JP2013050268A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013050268A
JP2013050268A JP2011188410A JP2011188410A JP2013050268A JP 2013050268 A JP2013050268 A JP 2013050268A JP 2011188410 A JP2011188410 A JP 2011188410A JP 2011188410 A JP2011188410 A JP 2011188410A JP 2013050268 A JP2013050268 A JP 2013050268A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
refrigerator
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011188410A
Other languages
Japanese (ja)
Other versions
JP5945708B2 (en
Inventor
Yoshimasa Horio
好正 堀尾
Yasuki Hamano
泰樹 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011188410A priority Critical patent/JP5945708B2/en
Publication of JP2013050268A publication Critical patent/JP2013050268A/en
Application granted granted Critical
Publication of JP5945708B2 publication Critical patent/JP5945708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator which improves a box body strength thereof, causes no appearance deformation attributable to air infiltration of a vacuum heat insulating material with age, saves space for installation, provides a large capacity, and ensures high energy saving performance owing to its high heat insulating performance.SOLUTION: The refrigerator includes a body of a heat insulating box body composed of a plurality of heat insulating compartments and heat insulating partitions 110, 111, 112, 113 dividing the body and further has a plurality of temperature zones, wherein vacuum heat insulating materials 129, 130 with a core material at least containing a fiber material and a gas absorbing material 137 vacuum-sealed in a bag consisting of a wrapping material excellent in gas barrier performance are mounted and the gas absorbing material out of the vacuum heat insulating materials is arranged in the inside (inner box side) of the refrigerator in such a way that an impact of contact between the vacuum heat insulating material and air is reduced, thereby maintaining the degree of vacuum of the vacuum heat insulating material even when the refrigerator is used over a long term and preventing deterioration in heat conductivity of the vacuum heat insulating material and appearance deformation in the outer box of the body.

Description

本発明は、真空断熱材を適用した冷蔵庫に関するものである。   The present invention relates to a refrigerator to which a vacuum heat insulating material is applied.

近年、冷蔵庫の省エネルギー化や省スペース化を狙いに、冷蔵庫の断熱性能を高める一手段として、高断熱性能を有する真空断熱材を利用する方法があり、省エネルギーの要請が益々高まる今日では、硬質ウレタンフォームと比較して数倍から10倍程度の断熱性能を有する真空断熱材を適切な範囲内で最大限に利用することにより断熱性能を向上させていくことが急務であるといえる。   In recent years, with the aim of energy saving and space saving of refrigerators, as a means of improving the heat insulation performance of refrigerators, there is a method of using vacuum heat insulating material with high heat insulation performance, and today, the demand for energy saving is increasing, hard urethane It can be said that there is an urgent need to improve the heat insulation performance by making maximum use of a vacuum heat insulating material having a heat insulation performance several times to 10 times that of foam within an appropriate range.

その中で、真空断熱材を備えた従来の冷蔵庫としては、例えば特開平6ー159922号公報(特許文献1)や特開2006−242439号公報(特許文献2)に開示されたものがある。   Among them, as a conventional refrigerator provided with a vacuum heat insulating material, for example, there are those disclosed in Japanese Patent Laid-Open No. 6-159922 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-242439 (Patent Document 2).

以下、図面を参照しながら上記従来の冷蔵庫を説明する。   Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図10は特許文献1に記載されている冷蔵庫の側面断面図を示すものである。冷蔵庫の本体1は、外箱24と内箱25とで構成される空間全体を、成形可能な袋状の紙材20で覆い、この紙材20内部に無機多孔質からなる充填材21を充填し、内外箱24、25で囲まれた空間の形状に沿って真空断熱材22が構成されている。また、使用される真空断熱材22は両面ともに金属箔を有し、形状は平面のみとなっている。   FIG. 10 is a side sectional view of the refrigerator described in Patent Document 1. The main body 1 of the refrigerator covers the entire space composed of the outer box 24 and the inner box 25 with a moldable bag-like paper material 20 and fills the paper material 20 with a filler 21 made of an inorganic porous material. The vacuum heat insulating material 22 is configured along the shape of the space surrounded by the inner and outer boxes 24 and 25. Moreover, the vacuum heat insulating material 22 used has metal foil on both surfaces, and the shape is only a plane.

本構成により、内外箱24,25間への真空断熱材22の収納作業が容易に行えると共に内外箱24,25と真空断熱材22との隙間を塞ぐ作業などが廃止できるうえ、硬質ウレタンフォーム26を使用せず真空断熱材22のみで断熱箱体を構成できるため、極めて高い断熱性能を確保することができる。   With this configuration, it is possible to easily store the vacuum heat insulating material 22 between the inner and outer boxes 24, 25, and to eliminate the work of closing the gap between the inner and outer boxes 24, 25 and the vacuum heat insulating material 22, and the rigid urethane foam 26. Since the heat insulation box can be configured only by the vacuum heat insulating material 22 without using the above, extremely high heat insulation performance can be ensured.

また、図11は特許文献2に記載されている冷蔵庫の正面断面図である。   FIG. 11 is a front sectional view of the refrigerator described in Patent Document 2.

冷蔵庫は、箱状に形成された冷蔵庫の本体1と、冷蔵庫の本体1の前面開口を開閉する扉(図示せず) とを備えて構成されている。冷蔵庫の本体1は、合成樹脂製の内箱25と、この内箱25を覆う鋼板製の外箱24とで構成される空間内に、複数の真空断熱材(真空断熱パネル)39、40を配設すると共に、硬質ウレタンフォーム(ウレタン発泡樹脂)26を充填することで形成した断熱壁を有している。   The refrigerator includes a refrigerator main body 1 formed in a box shape and a door (not shown) that opens and closes a front opening of the refrigerator main body 1. The main body 1 of the refrigerator has a plurality of vacuum heat insulating materials (vacuum heat insulating panels) 39 and 40 in a space constituted by an inner box 25 made of synthetic resin and an outer box 24 made of steel plate covering the inner box 25. It has a heat insulating wall formed by being filled and filled with a hard urethane foam (urethane foam resin) 26.

この断熱壁の両側壁は、薄い部分(温度の高い貯蔵室2、3の両側壁部分)で30mm程度、厚い部分(温度の低い貯蔵室14の両側壁部分)で50mm程度の厚さを有している。   The both side walls of this heat insulating wall have a thickness of about 30 mm in the thin part (the side wall parts of the high temperature storage chambers 2 and 3) and the thickness of about 50 mm in the thick part (the side wall parts of the low temperature storage room 14). doing.

複数の真空断熱材39、40は、外箱面に密着して設置した外箱側真空断熱材39と、内箱面に密着して設置した内箱側真空断熱材40とから構成されており、真空断熱材39、40は、10mm程度の厚さで構成されている。真空断熱材39は、外箱側で平板状に構成されて設置されると共に、底面40の左右両側の外箱コーナー部41の近傍まで延びている。内箱側真空断熱材40は、内箱25の底面に設置された外箱コーナー部41に対向した内箱コーナー部を覆ってさらに外箱側真空断熱材39の投影面で重なる位置まで内箱面に沿って延びるように設置されている。   The plurality of vacuum heat insulating materials 39 and 40 are composed of an outer box side vacuum heat insulating material 39 installed in close contact with the outer box surface and an inner box side vacuum heat insulating material 40 installed in close contact with the inner box surface. The vacuum heat insulating materials 39 and 40 are formed with a thickness of about 10 mm. The vacuum heat insulating material 39 is configured and installed in a flat plate shape on the outer box side, and extends to the vicinity of the outer box corner portions 41 on the left and right sides of the bottom surface 40. The inner box side vacuum heat insulating material 40 covers the inner box corner portion facing the outer box corner portion 41 installed on the bottom surface of the inner box 25 and further overlaps with the projection surface of the outer box side vacuum heat insulating material 39 to the inner box. It is installed to extend along the surface.

本構成により、冷蔵庫のコーナー部における硬質ウレタンフォーム26の局部的な収縮を抑制して外箱の歪みもしくは内箱の割れを防止することができると共に、冷蔵庫の本体1の熱漏洩量を低減して消費電力を低減することができる。   With this configuration, local shrinkage of the hard urethane foam 26 at the corner of the refrigerator can be suppressed to prevent distortion of the outer box or cracking of the inner box, and reduce the amount of heat leakage of the main body 1 of the refrigerator. Power consumption can be reduced.

特開平6ー159922号公報JP-A-6-159922 特開2006−242439号公報JP 2006-242439 A

しかしながら、上記従来例に記載されている冷蔵庫では、外箱と内箱とに密着してなる硬質ウレタンフォームと比較して強度的に劣る真空断熱材のみを使用した冷蔵庫であるため、断熱性能は高いものの強度的には非常に弱くなるといった問題があった。また、内箱や外箱の形状が平面的でないため、平面的でない部分への板状の真空断熱材の使用は困難であった。また、真空断熱材の断熱性能向上のためには、一平面にアルミ蒸着フィルムを用いた真空断熱材の使用が効果的であるが、信頼性の面からアルミ蒸着フィルムを用いた真空断熱材の使用は困難であった。   However, in the refrigerator described in the above conventional example, since it is a refrigerator that uses only a vacuum heat insulating material that is inferior in strength compared to a hard urethane foam that is in close contact with the outer box and the inner box, the heat insulating performance is There was a problem that although it was high, the strength became very weak. In addition, since the shape of the inner box and the outer box is not planar, it is difficult to use a plate-like vacuum heat insulating material for a non-planar part. Moreover, in order to improve the heat insulation performance of the vacuum heat insulating material, it is effective to use a vacuum heat insulating material using an aluminum vapor deposited film on one plane, but from the viewpoint of reliability, the vacuum heat insulating material using the aluminum vapor deposited film is effective. It was difficult to use.

また、近年の冷蔵庫業界の小スペース・大容量化の傾向では、約10年前と比べて同等の外形寸法で、庫内容量は100L程度増加している。これは冷蔵庫の無効スペースを無くす取り組みや箱体の断熱性能を向上させつつ壁厚の薄壁化をしているためである。上記従来例のように内箱側と外箱側の真空断熱材が重なる位置まで設置するには、十分な壁厚が必要であるが真空断熱材の厚みは10mm程度であり、重ね合わせる部分と硬質ウレタンフォームの充填厚みを考慮すると40mm以上は必要となる(上記従来例では50mm)ため、更なる大容量化を行うことは困難であった。   In recent years, the refrigerator industry has a tendency to reduce the space and increase the capacity, and the internal capacity has increased by about 100 L with the same external dimensions compared to about 10 years ago. This is because the wall thickness has been reduced while eliminating the ineffective space of the refrigerator and improving the heat insulation performance of the box. In order to install up to the position where the vacuum heat insulating material on the inner box side and the outer box side overlap as in the above conventional example, a sufficient wall thickness is required, but the thickness of the vacuum heat insulating material is about 10 mm, Considering the filling thickness of the rigid urethane foam, 40 mm or more is necessary (50 mm in the above conventional example), so it was difficult to further increase the capacity.

また、真空断熱材の重なる位置と重ならない位置での硬質ウレタンフォームの壁厚が一時的に変化するため、流動性が劣り、内外面の変形やボイドの発生といった問題があった。さらに、底面部の内箱側真空断熱材は内箱コーナー部を覆う形状となっているため、底面部内箱と真空断熱材の間の空気によって密着性の劣化を招き、凹み等の変形を招くという問題があった。   Further, since the wall thickness of the rigid urethane foam at the position where the vacuum heat insulating material overlaps and the position where it does not overlap temporarily changes, the fluidity is inferior, and there are problems such as deformation of the inner and outer surfaces and generation of voids. Furthermore, since the inner box side vacuum heat insulating material at the bottom part covers the inner box corner, the air between the inner box on the bottom part and the vacuum heat insulating material causes deterioration of adhesion and causes deformation such as dents. There was a problem.

また、上記従来例では、真空断熱材は硬質ウレタンフォーム内部に存在するものの、真空断熱材の空気に触れる面積が大きいため、使用時の経年経過中に真空断熱材内部に空気が侵入し易く、更に空気侵入した真空断熱材は内部真空度が劣化するため剛性や熱伝導率の低下を招くという問題があった。更に長期使用時に内部真空度の劣化した真空断熱材に入る空気によって、外観への凹み等の変形を招くという問題があった。特に、冷蔵庫は放熱用パイプが冷蔵庫の外箱に配設され、放熱用パイプを覆う様に真空断熱材が貼り付けられる。   In the above conventional example, although the vacuum heat insulating material is present inside the rigid urethane foam, since the area of the vacuum heat insulating material that comes into contact with the air is large, air easily enters the vacuum heat insulating material during the passage of time during use. Furthermore, the vacuum heat insulating material that has entered air has a problem in that the internal vacuum degree is deteriorated, leading to a decrease in rigidity and thermal conductivity. Furthermore, there is a problem in that the air entering the vacuum heat insulating material having a deteriorated internal vacuum degree during long-term use causes deformation such as a dent to the appearance. In particular, in the refrigerator, a heat radiating pipe is disposed in the outer box of the refrigerator, and a vacuum heat insulating material is attached so as to cover the heat radiating pipe.

このとき、真空断熱材は硬質ウレタンフォーム内部となるが、放熱用パイプは硬質ウレタンフォーム外部へと配設されていることと、放熱用パイプ自身を外箱に貼り付ける際のアルミテープにより空気層が生まれるため、外部空気と真空断熱材が直接的、もしくは硬質ウレタンフォームやアルミテープを介して間接的にも接触する。   At this time, the vacuum heat insulating material is inside the rigid urethane foam, but the heat radiating pipe is arranged outside the rigid urethane foam, and the air layer is formed by aluminum tape when the radiating pipe itself is attached to the outer box. Therefore, the external air and the vacuum insulation are in direct contact with each other or indirectly through rigid urethane foam or aluminum tape.

このようなことから、本発明は、上記課題に鑑み、冷蔵庫の箱体強度を向上し、経年劣化によって起こる真空断熱材の空気侵入による外観変形も問題なく、省スペースで大容量の冷蔵庫で且つ、高い断熱性能を有するため省エネ性能の高い冷蔵庫を提供するものである。   Therefore, in view of the above problems, the present invention improves the box strength of the refrigerator, and there is no problem in appearance deformation due to air intrusion of the vacuum heat insulating material caused by aging, and it is a space-saving and large-capacity refrigerator. Therefore, the present invention provides a refrigerator with high energy saving performance because of its high heat insulation performance.

上記従来の課題を解決するために、複数の断熱区画で構成された断熱箱体の本体と、本体を仕切る断熱仕切り部とを備え、複数の温度帯で構成された冷蔵庫で、少なくとも繊維材料を含む芯材と、ガスバリア性に優れた包材からなる袋に真空封止された気体吸着材を備えた真空断熱材を搭載したものであって、気体吸着材は、真空断熱材のうち冷蔵庫の庫内側(内箱側)に配設したものである。   In order to solve the above-described conventional problems, a main body of a heat insulating box body configured by a plurality of heat insulating compartments and a heat insulating partition section that partitions the main body, and a refrigerator configured by a plurality of temperature zones, at least a fiber material And a vacuum heat insulating material provided with a gas adsorbing material vacuum-sealed in a bag made of a packaging material having excellent gas barrier properties, the gas adsorbing material being a refrigerator of the vacuum heat insulating material. It is arranged on the inner side (inner box side).

これによって、気体吸着材が本体内側に配設されているため、空気に触れる影響が低減でき、冷蔵庫を長期に渡り使用した場合でも、真空断熱材に搭載した気体吸着材は外部から侵入してくる空気に接触する可能性が低くなるので、真空断熱材の真空度維持を図ることが出来る。よって、真空断熱材の熱伝導率の経年劣化を防止することが出来る。   As a result, the gas adsorbent is placed inside the main body, so the effects of exposure to air can be reduced, and even when the refrigerator is used for a long period of time, the gas adsorbent mounted on the vacuum heat insulating material penetrates from the outside. Since the possibility of coming into contact with the coming air is reduced, the vacuum degree of the vacuum heat insulating material can be maintained. Therefore, aged deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented.

また、真空断熱材の真空度維持によって、真空断熱材の空気侵入による変形も防止できるため、本体外箱の外観変形も防止できる。   Further, by maintaining the vacuum degree of the vacuum heat insulating material, it is possible to prevent deformation of the vacuum heat insulating material due to air intrusion, and thus it is possible to prevent external deformation of the main body outer box.

また、気体吸着材は真空断熱材のうち冷蔵庫の庫内側(内箱側)に配設したため、本体外箱への凸形状とならず、外観変形も防止できる。   Moreover, since the gas adsorbing material is disposed inside the refrigerator (inner box side) of the vacuum heat insulating material, the gas adsorbing material does not have a convex shape toward the outer box of the main body, and can prevent external deformation.

なお、気体吸着材の効果で低真空度となる真空断熱材は、剛性と熱伝導率が向上される。長期使用時でも低真空度は維持されるため、向上された剛性維持を図ることができ、箱体の強度を向上させることができる。また、強度を維持したままで壁厚の薄壁化を行うことが出来、庫内容量を大きくすることが可能となる。また、壁厚の薄壁化によって、使用する硬質ウレタンフォームの使用量が低減できるとともに製品重量も低減することが出来る。   In addition, the vacuum heat insulating material which becomes a low vacuum degree by the effect of a gas adsorbent improves rigidity and thermal conductivity. Since the low vacuum is maintained even during long-term use, improved rigidity can be maintained, and the strength of the box can be improved. Further, the wall thickness can be reduced while maintaining the strength, and the internal capacity can be increased. Further, by reducing the wall thickness, the amount of rigid urethane foam used can be reduced and the product weight can be reduced.

本発明の冷蔵庫は、真空断熱材に備えられた気体吸着材に外部から空気が侵入する可能性を低減することができるので真空断熱材の真空度維持ができ、真空断熱材の経年劣化防止が図れ、より高品質で省エネ性に優れた冷蔵庫を提供することが出来る。   The refrigerator of the present invention can reduce the possibility of air entering the gas adsorbent provided in the vacuum heat insulating material from the outside, so that the vacuum degree of the vacuum heat insulating material can be maintained and the aging deterioration of the vacuum heat insulating material can be prevented. It is possible to provide a refrigerator with higher quality and energy saving.

また、壁厚の薄壁化によって、使用する硬質ウレタンフォームの使用量も低減できるとともに製品重量も低減することが出来るので、省資源で環境に配慮した冷蔵庫を提供することが可能となる。   Further, by reducing the wall thickness, the amount of hard urethane foam used can be reduced and the product weight can be reduced. Therefore, it is possible to provide a resource-saving and environment-friendly refrigerator.

本発明の実施の形態1における冷蔵庫の斜視図The perspective view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の正面断面図Front sectional view of the refrigerator according to Embodiment 1 of the present invention. 本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における気体吸着材を適用した真空断熱材の断面図Sectional drawing of the vacuum heat insulating material which applied the gas adsorbent in Embodiment 1 of this invention 本発明の実施の形態1における図1のA−A‘断面図1 is a cross-sectional view taken along line A-A ′ of FIG. 1 in Embodiment 1 of the present invention. 本発明の実施の形態1における気体吸着材を適用した真空断熱材の経年劣化イメージ図Aged deterioration image diagram of the vacuum heat insulating material to which the gas adsorbent in Embodiment 1 of the present invention is applied 本発明の実施の形態1における真空断熱材の気体吸着材配置図Arrangement diagram of gas adsorbent of vacuum heat insulating material in Embodiment 1 of the present invention 本発明の実施の形態2における冷蔵庫の斜視図The perspective view of the refrigerator in Embodiment 2 of this invention 本発明の実施の形態2における冷蔵庫の正面断面図Front sectional drawing of the refrigerator in Embodiment 2 of this invention 従来技術の特許文献1による冷蔵庫を説明する冷蔵庫の側面断面図Side surface sectional view of a refrigerator for explaining a refrigerator according to Patent Document 1 of the prior art 従来技術の特許文献2による冷蔵庫を説明する冷蔵庫の正面断面図Front sectional view of a refrigerator for explaining a refrigerator according to Patent Document 2 of the prior art

第1の発明は、真空断熱材を備えた断熱箱体の本体と、本体を仕切る断熱仕切り部を備え、複数の温度帯で構成された冷蔵庫であって、真空断熱材は、少なくとも繊維材料を含む芯材と、ガスバリア性に優れた包材からなる袋に真空封止された気体吸着材を備えた真空断熱材を搭載し、且つ、気体吸着材は、真空断熱材のうち冷蔵庫の庫内側(内箱側)に配設したものである。   1st invention is the refrigerator comprised with the main body of the heat insulation box provided with the vacuum heat insulating material, and the heat insulation partition part which partitions off a main body, and was comprised by the several temperature zone, Comprising: A vacuum heat insulating material is a fiber material at least. A vacuum heat insulating material having a gas adsorbing material vacuum-sealed in a bag made of a packaging material having excellent gas barrier properties and a core material including the gas adsorbing material is mounted inside the refrigerator inside the vacuum heat insulating material. (Inner box side).

これにより、本体内側に配設されて空気に触れる影響が低減される気体吸着材は、冷蔵庫を長期に渡り使用した場合でも、真空断熱材に外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図ることができ、真空断熱材の熱伝導率の劣化を防止することが出来る。   As a result, the gas adsorbent that is disposed inside the main body and reduces the influence of exposure to air continues to adsorb air that enters the vacuum heat insulating material from the outside even when the refrigerator is used for a long time. Since it can be performed, the degree of vacuum of the vacuum heat insulating material can be maintained, and the deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented.

さらに、気体吸着材が真空断熱材よりも出っ張る場合でも、本体外箱への凸形状とならず、外観変形も防止できる。   Furthermore, even when the gas adsorbing material protrudes more than the vacuum heat insulating material, it does not have a convex shape to the main body outer box, and appearance deformation can be prevented.

また、低真空度に維持される真空断熱材の空気侵入による変形も防止できるため、本体外箱の外観変形も防止できる。   Moreover, since the deformation | transformation by the air penetration | invasion of the vacuum heat insulating material maintained at a low vacuum degree can be prevented, the external appearance deformation | transformation of a main body outer box can also be prevented.

第2の発明は、真空断熱材に備えられた気体吸着材の配置は、真空断熱材のうち、空気抜き部の末端位置に搭載したものである。   In the second invention, the arrangement of the gas adsorbent provided in the vacuum heat insulating material is mounted at the end position of the air vent portion in the vacuum heat insulating material.

真空断熱材は、例えば厚さ5mmのシート状グラスウール集合体を140℃で1時間乾燥した後、外被材中に挿入し、内部を真空引きして開口部を封止することにより形成されている。真空断熱材の精製工程の中で、真空断熱材は4辺の内、3辺を封止し、内部に芯材を入れた後、残る1辺から周囲を低圧にした環境の中で真空断熱材内部の圧力を下げた上で残る1辺を封止する。このとき、真空断熱材の内部は低圧となっているが、低圧の状態では空気の粘性状態が変化し、真空断熱材の外被材入口部分と封止されている末端部分では空気の粗密状態が変わる。即ち、外被材入口部分では空気が疎となり、末端部分では密の状態となる。   The vacuum heat insulating material is formed by, for example, drying a sheet-like glass wool aggregate having a thickness of 5 mm at 140 ° C. for 1 hour, and then inserting it into the outer cover material, and evacuating the inside to seal the opening. Yes. In the process of refining the vacuum insulation material, the vacuum insulation material is sealed in 3 out of 4 sides, and after the core material is put inside, the vacuum insulation is performed in the environment where the surrounding area is low pressure from the remaining 1 side. The remaining side is sealed after reducing the pressure inside the material. At this time, the inside of the vacuum heat insulating material is at a low pressure, but the viscosity state of the air changes in the low pressure state, and the air is dense and dense in the outer sheath material inlet portion and the sealed end portion of the vacuum heat insulating material. Changes. That is, the air is sparse at the jacket material inlet portion and is dense at the end portion.

これにより、真空断熱材に備えられた気体吸着材の配置を外被材の末端位置に搭載することで、残留空気も吸着できるため、より、真空度の高い真空断熱材を精製することが出来る。   Thereby, since the residual air can also be adsorbed by mounting the gas adsorbing material provided in the vacuum heat insulating material at the end position of the jacket material, it is possible to refine the vacuum heat insulating material with a higher degree of vacuum. .

第3の発明は、真空断熱材に備えられた気体吸着材の量は、真空断熱材の寸法に対して、1mあたり60g以上としたものである。 In the third invention, the amount of the gas adsorbent provided in the vacuum heat insulating material is 60 g or more per 1 m 3 with respect to the dimension of the vacuum heat insulating material.

これにより、寸法面積の大きく、空気に触れる面積の大きい真空断熱材においても、冷蔵庫の平均使用期間である10年の間であれば真空断熱材に搭載した気体吸着材は外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図ることが出来る。よって、真空断熱材の熱伝導率の劣化を防止することが出来る。   As a result, even in a vacuum heat insulating material having a large dimensional area and a large area that comes into contact with air, the gas adsorbent mounted on the vacuum heat insulating material enters from the outside if the average usage period of the refrigerator is 10 years. Since the air can be continuously adsorbed, the vacuum degree of the vacuum heat insulating material can be maintained. Therefore, deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented.

また、真空断熱材の真空度維持によって、真空断熱材の空気侵入による変形も防止できるため、本体外箱の外観変形も防止できる。   Further, by maintaining the vacuum degree of the vacuum heat insulating material, it is possible to prevent deformation of the vacuum heat insulating material due to air intrusion, and thus it is possible to prevent external deformation of the main body outer box.

以下、本発明の実施の形態について、図面を参照しながら説明する。また、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Further, the present invention is not limited to the embodiments.

なお、従来と同一構成及び差異がない部分については、詳細な説明を省略する。また、この実施の形態によってこの発明が限定されるものではない。   Note that detailed descriptions of parts that are the same as those in the conventional configuration and that have no difference are omitted. Further, the present invention is not limited to the embodiments.

(実施の形態1)
以下、本発明の実施の形態について図面を用いて詳細に説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施の形態1による冷蔵庫の斜視図である。図2は本発明の実施の形態1による冷蔵庫の正面断面図である。図3は本発明の実施の形態1による冷蔵庫の縦断面図である。   FIG. 1 is a perspective view of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a front sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 3 is a longitudinal sectional view of the refrigerator according to the first embodiment of the present invention.

図1から図3に示すように、冷蔵庫の本体101は、前方に開口する金属製(例えば鉄板)の外箱124と硬質樹脂製(例えばABS)の内箱125と、外箱124と内箱125の間に発泡充填された硬質ウレタンフォーム126からなる断熱箱体で、この本体101の上部に設けられた冷蔵室102と、冷蔵室102の下に設けられた上段冷凍室103と、冷蔵室102の下で上段冷凍室103に並列に設けられた製氷室104と、本体下部に設けられた野菜室106と、並列に設置された上段冷凍室103及び製氷室104と野菜室106の間に設けられた下段冷凍室105で構成されている。   As shown in FIGS. 1 to 3, the main body 101 of the refrigerator includes a metal (for example, iron plate) outer box 124, a hard resin (for example, ABS) inner box 125, an outer box 124, and an inner box that open forward. 125 is a heat insulating box made of rigid urethane foam 126 filled with foam between 125, a refrigerator compartment 102 provided above the main body 101, an upper freezer compartment 103 provided under the refrigerator compartment 102, and a refrigerator compartment An ice making chamber 104 provided in parallel to the upper freezing chamber 103 under the 102, a vegetable chamber 106 provided in the lower part of the main body, and between the upper freezing chamber 103 and the ice making chamber 104 and the vegetable chamber 106 installed in parallel. The lower freezer room 105 is provided.

上段冷凍室103と製氷室104と下段冷凍室105と野菜室106の前面部はそれぞれに対応した引き出し式の扉103a,104a,105a,106aにより開閉自由に閉塞されると共に、冷蔵室102の前面は、例えば観音開き式で回転式の扉102aにより開閉自由に閉塞される。   Front portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are freely opened and closed by corresponding drawer doors 103a, 104a, 105a, 106a, and the front surface of the refrigerator compartment 102. For example, the door can be freely opened and closed by a double door and a rotary door 102a.

冷蔵室102は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。野菜室106は冷蔵室102と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。上段冷凍室103と下段冷凍室105は冷凍保存のために通常−22から−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30から−25℃の低温で設定されることもある。   The refrigerator compartment 102 is normally set at 1 to 5 ° C. with the temperature that does not freeze for refrigerated storage as the lower limit. The vegetable room 106 is often set to a temperature setting of 2 ° C. to 7 ° C. that is the same as or slightly higher than that of the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time. The upper freezing chamber 103 and the lower freezing chamber 105 are normally set at −22 to −18 ° C. for frozen storage, but are set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state. Sometimes.

冷蔵室102や野菜室106は庫内をプラス温度で設定されるので、冷蔵温度帯を呼ばれる。また、上段冷凍室103や下段冷凍室105や製氷室104は庫内をマイナス温度で設定されるので、冷凍温度帯を呼ばれる。また、上段冷凍室103は切替室として、冷蔵温度帯から冷凍温度帯まで選択可能な部屋としても良い。   The refrigerator compartment 102 and the vegetable compartment 106 are called a refrigerator temperature zone because the inside of the refrigerator is set at a plus temperature. The upper freezer compartment 103, the lower freezer compartment 105, and the ice making room 104 are called freezing temperature zones because the interior is set at a minus temperature. Further, the upper freezer compartment 103 may be a switching room that can be selected from a refrigeration temperature zone to a freezing temperature zone.

冷蔵庫の本体101の天面部は、冷蔵庫の背面方向に向かって階段状に凹みを設けて機械室119があり、第一の天面部108と第二の天面部109で構成されている。この階段状の凹部に配置された圧縮機117と、水分除去を行うドライヤ(図示せず)と、コンデンサ(図示せず)と、放熱用の放熱パイプ143と、キャピラリーチューブ118と、冷却器107とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。前記冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室内に配設することも出来る。   The top surface portion of the main body 101 of the refrigerator is provided with a machine room 119 provided with a dent in a step-like shape toward the back surface of the refrigerator, and includes a first top surface portion 108 and a second top surface portion 109. The compressor 117 disposed in the stepped recess, a dryer (not shown) for removing moisture, a condenser (not shown), a heat radiating pipe 143, a capillary tube 118, and a cooler 107 The refrigerant is sealed in a refrigeration cycle in which the above are sequentially connected in an annular manner, and a cooling operation is performed. In recent years, a flammable refrigerant is often used as the refrigerant for environmental protection. In the case of a refrigeration cycle using a three-way valve or a switching valve, these functional parts can be arranged in the machine room.

ここで、真空断熱材127,128,129,130,131は、硬質ウレタンフォーム126とともに冷蔵庫の本体101を構成している。   Here, the vacuum heat insulating materials 127, 128, 129, 130, and 131 constitute the refrigerator main body 101 together with the hard urethane foam 126.

ここで、真空断熱材127,128,129,130は、外箱124にそれぞれ天面、背面、左側面、右側面の内側に接して貼り付けられている。また、真空断熱材131は、内箱125の底面に接して貼り付けられている。   Here, the vacuum heat insulating materials 127, 128, 129, and 130 are attached to the outer box 124 in contact with the inside of the top surface, the back surface, the left side surface, and the right side surface, respectively. The vacuum heat insulating material 131 is attached in contact with the bottom surface of the inner box 125.

真空断熱材128,129,130には、気体吸着材137がそれぞれ内部に搭載されており、真空断熱材128,129,130の気体吸着材は、中心よりも庫内側(内箱側
)に配設されている。
The vacuum heat insulating materials 128, 129, and 130 each have a gas adsorbing material 137 mounted therein, and the gas adsorbing materials of the vacuum heat insulating materials 128, 129, and 130 are arranged on the inner side (inner box side) than the center. It is installed.

また、冷蔵室102と製氷室104および上段冷凍室103とは第一の断熱仕切り部110で区画されている。   The refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110.

また、製氷室104と上段冷凍室103とは第二の断熱仕切り部111で区画されている。   Further, the ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111.

また、製氷室104および上段冷凍室103と、下段冷凍室105とは第三の断熱仕切り部112で区画されている。   In addition, the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.

第二の断熱仕切り部111および第三の断熱仕切り部112は、冷蔵庫の本体101の発泡後組み立てられる部品であるため、通常断熱材として発泡ポリスチレンが使われるが、断熱性能や剛性を向上させるために硬質ウレタンフォームを用いてもよく、更には高断熱性の真空断熱材を挿入して、仕切り構造のさらなる薄型化を図ってもよい。   Since the second heat insulating partition part 111 and the third heat insulating partition part 112 are parts assembled after foaming of the main body 101 of the refrigerator, foamed polystyrene is usually used as a heat insulating material, but in order to improve heat insulating performance and rigidity. Rigid urethane foam may be used, and a highly heat-insulating vacuum heat insulating material may be inserted to further reduce the partition structure.

また、ドアフレームの稼動部を確保して第二の断熱仕切り部111および第三の断熱仕切り部112の形状の薄型化や廃止を行うことで、冷却風路を確保でき冷却能力の向上を図ることもできる。また、第二の断熱仕切り部111および第三の断熱仕切り部112の内部をくりぬき、風路とすることで材料の低減につながる。   In addition, by securing the operating part of the door frame and thinning or eliminating the shapes of the second heat insulating partition part 111 and the third heat insulating partition part 112, a cooling air passage can be secured and the cooling capacity can be improved. You can also. Moreover, the inside of the 2nd heat insulation partition part 111 and the 3rd heat insulation partition part 112 is hollowed, and it leads to reduction of material by setting it as an air path.

また、下段冷凍室105と野菜室106とは第四の仕切り部113で区画されている。   Further, the lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth partition 113.

冷蔵庫の本体101の背面には冷却室123が設けられ、冷却室123内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する冷却器107が断熱仕切壁である第二および第三の仕切り部111,112の後方領域を含めて下段冷凍室105の背面に上下方向に縦長に配設されている。また、冷却器107の材質は、アルミや銅が用いられる。   A cooling chamber 123 is provided on the rear surface of the main body 101 of the refrigerator. In the cooling chamber 123, a cooler 107 that generates fin-and-tube type cool air is typically a second and third heat insulating partition wall. The rear part of the lower freezer compartment 105 including the rear area of the partition parts 111 and 112 is vertically arranged in the vertical direction. The material of the cooler 107 is aluminum or copper.

冷却器107の近傍(例えば上部空間)には強制対流方式により冷蔵室102、製氷室104、上段冷凍室103、下段冷凍室105、野菜室106の各貯蔵室に冷却器107で生成した冷気を送風する冷気送風ファン116が配置され、冷却器107の下部空間には冷却時に冷却器107や冷気送風ファン116に付着する霜を除霜する除霜装置としてのガラス管製のラジアントヒータ136が設けられている。除霜装置は特に指定するものではなく、ラジアントヒータの他に、冷却器107に密着したパイプヒータを用いても良い。   In the vicinity of the cooler 107 (for example, the upper space), the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method. A cool air blowing fan 116 for blowing air is disposed, and a radiant heater 136 made of glass tube is provided in a lower space of the cooler 107 as a defrosting device for defrosting the frost adhering to the cooler 107 and the cold air blowing fan 116 during cooling. It has been. The defroster is not particularly specified, and a pipe heater in close contact with the cooler 107 may be used in addition to the radiant heater.

次に冷蔵庫の冷却について説明する。例えば冷凍室106が外気からの侵入熱およびドア開閉などにより、庫内温度が上昇して冷凍室センサ(図示せず)が起動温度以上になった場合に、圧縮機117が起動し冷却が開始される。圧縮機117から吐出された高温高圧の冷媒は、最終的に機械室119に配置されたドライヤ(図示せず)まで到達する間、特に外箱124に設置される放熱パイプ143において、外箱124の外側の空気や庫内の硬質ウレタンフォーム126との熱交換により、冷却されて液化する。   Next, cooling of the refrigerator will be described. For example, when the freezer compartment 106 rises in temperature due to intrusion heat from outside air and door opening / closing, and the freezer compartment sensor (not shown) reaches the start temperature or higher, the compressor 117 is started and cooling is started. Is done. While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, the outer casing 124 particularly in the heat radiating pipe 143 installed in the outer casing 124. It is cooled and liquefied by heat exchange with the outside air and the hard urethane foam 126 in the cabinet.

次に液化した冷媒はキャピラリーチューブ118で減圧されて、冷却器107に流入し冷却器107周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン116により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮器117に戻る。庫内が冷却されて冷凍室センサ(図示せず)の温度が停止温度以下になった場合に圧縮機117の運転が停止する。   Next, the liquefied refrigerant is depressurized by the capillary tube 118, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107. The cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet. Thereafter, the refrigerant is heated and gasified, and returns to the compressor 117. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.

冷気送風ファン116は、内箱125に直接配設されることもあるが、発泡後に組み立てられる第二の仕切り部111に配設し、部品のブロック加工を行うことで製造コストの低減を図ることもできる。   Although the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second partition portion 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also.

次に、本実施の形態で使用した気体吸着材137を用いた真空断熱材について説明する。   Next, the vacuum heat insulating material using the gas adsorbent 137 used in the present embodiment will be described.

図4のように、気体吸着材137を用いた真空断熱材138は、少なくとも繊維材料を含む芯材132と、ガスバリア性に優れた包材133からなる袋に真空封止された気体吸着材137とを、ガスバリア性に優れた外被材135で被い、外被材135を真空封止後に、包材133に穴を開け、包材内部と外被材内部を連通させてなる真空断熱材である。   As shown in FIG. 4, the vacuum heat insulating material 138 using the gas adsorbing material 137 is a gas adsorbing material 137 vacuum-sealed in a bag made of a core material 132 containing at least a fiber material and a packaging material 133 having excellent gas barrier properties. Is covered with a jacket material 135 having excellent gas barrier properties, and after vacuum-sealing the jacket material 135, a hole is formed in the packaging material 133 so that the inside of the packaging material and the inside of the coating material are communicated. It is.

上記のように外被材135を真空封止後に包材133に穴を開ける際に、本実施の形態においては、予め包材133に隣接して突起物を有する部材134を有する部材134を外被材135に内包しておき、真空封止後に外力によって突起物を有する部材134を押すことで包材133に穴を開けている。   As described above, when a hole is made in the packaging material 133 after vacuum-sealing the outer packaging material 135, in this embodiment, the member 134 having the member 134 having a protrusion is adjacent to the packaging material 133 in advance. A hole is made in the packaging material 133 by enclosing it in the material 135 and pressing the member 134 having projections by external force after vacuum sealing.

繊維材料を含む芯材132とは、芯材132の重量に対して繊維を1パーセント以上100パーセント以下含むものであって、繊維材料と繊維材料以外の複合体であっても良い。   The core material 132 including the fiber material includes fibers of 1% to 100% with respect to the weight of the core material 132, and may be a composite other than the fiber material and the fiber material.

ガスバリア性に優れた包材133とは、気体難透過性の製袋可能なフィルムまたはシート状の部材である。例えば、ポリプロピレンフィルム、アルミニウム箔、低密度ポリエチレンの順にラミネートしたフィルムなどがあげられる。   The packaging material 133 having excellent gas barrier properties is a film or sheet-like member that is difficult to gas and can be produced. For example, a film in which a polypropylene film, an aluminum foil, and a low density polyethylene are laminated in this order can be used.

また、袋とは気体吸着材137を包み込むことにより、周囲の空間と独立させるものであり、4方をヒートシールした袋、ピロー袋、ガゼット袋等がある。また、気体透過度が10[cm/m・day・atm]以下であることが好ましく、より望ましくは10[cm/m・day・atm]以下となるものである。 Further, the bag is one that encloses the gas adsorbing material 137 so as to be independent of the surrounding space, and includes a bag heat-sealed on four sides, a pillow bag, a gusset bag, and the like. Further, the gas permeability is preferably 10 4 [cm 3 / m 2 · day · atm] or less, and more preferably 10 3 [cm 3 / m 2 · day · atm] or less.

気体吸着材137とは、気体中に含まれる非凝縮性気体を吸着できるものであり、アルカリ金属やアルカリ土類金属の酸化物や、アルカリ金属やアルカリ土類金属の水酸化物等が利用でき、特に、酸化リチウム、水酸化リチウム、酸化バリウム、水酸化バリウム等がある。これによって、空気中の概ね75%を有する窒素を常温状態で吸着できるため、高い真空度を得ることが出来る。   The gas adsorbent 137 can adsorb a non-condensable gas contained in a gas, and an alkali metal or alkaline earth metal oxide, an alkali metal or alkaline earth metal hydroxide, or the like can be used. In particular, there are lithium oxide, lithium hydroxide, barium oxide, barium hydroxide and the like. Accordingly, nitrogen having approximately 75% in the air can be adsorbed at room temperature, so that a high degree of vacuum can be obtained.

突起物を有する部材134とは、周囲の曲率に比較して、曲率が著しく大きい部分を有するものである。曲率が大きい部分は、同一の力をより小さい面積で受けるため、単位面積あたりに加わる力が大きくなる。従って曲率が大きい部分が包材133に押し付けられた際、包材133に貫通孔が生じやすくなる。   The member 134 having protrusions has a portion having a remarkably large curvature as compared with the surrounding curvature. Since the portion having a large curvature receives the same force in a smaller area, the force applied per unit area increases. Therefore, when a portion having a large curvature is pressed against the packaging material 133, a through hole is likely to be generated in the packaging material 133.

ガスバリア性に優れた外被材135とは、芯材132、包材133、気体吸着材137、突起物を有する部材134を包み込むことにより、周囲の空間と独立させるものである。また、気体透過度が10[cm/m・day・atm]以下であることが好ましく、より望ましくは10[cm/m・day・atm]以下となるものである。 The jacket material 135 having excellent gas barrier properties is to be independent of the surrounding space by wrapping the core material 132, the packaging material 133, the gas adsorbing material 137, and the member 134 having protrusions. Further, the gas permeability is preferably 10 4 [cm 3 / m 2 · day · atm] or less, and more preferably 10 3 [cm 3 / m 2 · day · atm] or less.

穴を開ける方法は、突起物が外被材135に接触することによりなされるものである。   The method of making a hole is made by the protrusion contacting the outer jacket material 135.

なお、穴を開ける方法として、本実施の形態では突起物を用いたが、突起物や部材134を用いなくても、たとえば包材133の剛性の弱い箇所やシール部を破壊するといった
こと等で、外被材135の真空封止後に外力によって、包材133を破壊できれば良い。
In this embodiment, a protrusion is used as a method for making a hole, but without using the protrusion or the member 134, for example, a portion having a low rigidity or a sealing portion of the packaging material 133 is destroyed. It suffices that the packaging material 133 can be destroyed by an external force after the envelope material 135 is vacuum sealed.

連通とは、包材内部と包材外部で隔てられていた空間を一続きの空間にすることである。   The term “communication” means that a space separated between the inside of the packaging material and the outside of the packaging material is made into a continuous space.

なお、繊維材料を含む芯材を用いて作製した真空断熱材の熱伝導率は、粉末材料のみからなる芯材を用いて作製した真空断熱材の熱伝導率に比較して、低圧力領域では小さく、高圧力領域では大きい。従って、繊維材料を含む芯材を用いて作製した真空断熱材はその外被材内部の圧力を低く維持することが重要である。   In addition, the thermal conductivity of the vacuum heat insulating material produced using the core material containing the fiber material is lower in the low pressure region than the heat conductivity of the vacuum heat insulating material produced using the core material made only of the powder material. Small and large in high pressure range. Therefore, it is important that the vacuum heat insulating material produced using the core material containing the fiber material keeps the pressure inside the outer jacket material low.

なお、本実施の形態で使用した気体吸着材137を用いた真空断熱材138は、外被材内に気体吸着材137を有しているため、外被材内部は圧力が低く維持され、繊維材料を含む芯材132を用いた真空断熱材の熱伝導率は低く維持される。よって、外被材内部の圧力が低く維持されるため、剛性も強くなるのである。   In addition, since the vacuum heat insulating material 138 using the gas adsorbent 137 used in the present embodiment has the gas adsorbent 137 in the jacket material, the pressure inside the jacket material is kept low, and the fiber The thermal conductivity of the vacuum heat insulating material using the core material 132 containing the material is kept low. Therefore, since the pressure inside the jacket material is kept low, the rigidity is also increased.

一般に、真空断熱材の熱伝導率は、芯材による熱伝導と、外被材内の残留ガスによる熱伝導の和により決定する。例えば、芯材が粉末を含む場合は、芯材内部に存在する気体の平均自由工程が短いため、気体による熱伝導率は非常に小さく、芯材による熱伝導が支配的である。一方、芯材が繊維の場合は、繊維同士の接点が少ないため、芯材の熱伝導率は非常に小さくなるが、気体の平均自由工程が大きいため、わずかな圧力上昇で、気体による熱伝導率が支配的になってしまう。従って、芯材が繊維のみからなるときは、このような効果が大きいため繊維芯材では外被材内部を低圧に保つことが、真空断熱材の熱伝導率を低減するために非常に有効な手段となる。   Generally, the thermal conductivity of the vacuum heat insulating material is determined by the sum of the heat conduction by the core material and the heat conduction by the residual gas in the jacket material. For example, when the core material contains powder, the mean free path of the gas existing inside the core material is short, so that the thermal conductivity by the gas is very small, and the heat conduction by the core material is dominant. On the other hand, when the core material is a fiber, the thermal conductivity of the core material is very small because there are few contact points between the fibers, but since the mean free path of the gas is large, the heat conduction by the gas with a slight pressure increase The rate becomes dominant. Therefore, when the core material is composed only of fibers, such an effect is large, and therefore, in the fiber core material, keeping the inside of the jacket material at a low pressure is very effective for reducing the thermal conductivity of the vacuum heat insulating material. It becomes a means.

ここで、繊維集合体とは、繊維のみからなる集合体であって、バインダーや酸、熱等で成型されていても良い。   Here, the fiber aggregate is an aggregate composed only of fibers, and may be molded with a binder, acid, heat, or the like.

なお、真空断熱材は、内部に芯材を有しており、芯材はグラスウールなどの無機繊維集合体を加熱乾燥後、蒸着層フィルムと金属箔層フィルムを貼り合わせた外被材中に挿入し、内部を真空引きして開口部を封止することにより形成されている。   In addition, the vacuum heat insulating material has a core material inside, and the core material is inserted into a jacket material in which a vapor deposition layer film and a metal foil layer film are bonded together after heating and drying an inorganic fiber aggregate such as glass wool. The opening is sealed by vacuuming the inside.

蒸着層フィルムは、アルミ蒸着フィルムをナイロンフィルムと高密度ポリエチレンフィルムとで挟み込んだ複合プラスチックフィルムで、金属箔層フィルムは、アルミ箔をナイロンフィルムと高密度ポリエチレンフィルムとで挟み込んだ複合プラスチックフィルムである。   The vapor deposition layer film is a composite plastic film in which an aluminum vapor deposition film is sandwiched between a nylon film and a high density polyethylene film, and the metal foil layer film is a composite plastic film in which an aluminum foil is sandwiched between a nylon film and a high density polyethylene film. .

また、蒸着層フィルムと金属箔層フィルムとのシール面は蒸着層フィルム側を一平面状とし、金属箔層フィルム側の面を立体的に構成している。そして、蒸着層フィルム側を外箱124もしくは内箱125に接して配置している。   Moreover, the sealing surface of a vapor deposition layer film and a metal foil layer film makes the vapor deposition layer film side into one plane shape, and comprises the surface on the metal foil layer film side in three dimensions. And the vapor deposition layer film side is arranged in contact with the outer box 124 or the inner box 125.

以上のように構成された冷蔵庫について、以下その動作、作用について説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

本実施の形態のように、野菜室106が下方に設置され、真ん中に冷凍室105が設置され、冷蔵室102が上方に設置された冷蔵庫のレイアウト構成が使い勝手と省エネの観点からよく用いられている。また、圧縮機117を天面奥部に配設した構成の冷蔵庫も、使い勝手の観点と庫内容量UPの点から用いられる。近年では更に、省エネとして環境への取り組みの中で、硬質ウレタンフォーム126と比較して数倍から10倍程度の断熱性能を有する真空断熱材を適切な範囲内で最大限に利用することにより断熱性能や強度を向上させている冷蔵庫も発売されている。   As in this embodiment, the layout structure of the refrigerator in which the vegetable compartment 106 is installed below, the freezer compartment 105 is installed in the middle, and the refrigerator compartment 102 is installed above is often used from the viewpoint of usability and energy saving. Yes. In addition, a refrigerator having a configuration in which the compressor 117 is disposed at the back of the top surface is also used from the viewpoint of ease of use and the capacity of the refrigerator. In recent years, as an energy-saving measure, the heat insulation performance is maximized within an appropriate range by using a vacuum insulation material having a heat insulation performance several times to 10 times that of the rigid urethane foam 126. Refrigerators with improved performance and strength are also on the market.

その中で、本実施の形態では、少なくとも繊維材料を含む芯材132と、ガスバリア性に優れた包材133からなる袋に真空封止された気体吸着材137を備えた真空断熱材138で、且つ、気体吸着材137を真空断熱材のうち冷蔵庫の庫内側(内箱側)に配設したものである。   Among them, in this embodiment, a vacuum heat insulating material 138 including a core material 132 containing at least a fiber material and a gas adsorbing material 137 vacuum-sealed in a bag made of a packaging material 133 excellent in gas barrier properties, And the gas adsorbent 137 is arrange | positioned among the vacuum heat insulating materials inside the refrigerator inner side (inner box side).

これにより、本体101の内側に配設されて空気に触れる影響が低減される気体吸着材137は、冷蔵庫を長期に渡り使用した場合でも、真空断熱材に外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図ることができ、真空断熱材の熱伝導率の劣化を防止することが出来る。   As a result, the gas adsorbent 137 that is disposed inside the main body 101 and reduces the influence of exposure to air can adsorb air entering the vacuum heat insulating material from the outside even when the refrigerator is used for a long time. Since it can be performed continuously, the degree of vacuum of the vacuum heat insulating material can be maintained, and deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented.

ここで図5は本実施の形態における図1のA−A‘断面図である。   FIG. 5 is a cross-sectional view taken along the line A-A ′ of FIG. 1 in the present embodiment.

放熱パイプ143は、図5のように、冷蔵庫の本体101の外箱124の内側に配置されアルミテープ145により固定される。アルミテープ145は、硬質ウレタンフォーム126の充填される外箱124と内箱125の内部から外部へと配設される。つまり、アルミテープ145内の空気は外部と連通となっている。これは、冷蔵庫の製造工程で硬質ウレタンフォーム126を発泡する際に発生する熱によりアルミテープ145内に存在する空気が膨張し、その圧力によって外箱124が変形するのを防止するためである。   As shown in FIG. 5, the heat radiating pipe 143 is disposed inside the outer box 124 of the main body 101 of the refrigerator and is fixed by an aluminum tape 145. The aluminum tape 145 is arranged from the inside of the outer box 124 and the inner box 125 filled with the hard urethane foam 126 to the outside. That is, the air in the aluminum tape 145 communicates with the outside. This is to prevent the air present in the aluminum tape 145 from expanding due to the heat generated when foaming the rigid urethane foam 126 in the manufacturing process of the refrigerator, and the outer box 124 from being deformed by the pressure.

そのため、真空断熱材は硬質ウレタンフォーム126の内部となるが、放熱用パイプ143は硬質ウレタンフォーム126の外部へと配設されていることと、放熱用パイプ143自身を外箱124に貼り付ける際のアルミテープ145により空気層が生まれるため、外部空気と真空断熱材が直接的、もしくは硬質ウレタンフォーム126やアルミテープ145を介して間接的にも接触するのである。このため、冷蔵庫を長期に渡り使用した際に、少なからず空気に触れている真空断熱材は時間経過からの変化とともに、外部から侵入してくる空気の影響を受け、内部真空度が劣化し膨張すると共に、冷蔵庫外箱124への外観変形を及ぼすのである。   Therefore, the vacuum heat insulating material is inside the hard urethane foam 126, but the heat radiating pipe 143 is disposed outside the hard urethane foam 126, and when the heat radiating pipe 143 itself is attached to the outer box 124. Since an air layer is formed by the aluminum tape 145, the external air and the vacuum heat insulating material are in direct contact or indirectly through the hard urethane foam 126 and the aluminum tape 145. For this reason, when the refrigerator is used for a long period of time, the vacuum insulation material that is in contact with air is affected by the air entering from the outside as time passes, and the degree of internal vacuum deteriorates and expands. In addition, the appearance of the refrigerator outer box 124 is deformed.

本実施の形態に用いた気体吸着材137は、空気中の概ね75%程度の割合で存在する窒素を、常温でも吸着することが出来るため、真空断熱材内部の残留空気を低減でき、真空断熱材の真空度の向上や剛性の向上が図れ、熱伝導率の低減を行える。よって、従来の真空断熱材での真空度よりも、残留空気中に多く含まれる窒素を常温吸着することで真空断熱材の真空度を高めている。通常、大気圧は100KPa、真空断熱材の真空度は10Pa程度であるが、本実施の形態に用いた気体吸着材137を用いた真空断熱材は1Pa程度の低真空度である。   Since the gas adsorbent 137 used in the present embodiment can adsorb nitrogen present at a rate of approximately 75% in the air even at room temperature, the residual air inside the vacuum heat insulator can be reduced, and vacuum heat insulation can be achieved. The degree of vacuum and rigidity of the material can be improved, and the thermal conductivity can be reduced. Therefore, the vacuum degree of the vacuum heat insulating material is increased by adsorbing nitrogen contained in the residual air at a room temperature more than the vacuum degree of the conventional vacuum heat insulating material. Normally, the atmospheric pressure is 100 KPa and the vacuum insulation material has a vacuum degree of about 10 Pa, but the vacuum insulation material using the gas adsorbent 137 used in the present embodiment has a low vacuum degree of about 1 Pa.

また、気体吸着材137は真空封止後も外被からの空気侵入分を継続して吸着することが出来るため、真空断熱材の時間経過からの空気侵入によって起こる熱伝導率の経年劣化に対する性能低下の抑制も可能となり、長期にわたり高断熱性能を維持することができる。   In addition, since the gas adsorbent 137 can continuously adsorb the air intrusion from the jacket even after vacuum sealing, the performance against the aging deterioration of the thermal conductivity caused by the air intrusion from the time passage of the vacuum heat insulating material. Reduction can be suppressed, and high heat insulation performance can be maintained over a long period of time.

図6は真空断熱材の熱伝導率の経年劣化のイメージ図である。図6のように、真空断熱材は時間経過からの変化によって空気の侵入があるため、使用期間と共に熱伝導率が低下していく。その中で、気体吸着材137を用いることにより、空気の侵入による劣化までの時間が長い気体吸着材137を用いた真空断熱材(D)は従来の真空断熱材(C)に比べ実使用時の経年劣化が抑えられ、長期にわたり高性能を維持することが可能となる。これによって、真空断熱材として初期状態での性能を概ね10年間維持することができるため、省エネランニングコストとして非常にパフォーマンスの優れた省エネ性能を提供できる。   FIG. 6 is an image diagram of aged deterioration of the thermal conductivity of the vacuum heat insulating material. As shown in FIG. 6, since the vacuum heat insulating material has air intrusion due to a change from the passage of time, the thermal conductivity decreases with the period of use. Among them, by using the gas adsorbing material 137, the vacuum heat insulating material (D) using the gas adsorbing material 137 having a long time until deterioration due to the invasion of air is more practical than the conventional vacuum heat insulating material (C). It is possible to suppress deterioration over time and maintain high performance over a long period of time. As a result, since the performance in the initial state as a vacuum heat insulating material can be maintained for about 10 years, it is possible to provide energy saving performance with very excellent performance as an energy saving running cost.

本実施の形態に使用した気体吸着材137は、図6中の経過年数のB時点を考慮し、冷蔵庫の製品使用期間が概ね10年と考え、内容量を選定している。気体吸着材1つ当たり内容量は0.5g程度であり、少なくとも10年間は真空断熱材の初期性能を維持できるようにしている。   The gas adsorbent 137 used in the present embodiment considers the time point B of the elapsed years in FIG. 6 and considers that the product use period of the refrigerator is approximately 10 years, and selects the internal capacity. The internal capacity per gas adsorbent is about 0.5 g, so that the initial performance of the vacuum heat insulating material can be maintained for at least 10 years.

なお、気体吸着材137の内容量を多くすれば、経過年数B時点を更に延ばすことが出来る。   In addition, if the internal capacity of the gas adsorbent 137 is increased, the elapsed time B can be further extended.

本実施の形態では、気体吸着材137を用いた真空断熱材の内、最大寸法は真空断熱材(側面)129、130であり、その寸法は、縦×横×厚み=510×1505×10.5mmである。この体積は、8.06×10−3(m)である。本実施の形態では、気体吸着材137の量を、1mあたり、60gとしている。 In the present embodiment, among the vacuum heat insulating materials using the gas adsorbent 137, the maximum dimensions are the vacuum heat insulating materials (side surfaces) 129 and 130, and the dimensions are vertical × horizontal × thickness = 510 × 1505 × 10. 5 mm. This volume is 8.06 × 10 −3 (m 3 ). In the present embodiment, the amount of the gas adsorbent 137 is 60 g per 1 m 3 .

上記の量であれば、寸法面積が大きく空気に触れる面積の大きい真空断熱材においても、冷蔵庫の平均使用期間である10年の間であれば真空断熱材に搭載した気体吸着材は外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図ることが出来る。よって、真空断熱材の熱伝導率の劣化を防止することが出来るのである。また、真空断熱材の真空度維持によって、真空断熱材の空気侵入による変形も防止できるため、本体外箱の外観変形も防止できる。   In the case of the above amount, even in a vacuum heat insulating material having a large dimensional area and a large area in contact with air, the gas adsorbent mounted on the vacuum heat insulating material penetrates from the outside as long as it is within the average use period of the refrigerator for 10 years. Since the adsorbed air can be continuously adsorbed, the vacuum degree of the vacuum heat insulating material can be maintained. Therefore, deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented. Further, by maintaining the vacuum degree of the vacuum heat insulating material, it is possible to prevent deformation of the vacuum heat insulating material due to air intrusion, and thus it is possible to prevent external deformation of the main body outer box.

真空度維持の期間は、図6中の経過年数のB時点が10年であることである。気体吸着材の量が1mあたり60g以上であれば、B時点の年数が延びるため、更に長い経過時間においても空気吸着を行うことが出来る。また、同量であっても寸法面積の小さい真空断熱材であれば、同様に更に長い経過時間においても空気吸着を行うことが出来る。 The period of maintaining the degree of vacuum is that the time point B of elapsed years in FIG. 6 is 10 years. If the amount of the gas adsorbent is 60 g or more per 1 m 3 , the number of years at time B is extended, so that air adsorption can be performed even in a longer elapsed time. Moreover, even if it is the same amount, if it is a vacuum heat insulating material with a small dimensional area, air adsorption | suction can be similarly performed in much longer elapsed time.

この気体吸着材137の量は、コストとも関係しているため、使用する真空断熱材の形状・寸法・体積によって変化する残留空気量に応じて気体吸着材137の量を選定すると、コストパフォーマンスの良い真空断熱材を提供できる。   Since the amount of the gas adsorbent 137 is also related to the cost, if the amount of the gas adsorbent 137 is selected according to the amount of residual air that changes depending on the shape, size, and volume of the vacuum heat insulating material to be used, the cost performance is improved. Can provide good vacuum insulation.

また図7は、実施の形態における真空断熱材の気体吸着材配置図である。   FIG. 7 is a gas adsorbent arrangement diagram of the vacuum heat insulating material in the embodiment.

また図7のように、本実施の形態では、真空断熱材に搭載される気体吸着材137の配置を、外被材135の末端位置としている。これは真空断熱材の精製工程において、真空断熱材の外被材135内部で空気の粗密が発生するためである。図7には従来から真空断熱材内部の水分吸着に用いられる反応型水分吸着材146である。   Further, as shown in FIG. 7, in the present embodiment, the arrangement of the gas adsorbing material 137 mounted on the vacuum heat insulating material is the end position of the jacket material 135. This is because in the vacuum heat insulating material refining process, air density is generated inside the vacuum insulating material 135. FIG. 7 shows a reactive moisture adsorbent 146 conventionally used for moisture adsorption inside the vacuum heat insulating material.

この反応型水分吸着材146によって、真空断熱材の作製後、芯材からの水分放出により真空断熱材の内圧が上昇した場合にも、反応型水分吸着剤が水分を吸着除去するため、水分の放出による内圧増加に伴う断熱性能の劣化がなく、乾燥時間を大幅に短縮できる。よって、真空断熱材の生産性を大幅に低下させることはない。   Even when the internal pressure of the vacuum heat insulating material is increased due to the release of water from the core material after the vacuum heat insulating material is produced by the reactive water adsorbing material 146, the reactive water adsorbing agent absorbs and removes the water. There is no deterioration of the heat insulation performance due to the increase in internal pressure due to discharge, and the drying time can be greatly shortened. Therefore, the productivity of the vacuum heat insulating material is not significantly reduced.

真空断熱材は、例えば厚さ5mmのシート状グラスウール集合体を140℃で1時間乾燥した後、外被材135中に挿入し、内部を真空引きして開口部を封止することにより形成されている。真空断熱材の精製工程の中で、真空断熱材は4辺の内、3辺を封止し、内部に芯材を入れた後、残る1辺から周囲を低圧にした環境の中で真空断熱材内部の圧力を下げた上で残る1辺を封止する。このとき、真空断熱材の内部は低圧となっているが、低圧の状態では空気の粘性状態が変化し、真空断熱材の外被材入口部分と封止されている末端部分では空気の粗密状態が変わる。即ち、外被材入口部分では空気が疎となり、末端部分では密の状態となる。   The vacuum heat insulating material is formed, for example, by drying a sheet-like glass wool aggregate having a thickness of 5 mm at 140 ° C. for 1 hour, and then inserting it into the jacket material 135 to evacuate the inside to seal the opening. ing. In the process of refining the vacuum insulation material, the vacuum insulation material is sealed in 3 out of 4 sides, and after the core material is put inside, the vacuum insulation is performed in the environment where the surrounding area is low pressure from the remaining 1 side. The remaining side is sealed after reducing the pressure inside the material. At this time, the inside of the vacuum heat insulating material is at a low pressure, but the viscosity state of the air changes in the low pressure state, and the air is dense and dense in the outer sheath material inlet portion and the sealed end portion of the vacuum heat insulating material. Changes. That is, the air is sparse at the jacket material inlet portion and is dense at the end portion.

本実施の形態のように、真空断熱材に備えられた気体吸着材137の配置を外被材135の末端位置に搭載することで、残留空気も効果的に吸着できるため、より真空度の高い真空断熱材を精製することが出来る。   Since the residual air can also be effectively adsorbed by mounting the gas adsorbent 137 provided in the vacuum heat insulating material at the end position of the jacket material 135 as in this embodiment, the degree of vacuum is higher. Vacuum insulation can be refined.

なお、気体吸着材137の効果で真空断熱材は、剛性と熱伝導率が向上される。これは、気体吸着材137によって、真空度が低減されるためである。真空断熱材の真空度は、真空断熱材の外被材内部の中に含まれる気体を外部からの吸引もしくは気体吸着材137の吸着性能によって決定され、また、真空断熱材の真空度と剛性および熱伝導率は相関があり、真空度が高い真空断熱材は、剛性が高く、且つ、熱伝導率も高い。真空度の低い真空断熱材はこの逆である。   The vacuum heat insulating material is improved in rigidity and thermal conductivity by the effect of the gas adsorbing material 137. This is because the degree of vacuum is reduced by the gas adsorbent 137. The degree of vacuum of the vacuum heat insulating material is determined by the external suction of the gas contained in the outer cover material of the vacuum heat insulating material or the adsorption performance of the gas adsorbing material 137, and the vacuum degree and rigidity of the vacuum heat insulating material and The thermal conductivity has a correlation, and the vacuum heat insulating material having a high degree of vacuum has high rigidity and high thermal conductivity. The opposite is true for vacuum insulation materials with low vacuum.

これにより、本実施の形態では、冷蔵庫の本体101に貼り付けている真空断熱材の中で、側面や背面のように貼り付け寸法面積の大きい真空断熱材に気体吸着材137を搭載している。これは、寸法面積の大きい真空断熱材は性能効果が大きいものの、経年劣化しやすいためである。   Thereby, in this Embodiment, in the vacuum heat insulating material affixed on the main body 101 of the refrigerator, the gas adsorbent 137 is mounted on a vacuum heat insulating material having a large affixed dimension area such as a side surface or a back surface. . This is because a vacuum heat insulating material having a large dimensional area has a large performance effect but is likely to deteriorate over time.

寸法面積の大きい真空断熱材は、空気に触れる外被材135の面積または封止部分4辺の長さが長いため空気侵入し易く、真空断熱材の真空度が劣化し性能劣化を導きやすいが、先述したように、気体吸着材137を搭載することで使用の際の経年侵入する空気も吸着できるため、概ね10年間の冷蔵庫使用中での性能劣化を抑制することが可能である。   The vacuum heat insulating material having a large dimensional area is easy to infiltrate the air because the area of the covering material 135 that touches the air or the length of the four sides of the sealing portion is long, and the degree of vacuum of the vacuum heat insulating material is deteriorated and the performance is easily deteriorated. Since the air adsorbing material 137 can be adsorbed by using the gas adsorbing material 137 as described above, it is possible to suppress performance deterioration during use of the refrigerator for about 10 years.

更に、寸法面積の大きい真空断熱材は、冷蔵庫の被覆率も大きくなる。これにより、真空断熱材の真空度が低減され、剛性だけでなく熱伝導率も向上された真空断熱材であるため、真空断熱材が同一厚みであれば、壁厚の薄壁化をしつつ庫内容量のUPと省エネ向上を図ることが出来る。本実施の形態では、側面は概ね8〜11.5mmの厚みで気体吸着材137を搭載した真空断熱材138を用い、背面には概ね15mmの厚みで気体吸着材137を用いた真空断熱材138を用いている。天面と底面の真空断熱材127、131は、概ね8〜15mmの厚みで気体吸着材137を搭載していない真空断熱材を用いることで、強度と省エネ性への寄与度の高い部分に使い分けている。   Furthermore, the vacuum heat insulating material with a large dimensional area also increases the coverage of the refrigerator. As a result, the degree of vacuum of the vacuum heat insulating material is reduced, and the vacuum heat insulating material has improved heat conductivity as well as rigidity. Therefore, if the vacuum heat insulating material has the same thickness, the wall thickness is reduced. It is possible to increase the storage capacity and improve energy saving. In this embodiment, a vacuum heat insulating material 138 having a thickness of about 8 to 11.5 mm on which the gas adsorbing material 137 is mounted is used on the side surface, and a vacuum heat insulating material 138 using the gas adsorbing material 137 with a thickness of about 15 mm on the back surface. Is used. The vacuum heat insulating materials 127 and 131 on the top surface and the bottom surface are selectively used for portions having a high contribution to strength and energy saving by using a vacuum heat insulating material having a thickness of about 8 to 15 mm and not equipped with the gas adsorbing material 137. ing.

なお、冷蔵庫内の温度は生鮮食品や飲料を貯蔵する概ね1℃〜5℃のプラス温度の冷蔵温度帯から、冷凍食品を貯蔵する概ね−18℃以下のマイナス温度の冷凍温度帯に区分けされている。本実施の形態のように、冷蔵庫の側面もしくは背面に真空断熱材を搭載することで、先述の温度帯を広範囲にわたり被覆できるため、真空断熱材の高断熱性によって外部からの熱侵入を広範囲にわたり抑制でき、省エネ性に優れた箱体を実現できる。   The temperature in the refrigerator is divided into a refrigeration temperature range of approximately 1 ° C to 5 ° C for storing fresh foods and beverages and a refrigeration temperature range of approximately -18 ° C or less for storing frozen foods. Yes. By mounting the vacuum heat insulating material on the side or back of the refrigerator as in this embodiment, the above-mentioned temperature zone can be covered over a wide range, so the heat insulation from the outside is widespread due to the high heat insulating property of the vacuum heat insulating material. A box body that can be suppressed and has excellent energy saving performance can be realized.

また、最も剛性または真空度の大きい真空断熱材を側面もしくは背面に搭載することは、冷蔵庫の本体強度の骨格となる部分に搭載することとなるので、冷蔵庫全体の強度の向上を図ることが出来、壁厚の薄壁化も可能となるので、強度を維持したまま庫内容量UPも図ることが出来る。   In addition, mounting the vacuum insulation material with the highest rigidity or degree of vacuum on the side surface or the back surface is mounted on the part that forms the framework of the refrigerator body strength, so that the overall strength of the refrigerator can be improved. Since the wall thickness can be reduced, the storage capacity can be increased while maintaining the strength.

さらに、気体吸着材137を真空断熱材のうち冷蔵庫の庫内側(内箱側)に配設しているため、気体吸着材137が真空断熱材よりも出っ張る場合でも、本体101の外箱124への凸形状とならず、外観変形も防止できる。   Further, since the gas adsorbing material 137 is arranged inside the refrigerator (inner box side) of the vacuum heat insulating material, even when the gas adsorbing material 137 protrudes from the vacuum heat insulating material, it goes to the outer box 124 of the main body 101. It is possible to prevent deformation of the appearance.

なお、本実施の形態では、外形寸法と壁厚の比率で5%以下の部分を中心に、気体吸着材137を搭載した真空断熱材を貼り付けている。具体的には、側面と背面の真空断熱材128、129、130であり、側面の場合は外形の幅寸法が740mmであり、壁厚は33mmである。この場合の比率は、33/740×100%=4.8%である。   In this embodiment, the vacuum heat insulating material on which the gas adsorbent 137 is mounted is pasted around a portion where the ratio of the outer dimension to the wall thickness is 5% or less. Specifically, it is the vacuum heat insulating materials 128, 129, and 130 on the side surface and the back surface. In the case of the side surface, the outer width is 740 mm, and the wall thickness is 33 mm. The ratio in this case is 33/740 × 100% = 4.8%.

一般的に、強度(断面2次モーメント)は、(幅の3乗)×高さ/12の曲げ応力の式にて表せる。本実施の場合、幅は壁厚であり、高さは冷蔵庫の高さで概ね1800mmとしている。先述の算出式によると、3乗に比例することから、概ね35mm程度の厚みから強度が加速度的に増していくため、本実施では、概ね比率を5%以下の部分を中心に強度を高めるようにしている。   In general, the strength (second moment of cross section) can be expressed by an equation of bending stress of (the cube of width) × height / 12. In this embodiment, the width is the wall thickness, and the height is approximately 1800 mm as the height of the refrigerator. According to the above-described calculation formula, since the strength increases at an accelerated rate from the thickness of about 35 mm because it is proportional to the third power, in this embodiment, the strength is increased mainly in the portion where the ratio is 5% or less. I have to.

なお、外形寸法と壁厚の比率を上げていくと強度は増すが、庫内容量が減少していく。これは、外形寸法を固定した場合である。冷蔵庫はその商品展開において様々な外形寸法、およびレイアウトのせ設計開発がなされる。開発段階において、十分な試験データを取ることにより、外形寸法と壁厚の比率が庫内容量と強度において最も効果的に働く比率にて設計すると、コストパフォーマンスも良い。   Increasing the ratio between the outer dimensions and the wall thickness increases the strength but decreases the internal capacity. This is a case where the outer dimensions are fixed. Refrigerators are designed and developed with various external dimensions and layouts in product development. In the development stage, by taking sufficient test data, the cost performance is good if the ratio of the external dimension to the wall thickness is designed to work most effectively in the capacity and strength of the cabinet.

なお、本実施の形態での冷蔵庫において、冷凍領域の冷凍室105を囲む硬質ウレタンフォーム126と真空断熱材128、129、130で形成される本体101の断熱壁厚は、扉を除き、開口部の壁厚の薄い部分を含めて25〜50mmの分布であり、冷蔵領域の冷蔵室102、野菜室106を囲む硬質ウレタンフォーム126と真空断熱材127、131で形成される本体101の断熱壁厚は、扉を除き、開口部の壁厚の薄い部分を含めて25〜40mmの分布としている。   In the refrigerator according to the present embodiment, the heat insulating wall thickness of the main body 101 formed by the hard urethane foam 126 surrounding the freezer compartment 105 in the freezing region and the vacuum heat insulating materials 128, 129, 130 is the opening portion except for the door. Heat insulation wall thickness of the main body 101 formed by the hard urethane foam 126 and the vacuum heat insulating materials 127 and 131 surrounding the refrigerator compartment 102 and the vegetable compartment 106 in the refrigerator compartment. Has a distribution of 25 to 40 mm including a portion where the wall thickness of the opening is thin except for the door.

庫内容量UPの為には、庫内壁厚の薄壁化が有効であるが、薄壁化した場合でも気体吸着材137を搭載した真空断熱材は、概ね8〜11.5mm程度の厚みであるため、真空断熱材の貼り付け後も硬質ウレタンフォーム126の流動性を阻害することはない。さらに、熱伝導率も飛躍的に向上されるため、熱侵入抑制の為に真空断熱材を重ね合わせる必要もなく、これによって、硬質ウレタンフォーム126の壁厚の一時的な変化も無く、流動性が劣り、内外面の変形やボイドの発生も防止することが出来る。   To increase the internal capacity, it is effective to reduce the internal wall thickness. However, even if the internal wall thickness is reduced, the vacuum heat insulating material with the gas adsorbent 137 is approximately 8 to 11.5 mm thick. Therefore, the fluidity of the rigid urethane foam 126 is not hindered even after the vacuum heat insulating material is attached. Furthermore, since the thermal conductivity is dramatically improved, it is not necessary to superimpose the vacuum heat insulating material to suppress heat intrusion, and thus there is no temporary change in the wall thickness of the rigid urethane foam 126, and the fluidity. It is inferior, and deformation of the inner and outer surfaces and generation of voids can be prevented.

なお、本実施の形態での気体吸着材137を搭載した厚み11.5mmの真空断熱材を冷蔵庫の左右側面に貼り付けた場合、気体吸着材137を搭載していない真空断熱材の厚みでは16mmに相当する。よって、同等性能であれば、庫内容量を+15L増やすことが可能となることに加えて、硬質ウレタンフォーム126の使用量も低減できコストダウンが図れるとともに製品重量も低減することが出来るため、搬入時の運搬性も向上する。   In addition, when the vacuum heat insulating material of thickness 11.5mm carrying the gas adsorbent 137 in this Embodiment is affixed on the left and right side surfaces of the refrigerator, the thickness of the vacuum heat insulating material not equipped with the gas adsorbent 137 is 16 mm. It corresponds to. Therefore, if the performance is equivalent, the storage capacity can be increased by + 15L. In addition, the amount of rigid urethane foam 126 used can be reduced, the cost can be reduced and the product weight can be reduced. Transportability at the time is also improved.

また、本実施の形態では、真空度を変えて剛性の異なる真空断熱材を複数で使い分けることで、冷蔵庫の本体101の強度を向上させている。特に搭載している真空断熱材の中でも、側面や背面のように冷蔵庫の被覆率を大きく取れる部分に搭載することで、本体101の強度の向上を図ることが出来る。   Moreover, in this Embodiment, the intensity | strength of the main body 101 of a refrigerator is improved by changing the degree of vacuum and using multiple vacuum heat insulating materials from which rigidity differs. In particular, the strength of the main body 101 can be improved by mounting on a portion where the coverage of the refrigerator can be increased, such as the side surface and the back surface, among the vacuum insulating materials that are mounted.

これは一般的なタンスや住宅での強度確保と同様に上下方向の面に対する強度を高めることで、全体の強度を高めることと同様である。このように、強度として寄与する部分には剛性の高い真空断熱材を用い、寄与しにくい部分には硬質ウレタンフォーム126よりも剛性の高い真空断熱材を用いることで、断熱性能を向上し省エネ性を向上させつつ、本体全体の強度を高めた冷蔵庫を提供することが出来る。特に壁厚の薄いところは、剛性の高い真空断熱材を用い、硬質ウレタンフォーム126よりも強いが壁厚の厚いところは剛性の弱い真空断熱材を用いることで箱体強度のバランスを高めて強度を維持することが出来る。真空断熱材の厚みは、概ね8〜15mm程度だが、同一厚みであれば硬質ウレタンフォーム126よりも剛性が高く、熱伝導率も良い。   This is the same as increasing the overall strength by increasing the strength of the surface in the vertical direction in the same manner as securing strength in general chiffons and houses. In this way, a vacuum insulator with high rigidity is used for the part that contributes to strength, and a vacuum insulator with rigidity higher than that of the rigid urethane foam 126 is used for the part that does not contribute, thereby improving the heat insulation performance and saving energy. The refrigerator which improved the intensity | strength of the whole main body can be provided, improving. Especially where the wall thickness is thin, use a vacuum insulation material with high rigidity, and stronger than rigid urethane foam 126, but where the wall thickness is thick, use a vacuum insulation material with low rigidity to increase the balance of box strength and strengthen the strength. Can be maintained. Although the thickness of a vacuum heat insulating material is about 8-15 mm in general, if it is the same thickness, rigidity is higher than the rigid urethane foam 126, and thermal conductivity is also good.

なお、気体吸着材137の効果で低真空度となる真空断熱材は、剛性と熱伝導率が向上される。長期使用時でも低真空度は維持されるため、向上された剛性維持を図ることができ、本体101の強度を向上させることができる。また、強度を維持したままで壁厚の薄
壁化を行うことが出来、庫内容量UPが可能となる。また、壁厚の薄壁化によって、使用する硬質ウレタンフォーム126の使用量も低減できコストダウンが図れるとともに製品重量も低減することが出来るため、搬入時の運搬性も向上する。
Note that the vacuum heat insulating material having a low degree of vacuum due to the effect of the gas adsorbent 137 has improved rigidity and thermal conductivity. Since the low degree of vacuum is maintained even during long-term use, improved rigidity can be maintained, and the strength of the main body 101 can be improved. Further, the wall thickness can be reduced while maintaining the strength, and the storage capacity can be increased. Further, by reducing the wall thickness, the amount of the hard urethane foam 126 to be used can be reduced, the cost can be reduced, and the product weight can be reduced.

なお、真空断熱材の寸法と厚み及び熱伝導率に対する、従来の真空断熱材や、気体吸着材137を用いた真空断熱材138の組み合わせはコストと密接な関係があるため、冷蔵庫の性能と材料費を考慮し、寸法等を決めると良い。   In addition, since the combination of the conventional vacuum heat insulating material and the vacuum heat insulating material 138 using the gas adsorbent 137 with respect to the size, thickness, and thermal conductivity of the vacuum heat insulating material is closely related to the cost, the performance and material of the refrigerator Consider the cost and decide the dimensions.

なお、本実施の形態では、気体吸着材137の配置を搭載される真空断熱材の中心よりも庫内側(内箱側)に配設したが、庫外側(外箱側)に配置することにより、気体吸着材137の活性度が向上するため気体吸着材137の効果が向上し、より真空度の高まった真空断熱材を提供することができ、熱伝導率や強度も向上するので高い省エネ性や外観強度の冷蔵庫を提供できる。これは、冷蔵庫の本体101の外箱側は、外気からの熱影響や外箱内側に貼り付けている放熱パイプ143による熱影響で気体吸着材137の温度が高まるからである。   In the present embodiment, the gas adsorbent 137 is disposed on the inner side (inner box side) than the center of the vacuum heat insulating material to be mounted, but by being disposed on the outer side (outer box side). Since the activity of the gas adsorbent 137 is improved, the effect of the gas adsorbent 137 is improved, a vacuum heat insulating material with a higher degree of vacuum can be provided, and the thermal conductivity and strength are also improved, resulting in high energy savings. And a refrigerator with high external strength. This is because the temperature of the gas adsorbent 137 increases on the outer box side of the main body 101 of the refrigerator due to the heat effect from the outside air or the heat effect of the heat radiating pipe 143 attached to the inner side of the outer box.

この場合に、気体吸着材137が真空断熱材よりも出っ張り外観変形をきたす可能性がある場合には、気体吸着材137を搭載する箇所の真空断熱材に凹みを付けて真空断熱材よりも出っ張らないような配慮をすると良い。   In this case, if there is a possibility that the gas adsorbing material 137 protrudes more than the vacuum heat insulating material, the vacuum heat insulating material at the location where the gas adsorbing material 137 is mounted is recessed to protrude more than the vacuum heat insulating material. It ’s better to be careful.

なお、本実施の形態では、冷凍温度帯に掛かるように真空断熱材を貼り付けている。これにより、外気あるいは庫内他室との温度差の大きい部分を効果的に断熱でき、真空断熱材の性能を生かすことが出来る。   In the present embodiment, a vacuum heat insulating material is attached so as to reach the freezing temperature zone. Thereby, a part with a large temperature difference with external air or the other chamber in a store | warehouse | chamber can be insulated effectively, and the performance of a vacuum heat insulating material can be utilized.

また、内箱125に接し配設する真空断熱材131は、投影面積で内箱125より小さいものである。換言すれば、内箱125に接し配設した真空断熱材131は、真空断熱材131が接し配設される内箱125 からはみ出ていない。   Further, the vacuum heat insulating material 131 disposed in contact with the inner box 125 is smaller in projection area than the inner box 125. In other words, the vacuum heat insulating material 131 disposed in contact with the inner box 125 does not protrude from the inner box 125 disposed in contact with the vacuum heat insulating material 131.

本実施の形態の冷蔵庫は、内箱125に接し配設した真空断熱材131が、真空断熱材131が接し配設される内箱125からはみ出ていないので、真空断熱材125を所定箇所に配設した後で、外箱124と内箱125との間に硬質ウレタンフォーム126を流し込んだ場合に、内箱125に配設された真空断熱材131に対して、内箱125から剥がす方向の力が加わらないため、硬質ウレタンフォーム126の流入による真空断熱材131の剥がれを防止でき、さらに、真空断熱材131の貼付けの安定を容易に図ることができると同時に、硬質ウレタンフォーム126の流動性を阻害しない。これによって、真空断熱材131と内箱125との間に空気などの不活性ガスの侵入もしくは残留を抑制することが出来るため、内箱125と真空断熱材131とが密着し、内箱凹み等の変形を抑制できる効果もある。   In the refrigerator according to the present embodiment, the vacuum heat insulating material 131 disposed in contact with the inner box 125 does not protrude from the inner box 125 disposed in contact with the vacuum heat insulating material 131. After installation, when the rigid urethane foam 126 is poured between the outer box 124 and the inner box 125, the force in the direction of peeling from the inner box 125 against the vacuum heat insulating material 131 disposed in the inner box 125. Therefore, it is possible to prevent the vacuum heat insulating material 131 from being peeled off due to the inflow of the hard urethane foam 126, and to easily stabilize the application of the vacuum heat insulating material 131. Does not interfere. As a result, it is possible to suppress the intrusion or remaining of an inert gas such as air between the vacuum heat insulating material 131 and the inner box 125, so that the inner box 125 and the vacuum heat insulating material 131 are in close contact with each other, and the inner box dent, etc. There is also an effect of suppressing the deformation.

また、天面の真空断熱材127は外箱124に接して配設しているので、庫内照明用取り付け部材あるいは電線を内箱125の天面に取り付け可能となり、冷蔵室102の天面に照明を設けることができ、使い勝手の向上が図れる。   Moreover, since the vacuum heat insulating material 127 on the top surface is disposed in contact with the outer box 124, an interior lighting mounting member or an electric wire can be attached to the top surface of the inner box 125, and the top surface of the refrigerator compartment 102 is attached to the top surface. Lighting can be provided, and usability can be improved.

なお、本実施の形態では、本体底部にコの字状の底部補強部材144と真空断熱材が投影面で重なるように真空断熱材を配設している。これによって、冷蔵庫の本体101の強度が足元から向上することが出来るため、更なる強度向上が図れる。底部補強部材144は剛性の高い鉄やステンレスなどの材料が用いられ、また、外気の湿度によって錆びないような表面処理を施しておくと良い。また、本実施の形態では、コの字状の底部補強部材144としているが、コスト低減の観点や、本体強度の測定の結果、強度に尤度のある場合は、Lの字状の底部補強部材としても良い。   In the present embodiment, the vacuum heat insulating material is disposed so that the U-shaped bottom reinforcing member 144 and the vacuum heat insulating material overlap with the projection surface on the bottom of the main body. Thereby, since the intensity | strength of the main body 101 of a refrigerator can be improved from step, the further intensity | strength improvement can be aimed at. The bottom reinforcing member 144 is made of a material having high rigidity such as iron or stainless steel, and preferably has a surface treatment that does not rust due to the humidity of the outside air. Further, in the present embodiment, the U-shaped bottom reinforcing member 144 is used. However, if the strength is likely as a result of the cost reduction or the measurement of the main body strength, the L-shaped bottom reinforcing member 144 is used. It is good also as a member.

(実施の形態2)
図8は本発明の実施の形態2による冷蔵庫の斜視図である。図9は本発明の実施の形態2による冷蔵庫の正面断面図である。
(Embodiment 2)
FIG. 8 is a perspective view of a refrigerator according to the second embodiment of the present invention. FIG. 9 is a front sectional view of the refrigerator according to the second embodiment of the present invention.

なお、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。   In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図8に示すように、冷蔵庫の本体201は、前方に開口する金属製(例えば鉄板)の外箱224と硬質樹脂製(例えばABS)の内箱225と、外箱224と内箱225の間に発泡充填された硬質ウレタンフォーム226からなる断熱箱体で、この本体201の右部に設けられた冷蔵室202と、左部に設けられた冷凍室214で構成されている。このようなレイアウトの冷蔵庫は、欧米などで以前より用いられている。   As shown in FIG. 8, the refrigerator main body 201 includes a metal (for example, iron plate) outer box 224 that opens forward, a hard resin (for example, ABS) inner box 225, and an outer box 224 and an inner box 225. This is a heat insulating box made of hard urethane foam 226 filled with foam, and is composed of a refrigerator compartment 202 provided at the right part of the main body 201 and a freezer compartment 214 provided at the left part. A refrigerator having such a layout has been used in Europe and the United States for some time.

ここで、真空断熱材227,228,229,230,231,242は、硬質ウレタンフォーム226とともに冷蔵庫の本体201を構成している。   Here, the vacuum heat insulating materials 227, 228, 229, 230, 231, and 242 constitute a refrigerator main body 201 together with the hard urethane foam 226.

ここで、真空断熱材227,228,229,230は、外箱224にそれぞれ天面、背面、左側面、右側面の内側に接して貼り付けられている。また、真空断熱材231は、内箱225の底面に接して貼り付けられている。また、真空断熱材242は、冷蔵室202と冷凍室214を仕切る断熱仕切り部215の内部にある。真空断熱材228,229,230,242には、気体吸着材237がそれぞれ内部に搭載されている。
真空断熱材228,229,230,242の気体吸着材は、中心よりも庫内側(内箱側)に配設されている。また、冷蔵室202と冷凍室214を断熱区画する断熱仕切り部215の内部は、硬質ウレタンフォーム226が充填されており、冷蔵温度帯の冷蔵室202と冷凍温度帯の冷凍室214の温度差20Kから30Kを断熱していると共に、中仕切りとなっているため剛性が強く箱体強度の高い冷蔵庫となる。断熱仕切り部215は冷蔵庫の発泡前に組み立てられるが、製造上の作り易さから発泡後に組み立てても良い。この場合は、断熱仕切り部215の内部の断熱材は、形状の作りやすい発泡ポリスチレンを使用したり、硬質ウレタンフォーム226を別部品として作成し板状のボードとして構成しても良い。
Here, the vacuum heat insulating materials 227, 228, 229, and 230 are attached to the outer box 224 in contact with the inside of the top surface, the back surface, the left side surface, and the right side surface, respectively. The vacuum heat insulating material 231 is attached in contact with the bottom surface of the inner box 225. The vacuum heat insulating material 242 is inside the heat insulating partition 215 that partitions the refrigerator compartment 202 and the freezer compartment 214. A gas adsorbent 237 is mounted on each of the vacuum heat insulating materials 228, 229, 230, and 242.
The gas adsorbents of the vacuum heat insulating materials 228, 229, 230, and 242 are arranged on the inner side (inner box side) than the center. The inside of the heat insulating partition 215 that insulates the refrigerator compartment 202 and the freezer compartment 214 is filled with a hard urethane foam 226, and the temperature difference between the refrigerator compartment 202 in the refrigerator temperature zone and the refrigerator compartment 214 in the refrigerator temperature zone is 20K. 30K is insulated, and since it is a partition, it becomes a refrigerator with high rigidity and high box strength. Although the heat insulation partition part 215 is assembled before foaming of a refrigerator, you may assemble after foaming from the ease of manufacture on manufacture. In this case, the heat insulating material inside the heat insulating partition part 215 may be made of foamed polystyrene that can be easily formed, or may be configured as a plate-like board by creating the hard urethane foam 226 as a separate part.

上記構成の冷蔵庫において、本実施の形態の真空断熱材242は、気体吸着材237を用いた真空断熱材であり、真空断熱材228,229,230と同様に剛性が高いため、本体201の強度向上を図ることが出来る。   In the refrigerator having the above-described configuration, the vacuum heat insulating material 242 according to the present embodiment is a vacuum heat insulating material using the gas adsorbent 237, and has high rigidity like the vacuum heat insulating materials 228, 229, and 230. Improvements can be made.

また、真空断熱材242を断熱仕切り部215の中で、冷凍室214側に貼り付けることで断熱効果の向上を図ることが出来ると共に、冷蔵室202の側壁には庫内照明用取り付け部材あるいは電線を内箱225に取り付け可能となり、冷蔵室202の側面にも照明を設けることができるため、使い勝手の向上が図れる。   In addition, the heat insulating effect can be improved by sticking the vacuum heat insulating material 242 to the freezer compartment 214 side in the heat insulating partition portion 215, and the interior lighting attachment member or the electric wire is provided on the side wall of the refrigerator compartment 202. Can be attached to the inner box 225, and illumination can be provided on the side surface of the refrigerator compartment 202, so that the usability can be improved.

このとき、真空断熱材242の内部に配置される気体吸着材237は冷蔵室202の内箱225に搭載すると良い。   At this time, the gas adsorbent 237 disposed inside the vacuum heat insulating material 242 is preferably mounted on the inner box 225 of the refrigerator compartment 202.

また、真空断熱材242は、気体吸着材237を用いた真空断熱材であるため熱伝導率の向上が出来る。よって、剛性の向上に加え、冷蔵室202と冷凍室214との熱移動を低減できるため、断熱仕切り部215の薄壁化が可能となる。これによって、本体強度と省エネ性を向上しながら庫内容量UPを行うことが出来る。更に断熱仕切り部215を細く構成できることはデザイン性にも優れた冷蔵庫を提供できる。   Moreover, since the vacuum heat insulating material 242 is a vacuum heat insulating material using the gas adsorbent 237, the thermal conductivity can be improved. Therefore, in addition to the improvement in rigidity, the heat transfer between the refrigerator compartment 202 and the freezer compartment 214 can be reduced, so that the heat insulating partition 215 can be made thin. As a result, the storage capacity can be increased while improving the strength and energy saving of the main body. Furthermore, the fact that the heat insulating partition 215 can be configured to be thin can provide a refrigerator excellent in design.

以上のように、本発明にかかる冷蔵庫は、真空断熱材の内部に配置される気体吸着材を冷蔵庫の庫内側(内箱側)に配設した真空断熱材を使用することにより、気体吸着材が真空断熱材内部の残留空気や外部からの侵入空気も継続的に吸着することが出来るため、経年劣化後も含め、熱伝導率や本体外観の変形を抑制し、省スペースで大容量且つ、高い断熱性能を長期に渡り維持できる。よって、環境を配慮し省エネランニングコスト低減や製品仕上がりの質感の高さを目的とする家庭用冷蔵庫などに利用ができる。   As described above, the refrigerator according to the present invention uses the vacuum heat insulating material in which the gas adsorbing material disposed inside the vacuum heat insulating material is disposed on the inner side (inner box side) of the refrigerator. However, it is possible to continuously adsorb residual air inside the vacuum heat insulating material and intruding air from the outside, so that even after aging, it suppresses thermal conductivity and deformation of the body appearance, saves space and has a large capacity, High thermal insulation performance can be maintained for a long time. Therefore, it can be used for household refrigerators and the like for the purpose of reducing the energy-saving running cost and improving the texture of the finished product in consideration of the environment.

101,201,301 本体
110,111,112,113 断熱仕切り部
125 内箱
127,128,129,130,131,138 真空断熱材
228,327,328,329,330,331,342 真空断熱材
132 芯材
133 包材
137,237,337 気体吸着材
101, 201, 301 Main body 110, 111, 112, 113 Heat insulation partition part 125 Inner box 127, 128, 129, 130, 131, 138 Vacuum heat insulating material 228, 327, 328, 329, 330, 331, 342 Vacuum heat insulating material 132 Core material 133 Packaging material 137, 237, 337 Gas adsorbent

Claims (3)

複数の断熱区画で構成された断熱箱体と、前記断熱箱体を仕切る断熱仕切り部とを備えた複数の温度帯で構成された冷蔵庫で、少なくとも繊維材料を含む芯材と、包材からなる袋内包された気体吸着材を備えた真空断熱材を搭載し、前記真空断熱材に備えられた前記気体吸着材は、前記真空断熱材のうち冷蔵庫の庫内側(内箱側)に配設したことを特徴とする特徴とする冷蔵庫。 A refrigerator composed of a plurality of temperature zones provided with a heat insulation box composed of a plurality of heat insulation sections and a heat insulation partition that partitions the heat insulation box, and comprises a core material including at least a fiber material, and a packaging material A vacuum heat insulating material provided with a gas adsorbing material contained in a bag is mounted, and the gas adsorbing material provided in the vacuum heat insulating material is disposed inside the refrigerator inside (inner box side) of the vacuum heat insulating material. A refrigerator characterized by that. 前記真空断熱材に備えられた前記気体吸着材は、前記真空断熱材のうち、空気抜き部の末端位置に搭載したことを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the gas adsorbing material provided in the vacuum heat insulating material is mounted at a terminal position of an air vent portion in the vacuum heat insulating material. 前記真空断熱材に備えられた前記気体吸着材は、前記真空断熱材の寸法に対して、1mあたり60g以上としたことを特徴とする請求項1または2に記載の冷蔵庫。 The refrigerator according to claim 1 or 2, wherein the gas adsorbent provided in the vacuum heat insulating material is 60 g or more per 1 m 3 with respect to the size of the vacuum heat insulating material.
JP2011188410A 2011-08-31 2011-08-31 refrigerator Expired - Fee Related JP5945708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188410A JP5945708B2 (en) 2011-08-31 2011-08-31 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188410A JP5945708B2 (en) 2011-08-31 2011-08-31 refrigerator

Publications (2)

Publication Number Publication Date
JP2013050268A true JP2013050268A (en) 2013-03-14
JP5945708B2 JP5945708B2 (en) 2016-07-05

Family

ID=48012444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188410A Expired - Fee Related JP5945708B2 (en) 2011-08-31 2011-08-31 refrigerator

Country Status (1)

Country Link
JP (1) JP5945708B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015186345A1 (en) * 2014-06-03 2017-04-20 パナソニックIpマネジメント株式会社 Vacuum insulator, and heat insulating container and heat insulating wall using the same
JP2020051740A (en) * 2019-06-13 2020-04-02 日立グローバルライフソリューションズ株式会社 refrigerator
US11098947B2 (en) 2015-10-19 2021-08-24 Samsung Electronics Co., Ltd. Refrigerator and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134492A (en) * 1988-11-11 1990-05-23 Matsushita Refrig Co Ltd Decompression heat insulating substance
JPH06337091A (en) * 1993-05-27 1994-12-06 Matsushita Refrig Co Ltd Vacuum insulation pack
JP2006322568A (en) * 2005-05-20 2006-11-30 Hitachi Appliances Inc Vacuum heat insulating material, refrigerator using vacuum heat insulating material, manufacturing method of vacuum heat insulating material and manufacturing device of vacuum heat insulating material
JP2007101003A (en) * 2005-09-30 2007-04-19 Sharp Corp Refrigerator
JP2010060045A (en) * 2008-09-03 2010-03-18 Hitachi Appliances Inc Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
JP2011089734A (en) * 2009-10-26 2011-05-06 Hitachi Appliances Inc Refrigerator
JP2011153715A (en) * 2008-12-26 2011-08-11 Mitsubishi Electric Corp Vacuum insulating material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device and appliance each employing the vacuum insulation material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134492A (en) * 1988-11-11 1990-05-23 Matsushita Refrig Co Ltd Decompression heat insulating substance
JPH06337091A (en) * 1993-05-27 1994-12-06 Matsushita Refrig Co Ltd Vacuum insulation pack
JP2006322568A (en) * 2005-05-20 2006-11-30 Hitachi Appliances Inc Vacuum heat insulating material, refrigerator using vacuum heat insulating material, manufacturing method of vacuum heat insulating material and manufacturing device of vacuum heat insulating material
JP2007101003A (en) * 2005-09-30 2007-04-19 Sharp Corp Refrigerator
JP2010060045A (en) * 2008-09-03 2010-03-18 Hitachi Appliances Inc Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
JP2011153715A (en) * 2008-12-26 2011-08-11 Mitsubishi Electric Corp Vacuum insulating material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device and appliance each employing the vacuum insulation material
JP2011089734A (en) * 2009-10-26 2011-05-06 Hitachi Appliances Inc Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015186345A1 (en) * 2014-06-03 2017-04-20 パナソニックIpマネジメント株式会社 Vacuum insulator, and heat insulating container and heat insulating wall using the same
US11098947B2 (en) 2015-10-19 2021-08-24 Samsung Electronics Co., Ltd. Refrigerator and manufacturing method therefor
EP3330650B1 (en) * 2015-10-19 2023-11-29 Samsung Electronics Co., Ltd. Refrigerator
JP2020051740A (en) * 2019-06-13 2020-04-02 日立グローバルライフソリューションズ株式会社 refrigerator

Also Published As

Publication number Publication date
JP5945708B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5903567B2 (en) refrigerator
JP6074817B2 (en) refrigerator
TWI391621B (en) Refrigerator
JP5677737B2 (en) refrigerator
AU2013300887B2 (en) Heat-insulating cabinet and refrigerator including the heat-insulating cabinet
KR20120046621A (en) Refrigerator with vacuum insulation panel
JP2008116161A (en) Refrigerator
JP5945708B2 (en) refrigerator
JP2007139384A (en) Refrigerator
JP2012062905A (en) Vacuum heat insulating material and refrigerator equipped with the same
JP2008128516A (en) Refrigerator
JPH10253244A (en) Refrigerator
JPH10205994A (en) Heat insulation box body of cooling storage
JPH11159950A (en) Heat insulating box body for refrigerator
JP3942856B2 (en) refrigerator
JPH10205989A (en) Refrigerator
JP2013185730A (en) Refrigerator
JPH10205995A (en) Refrigerator
JP6225324B2 (en) Heat insulation box
JP2013053819A (en) Refrigerator
JP2016200309A (en) refrigerator
JP2013087806A (en) Heat insulating wall and heat insulating casing
JP2015064134A (en) Refrigerator
JP3823993B2 (en) refrigerator
WO2019208457A1 (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5945708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees