JP2013052377A - Exhaust gas treatment apparatus and exhaust gas treatment method - Google Patents

Exhaust gas treatment apparatus and exhaust gas treatment method Download PDF

Info

Publication number
JP2013052377A
JP2013052377A JP2011194174A JP2011194174A JP2013052377A JP 2013052377 A JP2013052377 A JP 2013052377A JP 2011194174 A JP2011194174 A JP 2011194174A JP 2011194174 A JP2011194174 A JP 2011194174A JP 2013052377 A JP2013052377 A JP 2013052377A
Authority
JP
Japan
Prior art keywords
carbonaceous adsorbent
supply
distribution hopper
level
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194174A
Other languages
Japanese (ja)
Other versions
JP5558439B2 (en
Inventor
Kohei Goto
浩平 後藤
Hiroaki Tanaka
宏明 田中
Keita Morimoto
啓太 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2011194174A priority Critical patent/JP5558439B2/en
Publication of JP2013052377A publication Critical patent/JP2013052377A/en
Application granted granted Critical
Publication of JP5558439B2 publication Critical patent/JP5558439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas treatment apparatus and an exhaust gas treatment method that can stably perform the level control of a carbonaceous absorbent by reducing the level fluctuation of the carbonaceous absorbent filled in a distribution hopper in the exhaust gas treatment apparatus with the distribution hopper provided at each of a plurality of adsorption columns.SOLUTION: The exhaust gas treatment apparatus 100 includes the plurality of adsorption columns 1 filled with the carbonaceous adsorbent, and the distribution hoppers 5 connected to the respective upper parts of the plurality of adsorption columns 1 to distribute and supply the carbonaceous adsorbent to the adsorption columns 1. The levels of the carbonaceous adsorbent in the distribution hoppers 5 are detected by level meters 6, and based on the difference between the detected levels and a target level, a supply control means 9 controls the supply of the carbonaceous adsorbent to the distribution hoppers 5 sequentially for each distribution hopper 5. The excess or shortage of the carbonaceous adsorbent in the distribution hoppers 5 is thereby prevented to stabilize the level control of the carbonaceous adsorbent.

Description

この発明は、排ガス処理装置及び排ガス処理方法に関する。   The present invention relates to an exhaust gas treatment device and an exhaust gas treatment method.

従来から、排ガスを活性炭等の炭素質吸着材が充填された吸着塔に導入して、排ガスからNOxやSOを除去する排ガス処理装置が知られている。吸着塔においては、炭素質吸着材は上方から充填され、吸着塔内にて移動層を形成しながら下方へと移動し、吸着塔の下端から排出され、一方、排ガスは炭素質吸着材の移動層を横切るように通過し、炭素質吸着材によって脱硫脱硝処理される。 2. Description of the Related Art Conventionally, exhaust gas treatment apparatuses that introduce exhaust gas into an adsorption tower filled with a carbonaceous adsorbent such as activated carbon and remove NOx and SO 2 from the exhaust gas are known. In the adsorption tower, the carbonaceous adsorbent is filled from above, moves downward while forming a moving bed in the adsorption tower, and is discharged from the lower end of the adsorption tower, while the exhaust gas moves from the carbonaceous adsorbent. It passes across the layers and is desulfurized and denitrated by the carbonaceous adsorbent.

このような排ガス処理装置において、吸着塔内の粒度分布を均一化してガス偏流の発生を防止し脱硝率を高めるために、炭素質吸着材を吸着塔に充填する際に、吸着塔の上部に複数のホッパ室を設けると共に、その上方に分配ホッパを設け、この分配ホッパから複数のホッパ室に炭素質吸着材を分配して供給する技術が知られている(例えば特許文献1参照)。   In such an exhaust gas treatment device, in order to make the particle size distribution in the adsorption tower uniform and prevent the occurrence of gas drift and increase the denitration rate, when the carbonaceous adsorbent is packed in the adsorption tower, A technique is known in which a plurality of hopper chambers are provided, a distribution hopper is provided above the hopper chambers, and a carbonaceous adsorbent is distributed and supplied from the distribution hoppers to the plurality of hopper chambers (see, for example, Patent Document 1).

また、吸着塔においては、排ガスが吸着塔の上部からリークするのを防ぐために、炭素質吸着材のレベルを制御して、炭素質吸着材によるシール効果を一定に保つ必要がある。炭素質吸着材のレベルを制御するための方法として、複数の吸着塔を設けた乾式脱硫装置において、各吸着塔内の炭素質吸着材の充填レベルを測定するためのレベル計を各吸着塔に設け、各吸着塔内の炭素質吸着材のレベルを、基準レベルに対して高、低、正常の3状態のいずれにあるか判定し、その結果に応じて各吸着塔への炭素質吸着材の供給量を制御する方法が知られている(例えば特許文献2参照)。   Further, in the adsorption tower, in order to prevent the exhaust gas from leaking from the upper part of the adsorption tower, it is necessary to control the level of the carbonaceous adsorbent and keep the sealing effect by the carbonaceous adsorbent constant. As a method for controlling the level of the carbonaceous adsorbent, in a dry desulfurization apparatus provided with a plurality of adsorption towers, each adsorption tower is provided with a level meter for measuring the filling level of the carbonaceous adsorbent in each adsorption tower. Determine whether the level of carbonaceous adsorbent in each adsorption tower is high, low or normal with respect to the reference level, and depending on the result, the carbonaceous adsorbent to each adsorption tower There is known a method of controlling the supply amount (see, for example, Patent Document 2).

特開平8−332347号公報JP-A-8-332347 特開昭63−16024号公報JP 63-16024 A

しかしながら、特許文献1のように、分配ホッパを有する排ガス処理装置においては、分配ホッパの断面積が吸着塔の断面積と比べて小さくなり、その結果、分配ホッパ内の炭素質吸着材のレベルの変動が大きくなる。このため、特許文献2のように、吸着塔に設けられたレベル計により炭素質吸着材のレベルを3段階のいずれにあるか判定し、その結果に応じて吸着塔への炭素質吸着材の供給量を制御する方法では、炭素質吸着材のレベル変動が大きい分配ホッパにおいて、炭素質吸着材の過不足が生じやすく、炭素質吸着材のレベル制御を安定して行えなくなるという問題があった。特に、特許文献2のように、複数の吸着塔を備え、それぞれの吸着塔が分配ホッパを有する排ガス処理装置においては、各吸着塔の各分配ホッパへの炭素質吸着材の供給を順番に制御していくことになり、各分配ホッパで炭素質吸着材の過不足が生じやすいため、各分配ホッパの炭素質吸着材のレベル制御を安定して行うことは困難であった。   However, as in Patent Document 1, in the exhaust gas treatment apparatus having a distribution hopper, the cross-sectional area of the distribution hopper is smaller than the cross-sectional area of the adsorption tower, and as a result, the level of the carbonaceous adsorbent in the distribution hopper is reduced. Fluctuation increases. For this reason, as in Patent Document 2, the level meter provided in the adsorption tower is used to determine which level of the carbonaceous adsorbent is in three stages, and the carbonaceous adsorbent to the adsorption tower is determined according to the result. In the method of controlling the supply amount, there is a problem that the distribution hopper with large fluctuation in the level of the carbonaceous adsorbent is likely to cause excess or deficiency of the carbonaceous adsorbent, making it impossible to stably control the level of the carbonaceous adsorbent. . In particular, as in Patent Document 2, in an exhaust gas treatment apparatus having a plurality of adsorption towers and each adsorption tower having a distribution hopper, the supply of the carbonaceous adsorbent to each distribution hopper of each adsorption tower is controlled in order. Therefore, it is difficult to stably control the level of the carbonaceous adsorbent in each distribution hopper because the carbonaceous adsorbent tends to be excessive or insufficient in each distribution hopper.

本発明はこのような課題を解決するためになされたものであり、複数の吸着塔のそれぞれに分配ホッパを設けた排ガス処理装置において、分配ホッパに充填される炭素質吸着材のレベルの変動を小さくし、炭素質吸着材のレベル制御を安定して行えるようにすることを目的とする。   The present invention has been made to solve such problems, and in an exhaust gas treatment apparatus in which a distribution hopper is provided in each of a plurality of adsorption towers, the level of the carbonaceous adsorbent filled in the distribution hopper is changed. The purpose is to reduce the size and to stably control the level of the carbonaceous adsorbent.

本発明に係る排ガス処理装置は、炭素質吸着材が充填される複数の吸着塔と、複数の吸着塔それぞれの上部に接続され、炭素質吸着材を分配して吸着塔に供給する分配ホッパと、を備える排ガス処理装置であって、分配ホッパ内の炭素質吸着材のレベルを検出するレベル検出手段と、レベル検出手段によって検出された分配ホッパ内の炭素質吸着材のレベルと目標レベルとの差に基づいて、分配ホッパに対する炭素質吸着材の供給を、順次各分配ホッパごとに制御する供給制御手段と、を備えることを特徴とする。   An exhaust gas treatment apparatus according to the present invention includes a plurality of adsorption towers filled with a carbonaceous adsorbent, a distribution hopper connected to the top of each of the plurality of adsorption towers, and distributes the carbonaceous adsorbent and supplies it to the adsorption tower. An exhaust gas treatment apparatus comprising: a level detection means for detecting a level of the carbonaceous adsorbent in the distribution hopper; and a level of the carbonaceous adsorbent in the distribution hopper detected by the level detection means and a target level. And a supply control means for sequentially controlling the supply of the carbonaceous adsorbent to the distribution hopper for each distribution hopper based on the difference.

また、本発明に係る排ガス処理方法は、複数の吸着塔に炭素質吸着材を充填し、複数の吸着塔それぞれの上部に分配ホッパを接続し、吸着塔に炭素質吸着材を分配して供給する排ガス処理方法であって、分配ホッパ内の炭素質吸着材のレベルを検出するレベル検出ステップと、レベル検出ステップにおいて検出された分配ホッパ内の炭素質吸着材のレベルと目標レベルとの差に基づいて、分配ホッパに対する炭素質吸着材の供給を、順次各分配ホッパごとに制御する供給制御ステップと、を備えることを特徴とする。   In the exhaust gas treatment method according to the present invention, a plurality of adsorption towers are filled with a carbonaceous adsorbent, a distribution hopper is connected to the upper part of each of the plurality of adsorption towers, and the carbonaceous adsorbent is distributed and supplied to the adsorption towers. An exhaust gas treatment method for detecting a level of the carbonaceous adsorbent in the distribution hopper, and a difference between the target level and the level of the carbonaceous adsorbent in the distribution hopper detected in the level detection step. And a supply control step of sequentially controlling the supply of the carbonaceous adsorbent to the distribution hopper for each distribution hopper.

これらによれば、分配ホッパ内の炭素質吸着材のレベルと目標レベルとの差に基づいて、分配ホッパに対する炭素質吸着材の供給が、順次各分配ホッパごとに制御されるため、分配ホッパでの炭素質吸着材の過不足が防止され、炭素質吸着材のレベル制御を安定して行うことができる。   According to these, the supply of the carbonaceous adsorbent to the distribution hopper is sequentially controlled for each distribution hopper based on the difference between the level of the carbonaceous adsorbent in the distribution hopper and the target level. Therefore, the excess and deficiency of the carbonaceous adsorbent can be prevented, and the level control of the carbonaceous adsorbent can be stably performed.

本発明に係る排ガス処理装置においては、レベル検出手段によって検出された炭素質吸着材のレベルと、目標レベルとの差とに基づいて、分配ホッパに供給する炭素質吸着材の供給量を決定する供給量決定手段と、吸着塔における炭素質吸着材の滞留時間に基づいて、分配ホッパに供給する炭素質吸着材の供給速度を決定する供給速度決定手段と、供給量決定手段によって決定された炭素質吸着材の供給量と、供給速度決定手段によって決定された炭素質吸着材の供給速度とに基づいて、分配ホッパに炭素質吸着材を供給する供給時間を決定する供給時間決定手段と、供給時間決定手段により決定された供給時間だけ分配ホッパに炭素質吸着材を供給する供給手段と、を備えることが好ましい。   In the exhaust gas treatment apparatus according to the present invention, the supply amount of the carbonaceous adsorbent supplied to the distribution hopper is determined based on the difference between the level of the carbonaceous adsorbent detected by the level detection means and the target level. The supply amount determining means, the supply speed determining means for determining the supply speed of the carbonaceous adsorbent supplied to the distribution hopper based on the residence time of the carbonaceous adsorbent in the adsorption tower, and the carbon determined by the supply amount determining means Supply time determining means for determining a supply time for supplying the carbonaceous adsorbent to the distribution hopper based on the supply amount of the carbonaceous adsorbent and the supply speed of the carbonaceous adsorbent determined by the supply speed determining means; It is preferable to include a supply means for supplying the carbonaceous adsorbent to the distribution hopper for the supply time determined by the time determination means.

また、本発明に係る排ガス処理方法においては、レベル検出ステップにおいて検出された炭素質吸着材のレベルと、目標レベルとの差とに基づいて、分配ホッパに供給する炭素質吸着材の供給量を決定する供給量決定ステップと、吸着塔における炭素質吸着材の滞留時間に基づいて、分配ホッパに供給する炭素質吸着材の供給速度を決定する供給速度決定ステップと、供給量決定ステップにおいて決定された炭素質吸着材の供給量と、供給速度決定ステップにおいて決定された炭素質吸着材の供給速度とに基づいて、分配ホッパに炭素質吸着材を供給する供給時間を決定する供給時間決定ステップと、供給時間決定ステップにおいて決定された供給時間だけ分配ホッパに炭素質吸着材を供給する供給ステップと、を備えることが好ましい。   In the exhaust gas treatment method according to the present invention, the supply amount of the carbonaceous adsorbent supplied to the distribution hopper is determined based on the difference between the level of the carbonaceous adsorbent detected in the level detection step and the target level. Determined in the supply rate determination step, the supply rate determination step for determining the supply rate of the carbonaceous adsorbent supplied to the distribution hopper, and the supply amount determination step based on the residence time of the carbonaceous adsorbent in the adsorption tower A supply time determining step for determining a supply time for supplying the carbonaceous adsorbent to the distribution hopper based on the supply amount of the carbonaceous adsorbent and the supply speed of the carbonaceous adsorbent determined in the supply speed determining step; And a supply step of supplying the carbonaceous adsorbent to the distribution hopper for the supply time determined in the supply time determination step.

これらによれば、分配ホッパ内の炭素質吸着材のレベルと目標レベルとの差に基づいて炭素質吸着材の供給量が決定され、また、吸着塔における炭素質吸着材の滞留時間に基づいて炭素質吸着材の供給速度が決定され、炭素質吸着材の供給量と供給速度とに基づいて炭素質吸着材の供給時間が決定され、決定された供給時間だけ分配ホッパに炭素質吸着材が供給されるため、分配ホッパ内の炭素質吸着材のレベルを精度よく制御することができる。   According to these, the supply amount of the carbonaceous adsorbent is determined based on the difference between the level of the carbonaceous adsorbent in the distribution hopper and the target level, and based on the residence time of the carbonaceous adsorbent in the adsorption tower. The supply rate of the carbonaceous adsorbent is determined, the supply time of the carbonaceous adsorbent is determined based on the supply amount and the supply rate of the carbonaceous adsorbent, and the carbonaceous adsorbent is supplied to the distribution hopper for the determined supply time. Since it is supplied, the level of the carbonaceous adsorbent in the distribution hopper can be accurately controlled.

本発明によれば、複数の吸着塔のそれぞれに分配ホッパを設けた排ガス処理装置において、分配ホッパに充填される炭素質吸着材のレベルの変動を小さくし、炭素質吸着材のレベル制御を安定して行うことができる。   According to the present invention, in an exhaust gas treatment apparatus provided with a distribution hopper in each of a plurality of adsorption towers, fluctuations in the level of the carbonaceous adsorbent filled in the distribution hopper are reduced, and level control of the carbonaceous adsorbent is stabilized. Can be done.

本実施形態に係る排ガス処理装置を示す図である。It is a figure which shows the waste gas processing apparatus which concerns on this embodiment. 本実施形態に係る排ガス処理装置の吸着塔を示す図である。It is a figure which shows the adsorption tower of the exhaust gas processing apparatus which concerns on this embodiment. 本実施形態に係る炭素質吸着材のレベル制御を示すフローチャートである。It is a flowchart which shows the level control of the carbonaceous adsorbent which concerns on this embodiment.

以下、本発明による排ガス処理装置の好適な実施形態について、図1〜図3を参照しながら説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, a preferred embodiment of an exhaust gas treatment apparatus according to the present invention will be described with reference to FIGS. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る排ガス処理装置100を示す図である。排ガス処理装置100は、吸着塔1、再生塔2、第一のコンベア(供給手段)3、第二のコンベア4、分配ホッパ5、レベル計6及び供給制御手段9を備えている。   FIG. 1 is a view showing an exhaust gas treatment apparatus 100 according to the present embodiment. The exhaust gas treatment apparatus 100 includes an adsorption tower 1, a regeneration tower 2, a first conveyor (supply means) 3, a second conveyor 4, a distribution hopper 5, a level meter 6, and a supply control means 9.

吸着塔1は、排ガスを脱硫脱硝処理するための塔である。吸着塔1には、上部から、例えば活性炭、活性チャー、活性コークス等の炭素質吸着材が充填される。充填された炭素質吸着材は、排ガス中のSOを吸着すると共にNOxをNに還元しながら吸着塔1内を上方から下方へと移動層を形成しつつ移動し、吸着塔1の下端から排出される。また、吸着塔1において、排ガスは水平方向から導入され、炭素質吸着材によってNOxやSO、ダスト等を除去された後、水平方向に導出される。この吸着塔1は、モジュール化されており、排ガス流量に応じて、複数、具体的には3塔〜8塔程度設けられる。そして、排ガスは、各吸着塔1を紙面垂直方向に流れるように分配される。本実施形態においては、吸着塔1の数を5塔として、以下の説明を進める。 The adsorption tower 1 is a tower for desulfurizing and denitrating exhaust gas. The adsorption tower 1 is filled with a carbonaceous adsorbent such as activated carbon, activated char, activated coke, etc. from above. Carbonaceous adsorbents which are filled, the NOx as well as adsorbing the SO 2 in the exhaust gas move in the adsorption tower 1 while reducing the N 2 from above while forming a moving layer downward, the lower end of the adsorption tower 1 Discharged from. Further, in the adsorption tower 1, the exhaust gas is introduced from the horizontal direction, and after NOx, SO 2 , dust and the like are removed by the carbonaceous adsorbent, the exhaust gas is led out in the horizontal direction. The adsorption tower 1 is modularized, and a plurality, specifically, about 3 to 8 towers are provided according to the exhaust gas flow rate. And exhaust gas is distributed so that each adsorption tower 1 may flow in the direction perpendicular to the page. In the present embodiment, the following description will be given assuming that the number of adsorption towers 1 is five.

再生塔2は、吸着塔1においてSOを吸着した炭素質吸着材を400°C以上に加熱して再生するための塔である。再生された炭素質吸着材は、150°C以下に冷却された後、割れ及び磨耗等により発生した細粒及び粉や捕集ダストを篩い分け器で分離・除去した後、再び吸着塔1へ搬送され、再利用される。 The regeneration tower 2 is a tower for heating and regenerating the carbonaceous adsorbent adsorbing SO 2 in the adsorption tower 1 to 400 ° C. or higher. After the regenerated carbonaceous adsorbent is cooled to 150 ° C. or less, fine particles, powder, and collected dust generated by cracking and wear are separated and removed by a sieving device, and then returned to the adsorption tower 1 again. Transported and reused.

第一のコンベア3は、再生塔2で再生された炭素質吸着材を吸着塔1の上部へ搬送するためのコンベアである。第一のコンベア3としては、例えば反転装置付きのバケットコンベアを用いることができる。第二のコンベア4は、吸着塔1の下部から排出された炭素質吸着材を再生塔2へ搬送するためのコンベアである。   The first conveyor 3 is a conveyor for conveying the carbonaceous adsorbent regenerated in the regeneration tower 2 to the upper part of the adsorption tower 1. As the first conveyor 3, for example, a bucket conveyor with a reversing device can be used. The second conveyor 4 is a conveyor for conveying the carbonaceous adsorbent discharged from the lower part of the adsorption tower 1 to the regeneration tower 2.

分配ホッパ5は、吸着塔1それぞれの上部に接続され、炭素質吸着材を分配して吸着塔1に供給するためのものである。レベル計(レベル検出手段)6は、分配ホッパ5内の炭素質吸着材のレベルを検出するための計測器である。   The distribution hopper 5 is connected to the upper part of each adsorption tower 1, and distributes the carbonaceous adsorbent and supplies it to the adsorption tower 1. The level meter (level detection means) 6 is a measuring instrument for detecting the level of the carbonaceous adsorbent in the distribution hopper 5.

次に、図2を用いて、吸着塔1をより詳細に説明する。図2は、吸着塔1を示す図である。吸着塔1は、上部ホッパ室11、排ガス通路部12、下部室13、ロールフィーダ14、下部ホッパ15及び下部ロータリーバルブ16を有している。   Next, the adsorption tower 1 will be described in more detail with reference to FIG. FIG. 2 is a view showing the adsorption tower 1. The adsorption tower 1 includes an upper hopper chamber 11, an exhaust gas passage portion 12, a lower chamber 13, a roll feeder 14, a lower hopper 15, and a lower rotary valve 16.

上部ホッパ室11は、吸着塔1の上部に複数設けられている。上部ホッパ室11は、それぞれ、分配シュート7を介して、分配ホッパ5と接続されている。また、これらの上部ホッパ室11は、図1においては、紙面垂直方向に並設されている。   A plurality of upper hopper chambers 11 are provided in the upper part of the adsorption tower 1. Each of the upper hopper chambers 11 is connected to the distribution hopper 5 via the distribution chute 7. Further, these upper hopper chambers 11 are juxtaposed in the direction perpendicular to the paper surface in FIG.

排ガス通路部12は、炭素質吸着材が充填されると共に排ガスの通路となる部分であり、この排ガス通路部12において炭素質吸着材が上から下へ移動する移動層を形成し、排ガスの脱硫脱硝処理を行う。排ガスは、矢印Gで示すように、排ガス通路部12の側方から水平方向に導入される。   The exhaust gas passage portion 12 is a portion that is filled with a carbonaceous adsorbent and serves as a passage for the exhaust gas. In the exhaust gas passage portion 12, a moving layer in which the carbonaceous adsorbent moves from top to bottom is formed, and desulfurization of the exhaust gas is performed. Perform denitration treatment. As shown by the arrow G, the exhaust gas is introduced in the horizontal direction from the side of the exhaust gas passage portion 12.

下部室13は、排ガス通路部12の下部に設けられる部分であり、その形状は、たとえば逆角錐状である。   The lower chamber 13 is a part provided in the lower part of the exhaust gas passage part 12, and the shape thereof is, for example, an inverted pyramid shape.

ロールフィーダ14は、所定の速度で回転することにより、下部室13から炭素質吸着材を排出するためのものである。   The roll feeder 14 is for discharging the carbonaceous adsorbent from the lower chamber 13 by rotating at a predetermined speed.

下部ホッパ15は、ロールフィーダ14を覆うように設けられ、ロールフィーダ14から排出された炭素質吸着材を貯留するものである。   The lower hopper 15 is provided so as to cover the roll feeder 14 and stores the carbonaceous adsorbent discharged from the roll feeder 14.

下部ロータリーバルブ16は、下部ホッパ15に貯留された炭素質吸着材を吸着塔1から排出するためのものである。   The lower rotary valve 16 is for discharging the carbonaceous adsorbent stored in the lower hopper 15 from the adsorption tower 1.

ここで、排ガスが排ガス通路部12から吸着塔1の上部や下部へリークすると、装置内部の金物の腐食につながるため、排ガス通路部12からの排ガスのリークを防止することが必要である。このため、排ガス通路部12の上下の上部ホッパ室11及び下部室13に炭素質吸着材を充填し、上部ホッパ室11及び下部室13を、排ガス通路部12から排ガスのリークを防ぐためのマテリアルシール部としている。下部室13においては、常に一定の高さの炭素質吸着材が充填されているため、常に一定のシール効果を期待することができる。一方、上部ホッパ室11においては、炭素質吸着材の充填レベルが変動し得る。この炭素質吸着材の充填レベルが変動すると、シール効果が変動する。さらに、炭素質吸着材の充填レベルが不足してシール効果がなくなると、排ガスが排ガス通路部12から上部ホッパ室11を通り抜けて上方へリークしてしまう。このため、後述の制御方法を用いて、上部ホッパ室11における炭素質吸着材の充填レベルを一定に保ち、シール効果を一定に保つことが必要となる。   Here, if the exhaust gas leaks from the exhaust gas passage part 12 to the upper part or the lower part of the adsorption tower 1, it leads to corrosion of hardware inside the apparatus, so it is necessary to prevent the exhaust gas from leaking from the exhaust gas passage part 12. Therefore, the upper hopper chamber 11 and the lower chamber 13 above and below the exhaust gas passage portion 12 are filled with a carbonaceous adsorbent, and the upper hopper chamber 11 and the lower chamber 13 are prevented from leaking exhaust gas from the exhaust gas passage portion 12. The seal is used. Since the lower chamber 13 is always filled with a carbonaceous adsorbent having a constant height, a constant sealing effect can be expected. On the other hand, in the upper hopper chamber 11, the filling level of the carbonaceous adsorbent can be varied. When the filling level of the carbonaceous adsorbent varies, the sealing effect varies. Further, if the filling level of the carbonaceous adsorbent is insufficient and the sealing effect is lost, the exhaust gas leaks from the exhaust gas passage portion 12 through the upper hopper chamber 11 and leaks upward. For this reason, it is necessary to keep the filling level of the carbonaceous adsorbent in the upper hopper chamber 11 constant and keep the sealing effect constant by using a control method described later.

次に、分配ホッパ5をより詳細に説明する。分配ホッパ5の上部には上部ロータリーバルブ8が設けられている。上部ロータリーバルブ8は、吸着塔1の上方から矢印ACで示すように供給される炭素質吸着材を吸着塔1内に導入するためのものである。また、分配ホッパ5の下部には複数本の分配シュート7が設けられている。複数本の分配シュート7は、それぞれ上部ホッパ室11と接続されている。分配ホッパ5に供給される炭素質吸着材は、複数本の分配シュート7に分配されて、それぞれの分配シュート7に接続される上部ホッパ室11から吸着塔1に充填される。このように分配ホッパ5から複数の上部ホッパ室11に炭素質吸着材を分配して供給しているのは、分配ホッパ5による上部ホッパ室11への炭素質吸着材の分配により、吸着塔1内の粒度分布を均一化してガス偏流の発生を防止するためである。なお、分配ホッパ5の断面積は、吸着塔1の断面積と比べると小さい。   Next, the distribution hopper 5 will be described in more detail. An upper rotary valve 8 is provided above the distribution hopper 5. The upper rotary valve 8 is for introducing a carbonaceous adsorbent supplied from above the adsorption tower 1 as indicated by an arrow AC into the adsorption tower 1. A plurality of distribution chutes 7 are provided below the distribution hopper 5. The plurality of distribution chutes 7 are each connected to the upper hopper chamber 11. The carbonaceous adsorbent supplied to the distribution hopper 5 is distributed to a plurality of distribution chutes 7 and filled into the adsorption tower 1 from the upper hopper chamber 11 connected to each distribution chute 7. Thus, the carbonaceous adsorbent is distributed and supplied from the distribution hopper 5 to the plurality of upper hopper chambers 11 by the distribution of the carbonaceous adsorbent to the upper hopper chamber 11 by the distribution hopper 5. This is because the particle size distribution in the inside is made uniform to prevent the occurrence of gas drift. The cross-sectional area of the distribution hopper 5 is smaller than the cross-sectional area of the adsorption tower 1.

以上のように構成される排ガス処理装置100においては、再生塔2から第一のコンベア3によって炭素質吸着材が分配ホッパ5に供給され、分配ホッパ5に供給された炭素質吸着材は複数の分配シュート7を介して吸着塔1に充填され、炭素質吸着材は、排ガスの脱硫脱硝処理を行いながら、吸着塔1の下方に移動し、下部ロータリーバルブ16によって排出された後、第二のコンベア4によって再生塔2に搬送され、再生塔2において再生処理を受け、このような処理が繰り返される。   In the exhaust gas treatment apparatus 100 configured as described above, the carbonaceous adsorbent is supplied from the regeneration tower 2 to the distribution hopper 5 by the first conveyor 3, and the carbonaceous adsorbent supplied to the distribution hopper 5 includes a plurality of carbonaceous adsorbents. The adsorption tower 1 is filled via the distribution chute 7, and the carbonaceous adsorbent moves under the adsorption tower 1 while performing exhaust gas desulfurization and denitration treatment. It is conveyed to the regeneration tower 2 by the conveyor 4 and undergoes regeneration processing in the regeneration tower 2, and such processing is repeated.

ここで、このような複数の吸着塔1を備える排ガス処理装置において、複数の吸着塔1に炭素質吸着材を供給するための制御方法として、従来はタイムシーケンスによる制御が行われていた。すなわち、複数の吸着塔のそれぞれに対し、順番に一定時間だけ炭素質吸着材の供給が行われていた。このような制御方法においては、ある吸着塔に炭素質吸着材が供給されてから、次に炭素質吸着材が供給される順番が到来するまでの間に待ち時間が相応にあり、特に吸着塔の数が多くなると、この待ち時間も長くなる。また、前述のように、分配ホッパ5の断面積は、吸着塔1の断面積と比べると小さいため、炭素質吸着材の過不足が生じやすい。このように、分配ホッパ5では炭素質吸着材の過不足が生じやすく、しかも、制御待ちの時間が長いため、分配ホッパ5での炭素質吸着材の充填レベルの変動が非常に大きくなるという問題があった。   Here, in such an exhaust gas treatment apparatus including a plurality of adsorption towers 1, as a control method for supplying a carbonaceous adsorbent to the plurality of adsorption towers 1, conventionally, control by a time sequence has been performed. That is, the carbonaceous adsorbent is supplied to each of the plurality of adsorption towers in order for a certain period of time. In such a control method, there is an appropriate waiting time from the time when the carbonaceous adsorbent is supplied to a certain adsorption tower until the next time when the carbonaceous adsorbent is supplied. As the number increases, this waiting time also increases. Further, as described above, since the cross-sectional area of the distribution hopper 5 is smaller than the cross-sectional area of the adsorption tower 1, the carbonaceous adsorbent tends to be excessive or insufficient. As described above, the distribution hopper 5 is likely to have an excess or deficiency of carbonaceous adsorbent, and the control waiting time is long, so that the fluctuation of the filling level of the carbonaceous adsorbent in the distribution hopper 5 becomes very large. was there.

そのような問題を解決する、分配ホッパ5における炭素質吸着材の充填レベルの供給制御手段9による制御方法について、図3を用いて具体的に説明する。供給制御手段9は、レベル計6からの炭素質吸着材の充填レベル情報に基づいて、分配ホッパ5での過不足が生じないように、第一のコンベア3の駆動を制御し、炭素質吸着材のレベルを制御する。具体的には、レベル計6によって検出された分配ホッパ5内の炭素質吸着材のレベルと所定の目標レベルとの差に基づいて、分配ホッパ5に対する炭素質吸着材の供給を、順次各分配ホッパ5ごとに制御する。より具体的には、供給制御手段9は、レベル計6によって検出された炭素質吸着材のレベルと、所定の目標レベルとの差に基づいて、分配ホッパ5に供給する炭素質吸着材の供給量を決定する供給量決定手段と、吸着塔1における炭素質吸着材の滞留時間に基づいて、分配ホッパ5に供給する炭素質吸着材の供給速度を決定する供給速度決定手段と、供給量決定手段によって決定された炭素質吸着材の供給量と供給速度決定手段によって決定された炭素質吸着材の供給速度とに基づいて、分配ホッパ5に炭素質吸着材を供給する供給時間を決定する供給時間決定手段と、を有している。   A method for controlling the filling level of the carbonaceous adsorbent in the distribution hopper 5 by the supply control means 9 to solve such a problem will be specifically described with reference to FIG. The supply control means 9 controls the drive of the first conveyor 3 based on the filling level information of the carbonaceous adsorbent from the level meter 6 so as not to cause excess or deficiency in the distribution hopper 5, and the carbonaceous adsorption Control the level of material. Specifically, based on the difference between the level of the carbonaceous adsorbent in the distribution hopper 5 detected by the level meter 6 and a predetermined target level, the supply of the carbonaceous adsorbent to the distribution hopper 5 is sequentially performed for each distribution. Control is performed for each hopper 5. More specifically, the supply control means 9 supplies the carbonaceous adsorbent supplied to the distribution hopper 5 based on the difference between the level of the carbonaceous adsorbent detected by the level meter 6 and a predetermined target level. A supply amount determining means for determining the amount, a supply speed determining means for determining a supply speed of the carbonaceous adsorbent supplied to the distribution hopper 5 based on a residence time of the carbonaceous adsorbent in the adsorption tower 1, and a supply amount determination Supply for determining a supply time for supplying the carbonaceous adsorbent to the distribution hopper 5 based on the supply amount of the carbonaceous adsorbent determined by the means and the supply speed of the carbonaceous adsorbent determined by the supply speed determining means Time determining means.

図3は、本実施形態に係る炭素質吸着材のレベル制御を示すフローチャートである。   FIG. 3 is a flowchart showing level control of the carbonaceous adsorbent according to the present embodiment.

まず、ステップS1において、炭素質吸着材を供給する対象となる分配ホッパ5を示す分配ホッパの番号n(吸着塔の数が5塔の場合、nは1から5までの整数値)を1に設定する。   First, in step S1, the distribution hopper number n indicating the distribution hopper 5 to which the carbonaceous adsorbent is supplied (if the number of adsorption towers is 5, n is an integer value from 1 to 5) is set to 1. Set.

次に、ステップS2において、現状の分配ホッパnにおける充填レベルである現状レベルxが検出され(レベル検出ステップ)、この現状レベルxが下限値LL以下であるか否かを判定する。   Next, in step S2, the current level x which is the filling level in the current distribution hopper n is detected (level detection step), and it is determined whether or not the current level x is equal to or lower than the lower limit value LL.

ステップS2において現状レベルxが下限値LL以下であると判定した場合は、ステップS3において、現状レベルxが異常値であると判断し、インターロック機構を作動して設備を停止する。   If it is determined in step S2 that the current level x is equal to or lower than the lower limit value LL, it is determined in step S3 that the current level x is an abnormal value, and the interlock mechanism is activated to stop the equipment.

一方、ステップS2において、現状レベルxが下限値LL以下でないと判定した場合は、ステップS4において、現状レベルxが上限値HH以上であるか否かを判定する。   On the other hand, if it is determined in step S2 that the current level x is not lower than the lower limit LL, it is determined in step S4 whether the current level x is higher than the upper limit HH.

ステップS4において現状レベルxが上限値HH以上であると判定した場合は、充分に炭素質吸着材が充填されているとして、当該分配ホッパnへの炭素質吸着材の供給をスキップし、ステップS5において、分配ホッパの番号nに1を加算し、次の制御対象となる分配ホッパ(n+1)の制御に移行すべく、ステップS2に戻る。   If it is determined in step S4 that the current level x is greater than or equal to the upper limit value HH, the supply of the carbonaceous adsorbent to the distribution hopper n is skipped, assuming that the carbonaceous adsorbent is sufficiently filled, and step S5 Then, 1 is added to the number n of the distribution hopper, and the process returns to step S2 to shift to the control of the distribution hopper (n + 1) as the next control target.

一方、ステップS4において現状レベルxが上限値HH以上でないと判定した場合は、ステップS6において、分配ホッパnへの炭素質吸着材の供給量を、以下の式(1)により決定する(供給量決定ステップ)。   On the other hand, if it is determined in step S4 that the current level x is not equal to or higher than the upper limit value HH, in step S6, the supply amount of the carbonaceous adsorbent to the distribution hopper n is determined by the following equation (1) (supply amount). Decision step).

Vn=(LFn−LPn)×πD/4 …(1) Vn = (LFn-LPn) × πD 2/4 ... (1)

なお、Vnは分配ホッパnへの炭素質吸着材の供給量(m)、LFnは分配ホッパnへの炭素質吸着材を投入すべき目標レベル(m)、LPnは分配ホッパnの炭素質吸着材の現在のレベル(m)、Dは分配ホッパnの内径(m)である。 Vn is the supply amount (m 3 ) of the carbonaceous adsorbent to the distribution hopper n, LFn is the target level (m) at which the carbonaceous adsorbent is to be supplied to the distribution hopper n, and LPn is the carbonaceous of the distribution hopper n The current level (m) of the adsorbent, D is the inner diameter (m) of the distribution hopper n.

続いて、ステップS7において、分配ホッパnへの炭素質吸着材の供給速度を、以下の式(2)により決定する(供給速度決定ステップ)。   Subsequently, in step S7, the supply speed of the carbonaceous adsorbent to the distribution hopper n is determined by the following equation (2) (supply speed determination step).

VF=N×VA/RT …(2)   VF = N × VA / RT (2)

なお、VFは各塔への投入流量(m/分)、VAは吸着塔1塔あたりの有効容積(m)、RTは有効吸着層における活性炭滞留時間(分)、Nは、炭素質吸着材の供給をスキップされた分配ホッパを除く分配ホッパの数である。活性炭滞留時間RTは、例えばロールフィーダ14の回転数や、ロールフィーダ14の単位時間当たりの排出量から求める。 VF is the flow rate to each column (m 3 / min), VA is the effective volume per adsorption tower (m 3 ), RT is the activated carbon residence time (min) in the effective adsorption layer, and N is the carbonaceous This is the number of distribution hoppers excluding the distribution hopper for which the supply of the adsorbent was skipped. The activated carbon residence time RT is obtained from, for example, the number of rotations of the roll feeder 14 or the discharge amount of the roll feeder 14 per unit time.

続いて、ステップS8において、分配ホッパnへの炭素質吸着材の供給時間を、以下の式(3)及び式(4)により決定する(供給時間決定ステップ)。   Subsequently, in step S8, the supply time of the carbonaceous adsorbent to the distribution hopper n is determined by the following equations (3) and (4) (supply time determination step).

Tsn=Vn/VF …(3)   Tsn = Vn / VF (3)

ここで、Tsnは、炭素質吸着材の供給時間(分)である。   Here, Tsn is the supply time (minutes) of the carbonaceous adsorbent.

続いて、ステップS9において、上記の計算で求められた供給時間Tsnだけ、第一のコンベア3によって、分配ホッパnに炭素質吸着材を供給する(供給ステップ)。   Subsequently, in step S9, the carbonaceous adsorbent is supplied to the distribution hopper n by the first conveyor 3 for the supply time Tsn obtained by the above calculation (supply step).

続いて、ステップS10において、分配ホッパの番号nが5より小さいか否かを判定する。すなわち、1番目から5番目までの全ての分配ホッパに対して処理を行ったか否かを判定する。   Subsequently, in step S10, it is determined whether or not the distribution hopper number n is smaller than 5. That is, it is determined whether or not processing has been performed for all of the first to fifth distribution hoppers.

ステップS10において、分配ホッパの番号nが5より小さければ、ステップS5に進み、分配ホッパの番号nに1を加算し、次の分配ホッパ(n+1)の制御に移行すべく、ステップS2に戻る。   If the distribution hopper number n is smaller than 5 in step S10, the process proceeds to step S5, 1 is added to the distribution hopper number n, and the process returns to step S2 to shift to control of the next distribution hopper (n + 1).

一方、ステップS10において、分配ホッパの番号nが5以上であれば、ステップS11に進み、nを再び1に戻し、1番目の分配ホッパの制御に移行し、前述した処理を繰り返す。   On the other hand, if the number n of the distribution hopper is 5 or more in step S10, the process proceeds to step S11, n is returned to 1 again, the control proceeds to the first distribution hopper, and the above-described processing is repeated.

なお、前述した供給量決定ステップ、供給速度決定ステップ、供給時間決定ステップ及び供給ステップをまとめて供給制御ステップと称する。   The supply amount determination step, supply speed determination step, supply time determination step, and supply step described above are collectively referred to as a supply control step.

このように、本実施形態に係る排ガス処理装置及び排ガス処理方法においては、レベル計6によって検出された炭素質吸着材のレベルと、所定の目標レベルとの差に基づいて分配ホッパ5に対する炭素質吸着材の供給が、順次各分配ホッパ5ごとに制御されるため、分配ホッパ5での炭素質吸着材の過不足が防止され、炭素質吸着材のレベル制御を安定して行うことができる。   Thus, in the exhaust gas treatment apparatus and the exhaust gas treatment method according to the present embodiment, the carbonaceous matter for the distribution hopper 5 is based on the difference between the carbonaceous adsorbent level detected by the level meter 6 and the predetermined target level. Since the supply of the adsorbent is sequentially controlled for each distribution hopper 5, excess and deficiency of the carbonaceous adsorbent in the distribution hopper 5 is prevented, and the level control of the carbonaceous adsorbent can be performed stably.

また、分配ホッパ5内の炭素質吸着材のレベルと目標レベルとの差に基づいて炭素質吸着材の供給量が決定され、また、吸着塔1における炭素質吸着材の滞留時間に基づいて炭素質吸着材の供給速度が決定され、炭素質吸着材の供給量と供給速度とに基づいて炭素質吸着材の供給時間が決定され、決定された供給時間だけ分配ホッパ5に炭素質吸着材が供給されるため、分配ホッパ5内の炭素質吸着材のレベルを精度よく制御することができる。   Further, the supply amount of the carbonaceous adsorbent is determined based on the difference between the level of the carbonaceous adsorbent in the distribution hopper 5 and the target level, and carbon based on the residence time of the carbonaceous adsorbent in the adsorption tower 1. The supply rate of the carbonaceous adsorbent is determined, the supply time of the carbonaceous adsorbent is determined based on the supply amount and the supply speed of the carbonaceous adsorbent, and the carbonaceous adsorbent is supplied to the distribution hopper 5 for the determined supply time. Since it is supplied, the level of the carbonaceous adsorbent in the distribution hopper 5 can be accurately controlled.

以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではなく、例えば、排ガスの流れ方向に対して排ガス通路部12が複数の部屋に分割され、排ガスが各々の部屋を順次通過することによって排ガスの脱硫脱硝処理を行う吸着塔に対しても適用可能である。   As described above, the present invention has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment. For example, the exhaust gas passage portion 12 is provided in a plurality of rooms with respect to the flow direction of the exhaust gas. The present invention can also be applied to an adsorption tower that is divided and exhaust gas passes through each room in order to perform desulfurization and denitration treatment of the exhaust gas.

1…吸着塔、3…第一のコンベア(供給手段)、5…分配ホッパ、6…レベル計(レベル検出手段)、100…排ガス処理装置。   DESCRIPTION OF SYMBOLS 1 ... Adsorption tower, 3 ... 1st conveyor (supply means), 5 ... Distribution hopper, 6 ... Level meter (level detection means), 100 ... Exhaust gas processing apparatus.

Claims (4)

炭素質吸着材が充填される複数の吸着塔と、
前記複数の吸着塔それぞれの上部に接続され、前記炭素質吸着材を分配して前記吸着塔に供給する分配ホッパと、
を備える排ガス処理装置であって、
前記分配ホッパ内の前記炭素質吸着材のレベルを検出するレベル検出手段と、
前記レベル検出手段によって検出された前記分配ホッパ内の前記炭素質吸着材のレベルと目標レベルとの差に基づいて、前記分配ホッパに対する前記炭素質吸着材の供給を、順次前記各分配ホッパごとに制御する供給制御手段と、
を備えることを特徴とする排ガス処理装置。
A plurality of adsorption towers filled with a carbonaceous adsorbent;
A distribution hopper connected to an upper portion of each of the plurality of adsorption towers, for distributing the carbonaceous adsorbent and supplying the carbonaceous adsorbent to the adsorption tower;
An exhaust gas treatment apparatus comprising:
Level detecting means for detecting the level of the carbonaceous adsorbent in the distribution hopper;
Based on the difference between the level of the carbonaceous adsorbent in the distribution hopper detected by the level detection means and the target level, the supply of the carbonaceous adsorbent to the distribution hopper is sequentially performed for each distribution hopper. Supply control means for controlling;
An exhaust gas treatment apparatus comprising:
前記レベル検出手段によって検出された前記炭素質吸着材のレベルと、目標レベルとの差とに基づいて、前記分配ホッパに供給する前記炭素質吸着材の供給量を決定する供給量決定手段と、
前記吸着塔における前記炭素質吸着材の滞留時間に基づいて、前記分配ホッパに供給する前記炭素質吸着材の供給速度を決定する供給速度決定手段と、
前記供給量決定手段によって決定された前記炭素質吸着材の前記供給量と、前記供給速度決定手段によって決定された前記炭素質吸着材の前記供給速度とに基づいて、前記分配ホッパに前記炭素質吸着材を供給する供給時間を決定する供給時間決定手段と、
前記供給時間決定手段により決定された前記供給時間だけ前記分配ホッパに前記炭素質吸着材を供給する供給手段と、
を備える請求項1に記載の排ガス処理装置。
A supply amount determining means for determining a supply amount of the carbonaceous adsorbent to be supplied to the distribution hopper based on a difference between the level of the carbonaceous adsorbent detected by the level detection means and a target level;
A supply rate determining means for determining a supply rate of the carbonaceous adsorbent to be supplied to the distribution hopper based on a residence time of the carbonaceous adsorbent in the adsorption tower;
Based on the supply amount of the carbonaceous adsorbent determined by the supply amount determination means and the supply speed of the carbonaceous adsorbent determined by the supply speed determination means, the carbonaceous material is supplied to the distribution hopper. A supply time determining means for determining a supply time for supplying the adsorbent;
Supply means for supplying the carbonaceous adsorbent to the distribution hopper for the supply time determined by the supply time determination means;
An exhaust gas treatment apparatus according to claim 1.
複数の吸着塔に炭素質吸着材を充填し、
前記複数の吸着塔それぞれの上部に分配ホッパを接続し、前記吸着塔に前記炭素質吸着材を分配して供給する排ガス処理方法であって、
前記分配ホッパ内の前記炭素質吸着材のレベルを検出するレベル検出ステップと、
前記レベル検出ステップにおいて検出された前記分配ホッパ内の前記炭素質吸着材のレベルと目標レベルとの差に基づいて、前記分配ホッパに対する前記炭素質吸着材の供給を、順次前記各分配ホッパごとに制御する供給制御ステップと、
を備えることを特徴とする排ガス処理方法。
Filling multiple adsorption towers with carbonaceous adsorbent,
An exhaust gas treatment method in which a distribution hopper is connected to each upper portion of the plurality of adsorption towers, and the carbonaceous adsorbent is distributed and supplied to the adsorption tower,
A level detection step of detecting the level of the carbonaceous adsorbent in the distribution hopper;
Based on the difference between the level of the carbonaceous adsorbent in the distribution hopper detected in the level detection step and the target level, the supply of the carbonaceous adsorbent to the distribution hopper is sequentially performed for each distribution hopper. A supply control step to control;
An exhaust gas treatment method comprising:
前記レベル検出ステップにおいて検出された前記炭素質吸着材のレベルと、目標レベルとの差とに基づいて、前記分配ホッパに供給する前記炭素質吸着材の供給量を決定する供給量決定ステップと、
前記吸着塔における前記炭素質吸着材の滞留時間に基づいて、前記分配ホッパに供給する前記炭素質吸着材の供給速度を決定する供給速度決定ステップと、
前記供給量決定ステップにおいて決定された前記炭素質吸着材の前記供給量と、前記供給速度決定ステップにおいて決定された前記炭素質吸着材の前記供給速度とに基づいて、前記分配ホッパに前記炭素質吸着材を供給する供給時間を決定する供給時間決定ステップと、
前記供給時間決定ステップにおいて決定された前記供給時間だけ前記分配ホッパに前記炭素質吸着材を供給する供給ステップと、
を備える請求項3に記載の排ガス処理方法。
A supply amount determination step of determining a supply amount of the carbonaceous adsorbent to be supplied to the distribution hopper based on a difference between the level of the carbonaceous adsorbent detected in the level detection step and a target level;
A supply speed determining step for determining a supply speed of the carbonaceous adsorbent supplied to the distribution hopper based on a residence time of the carbonaceous adsorbent in the adsorption tower;
Based on the supply amount of the carbonaceous adsorbent determined in the supply amount determination step and the supply speed of the carbonaceous adsorbent determined in the supply speed determination step, the carbonaceous material is supplied to the distribution hopper. A supply time determining step for determining a supply time for supplying the adsorbent;
A supply step for supplying the carbonaceous adsorbent to the distribution hopper for the supply time determined in the supply time determination step;
An exhaust gas treatment method according to claim 3.
JP2011194174A 2011-09-06 2011-09-06 Exhaust gas treatment apparatus and exhaust gas treatment method Active JP5558439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194174A JP5558439B2 (en) 2011-09-06 2011-09-06 Exhaust gas treatment apparatus and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194174A JP5558439B2 (en) 2011-09-06 2011-09-06 Exhaust gas treatment apparatus and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2013052377A true JP2013052377A (en) 2013-03-21
JP5558439B2 JP5558439B2 (en) 2014-07-23

Family

ID=48129852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194174A Active JP5558439B2 (en) 2011-09-06 2011-09-06 Exhaust gas treatment apparatus and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP5558439B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108434936A (en) * 2018-06-06 2018-08-24 中冶长天国际工程有限责任公司 A kind of material balance control method and device for flue gas purification system
CN108722183A (en) * 2018-07-27 2018-11-02 国电环境保护研究院有限公司 A kind of material position automatic control system and autocontrol method
KR20190020084A (en) * 2017-05-12 2019-02-27 종예 창티엔 인터내셔날 엔지니어링 컴퍼니 리미티드 Method and system for controlling a substance for a flue gas purifying device
JP7134323B1 (en) 2021-11-30 2022-09-09 日鉄エンジニアリング株式会社 Exhaust gas treatment device and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108525464B (en) * 2018-06-06 2020-08-28 中冶长天国际工程有限责任公司 Material level control method and device for desulfurization and denitrification system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545872A (en) * 1977-06-16 1979-01-17 Mitsubishi Heavy Ind Ltd Continuous moving bed adsorbing device
JPH08332347A (en) * 1995-06-06 1996-12-17 Sumitomo Heavy Ind Ltd Dry-type desulfurization and denitration apparatus
JPH11104483A (en) * 1997-09-30 1999-04-20 Mitsui Mining Co Ltd Movable layer type solid-gas contact device
JP2006068646A (en) * 2004-09-02 2006-03-16 Nippon Steel Corp Transporting method for exhaust-gas treatment agent to exhaust-gas treatment tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545872A (en) * 1977-06-16 1979-01-17 Mitsubishi Heavy Ind Ltd Continuous moving bed adsorbing device
JPH08332347A (en) * 1995-06-06 1996-12-17 Sumitomo Heavy Ind Ltd Dry-type desulfurization and denitration apparatus
JPH11104483A (en) * 1997-09-30 1999-04-20 Mitsui Mining Co Ltd Movable layer type solid-gas contact device
JP2006068646A (en) * 2004-09-02 2006-03-16 Nippon Steel Corp Transporting method for exhaust-gas treatment agent to exhaust-gas treatment tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190020084A (en) * 2017-05-12 2019-02-27 종예 창티엔 인터내셔날 엔지니어링 컴퍼니 리미티드 Method and system for controlling a substance for a flue gas purifying device
KR102076947B1 (en) * 2017-05-12 2020-02-12 종예 창티엔 인터내셔날 엔지니어링 컴퍼니 리미티드 Material control method and system for flue gas purification device
CN108434936A (en) * 2018-06-06 2018-08-24 中冶长天国际工程有限责任公司 A kind of material balance control method and device for flue gas purification system
CN108722183A (en) * 2018-07-27 2018-11-02 国电环境保护研究院有限公司 A kind of material position automatic control system and autocontrol method
JP7134323B1 (en) 2021-11-30 2022-09-09 日鉄エンジニアリング株式会社 Exhaust gas treatment device and control method
JP2023080792A (en) * 2021-11-30 2023-06-09 日鉄エンジニアリング株式会社 Exhaust gas treatment apparatus and control method

Also Published As

Publication number Publication date
JP5558439B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5558439B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
US5344616A (en) Apparatus for the separation of undesirable constituents from a waste gas
JP4695126B2 (en) Desulfurization denitration equipment for exhaust gas
US10173145B2 (en) Carbon dioxide separation system
WO2019144523A1 (en) Multi-process flue gas purification system and method for controlling same
CN108861643B (en) Automatic uniform discharging control method and device
RU2762836C1 (en) Multi-process exhaust gas purification system and control method
WO2010061920A1 (en) Regeneration tower for apparatus for dry discharge-gas treatment
US9446867B2 (en) Method for radial fluid flow particle filling of respirator canisters
KR102076947B1 (en) Material control method and system for flue gas purification device
US9248396B2 (en) Process and device for improving the capture of SO2 in electrolytic cell gases
CN202410481U (en) Dry-type desulfurization and denitration device
JP5124407B2 (en) Conveyor system for dry exhaust gas treatment equipment
JP4742926B2 (en) Exhaust gas treatment equipment
JP7131224B2 (en) Gas processing system
JP2009291765A (en) Apparatus and method for treating exhaust gas
CN208678818U (en) A kind of material position automatic control system
JP6307481B2 (en) Adsorption tower of pressure swing adsorption gas separator
CN101142010A (en) Apparatus for treating gas
JP2009028643A (en) Fixed-bed reaction vessel and method for packing absorbent
JP4634763B2 (en) Method of transporting exhaust gas treatment agent to exhaust gas treatment tank
JP5649802B2 (en) Exhaust gas treatment equipment
CN220142964U (en) Gas adsorption system, desorption system and adsorption and desorption system
JP2013027835A (en) Exhaust gas treatment apparatus
JP4604532B2 (en) Exhaust gas treatment method and treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5558439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350