 4, ridging resistance may not necessarily be improved depending on the steel type. In the method disclosed in Patent Document 3, seizure flaws may occur during rolling. In this case, productivity is reduced. As described above, there is no established method for improving ridging resistance in a steel type that has two phases of α + γ in the hot rolling temperature range.

一方、近年、微量のSnを添加して、低Crフェライト系ステンレス鋼の耐食性や高温強度を改善する検討がなされている。特許文献5には、Sn含有量が0.060%未満のフェライト系ステンレス鋼が開示されている。特許文献6には、Hv300以上の高硬度を特徴とするマルテンサイト系ステンレス鋼が開示されている。特許文献7には、Snを添加して高温強度を改善したフェライト系ステンレス鋼が開示されている。   On the other hand, in recent years, studies have been made to improve the corrosion resistance and high temperature strength of low Cr ferritic stainless steel by adding a small amount of Sn. Patent Document 5 discloses a ferritic stainless steel having an Sn content of less than 0.060%. Patent Document 6 discloses martensitic stainless steel characterized by high hardness of Hv300 or higher. Patent Document 7 discloses ferritic stainless steel in which Sn is added to improve high temperature strength.

特開昭62−136525号公報JP 62-136525 A 特開昭63−69921号公報JP-A-63-69921 特開平05−179358号公報JP 05-179358 A 特開平06−081036号公報Japanese Patent Application Laid-Open No. 06-081036 特開平11−092872号公報Japanese Patent Laid-Open No. 11-092772 特開2010−215995号公報JP 2010-215995 A 特開2000−169943号公報JP 2000-169943 A

本発明は、上記現状に鑑み、SUS430にように、熱間圧延温度域でα+γの2相となるフェライト系ステンレス鋼において、耐リジング性を改善することを課題とし、該課題を解決する耐リジング性が優れたフェライト系ステンレス鋼板と、その製造方法を提供することを目的とする。   In view of the above situation, the present invention has an object to improve ridging resistance in a ferritic stainless steel that has two phases of α + γ in a hot rolling temperature range as in SUS430. An object of the present invention is to provide a ferritic stainless steel sheet having excellent properties and a method for producing the same.

本発明者らは、上記課題を解決すべく、フェライト系ステンレス鋼の耐リジング性に及ぼす成分組成と製造条件の関係、特にSnの含有量との関係を詳細に検討した。その結果、本発明者らは、熱間圧延温度域でα+γの2相組織となるフェライト系ステンレス鋼において、Snを適量添加すると、製造性(熱間加工性)を損なうことなく、耐リジング性を改善できることを見出した。   In order to solve the above-mentioned problems, the present inventors have studied in detail the relationship between the component composition and production conditions affecting the ridging resistance of ferritic stainless steel, particularly the content of Sn. As a result, the present inventors added a suitable amount of Sn to a ferritic stainless steel having a two-phase structure of α + γ in the hot rolling temperature range. It has been found that ridging can be improved.

本発明は、上記知見に基づいてなされたもので、その要旨は以下の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.001〜0.30%、Si:0.01〜1.00%、Mn:0.01〜2.00%、P:0.050%以下未満、S:0.020%以下、Cr:11.0〜22.0%、N:0.001〜0.10%を含有し、下記(3)式で定義するApが下記(2)式を満たし、かつ、Sn含有量が下記(1)式を満たし、残部がFe及び不可避的不純物からなり、金属組織がフェライト単相であることを特徴とする耐リジング性に優れたフェライト系ステンレス鋼板。
0.060≦Sn≦0.634−0.0082Ap ・・・(1)
10≦Ap≦70 ・・・(2)
Ap=420C+470N+23Ni+9Cu+7Mn−11.5(Cr+Si)
−12Mo−52Al−47Nb−49Ti+189 ・・・(3)
ここで、Sn、C、N、Ni、Cu、Mn、Cr、Si、Mo、Al、Nb、及び、Tiは、各元素の含有量である。
(1) By mass%, C: 0.001 to 0.30%, Si: 0.01 to 1.00%, Mn: 0.01 to 2.00%, P: less than 0.050%, S : 0.020% or less, Cr: 11.0 to 22.0%, N: 0.001 to 0.10%, Ap defined by the following formula (3) satisfies the following formula (2), And the ferritic stainless steel plate excellent in ridging resistance characterized by Sn content satisfy | filling following (1) Formula, remainder consisting of Fe and an unavoidable impurity, and metal structure being a ferrite single phase.
0.060 ≦ Sn ≦ 0.634−0.0082 Ap (1)
10 ≦ Ap ≦ 70 (2)
Ap = 420C + 470N + 23Ni + 9Cu + 7Mn-11.5 (Cr + Si)
-12Mo-52Al-47Nb-49Ti + 189 (3)
Here, Sn, C, N, Ni, Cu, Mn, Cr, Si, Mo, Al, Nb, and Ti are the contents of each element.

(2)質量%で、C:0.001〜0.30%、Si:0.01〜1.00%、Mn:0.01〜2.00%、P:0.050%以下、S:0.020%以下、Cr:11.0〜22.0%、N:0.001〜0.10%を含有し、下記(3)式で定義するApが下記(2)式を満たし、かつ、Sn含有量が下記(1)式を満たし、残部がFe及び不可避的不純物からなり、金属組織がフェライト単相であり、リジング高さが6μm未満であることを特徴とする耐リジング性に優れたフェライト系ステンレス鋼板。
リジング性を確保するには、1100℃以上の熱間圧延における総圧延率が15%以上となる熱間圧延が必要なことから、(2)の発明は、すなわち以下のようにも記載できる。
(2) By mass%, C: 0.001 to 0.30%, Si: 0.01 to 1.00%, Mn: 0.01 to 2.00%, P: 0.050% or less, S: 0.020% or less, Cr: 11.0 to 22.0%, N: 0.001 to 0.10%, Ap defined by the following formula (3) satisfies the following formula (2), and , Excellent in ridging resistance, characterized in that the Sn content satisfies the following formula (1), the balance consists of Fe and inevitable impurities, the metal structure is a single phase of ferrite, and the ridging height is less than 6 μm Ferritic stainless steel sheet.
In order to ensure ridging properties, hot rolling is required in which the total rolling rate in hot rolling at 1100 ° C. or higher is 15% or higher. Therefore, the invention of (2) can be described as follows.

(2’)質量%で、
C :0.001〜0.30%、Si:0.01〜1.00%、Mn:0.01〜2.00%、P :0.050%以下、S :0.020%以下、Cr:11.0〜22.0%、N :0.001〜0.10%を含有し、前記(式3)で定義するApが前記(式2)を満たし、かつ、Sn含有量が前記(式1)を満たし、残部がFe及び不可避的不純物からなる鋼を、1150〜1280℃に加熱し、1100℃以上の熱間圧延における総圧延率が15%以上となる熱間圧延を施して鋼板とし、その金属組織がフェライト単相であることを特徴とする耐リジング性に優れたフェライト系ステンレス鋼板。
(2 ') mass%,
C: 0.001 to 0.30%, Si: 0.01 to 1.00%, Mn: 0.01 to 2.00%, P: 0.050% or less, S: 0.020% or less, Cr 11.0 to 22.0%, N: 0.001 to 0.10%, Ap defined by the above (Formula 3) satisfies the above (Formula 2), and Sn content is the above ( A steel sheet that satisfies Formula 1), the balance being Fe and unavoidable impurities is heated to 1150 to 1280 ° C. and subjected to hot rolling at a total rolling rate of 15% or more in hot rolling at 1100 ° C. or higher. And a ferritic stainless steel sheet excellent in ridging resistance, characterized in that its metal structure is a single phase of ferrite.

(3)さらに、質量%で、Al:0.0001〜1.0%、Nb:0.30%以下、Ti:0.30%以下のうち1種又は2種以上を含有することを特徴とする前記(1)又は(2)に記載の耐リジング性に優れたフェライト系ステンレス鋼板。   (3) Further, by mass%, Al: 0.0001 to 1.0%, Nb: 0.30% or less, Ti: 0.30% or less, containing one or more kinds, The ferritic stainless steel sheet having excellent ridging resistance according to (1) or (2).

(4)さらに、質量%で、Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下%、V:1.0%以下、Co:0.5%以下、Zr:0.5%以下のうち1種又は2種以上を含有することを特徴とする前記(1)〜(3)に記載の耐リジング性に優れたフェライト系ステンレス鋼板。   (4) Further, in mass%, Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, V: 1.0% or less, Co: 0.5% or less, Zr: Ferritic stainless steel sheet having excellent ridging resistance as described in (1) to (3) above, containing one or more of 0.5% or less.

(5)さらに、質量%で、B:0.0050%以下、Mg:0.0050%以下、Ca:0.0050%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうち1種又は2種以上を含有することを特徴とする前記(1)〜(4)のいずれかに記載の耐リジング性に優れたフェライト系ステンレス鋼板。   (5) Further, in mass%, B: 0.0050% or less, Mg: 0.0050% or less, Ca: 0.0050% or less, Y: 0.1% or less, Hf: 0.1% or less, REM : Ferritic stainless steel sheet excellent in ridging resistance according to any one of (1) to (4) above, containing one or more of 0.1% or less.

(6)前記(1)〜(5)のいずれかに記載の耐リジング性に優れたフェライト系ステンレス鋼板の製造方法において、(i)前記(1)〜(5)のいずれかに記載の成分組成の鋼を1150〜1280℃に加熱し、該鋼に、1100℃以上の熱間圧延における総圧延率が15%以上となる熱間圧延を施して、熱延板とし、(ii)上記熱延板を巻き取った後、該熱延板に、焼鈍を施し、又は、焼鈍を施さずに、冷間圧延を施し、次いで、焼鈍することを特徴とする耐リジング性に優れたフェライト系ステンレス鋼板の製造方法。   (6) In the method for producing a ferritic stainless steel sheet having excellent ridging resistance according to any one of (1) to (5), (i) the component according to any one of (1) to (5) The steel having a composition is heated to 1150 to 1280 ° C., and the steel is subjected to hot rolling at a total rolling rate of 15% or more in hot rolling at 1100 ° C. or higher to obtain a hot rolled sheet, (ii) the above heat Ferritic stainless steel with excellent ridging resistance, characterized in that after rolling the rolled sheet, the hot rolled sheet is annealed or cold-rolled without annealing, and then annealed. A method of manufacturing a steel sheet.

本発明によれば、耐リジング性に優れたフェライト系ステンレス鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ferritic stainless steel plate excellent in ridging resistance can be provided.

Ap及びSn量と、耐リジング性及び熱延板における耳割れの有無との関係を示す図である。It is a figure which shows the relationship between the amount of Ap and Sn, ridging resistance, and the presence or absence of the ear crack in a hot rolled sheet.

以下に、本発明を詳細に説明する。
本発明の耐リジング性に優れたフェライト系ステンレス鋼板(以下「本発明鋼板」ということがある。)は、質量%で、C:0.001〜0.30%、Si:0.01〜1.00%、Mn:0.01〜2.00%、P:0.050%未満、S:0.010%以下、Cr:11.0〜18.0%、N:0.0010〜0.10%を含有し、(3)式で定義するApが(2)式を満たし、かつ、Sn含有量が(1)式を満たし、残部がFe及び不可避的不純物からなり、金属組織がフェライト単相であることを特徴とする。
The present invention is described in detail below.
The ferritic stainless steel sheet (hereinafter, also referred to as “the steel sheet of the present invention”) having excellent ridging resistance according to the present invention is mass%, C: 0.001 to 0.30%, Si: 0.01 to 1. 0.000%, Mn: 0.01-2.00%, P: less than 0.050%, S: 0.010% or less, Cr: 11.0-18.0%, N: 0.0010-0. 10% is contained, Ap defined by the formula (3) satisfies the formula (2), the Sn content satisfies the formula (1), the balance is composed of Fe and unavoidable impurities, and the metal structure is composed of ferrite. It is a phase.

0.060≦Sn≦0.634−0.0082Ap ・・・(1)
10≦Ap≦70 ・・・(2)
Ap=420C+470N+23Ni+9Cu+7Mn−11.5(Cr+Si)
−12Mo−52Al−47Nb−49Ti+189 ・・・(3)
ここで、Sn、C、N、Ni、Cu、Mn、Cr、Si、Mo、Al、Nb、及び、Tiは、各元素の含有量(質量%)である。
0.060 ≦ Sn ≦ 0.634−0.0082 Ap (1)
10 ≦ Ap ≦ 70 (2)
Ap = 420C + 470N + 23Ni + 9Cu + 7Mn-11.5 (Cr + Si)
-12Mo-52Al-47Nb-49Ti + 189 (3)
Here, Sn, C, N, Ni, Cu, Mn, Cr, Si, Mo, Al, Nb, and Ti are the contents (mass%) of each element.

Apは、上記元素の含有量(質量%)から算出されるγ相率であり、1100℃に加熱した時に生成するオーステナイト量の最大値を示す指標である。元素の係数は、γ相の生成に寄与する程度を、実験的に定めたものである。なお、鋼中に存在しない元素は0%として、上記(3)式を計算する。   Ap is a γ phase ratio calculated from the content (mass%) of the above element, and is an index indicating the maximum value of the amount of austenite generated when heated to 1100 ° C. The coefficient of the element is experimentally determined to the extent that it contributes to the generation of the γ phase. In addition, the said Formula (3) is calculated by making the element which does not exist in steel into 0%.

まず、本発明の基礎となる知見を得るに至った試験とその結果について説明する。
本発明者らは、SUS430を基本成分とし、成分組成を変更して数十水準のステンレス鋼を溶製して鋳造し、鋳片に、熱延条件を変えて熱間圧延を施して熱延板とした。さらに、熱延板に、焼鈍を施し、又は、焼鈍を施さずに冷間圧延を施し、次いで、焼鈍を施して製品板とした。
First, a description will be given of tests and results obtained to obtain knowledge that is the basis of the present invention.
The inventors of the present invention use SUS430 as a basic component, change the component composition, melt and cast several tens of levels of stainless steel, and perform hot rolling on the slab by changing the hot rolling conditions. A board was used. Further, the hot-rolled sheet was annealed or cold-rolled without being annealed, and then annealed to obtain a product sheet.

製品板より、JIS5号引張試験片を採取し、圧延方向に平行に、15%の引張歪を付与し、引張歪を付与した後の板面における凹凸高さを測定して、耐リジング性を評価した。凹凸高さが6μm未満の場合を、耐リジング性が良好であると定義した。試験結果より、下記知見を得るに至った。   Take a JIS No. 5 tensile test piece from the product plate, apply a 15% tensile strain parallel to the rolling direction, measure the unevenness height on the plate surface after applying the tensile strain, and improve the ridging resistance. evaluated. The case where the unevenness height was less than 6 μm was defined as good ridging resistance. From the test results, the following findings were obtained.

(w)Snを添加した鋼種の耐リジング性が、Sn無添加鋼種の耐リジング性に比べ、劇的に向上する場合がある。この耐リジング性向上効果は、熱間圧延温度域で、組織がα+γの2相組織となる場合に顕著である。   (w) The ridging resistance of a steel type to which Sn is added may be dramatically improved as compared to the ridging resistance of an Sn-free steel type. This ridging resistance improving effect is remarkable when the structure becomes a two-phase structure of α + γ in the hot rolling temperature range.

(x)Sn添加による耐リジング性向上効果を得るためには、熱延前の鋼片加熱条件が重要である。特に、熱延初期の温度が低すぎると耐リジング性は向上せず、一方、熱延初期の温度が高すぎると、熱延時に、鋼板表面に疵が発生する。それ故、熱延前の鋼片加熱温度には適正範囲が存在する。   (x) In order to obtain the effect of improving the ridging resistance due to the addition of Sn, the billet heating condition before hot rolling is important. In particular, when the temperature at the initial stage of hot rolling is too low, the ridging resistance is not improved. On the other hand, when the temperature at the initial stage of hot rolling is too high, wrinkles are generated on the surface of the steel sheet during hot rolling. Therefore, there is an appropriate range for the billet heating temperature before hot rolling.

(y)さらに、熱延初期の圧延条件も耐リジング性に大きく影響する。具体的には、熱延開始から1100℃に至るまでの総圧下率が高い時に、耐リジング性向上効果が顕著である。   (y) Furthermore, rolling conditions at the initial stage of hot rolling also greatly affect ridging resistance. Specifically, when the total rolling reduction from the start of hot rolling to 1100 ° C. is high, the effect of improving ridging resistance is remarkable.

(z)Sn添加量が多すぎると、熱間圧延時に耳割れが生じ、熱延板の製造自体が困難になる。   (z) When there is too much Sn addition amount, an ear crack will arise at the time of hot rolling, and manufacture of a hot-rolled sheet itself will become difficult.

SUS430を基本鋼とし、Sn量を変化させて、上記(3)式で定義するApを調整した鋼材を1200℃に加熱し、1100℃以上での総圧下率を15%以上として熱延板を製造し、耳割れの有無を調査した。   SUS430 is the basic steel, the amount of Sn is changed, and the steel material with the Ap defined by the above equation (3) adjusted is heated to 1200 ° C, and the total rolling reduction at 1100 ° C or higher is set to 15% or higher. Manufactured and examined for ear cracks.

また、熱延板に、約820℃で6時間以上の熱処理を施して再結晶をさせた後、冷間圧延を施し、さらに、再結晶焼鈍を施した。得られた鋼板から、JIS5号引張試験片を採取し、圧延方向に平行に15%の引張歪を付与し、引張歪を付与した後の鋼板表面において凹凸高さを測定した。   In addition, the hot-rolled sheet was subjected to a heat treatment at about 820 ° C. for 6 hours or longer to be recrystallized, then cold-rolled, and further subjected to recrystallization annealing. From the obtained steel sheet, a JIS No. 5 tensile test piece was collected, applied with a tensile strain of 15% parallel to the rolling direction, and the unevenness height was measured on the surface of the steel sheet after the tensile strain was applied.

図1に、Ap及びSn量と、耐リジング性及び熱延板における耳割れの有無との関係を示す。図中の符号は、下記の通りである。
×:熱間圧延時に耳割れが発生
△:熱間圧延時に耳割れは発生せず、耐リジング性は不良
○:熱間圧延時に耳割れは発生せず、耐リジング性は良好
FIG. 1 shows the relationship between the amount of Ap and Sn, ridging resistance, and presence or absence of ear cracks in the hot-rolled sheet. The symbols in the figure are as follows.
×: Ear cracks occur during hot rolling △: Ear cracks do not occur during hot rolling and ridging resistance is poor ○: Ear cracks do not occur during hot rolling, and ridging resistance is good

図1より、Sn添加量が高く、Ap(鋼中のγ相率)が高い場合には、熱延で耳割れが生じ易いことが解る。また、図1より、Sn量が上記(1)式を満たし、かつ、Ap(γ相率)が上記(2)式を満たすと、優れた耐リジング性が得られることが解る。   From FIG. 1, it is understood that when the Sn addition amount is high and Ap (γ phase ratio in steel) is high, ear cracks are likely to occur due to hot rolling. Further, it can be seen from FIG. 1 that excellent ridging resistance can be obtained when the Sn amount satisfies the above formula (1) and Ap (γ phase ratio) satisfies the above formula (2).

次に、本発明鋼板の成分組成を限定する理由について説明する。以下、成分組成に係る%は、質量%を意味する。   Next, the reason which limits the component composition of this invention steel plate is demonstrated. Hereinafter,% related to the component composition means mass%.

C:Cは、オーステナイト生成元素である。多量の添加は、γ相率の増加、さらには、熱間加工性の劣化につながるので、上限を0.30%とする。ただし、過度の低減は、精錬コストの増加につながるので、下限を0.001%とする。精錬コスト及び製造性を考慮した場合、0.01〜0.10%が好ましい。より好ましくは0.02〜0.07%である。   C: C is an austenite generating element. Addition of a large amount leads to an increase in γ phase ratio and further deterioration of hot workability, so the upper limit is made 0.30%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001%. When considering refining costs and manufacturability, 0.01 to 0.10% is preferable. More preferably, it is 0.02 to 0.07%.

Si:Siは、脱酸に有効であり、また、耐酸化性の向上に有効な元素である。添加効果を得るため、0.01%以上を添加するが、多量の添加は加工性の低下を招くので、上限を1.00%とする。加工性と製造性の両立を図る点で、0.10〜0.60%が好ましい。より好ましくは0.12〜0.45%である。   Si: Si is an element effective for deoxidation and effective for improving oxidation resistance. In order to obtain the effect of addition, 0.01% or more is added. However, addition of a large amount causes deterioration of workability, so the upper limit is made 1.00%. 0.10 to 0.60% is preferable in terms of achieving both workability and manufacturability. More preferably, it is 0.12-0.45%.

Mn:Mnは、硫化物を形成して耐食性を低下させる元素である。そのため、上限を2.00%とする。ただし、過度の低減は、精錬コストの増加につながるので、下限を0.01%とする。製造性を考慮すると、下限を0.08%、さらには0.12%とすることが好ましく、上限を1.60%、さらには0.60%とすることが好ましい。さらに好ましくは、0.15〜0.50%である。   Mn: Mn is an element that forms sulfides and reduces corrosion resistance. Therefore, the upper limit is made 2.00%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.01%. Considering manufacturability, the lower limit is preferably 0.08%, more preferably 0.12%, and the upper limit is preferably 1.60%, more preferably 0.60%. More preferably, it is 0.15-0.50%.

P:Pは、製造性や溶接性を劣化させる元素である。そのため少ない方がよく、上限を0.05%未満とする。過度の低減は、原料等のコスト増につながるので、下限を0.005%とする。好ましくは製造コストを考慮して0.01〜0.04%である。より好ましくは、0.01〜0.03%である。   P: P is an element that deteriorates manufacturability and weldability. Therefore, it is better to use less, and the upper limit is made less than 0.05%. Excessive reduction leads to an increase in the cost of raw materials and the like, so the lower limit is made 0.005%. Preferably, considering the manufacturing cost, it is 0.01 to 0.04%. More preferably, it is 0.01 to 0.03%.

S:Sは、熱間加工性や耐銹性を劣化させる元素である。そのため少ない方がよく、上限を0.02%とする。好ましくは、0.010%である。過度の低減は、精錬コスト等の製造コスト増につながるので、下限を0.0001%とする。好ましくは0.0002〜0.01%とする。より好ましくは0.0003〜0.005%、さらに好ましくは0.0005〜0.005%である。   S: S is an element that deteriorates hot workability and weather resistance. Therefore, it is better to have a smaller amount, and the upper limit is made 0.02%. Preferably, it is 0.010%. Excessive reduction leads to an increase in manufacturing costs such as refining costs, so the lower limit is made 0.0001%. Preferably, the content is 0.0002 to 0.01%. More preferably, it is 0.0003 to 0.005%, and still more preferably 0.0005 to 0.005%.

Cr:Crは、ステンレス鋼の主要元素であり、耐食性を向上させる元素である。添加効果を得るため、11.0%以上を添加する。ただし、多量の添加は、製造性の劣化を招くので、上限を22.0%である。好ましくは18.0%とする。SUS430レベルの耐食性を得ることを考慮すると、13.0〜16.0%が好ましい。より好ましくは13.5〜16.0%であり、さらに好ましくは14.5〜16.0%である。   Cr: Cr is a main element of stainless steel and is an element that improves corrosion resistance. In order to obtain the effect of addition, 11.0% or more is added. However, addition of a large amount causes deterioration of manufacturability, so the upper limit is 22.0%. Preferably it is 18.0%. Considering obtaining SUS430 level corrosion resistance, 13.0 to 16.0% is preferable. More preferably, it is 13.5 to 16.0%, and further preferably 14.5 to 16.0%.

N:Nは、Cと同様に、オーステナイト生成元素である。多量の添加はγ相率の増加、さらには、熱間加工性の劣化につながるので、上限を0.10%とする。ただし、過度の低減は、精錬コストの増加につながるので、下限を0.001%とする。精錬コスト及び製造性を考慮すると、0.01〜0.05%が好ましい。   N: N, like C, is an austenite-forming element. Addition of a large amount leads to an increase in the γ phase ratio and further deterioration of hot workability, so the upper limit is made 0.10%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001%. Considering the refining cost and manufacturability, 0.01 to 0.05% is preferable.

Sn:Snは、本発明鋼において耐リジング性の向上のために必須の元素である。
耐リジング性向上効果を得るため、0.060%以上を添加する。経済性及び製造安定性を考慮すると、0.100%超が好ましく、より好ましくは0.150%超である。
Sn: Sn is an essential element for improving ridging resistance in the steel of the present invention.
In order to obtain the effect of improving ridging resistance, 0.060% or more is added. Considering economic efficiency and production stability, it is preferably more than 0.100%, more preferably more than 0.150%.

Sn量が多いほど、耐リジング性は向上するが、多量の添加は、熱間加工性の劣化を招く。本発明者らは、前述したように、耐リジング性に関してSnの添加量とAp(鋼中のγ相率)との間に強い関係があることを見出した(図1)。図1から、Sn添加量が高く、Ap(鋼中のγ相率)が高い場合には、熱延で耳割れが生じ易いことが解る。また、図1より、Sn量が上記((式1)を満たし、かつ、Ap(γ相率)が上記(式2)を満たすと、優れた耐リジング性が得られることが解る。これらの知見から、Snの上限を、図1に示す試験結果から得られる下記(1’)式で規定する。
Sn≦0.63−0.0082Ap ・・・(1’)
As the amount of Sn is increased, the ridging resistance is improved. However, addition of a large amount causes deterioration of hot workability. As described above, the present inventors have found that there is a strong relationship between the addition amount of Sn and Ap (γ phase ratio in steel) with respect to ridging resistance (FIG. 1). From FIG. 1, it can be seen that when the amount of Sn added is high and Ap (γ phase ratio in steel) is high, ear cracks are likely to occur due to hot rolling. 1 shows that excellent ridging resistance can be obtained when the Sn amount satisfies the above (Equation 1) and Ap (γ phase ratio) satisfies the above (Equation 2). From the knowledge, the upper limit of Sn is defined by the following equation (1 ′) obtained from the test results shown in FIG.
Sn ≦ 0.63-0.0082 Ap (1 ′)

即ち、Snの上限は、オーステナイトポテンシャル:Ap(γ相率)により変化する。Sn>0.63−0.0082Apであると、鋼の熱間加工性が劣化し、熱延時、耳割れが顕著に発生する。   That is, the upper limit of Sn changes with austenite potential: Ap (γ phase ratio). When Sn> 0.63-0.0082 Ap, the hot workability of the steel is deteriorated, and ear cracks are remarkably generated during hot rolling.

Al、Nb、Ti:Al、Nb、及び、Tiは、加工性の向上に有効な元素である。このうちAlはSiと同様に脱酸に有効で、耐銹性を高める元素でもある。必要に応じて、1種又は2種以上を添加するが、添加効果を得るため、Alは0.0001%以上、好ましくは0.003%以上を添加する。   Al, Nb, Ti: Al, Nb, and Ti are effective elements for improving workability. Among them, Al is an element effective for deoxidation like Si, and is an element that enhances weather resistance. As needed, 1 type (s) or 2 or more types are added, but in order to obtain the addition effect, Al is added in an amount of 0.0001% or more, preferably 0.003% or more.

多量の添加は、加工性向上効果の飽和、また、鋼材の硬質化を招くので、Alは1.0%以下、好ましくは0.5%以下、さらに好ましくは0.20%以下とし、Nbは0.30%以下、好ましくは0.10%以下とし、Tiは0.30%以下、好ましくは0.10%以下とする。一方、Nb、Tiは、添加効果を得るために好ましくは、Nbは0.03%以上を添加するとよく、Tiは0.03%以上を添加すると良い。好ましくはそれぞれ0.04%以上とすると良い。好適範囲は、Al:0.001〜0.5%、より好ましくは0.005〜0.20%、さらに好ましくは0.010〜0.15%、Nb:0.05〜0.08%、Ti:0.05〜0.08%である。   Addition of a large amount leads to saturation of the workability improvement effect and hardening of the steel material, so Al is 1.0% or less, preferably 0.5% or less, more preferably 0.20% or less, and Nb is It is 0.30% or less, preferably 0.10% or less, and Ti is 0.30% or less, preferably 0.10% or less. On the other hand, Nb and Ti are preferably added in order to obtain the effect of addition, and 0.03% or more of Nb may be added, and 0.03% or more of Ti may be added. Preferably, it may be 0.04% or more respectively. The preferred range is Al: 0.001 to 0.5%, more preferably 0.005 to 0.20%, still more preferably 0.010 to 0.15%, Nb: 0.05 to 0.08%, Ti: 0.05 to 0.08%.

Ni、Cu、Mo、V、Zr、Co:Ni、Cu、Mo、V、ZrおよびCoは、耐食性の向上に有効な元素である。多量の添加は、合金コストの上昇や加工性を劣化させるので、上限は、Ni、Cu、Mo及びVのいずれも、1.0%、好ましくは0.30%とする。ZrおよびCoは、上限を0.5%とする。1種又は2種以上を添加するが、必要に応じて、Ni、Cu、Mo及びVのいずれも、0.01%以上を添加すると良い。ZrおよびCoも同様に、0.01%以上添加するとよい。耐食性向上効果を安定的に得るためには、Ni、Cu、Mo、V、ZrおよびCoのいずれも、0.05%超〜0.25%が好ましく、より好ましくは0.1〜0.25%である。   Ni, Cu, Mo, V, Zr, Co: Ni, Cu, Mo, V, Zr, and Co are effective elements for improving the corrosion resistance. Addition of a large amount degrades the alloy cost and deteriorates workability, so the upper limit is 1.0%, preferably 0.30% for all of Ni, Cu, Mo and V. Zr and Co have an upper limit of 0.5%. Although 1 type, or 2 or more types are added, it is good to add 0.01% or more of all of Ni, Cu, Mo, and V as needed. Similarly, Zr and Co are preferably added in an amount of 0.01% or more. In order to stably obtain the corrosion resistance improving effect, Ni, Cu, Mo, V, Zr and Co are all preferably more than 0.05% to 0.25%, more preferably 0.1 to 0.25. %.

B、Mg、Ca:B、Mg、及び、Caは、凝固組織を微細化し、耐リジング性を向上させる元素である。必要に応じて、1種又は2種以上を添加するが、添加効果を得るため、Bは0.0003%以上を添加し、Mgは0.0001%以上を添加し、Caは0.0003%以上を添加するとよい。添加効果の観点から、それぞれの下限を、好ましくは0.0005%、より好ましくは0.0007%、さらに好ましくは0.0008%とするとよい。   B, Mg, Ca: B, Mg, and Ca are elements that refine a solidified structure and improve ridging resistance. If necessary, 1 type or 2 types or more are added, but in order to obtain the addition effect, B is added at 0.0003% or more, Mg is added at 0.0001% or more, and Ca is 0.0003%. The above may be added. From the viewpoint of the effect of addition, the lower limit of each is preferably 0.0005%, more preferably 0.0007%, and still more preferably 0.0008%.

ただし、多量の添加は、製造性及び耐食性の劣化を招くので、上限を、Bは0.0050%、好ましくは0.0025%とし、Mgは0.0050%、好ましくは0.0030%とし、Caは0.0050%、好ましくは0.0030%とする。好適範囲は、B:0.0007〜0.0020%、Mg:0.0005〜0.0020%、Ca:0.0008〜0.0020%である。   However, since addition of a large amount leads to deterioration of manufacturability and corrosion resistance, the upper limit is set to B is 0.0050%, preferably 0.0025%, Mg is 0.0050%, preferably 0.0030%, Ca is 0.0050%, preferably 0.0030%. Preferred ranges are B: 0.0007 to 0.0020%, Mg: 0.0005 to 0.0020%, Ca: 0.0008 to 0.0020%.

その他、Y、Hf、REM:Y、Hf、及びREMは、熱間加工性や鋼の清浄度を高め、耐銹性や熱間加工性を著しく向上させる元素である。過度の添加は、合金コストの上昇と製造性の低下に繋がるので、いずれも、上限を0.1%とする。好ましくは、添加効果、経済性、及び、製造性を考慮して、1種又は2種以上の合計で0.001〜0.05%とする。添加する場合、必要に応じて、いずれも0.001%以上添加すると良い。   In addition, Y, Hf, REM: Y, Hf, and REM are elements that increase hot workability and steel cleanliness, and significantly improve weather resistance and hot workability. Excessive addition leads to an increase in alloy costs and a decrease in manufacturability, so in both cases the upper limit is made 0.1%. Preferably, considering the effect of addition, economy, and manufacturability, the total of one or more types is 0.001 to 0.05%. When adding, it is good to add 0.001% or more of all as needed.

本発明鋼板の金属組織はフェライト単相である。オーステナイト相やマルテンサイト相等の他の相を含有しない。炭化物や窒化物等の析出物が混在しても、耐リジング性や熱間加工性には大きく影響しないので、これらの析出物は、本発明鋼板の特性を損なわない範囲で存在していてもよい。   The metal structure of the steel sheet of the present invention is a ferrite single phase. Does not contain other phases such as austenite phase and martensite phase. Even if precipitates such as carbides and nitrides are mixed, ridging resistance and hot workability are not greatly affected, so these precipitates may exist within a range that does not impair the properties of the steel sheet of the present invention. Good.

Sn量の上限を規定する式“0.63−0.0082Ap”におけるApは、上記(2)式:10≦Ap≦70を満たす必要がある(図1、参照)。   Ap in the expression “0.63-0.0082Ap” that defines the upper limit of the Sn amount must satisfy the above expression (2): 10 ≦ Ap ≦ 70 (see FIG. 1).

Apが10未満であると、Snを添加しても、耐リジング性は向上しない。Apが大きいほど、耐リジング性は良好となるが、70を超えると、熱間加工性が著しく劣化するので、70を上限とする。安定的に本発明鋼板を製造することを考慮すると、Apは、20〜50が好ましい。   When Ap is less than 10, the ridging resistance is not improved even if Sn is added. The larger Ap, the better the ridging resistance, but when it exceeds 70, the hot workability deteriorates remarkably, so 70 is the upper limit. In consideration of stably producing the steel sheet of the present invention, Ap is preferably 20 to 50.

次に、本発明鋼板の製造方法について説明する。
本発明鋼板の製造方法は、
(i)所要の成分組成の鋼を1150〜1280℃に加熱し、該鋼に、1100℃以上の熱間圧延における総圧延率が15%以上となる熱間圧延を施して、熱延板とし、
(ii)上記熱延板を巻き取った後、該熱延板に、焼鈍を施し、又は、焼鈍を施さずに、冷間圧延を施し、次いで、焼鈍する
ことを特徴とする。
Next, the manufacturing method of this invention steel plate is demonstrated.
The method for producing the steel sheet of the present invention comprises:
(I) A steel having a required composition is heated to 1150 to 1280 ° C., and the steel is subjected to hot rolling at a total rolling rate of 15% or more in hot rolling at 1100 ° C. or higher to obtain a hot rolled sheet. ,
(Ii) After the hot-rolled sheet is wound, the hot-rolled sheet is annealed or cold-rolled without being annealed, and then annealed.

ここで、本発明鋼板の製造方法において、製造条件を限定する理由を説明する。
フェライト系ステンレス鋼の鋳片を熱間圧延する際、熱間圧延前に、鋳片を1150〜1280℃に加熱する。加熱温度が1150℃未満であると、1100℃以上の熱間圧延において、15%以上の総圧延率を確保することが難しくなり、また、熱間圧延中に、熱延板に耳割れが発生する。一方、加熱温度が1280℃を超えると、鋳片表層の結晶粒が成長し、熱間圧延時、熱延板に疵が発生することがある。
Here, the reason for limiting the manufacturing conditions in the manufacturing method of the steel sheet of the present invention will be described.
When hot rolling a slab of ferritic stainless steel, the slab is heated to 1150-1280 ° C. before hot rolling. When the heating temperature is less than 1150 ° C, it becomes difficult to secure a total rolling ratio of 15% or more in hot rolling at 1100 ° C or higher, and ear cracks occur in the hot rolled sheet during hot rolling. To do. On the other hand, when the heating temperature exceeds 1280 ° C., crystal grains of the slab surface layer grow, and wrinkles may occur in the hot-rolled sheet during hot rolling.

本発明鋼板の製造方法においては、1100℃以上の熱間圧延における総圧延率を15%以上とする。このことにより、耐リジング性を顕著に改善することができ、この点が、本発明鋼板の製造方法における最大の特徴である。   In the manufacturing method of the steel sheet of the present invention, the total rolling rate in hot rolling at 1100 ° C. or higher is set to 15% or higher. Thus, ridging resistance can be remarkably improved, and this is the greatest feature in the method for producing the steel sheet of the present invention.

1100℃以上の熱間圧延において、総圧延率を15%以上とすることにより、製品板の耐リジング性を顕著に改善することができる理由は明確でないが、これまでの試験結果に基づけば、次のように考えられる。   In hot rolling at 1100 ° C. or higher, the reason why the ridging resistance of the product plate can be remarkably improved by making the total rolling rate 15% or more is not clear, but based on the test results so far, It can be considered as follows.

SUS430系において、1100℃はγ相率が最大となる温度である。1100℃より高温の領域で熱延板に歪を与えた後、熱延板の温度が1100℃まで低下する過程において、歪がγ相の生成核として作用し、γ相が微細に生成する。その際、γ/α粒界に濃化しているSnが、粒界からのγ相の生成を遅延させ、その結果、α粒内でのγ相の生成が促進される。   In the SUS430 system, 1100 ° C. is the temperature at which the γ phase ratio is maximum. After straining the hot-rolled sheet in a region higher than 1100 ° C., in the process where the temperature of the hot-rolled sheet is lowered to 1100 ° C., the strain acts as a nucleation γ-phase, and the γ-phase is finely generated. At that time, Sn concentrated in the γ / α grain boundary delays the generation of the γ phase from the grain boundary, and as a result, the generation of the γ phase in the α grain is promoted.

このようにして微細に生成したγ相の存在により、その後の熱間圧延で、リジングの生成原因である粗大フェライト相が微細に分断される。従来、耐リジング性の改善に効果があると言われているα相の再結晶は、Sn添加によって抑制されている。   Due to the presence of the finely generated γ phase, the coarse ferrite phase that causes ridging is finely divided in the subsequent hot rolling. Conventionally, recrystallization of the α phase, which is said to be effective in improving ridging resistance, is suppressed by Sn addition.

熱間圧延後は、通常通り、熱延板を巻き取る。前述したように、熱間圧延の初期の段階(1100℃以上での熱延)において、耐リジング性に影響を及ぼす粗大フェライト粒を分断しているので、仕上げ圧延以降の工程の影響は小さい。したがって、巻取温度は、特に規定する必要がない。   After hot rolling, the hot-rolled sheet is wound up as usual. As described above, in the initial stage of hot rolling (hot rolling at 1100 ° C. or higher), the coarse ferrite grains that affect the ridging resistance are divided, so the influence of the steps after finish rolling is small. Therefore, it is not necessary to specify the winding temperature.

熱延板に、焼鈍を施してもよいし、施さなくてもよい。熱延板を焼鈍する場合、箱焼鈍でも、連続ラインによる焼鈍でもよい。いずれの焼鈍を施しても、耐リジング性向上効果は発現する。続いて、熱延板を冷間圧延し、焼鈍を施す。冷間圧延は、2回実施してもよいし、3回実施してもよい。最終焼鈍の後に、酸洗し、調質圧延を行ってもよい。   The hot-rolled sheet may or may not be annealed. When annealing a hot-rolled sheet, it may be box annealing or annealing by a continuous line. Regardless of which annealing is performed, the effect of improving ridging resistance is exhibited. Subsequently, the hot-rolled sheet is cold-rolled and annealed. Cold rolling may be performed twice or three times. After the final annealing, pickling and temper rolling may be performed.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表1に成分組成を示すフェライト系ステンレス鋼を溶製した。鋼塊より、板厚70mmの鋼片を採取し、種々の条件にて熱間圧延に供し、板厚4.5mmまで圧延した。熱延板において耳割れの有無を調査した。また、熱延板を酸洗した後、表面疵の有無を目視にて調査した。
Example 1
Ferritic stainless steels having component compositions shown in Table 1 were melted. A steel piece having a thickness of 70 mm was collected from the steel ingot, subjected to hot rolling under various conditions, and rolled to a thickness of 4.5 mm. The hot-rolled sheet was examined for the presence of ear cracks. Moreover, after pickling the hot-rolled sheet, the presence or absence of surface defects was visually examined.

得られた熱延板を、焼鈍し、又は、焼鈍しないで冷延に供し、次いで、焼鈍し、板厚1mmの製品板を製造した。最終焼鈍温度を調整し、いずれの製品板も、再結晶組織となるようにした。得られた製品板より、JIS5号引張試験片を採取し、圧延方向に15%引張歪を与えた。   The obtained hot-rolled sheet was annealed or subjected to cold rolling without annealing, and then annealed to produce a product plate having a thickness of 1 mm. The final annealing temperature was adjusted so that each product plate had a recrystallized structure. From the obtained product plate, a JIS No. 5 tensile test piece was collected and given a 15% tensile strain in the rolling direction.

引張り後、粗度計を圧延方向と垂直方向に走査し、凹凸の高さを測定した。リジングの測定方法は下記である。サンプルは圧延方向に15%引張をした引張試験片である。引張試験片平行部中央について、圧延方向と垂直方向に接触式粗度計で走査し、凹凸プロファイルを得る。その際に測定長さを10mm、測定速度を0.3mm/s、カットオフを0.8mmに設定する。凹凸プロファイルより凸部と凸部の間に生じる凹部の深さ方向長さをリジング高さと定義し、それを測定した。リジングランクは、リジングの高さで区分し、AA:3μm未満、A:6μm未満、B:6μm以上20μm未満、C:20μm以上とした。通常の製法では、リジングランクはB〜Cである。   After pulling, the roughness meter was scanned in the direction perpendicular to the rolling direction, and the height of the irregularities was measured. The method for measuring ridging is as follows. The sample is a tensile specimen with 15% tension in the rolling direction. The center of the parallel part of the tensile test piece is scanned with a contact-type roughness meter in the direction perpendicular to the rolling direction to obtain an uneven profile. At that time, the measurement length is set to 10 mm, the measurement speed is set to 0.3 mm / s, and the cutoff is set to 0.8 mm. From the uneven profile, the depth direction length of the concave portion generated between the convex portion and the convex portion was defined as the ridging height and measured. The lysine granule was classified according to the height of the ridging, and AA was less than 3 μm, A was less than 6 μm, B was 6 μm or more and less than 20 μm, and C was 20 μm or more. In a normal manufacturing method, the lysine granules are B to C.

熱延条件、耳割れの有無、熱延疵の有無、及び、リジングランクを表2−1及び表2−2(表2−1、表2−2を合わせて表2と呼ぶことがある。)に示す。発明例は、いずれも、耳割れ及び熱延疵の発生がなく、リジングランクは、AA又はAである。   Table 2-1 and Table 2-2 (Table 2 and Table 2-2 may be collectively referred to as Table 2) may be referred to as hot rolling conditions, presence or absence of ear cracks, presence or absence of hot rolling and lysine granke. ). In all of the inventive examples, there is no occurrence of ear cracking or hot rolling, and the lysine crank is AA or A.

比較例3、29、及び、38は、本発明の成分組成及びApを有するが、本発明の製造条件から外れる製造条件で製造したフェライト系ステンレス鋼板に係る試験例である。熱間圧延前の加熱温度が、本発明の範囲の上限を外れている。これらの鋼板において、熱間加工性は良好であるが、熱延板で表面疵が発生し、耐リジング性がランクBであり、目標の特性が得られていない。   Comparative Examples 3, 29, and 38 are test examples relating to ferritic stainless steel sheets that have the component composition and Ap of the present invention but were manufactured under manufacturing conditions that deviate from the manufacturing conditions of the present invention. The heating temperature before hot rolling is out of the upper limit of the range of the present invention. In these steel sheets, hot workability is good, but surface flaws occur in the hot-rolled sheet, ridging resistance is rank B, and the target characteristics are not obtained.

比較例1、4、7、8、11、14、15、16、18、20、21、23、24、27、31、34、41、44、62、63、65、67、68、71、74、77及び78は、本発明の成分組成及びApを有するが、本発明の製造条件から外れる製造条件で製造したフェライト系ステンレス鋼板に係る試験例である。これらの鋼板において、熱間加工性は良好であるが、目標の耐リジング性が得られていない。   Comparative Examples 1, 4, 7, 8, 11, 14, 15, 16, 18, 20, 21, 23, 24, 27, 31, 34, 41, 44, 62, 63, 65, 67, 68, 71, 74, 77 and 78 are test examples relating to a ferritic stainless steel plate which has the component composition and Ap of the present invention but is manufactured under manufacturing conditions deviating from the manufacturing conditions of the present invention. In these steel sheets, hot workability is good, but the target ridging resistance is not obtained.

比較例7、15、21、34、44、62、65、68、71、74及び78は、熱間圧延前の加熱温度が本発明の範囲の下限を外れ、かつ、1100℃以上の熱間圧延における総圧延率が15%未満であり、耐リジング性のランクがC(比較例15、78はランクB)である。   In Comparative Examples 7, 15, 21, 34, 44, 62, 65, 68, 71, 74 and 78, the heating temperature before hot rolling is outside the lower limit of the range of the present invention, and the hot temperature is 1100 ° C. or higher. The total rolling reduction in rolling is less than 15%, and the ridging resistance rank is C (comparative examples 15 and 78 are rank B).

比較例1、4、8、11、14、16、18、20、23、24、27、31、41、63、67及び77は、熱間圧延前の加熱温度が本発明の範囲内であるが、1100℃以上の熱間圧延における総圧延率が15%未満であり、耐リジング性のランクがC(比較例77はランクB)である。比較例39、46〜54は、成分組成が本発明の成分組成から外れるので、製造条件が本発明の範囲内であっても、目標の耐リジング性が得られていない。   In Comparative Examples 1, 4, 8, 11, 14, 16, 18, 20, 23, 24, 27, 31, 41, 63, 67 and 77, the heating temperature before hot rolling is within the scope of the present invention. However, the total rolling reduction in hot rolling at 1100 ° C. or higher is less than 15%, and the ridging resistance rank is C (comparative example 77 is rank B). In Comparative Examples 39 and 46 to 54, since the component composition deviates from the component composition of the present invention, the target ridging resistance is not obtained even if the production conditions are within the scope of the present invention.

比較例55〜60は、Apが本発明の範囲外であるので、製造条件が本発明の範囲内であっても、目標の耐リジング性が得られていない。   In Comparative Examples 55 to 60, since Ap is outside the scope of the present invention, the target ridging resistance is not obtained even if the production conditions are within the scope of the present invention.

前述したように、本発明によれば、耐リジング性に優れたフェライト系ステンレス鋼板を提供することができる。その結果、本発明は、従来必要であった研磨工程等を簡略化でき、地球環境保全に貢献し得るので、産業上の利用可能性が高いものである。   As described above, according to the present invention, a ferritic stainless steel sheet having excellent ridging resistance can be provided. As a result, the present invention can simplify the polishing process and the like that have been necessary in the past and can contribute to global environmental conservation, and therefore has high industrial applicability.

Figure 2013053366
Figure 2013053366

Figure 2013053366
Figure 2013053366

Figure 2013053366
Figure 2013053366

Claims (6)

質量%で、
C :0.001〜0.30%、
Si:0.01〜1.00%、
Mn:0.01〜2.00%、
P :0.050%以下、
S :0.020%以下、
Cr:11.0〜22.0%、
N :0.001〜0.10%
を含有し、下記(式3)で定義するApが下記(式2)を満たし、かつ、Sn含有量が下記(式1)を満たし、残部がFe及び不可避的不純物からなり、金属組織がフェライト単相であることを特徴とする耐リジング性に優れたフェライト系ステンレス鋼板。
0.060≦Sn≦0.634−0.0082Ap ・・・(式1)
10≦Ap≦70 ・・・(式2)
Ap=420C+470N+23Ni+9Cu+7Mn−11.5(Cr+Si)
−12Mo−52Al−47Nb−49Ti+189 ・・・(式3)
ここで、Sn、C、N、Ni、Cu、Mn、Cr、Si、Mo、Al、Nb、及び、Tiは、各元素の含有量である。
% By mass
C: 0.001 to 0.30%,
Si: 0.01 to 1.00%,
Mn: 0.01 to 2.00%
P: 0.050% or less,
S: 0.020% or less,
Cr: 11.0-22.0%,
N: 0.001 to 0.10%
The Ap defined by the following (Formula 3) satisfies the following (Formula 2), the Sn content satisfies the following (Formula 1), the balance is composed of Fe and inevitable impurities, and the metal structure is ferrite. A ferritic stainless steel sheet with excellent ridging resistance, characterized by being a single phase.
0.060 ≦ Sn ≦ 0.634−0.0082 Ap (Formula 1)
10 ≦ Ap ≦ 70 (Formula 2)
Ap = 420C + 470N + 23Ni + 9Cu + 7Mn-11.5 (Cr + Si)
-12Mo-52Al-47Nb-49Ti + 189 (Formula 3)
Here, Sn, C, N, Ni, Cu, Mn, Cr, Si, Mo, Al, Nb, and Ti are the contents of each element.
前記フェライト系ステンレス鋼板のリジング高さが6μm未満であることを特徴とする請求項1に記載の耐リジング性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel plate having excellent ridging resistance according to claim 1, wherein the ferritic stainless steel plate has a ridging height of less than 6 µm. さらに、質量%で、
Al:0.0001〜1.0%、
Nb:0.30%以下、
Ti:0.30%以下
のうち1種又は2種以上を含有することを特徴とする請求項1又は2に記載の耐リジング性に優れたフェライト系ステンレス鋼板。
Furthermore, in mass%,
Al: 0.0001 to 1.0%,
Nb: 0.30% or less,
The ferritic stainless steel sheet having excellent ridging resistance according to claim 1 or 2, characterized by containing one or more of Ti: 0.30% or less.
さらに、質量%で、
Ni:1.0%以下、
Cu:1.0%以下、
Mo:1.0%以下
V:1.0%以下
Co:0.5%以下
Zr:0.5%以下
のうち1種又は2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の耐リジング性に優れたフェライト系ステンレス鋼板。
Furthermore, in mass%,
Ni: 1.0% or less,
Cu: 1.0% or less,
Mo: 1.0% or less V: 1.0% or less Co: 0.5% or less Zr: One or more of Zr: 0.5% or less are contained. The ferritic stainless steel sheet excellent in ridging resistance according to any one of the items.
さらに、質量%で、
B :0.005%以下、
Mg:0.005%以下、
Ca:0.005%以下
Y:0.1%以下
Hf:0.1%以下
REM:0.1%以下のうち1種又は2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の耐リジング性に優れたフェライト系ステンレス鋼板。
Furthermore, in mass%,
B: 0.005% or less,
Mg: 0.005% or less,
Ca: 0.005% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less, containing 1 type or 2 types or more of Claims 1-4 characterized by the above-mentioned The ferritic stainless steel sheet excellent in ridging resistance according to any one of the items.
請求項1〜5のいずれか1項に記載の耐リジング性に優れたフェライト系ステンレス鋼板の製造方法において、
(i)請求項1〜5のいずれか1項に記載の成分組成の鋼を1150〜1280℃に加熱し、該鋼に、1100℃以上の熱間圧延における総圧延率が15%以上となる熱間圧延を施して、熱延板とし、
(ii)上記熱延板を巻き取った後、該熱延板に、焼鈍を施し、又は、焼鈍を施さずに、冷間圧延を施し、次いで、焼鈍する
ことを特徴とする耐リジング性に優れたフェライト系ステンレス鋼板の製造方法。
In the manufacturing method of the ferritic stainless steel plate excellent in ridging resistance according to any one of claims 1 to 5,
(I) The steel having the component composition according to any one of claims 1 to 5 is heated to 1150 to 1280 ° C, and the total rolling ratio in hot rolling at 1100 ° C or higher is 15% or higher. Hot-rolled into hot-rolled sheet,
(Ii) After winding up the hot-rolled sheet, the hot-rolled sheet is annealed or cold-rolled without being annealed, and then annealed. An excellent ferritic stainless steel sheet manufacturing method.
JP2012135082A 2011-06-16 2012-06-14 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same Active JP5921352B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2012135082A JP5921352B2 (en) 2011-08-05 2012-06-14 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
KR1020137032607A KR101600156B1 (en) 2011-06-16 2012-06-18 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
KR1020157017975A KR101688353B1 (en) 2011-06-16 2012-06-18 Ferritic stainless-steel sheet having excellent hot workability and rust resistance and process for producing same
PCT/JP2012/065507 WO2012173272A1 (en) 2011-06-16 2012-06-18 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
TW101121773A TWI480391B (en) 2011-06-16 2012-06-18 Fat iron type stainless steel plate with excellent resistance to bulking and its manufacturing method
US14/126,083 US9771640B2 (en) 2011-06-16 2012-06-18 Ferritic stainless steel plate which has excellent ridging resistance and method of production of same
BR112013032272A BR112013032272A2 (en) 2011-06-16 2012-06-18 ferritic stainless steel plate that has excellent wrinkle resistance and production method
CN201510360013.4A CN104975237B (en) 2011-06-16 2012-06-18 The excellent ferrite series stainless steel plate of wrinkle resistance and its manufacture method
CN201280029571.7A CN103608479B (en) 2011-06-16 2012-06-18 Ferrite series stainless steel plate that wrinkle resistance is excellent and manufacture method thereof
ES12800133T ES2788506T3 (en) 2011-06-16 2012-06-18 Ferritic stainless steel plate that has excellent scoring resistance and production method thereof
EP12800133.6A EP2722411B1 (en) 2011-06-16 2012-06-18 Ferritic stainless steel plate which has excellent ridging resistance and method of production of same
US15/683,503 US10358707B2 (en) 2011-06-16 2017-08-22 Ferritic stainless steel plate which has excellent ridging resistance and method of production of same
US16/384,200 US10513763B2 (en) 2011-06-16 2019-04-15 Ferritic stainless steel plate which has excellent ridging resistance and method of production of same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011172168 2011-08-05
JP2011172168 2011-08-05
JP2012135082A JP5921352B2 (en) 2011-08-05 2012-06-14 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013053366A true JP2013053366A (en) 2013-03-21
JP5921352B2 JP5921352B2 (en) 2016-05-24

Family

ID=48130619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135082A Active JP5921352B2 (en) 2011-06-16 2012-06-14 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5921352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510013A (en) * 2013-09-29 2014-01-15 宝钢不锈钢有限公司 Tin-containing ferritic stainless steel with good wrinkle resistance and manufacturing method thereof
EP3594372A4 (en) * 2017-04-25 2020-01-22 JFE Steel Corporation Material for cold-rolled stainless steel sheet, and production method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941103A (en) * 1995-07-28 1997-02-10 Nippon Steel Corp Ferritic stainless steel sheet excellent in roping resistance
JP2000169943A (en) * 1998-12-04 2000-06-20 Nippon Steel Corp Ferritic stainless steel excellent in high temperature strength and its production
JP2001288543A (en) * 2000-04-04 2001-10-19 Nippon Steel Corp Ferritic stainless steel excellent in surface property and corrosion resistance, and its production method
JP2001294991A (en) * 2000-04-13 2001-10-26 Nippon Steel Corp Ferritic stainless steel sheet excellent in formability and ridging characteristic, and its manufacturing method
JP2001355048A (en) * 2000-04-13 2001-12-25 Nippon Steel Corp Ferritic free-cutting stainless steel
JP2005220429A (en) * 2004-02-09 2005-08-18 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having excellent corrosion resistance and workability
JP2010031315A (en) * 2008-07-28 2010-02-12 Nippon Steel & Sumikin Stainless Steel Corp Low alloy type ferritic stainless steel for automotive exhaust system member having excellent corrosion resistance after heating
JP2010159487A (en) * 2008-12-09 2010-07-22 Nippon Steel & Sumikin Stainless Steel Corp High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941103A (en) * 1995-07-28 1997-02-10 Nippon Steel Corp Ferritic stainless steel sheet excellent in roping resistance
JP2000169943A (en) * 1998-12-04 2000-06-20 Nippon Steel Corp Ferritic stainless steel excellent in high temperature strength and its production
JP2001288543A (en) * 2000-04-04 2001-10-19 Nippon Steel Corp Ferritic stainless steel excellent in surface property and corrosion resistance, and its production method
JP2001294991A (en) * 2000-04-13 2001-10-26 Nippon Steel Corp Ferritic stainless steel sheet excellent in formability and ridging characteristic, and its manufacturing method
JP2001355048A (en) * 2000-04-13 2001-12-25 Nippon Steel Corp Ferritic free-cutting stainless steel
JP2005220429A (en) * 2004-02-09 2005-08-18 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having excellent corrosion resistance and workability
JP2010031315A (en) * 2008-07-28 2010-02-12 Nippon Steel & Sumikin Stainless Steel Corp Low alloy type ferritic stainless steel for automotive exhaust system member having excellent corrosion resistance after heating
JP2010159487A (en) * 2008-12-09 2010-07-22 Nippon Steel & Sumikin Stainless Steel Corp High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510013A (en) * 2013-09-29 2014-01-15 宝钢不锈钢有限公司 Tin-containing ferritic stainless steel with good wrinkle resistance and manufacturing method thereof
EP3594372A4 (en) * 2017-04-25 2020-01-22 JFE Steel Corporation Material for cold-rolled stainless steel sheet, and production method therefor

Also Published As

Publication number Publication date
JP5921352B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
KR101600156B1 (en) Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
JP5869922B2 (en) Ferrite-austenitic duplex stainless steel sheet with small in-plane anisotropy and method for producing the same
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP2016191150A (en) Stainless steel sheet excellent in toughness and production method thereof
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP4428550B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same
JP2009052115A (en) Ferritic-austenitic stainless steel sheet having excellent formability, and method for producing the same
EP3556888A1 (en) Ferritic stainless steel with excellent ridging property and surface quality and manufacturing method therefor
JP6140856B1 (en) Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same
JP6066023B1 (en) Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method
JP5921352B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
JP6134553B2 (en) Duplex stainless steel with good acid resistance
JP2006299374A (en) Ferritic stainless steel sheet superior in corrosion resistance and anti-ridging property, and manufacturing method therefor
KR20120063793A (en) Ferrite stainless-steel with good workability
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
KR101316907B1 (en) Ferritic stainless steel and method for manufacturing the same
JP4740021B2 (en) Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same
KR20140083166A (en) Stainless steel based on ferrite and method for manufacturing the same
JP2019112696A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP2004217996A (en) Ferritic stainless steel sheet superior in formability, and manufacturing method therefor
JP4870844B1 (en) Precipitation hardening type martensitic stainless steel
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5921352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250