JP2013047433A - Structure vibration control and base isolation method - Google Patents

Structure vibration control and base isolation method Download PDF

Info

Publication number
JP2013047433A
JP2013047433A JP2011211911A JP2011211911A JP2013047433A JP 2013047433 A JP2013047433 A JP 2013047433A JP 2011211911 A JP2011211911 A JP 2011211911A JP 2011211911 A JP2011211911 A JP 2011211911A JP 2013047433 A JP2013047433 A JP 2013047433A
Authority
JP
Japan
Prior art keywords
rubber
elastic body
lower structure
seismic isolation
upper structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011211911A
Other languages
Japanese (ja)
Inventor
Yuichi Aida
裕一 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIWA TEC KK
Miwa Tech Co Ltd
Original Assignee
MIWA TEC KK
Miwa Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIWA TEC KK, Miwa Tech Co Ltd filed Critical MIWA TEC KK
Priority to JP2011211911A priority Critical patent/JP2013047433A/en
Publication of JP2013047433A publication Critical patent/JP2013047433A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure vibration control and base isolation method with which a load on a lower structure caused by application of a great inertia force acting on an upper structure during an earthquake can be reduced by transmitting the inertia force which acts on the lower structure during the earthquake, to the upper structure after reducing and damping the inertia force, and reducing horizontal displacement of the upper structure.SOLUTION: According to a structure vibration control and base isolation method, between an upper structure 3 and a lower structure 2 of a structure such as a construction or a bridge, a vibration control and base isolation system 1 is disposed which is comprised of a horizontal force generation mechanism 100 generating a horizontal force in a reverse direction to an inertia force acting on the lower structure during an earthquake and a rubber-based elastic body 5 connected to the horizontal force generation mechanism. In the case of an earthquake, the horizontal force generation mechanism converts the inertia force acting on the lower structure into the horizontal force in the reverse direction and the rubber-based elastic body is deformed in a reverse direction to an inertia force direction in the lower structure, thereby reducing earthquake energy to be transmitted to the upper structure and reducing horizontal displacement amounts of the upper structure and the lower structure.

Description

本発明は、建築物や橋梁等の構造物の制震および免震方法において、地震時に下部構造に作用する慣性力を軽減、減衰して上部構造に伝達し、かつ上部構造の水平変位を低減することが可能な構造物制震および免震方法に関する。   The present invention reduces the inertial force acting on the lower structure at the time of an earthquake, attenuates it, transmits it to the upper structure, and reduces the horizontal displacement of the upper structure in the vibration control and seismic isolation method for structures such as buildings and bridges. The present invention relates to seismic structure seismic isolation and seismic isolation methods.

兵庫県南部地震以降、高減衰ゴム系の免震支承や鉛プラグ入り積層ゴム支承等を用いて長周期化と高減衰化により地震力の低減と耐震性の向上を図る免震構造が一般的に採用されるようになってきている。機能分離型の支承構造として、鉛直荷重を受け持つ鉛直荷重支持支承と水平力を受け持つ水平力分散支承を組み合わせた支承構造が採用される事例が増えつつある。   After the Hyogoken-Nanbu Earthquake, seismic isolation structures that reduce seismic force and improve seismic resistance through longer periods and higher damping using high-damping rubber-based seismic isolation bearings and laminated rubber bearings with lead plugs are common Has been adopted. As a function-separated type support structure, a case in which a support structure that combines a vertical load support bearing that handles a vertical load and a horizontal force distribution bearing that handles a horizontal force is increasing.

また、建物の制震装置として、ばねと錘とダンパーを用い、錘を建物の揺れに同調させて建物の揺れを打ち消す力を発生させるアクティブ制震システムや、円弧レールとローラを組み合わせた転がり支承の上に錘を載せ、建物の揺れを利用して錘を揺らし、建物の揺れの固有周期と錘の揺れの周期が同じになるように設定して、錘の揺れが建物の揺れを打ち消す方向に揺れるパッシブ制震システムが提案されている。   In addition, as a vibration control device for buildings, an active vibration control system that uses springs, weights and dampers to synchronize the weights with the vibrations of the building and generate a force that cancels the vibrations of the building, and rolling bearings that combine arc rails and rollers Place the weight on the top, swing the weight using the shaking of the building, set the natural period of the building and the period of the shaking of the weight to be the same, and the direction of the shaking of the weight will cancel the shaking of the building A passive vibration control system has been proposed.

特開2001−140976号公報JP 2001-140976 A 特開2001−227197号公報JP 2001-227197 A 特開平7−139220号公報JP-A-7-139220 特開平10−82208号公報Japanese Patent Laid-Open No. 10-82208

従来の支承構造は、図12に示すように、地震時に建築物や橋梁等の構造物には下部構造2に慣性力が作用し、その慣性力が積層ゴム25を有する支承装置24を介して上部構造3に伝達される。その際、積層ゴム25は図11に示すように下部構造2の慣性力の方向と同じ方向に弾性変形する。上部構造3に伝達された地震エネルギーは、加速度成分が加わり矢印で示す大きな地震時慣性力として上部構造3に作用する。上部構造3に作用する地震時慣性力は、積層ゴム25を有する支承24を介して下部構造2に伝達される。下部構造2には、上部構造3の地震時慣性力と同方向の矢印で示すFという大きな慣性力が作用する。上部構造に作用する慣性力により支承装置24が破壊されるだけでなく、橋脚、橋台、基礎構造等の下部構造2に作用する大きな慣性力により下部構造2自体が損傷する恐れがある。また、上部構造3には大きな水平変位が発生する。上部構造の大きな水平変位に対してはその変位を吸収するためのダンパーや変位制限装置、落橋防止装置等が必要となる。下部構造に負荷される大きな慣性力により下部構造2に損傷を与えないために下部構造2の設計強度を大きくする必要がある。下部構造2の設計強度を大きくするためには、基礎杭の本数の増加や橋脚や橋台の各種寸法、配筋量等を増加する必要がある。そのため、既存橋梁又は既存建築物の耐震補強のケースにおいても、新設構造物の構築のケースにおいても多くの施工日数と多額の費用が必要となるという問題を有する。   In the conventional bearing structure, as shown in FIG. 12, an inertial force acts on the lower structure 2 in a structure such as a building or a bridge during an earthquake, and the inertial force passes through a bearing device 24 having a laminated rubber 25. It is transmitted to the superstructure 3. At that time, the laminated rubber 25 is elastically deformed in the same direction as the direction of the inertial force of the lower structure 2 as shown in FIG. The seismic energy transmitted to the upper structure 3 is added with an acceleration component and acts on the upper structure 3 as a large inertial force during an earthquake indicated by an arrow. The earthquake inertia force acting on the upper structure 3 is transmitted to the lower structure 2 through the support 24 having the laminated rubber 25. A large inertia force F indicated by an arrow in the same direction as the inertia force at the time of earthquake of the upper structure 3 acts on the lower structure 2. Not only the bearing device 24 is destroyed by the inertial force acting on the upper structure, but also the lower structure 2 itself may be damaged by a large inertial force acting on the lower structure 2 such as a pier, an abutment and a foundation structure. Further, a large horizontal displacement occurs in the upper structure 3. For a large horizontal displacement of the superstructure, a damper, a displacement limiting device, a falling bridge prevention device, etc. are required to absorb the displacement. In order not to damage the lower structure 2 due to a large inertial force applied to the lower structure, it is necessary to increase the design strength of the lower structure 2. In order to increase the design strength of the substructure 2, it is necessary to increase the number of foundation piles and various dimensions of the piers and abutments, the amount of reinforcement, and the like. For this reason, both the case of seismic reinforcement of existing bridges or existing buildings and the case of construction of new structures have the problem that many construction days and a large amount of cost are required.

また、建物の制震装置としてのアクティブ制震システムとパッシブ制震システムは、共に建物の上層部に配置し、建物の上層部の揺れを軽減するものであり、制震の制御が複雑であり、且つM構造物の下部構造と上部構造の間に配置して、地震時の下部構造の慣性力を軽減、減衰して上部構造に伝達する制震および免震装置としては使用できないものであった。   In addition, the active control system and passive control system as the building's control system are both placed on the upper layer of the building to reduce the vibration of the upper layer of the building, and the control of the vibration control is complicated. In addition, it cannot be used as a seismic control and seismic isolation device that is placed between the lower structure and the upper structure of the M structure to reduce and attenuate the inertial force of the lower structure during an earthquake and transmit it to the upper structure. It was.

本発明は、上記従来の問題を解決するものであって、地震時の下部構造に作用する慣性力を軽減、減衰して上部構造に伝達し、且つ上部構造の水平変位を低減し、上部構造に作用する大きな地震時慣性力の作用による下部構造の負荷を軽減することが可能な構造物制震および免震方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and reduces the inertial force acting on the lower structure at the time of an earthquake, attenuates it and transmits it to the upper structure, and reduces the horizontal displacement of the upper structure. The purpose of the present invention is to provide a structure seismic control and seismic isolation method that can reduce the load on the lower structure due to the action of a large earthquake inertia force acting on the structure.

本発明の構造物制震および免震方法は、前記課題を解決するために、建築物や橋梁等の構造物の上部構造と下部構造との間に、地震時前記下部構造に作用する慣性力に対して逆方向の水平力を発生させる水平力発生機構と前記水平力発生機構に連結されたゴム系弾性体からなる制震および免震装置を配置し、地震時前記水平力発生機構が下部構造に作用する慣性力を逆方向の水平力に変換し前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させ、上部構造に伝達される地震エネルギーを軽減すると共に上部構造及び下部構造の水平変位量を低減することを特徴とする。   In order to solve the above-described problems, the structure seismic control and seismic isolation method of the present invention has an inertial force acting on the lower structure during an earthquake between the upper structure and the lower structure of a structure such as a building or a bridge. A horizontal force generating mechanism that generates a horizontal force in the opposite direction to the horizontal force and a vibration control and seismic isolation device composed of a rubber-based elastic body connected to the horizontal force generating mechanism are disposed. The inertial force acting on the structure is converted into a horizontal force in the reverse direction, and the rubber-based elastic body is deformed in a direction opposite to the direction of the inertial force of the lower structure to reduce the seismic energy transmitted to the upper structure and the upper structure and The amount of horizontal displacement of the lower structure is reduced.

また、本発明の構造物制震および免震方法は、前記水平力発生機構と前記ゴム系弾性体からなる制震および免震装置を、多径間連続桁橋の橋脚、橋台等の下部構造と主桁等の上部構造との間に配置し、連続した上部構造の水平変位量を低減し、且つ、複数の下部構造の水平変位量を低減することを特徴とする。   Further, the structural seismic control and seismic isolation method of the present invention includes a seismic control and seismic isolation device comprising the horizontal force generation mechanism and the rubber-based elastic body, and a substructure such as a pier of a multi-span continuous girder bridge and an abutment. And the upper structure such as the main girder, the horizontal displacement of the continuous upper structure is reduced, and the horizontal displacement of the plurality of lower structures is reduced.

また、本発明の構造物制震および免震方法は、前記水平力発生機構と前記ゴム系弾性体からなる制震および免震装置と、バッファー、免震支承、固定支承、可動支承およびダンパーの内のいずれかを多径間連続桁橋の橋脚、橋台等の下部構造と主桁等の上部構造との間に混在させて配置し、連続した上部構造の水平変位量を低減し、且つ、複数の下部構造の水平変位量を低減することを特徴とする。   The structure seismic control and seismic isolation method of the present invention includes a seismic control and seismic isolation device comprising the horizontal force generating mechanism and the rubber-based elastic body, a buffer, a seismic isolation bearing, a fixed bearing, a movable bearing, and a damper. Any of them is mixed and placed between the lower structure of the multi-girder continuous girder bridge pier, abutment, etc. and the upper structure of the main girder, etc., reducing the horizontal displacement of the continuous upper structure, and The amount of horizontal displacement of the plurality of substructures is reduced.

また、本発明の構造物制震および免震方法は、前記水平力発生機構と前記ゴム系弾性体からなる制震および免震装置と、バッファー、免震支承、固定支承、可動支承およびダンパーの内の少なくとも1つを、橋脚、橋台等の下部構造と主桁等の上部構造との間に組み合わせて配置し、上部構造および下部構造の水平変位量を低減することを特徴とする。   The structure seismic control and seismic isolation method of the present invention includes a seismic control and seismic isolation device comprising the horizontal force generating mechanism and the rubber-based elastic body, a buffer, a seismic isolation bearing, a fixed bearing, a movable bearing, and a damper. At least one of them is disposed in combination between a lower structure such as a bridge pier or an abutment and an upper structure such as a main girder, and the horizontal displacement of the upper structure and the lower structure is reduced.

また、本発明の構造物制震および免震方法は、前記制震および免震装置は、上部構造または下部構造の一方に固定したゴム系弾性体と、前記ゴム系弾性体が固定された構造側の前記ゴム系弾性体の外側に一端を固定した中央垂直軸と、前記中央垂直軸に回転自在に軸支され、両端に長穴、U字状切り欠き又はスライド溝等のスライド係合部を形成したリンク部材と、前記リンク部材の一方の側の前記スライド係合部に係合される前記ゴム系弾性体に一端を固定した第1垂直軸と、前記リンク部材の他方の側の前記スライド係合部に係合される前記ゴム系弾性体の固定されない構造側に一端を固定した第2垂直軸とからなる水平力発生機構と、を備え、地震時に下部構造に作用する慣性力を前記リンク部材の回動により逆方向の水平力に変換して上部構造に伝達すると共に、前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させることを特徴とする。   Further, according to the structure damping and seismic isolation method of the present invention, the damping and seismic isolation device includes a rubber-based elastic body fixed to one of an upper structure or a lower structure, and a structure in which the rubber-based elastic body is fixed. A central vertical shaft having one end fixed to the outside of the rubber-based elastic body on the side, and a pivotal support rotatably supported by the central vertical shaft, and slide engagement portions such as long holes, U-shaped cutouts or slide grooves at both ends A first vertical shaft having one end fixed to the rubber-based elastic body engaged with the slide engagement portion on one side of the link member, and the link member on the other side of the link member A horizontal force generating mechanism comprising a second vertical shaft having one end fixed to the unfixed structure side of the rubber-based elastic body engaged with the slide engaging portion, and an inertial force acting on the lower structure during an earthquake. It is converted into a horizontal force in the reverse direction by the rotation of the link member. While it transmitted to the superstructure, characterized in that deforming the rubber elastic body in the inertia force direction opposite to the direction of the substructure.

また、本発明の構造物制震および免震方法は、前記中央垂直軸と前記第1垂直軸間の距離と前記中央垂直軸と前記第2垂直軸間の距離およびその比を、上部構造の変位制限またはゴム系弾性体の弾性変形制限の設計要件に応じた変数としたことを特徴とする。   Further, the structure seismic control and seismic isolation method of the present invention provides the distance between the central vertical axis and the first vertical axis, the distance between the central vertical axis and the second vertical axis, and the ratio thereof, of the superstructure. It is characterized in that it is a variable corresponding to the design requirements for displacement restriction or elastic deformation restriction of a rubber-based elastic body.

また、本発明の構造物制震および免震方法は、一方のリンク部材と他方のリンク部材を直交する方向に配置したことを特徴とする。   Further, the structure seismic control and seismic isolation method of the present invention is characterized in that one link member and the other link member are arranged in a direction orthogonal to each other.

また、本発明の構造物制震および免震方法は、前記制震および免震装置は、上部構造または下部構造の一方に配置される慣性力方向に直線的に延びるギヤレールと、他方の構造に回転自在に配置されるギヤと、前記上部構造及び下部構造に上下が固定されるゴム系弾性体と、を備え、前記ギヤと前記ギヤレールを噛み合わせ、地震時に下部構造に作用する慣性力を前記ギヤレールと前記ギヤの噛合しながら相対移動することで逆方向の水平力に変換して上部構造に伝達すると共に、前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させることを特徴とする。   Further, in the structure damping and seismic isolation method of the present invention, the damping and seismic isolation device includes a gear rail linearly extending in the direction of inertial force arranged in one of the upper structure and the lower structure, and the other structure. A gear that is rotatably arranged and a rubber-based elastic body that is fixed vertically to the upper structure and the lower structure, and meshes the gear and the gear rail so that the inertial force acting on the lower structure during an earthquake is By moving relative to the gear rail and the gear while being engaged, it is converted into a horizontal force in the opposite direction and transmitted to the upper structure, and the rubber-based elastic body is deformed in the direction opposite to the direction of the inertial force of the lower structure. Features.

建築物や橋梁等の構造物の上部構造と下部構造との間に、地震時前記下部構造に作用する慣性力に対して逆方向の水平力を発生させる水平力発生機構と前記水平力発生機構に連結されたゴム系弾性体からなる制震および免震装置を配置し、地震時前記水平力発生機構が下部構造に作用する慣性力を逆方向の水平力に変換して前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させ、上部構造に伝達される地震エネルギーを軽減すると共に上部構造及び下部構造の水平変位量を低減することで、下部構造の地震時慣性力による負荷を軽減することで下部構造の耐震設計強度を低く抑えることが可能となる。また、上部構造及び下部構造の水平変位量を抑えることができるため伸縮装置遊間が狭くすることができ、したがって装置のメンテナンス期間を長くすることが可能となる。
水平力発生機構とゴム系弾性体からなる制震および免震装置を、多径間連続桁橋の橋脚、橋台等の下部構造と主桁等の上部構造との間に配置し、連続した上部構造の水平変位量を低減し、且つ、複数の下部構造の水平変位量を低減することで、地震時の下部構造に作用する慣性力が逆方向の水平力に変換されて減衰して上部構造に伝達されると共に、上部構造及び下部構造の水平変位量を低減することが可能になる。
水平力発生機構とゴム系弾性体からなる制震および免震装置と、バッファー、免震支承、固定支承、可動支承およびダンパーの内のいずれかを多径間連続桁橋の橋脚、橋台等の下部構造と主桁等の上部構造との間に混在させて配置し、連続した上部構造の水平変位量を低減し、且つ、複数の下部構造の水平変位量を低減することで、制震および免震装置を配置した造主桁に作用する地震時慣性力の方向と、バッファー、免震支承、固定支承、可動支承およびダンパーの内のいずれかを配置した主桁に作用する地震時慣性力の方向とが互いに逆方向となるため、連続した主桁に作用する地震時慣性力が互いに干渉し主桁全体としての地震時慣性力を低減すると共に、上部構造及び下部構造の水平変位量を低減することが可能になる。
水平力発生機構とゴム系弾性体からなる制震および免震装置と、バッファー、免震支承、固定支承、可動支承およびダンパーの内の少なくとも1つを、橋脚、橋台等の下部構造と主桁等の上部構造との間に組み合わせて配置し、上部構造および下部構造の水平変位量を低減することで、地震時の下部構造に作用する慣性力が逆方向の水平力に変換されて減衰して上部構造に伝達されると共に、上部構造及び下部構造の水平変位量を低減することが可能になる。
制震および免震装置は、上部構造または下部構造の一方に固定したゴム系弾性体と、前記ゴム系弾性体が固定された構造側の前記ゴム系弾性体の外側に一端を固定した中央垂直軸と、前記中央垂直軸に回転自在に軸支され、両端に長穴、U字状切り欠き又はスライド溝等のスライド係合部を形成したリンク部材と、前記リンク部材の一方の側の前記スライド係合部に係合される前記ゴム系弾性体に一端を固定した第1垂直軸と、前記リンク部材の他方の側の前記スライド係合部に係合される前記ゴム系弾性体の固定されない構造側に一端を固定した第2垂直軸とからなる水平力発生機構と、を備え、地震時に下部構造に作用する慣性力を前記リンク部材の回動により逆方向の水平力に変換して上部構造に伝達すると共に、前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させることで、簡単な構成で下部構造からの慣性力に対して逆方向の水平力を発生させ、ゴム系弾性体を下部構造の慣性力方向と逆方向に変形し、地震エネルギーを軽減して上部構造に伝達するので上部構造の地震時慣性力を低減し、上部構造の地震時慣性力による下部構造の負荷を軽減することが可能となる。また、上部構造及び下部構造の水平変位量を抑えることができるため伸縮装置遊間が狭くすることができ、したがって装置のメンテナンス期間を長くすることが可能となる。
中央垂直軸と第1垂直軸間の距離と中央垂直軸と第2垂直軸間の距離およびその比を、上部構造の変位制限またはゴム系弾性体の弾性変形制限の設計要件に応じた変数としたことで、上部構造の水平変位を制限したいという要件や弾性体の弾性変形を制限したいというような各種設計要件に対応することが可能となる。
一方のリンク部材と他方のリンク部材を直交する方向に配置した構成により、全方向の慣性力に対して対応可能な水平力を発生させる機構とすることが可能となる。
上部構造または下部構造の一方に配置される慣性力方向に直線的に延びるギヤレールと、他方の構造に回転自在に配置されるギヤと、前記上部構造及び下部構造に上下が固定されるゴム系弾性体と、を備え、前記ギヤと前記ギヤレールを噛み合わせ、地震時に下部構造に作用する慣性力を前記ギヤレールと前記ギヤの噛合しながら相対移動することで逆方向の水平力に変換して上部構造に伝達すると共に、前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させることで、簡単な構成で下部構造からの慣性力に対して逆方向の水平力を発生させ、ゴム系弾性体を下部構造の慣性力方向と逆方向に変形し、地震エネルギーを軽減して上部構造に伝達するので上部構造の地震時慣性力を低減し、上部構造の地震時慣性力による下部構造の負荷を軽減することが可能となる。また、上部構造及び下部構造の水平変位量を抑えることができるため伸縮装置遊間が狭くすることができ、したがって装置のメンテナンス期間を長くすることが可能となる。
A horizontal force generating mechanism that generates a horizontal force in the opposite direction to the inertial force acting on the lower structure during an earthquake between the upper structure and the lower structure of a structure such as a building or a bridge, and the horizontal force generating mechanism The rubber-based elastic body is provided with a damping and seismic isolation device composed of a rubber-based elastic body coupled to the horizontal force generation mechanism, and the horizontal force generating mechanism converts an inertial force acting on the lower structure into an opposite horizontal force during the earthquake. Is deformed in the direction opposite to the direction of the inertial force of the lower structure to reduce the seismic energy transmitted to the upper structure and reduce the horizontal displacement of the upper structure and the lower structure. By reducing the load, it is possible to keep the seismic design strength of the substructure low. Further, since the horizontal displacement amount of the upper structure and the lower structure can be suppressed, the space between the expansion and contraction devices can be narrowed, and therefore the maintenance period of the device can be lengthened.
A seismic isolation and seismic isolation device consisting of a horizontal force generation mechanism and a rubber-based elastic body is placed between the lower structure of the multi-girder continuous girder bridge, such as the pier and abutment, and the upper structure of the main girder. By reducing the horizontal displacement of the structure and reducing the horizontal displacement of the multiple substructures, the inertial force acting on the substructure during an earthquake is converted into a horizontal force in the reverse direction and attenuated, and the superstructure And the horizontal displacement of the upper structure and the lower structure can be reduced.
A seismic control and seismic isolation device consisting of a horizontal force generation mechanism and rubber-based elastic body, and a buffer, seismic isolation bearing, fixed bearing, movable bearing, and damper are installed on the piers, abutments, etc. of multi-span continuous girder bridges. Arranged between the lower structure and the upper structure such as the main girder, reducing the horizontal displacement of the continuous upper structure, and reducing the horizontal displacement of multiple lower structures, The direction of the inertial force acting on the main girder with the seismic isolation device, and the inertial force acting on the main girder with any of the buffer, seismic isolation bearing, fixed bearing, movable bearing and damper Therefore, the inertial forces acting on the continuous main girder interfere with each other, reducing the earthquake inertial force of the main girder as a whole, and reducing the horizontal displacement of the superstructure and substructure. It becomes possible to reduce.
At least one of the damping and seismic isolation device consisting of a horizontal force generating mechanism and a rubber-based elastic body, and a buffer, seismic isolation bearing, fixed bearing, movable bearing, and damper, substructure such as a pier and abutment, and main girder In combination with the superstructure, etc., and reducing the horizontal displacement of the superstructure and substructure, the inertial force acting on the substructure during an earthquake is converted into a horizontal force in the reverse direction and attenuated. Thus, the amount of horizontal displacement of the upper structure and the lower structure can be reduced.
The damping and seismic isolation device includes a rubber-based elastic body fixed to one of the upper structure or the lower structure, and a central vertical having one end fixed to the outside of the rubber-based elastic body on the structure side to which the rubber-based elastic body is fixed. A shaft, a link member rotatably supported by the central vertical shaft, and formed with a slide engagement portion such as a long hole, a U-shaped notch or a slide groove at both ends, and the link member on one side of the link member A first vertical shaft having one end fixed to the rubber-based elastic body engaged with the slide engagement portion, and a fixation of the rubber-based elastic body engaged with the slide engagement portion on the other side of the link member. A horizontal force generating mechanism comprising a second vertical shaft having one end fixed to the unstructured side, and converting the inertial force acting on the lower structure during an earthquake into a horizontal force in the reverse direction by the rotation of the link member And transmitting the rubber-based elastic body to the superstructure By deforming in the direction opposite to the inertial force direction of the lower structure, a horizontal force in the opposite direction to the inertial force from the lower structure is generated with a simple configuration, and the rubber-based elastic body is changed to the direction of inertial force of the lower structure. Since it is deformed in the opposite direction and the seismic energy is reduced and transmitted to the upper structure, the inertial force during the earthquake of the upper structure can be reduced, and the load on the lower structure due to the inertial force during the earthquake of the upper structure can be reduced. Further, since the horizontal displacement amount of the upper structure and the lower structure can be suppressed, the space between the expansion and contraction devices can be narrowed, and therefore the maintenance period of the device can be lengthened.
The distance between the central vertical axis and the first vertical axis, the distance between the central vertical axis and the second vertical axis, and the ratio thereof are variables according to the design requirements for the displacement restriction of the superstructure or the elastic deformation restriction of the rubber-based elastic body. As a result, it is possible to meet various design requirements such as the requirement to limit the horizontal displacement of the superstructure and the elastic deformation of the elastic body.
With the configuration in which one link member and the other link member are arranged in a direction orthogonal to each other, it is possible to provide a mechanism that generates a horizontal force that can cope with inertial forces in all directions.
A gear rail linearly extending in the direction of inertial force disposed in one of the upper structure and the lower structure, a gear disposed rotatably in the other structure, and rubber-based elasticity whose top and bottom are fixed to the upper structure and the lower structure A body, and meshing the gear and the gear rail, and converting the inertial force acting on the lower structure in the event of an earthquake into a horizontal force in the opposite direction by moving relative to the gear rail and the gear while meshing, And generating a horizontal force in the opposite direction to the inertial force from the lower structure with a simple configuration by deforming the rubber-based elastic body in a direction opposite to the direction of the inertial force of the lower structure. The elastic body is deformed in the direction opposite to the direction of the inertial force of the lower structure, reducing the seismic energy and transmitting it to the upper structure, reducing the inertial force during the earthquake of the upper structure and lower structure due to the inertial force of the upper structure during earthquake It is possible to reduce the load. Further, since the horizontal displacement amount of the upper structure and the lower structure can be suppressed, the space between the expansion and contraction devices can be narrowed, and therefore the maintenance period of the device can be lengthened.

本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 従来技術を示す図である。It is a figure which shows a prior art.

本発明の実施の形態を図により説明する。図1は、本発明の構造物制震および免震方法の作用を説明するための模式図である。本発明の構造物制震および免震方法は、建築物や橋梁の構造物に適用するものであるが、実施形態として橋梁に用いた例で説明する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram for explaining the operation of the structure seismic control and seismic isolation method of the present invention. The structure seismic control and seismic isolation method of the present invention is applied to a structure of a building or a bridge, but will be described as an embodiment using an example of a bridge.

本発明の構造物制震および免震方法は、橋脚や橋台等の下部構造2と橋桁からなる上部構造3との間に水平力発生機構100と、水平力発生機構100に連結されたゴム系弾性体5を備えた制震および免震装置1が配置される。ゴム系弾性体5としては、ゴム、ゴムと補強鋼板を鉛直方向に積層した積層ゴム、高減衰性ゴム、積層ゴムに鉛プラグを挿入した鉛プラグ入り積層ゴム等の弾性変形可能なものから選択する。地震時に下部構造2に作用する慣性力は、水平力発生機構100およびゴム系弾性体5を介して上部構造3に伝達される。水平力発生機構100は、下部構造2に作用する慣性力に対して逆方向の水平力に変換し、水平力発生機構100に連結されたゴム系弾性体5を下部構造2に作用する慣性力方向と逆方向に変形させて上部構造3に伝達するので、下部構造2の慣性力のエネルギーを消費させて上部構造3に伝達する。また、水平力発生機構100による逆方向の水平力への変換の際、ゴム系弾性体5は下部構造2に作用する慣性力の方向と逆方向に変形する。   The structure seismic control and seismic isolation method according to the present invention includes a horizontal force generating mechanism 100 and a rubber system connected to the horizontal force generating mechanism 100 between a lower structure 2 such as a bridge pier or an abutment and an upper structure 3 including a bridge girder. A vibration control and seismic isolation device 1 having an elastic body 5 is arranged. The rubber-based elastic body 5 is selected from elastically deformable materials such as rubber, laminated rubber in which rubber and reinforcing steel plates are laminated in the vertical direction, high-damping rubber, laminated rubber with lead plug in which lead plug is inserted into laminated rubber, and the like. To do. Inertial force acting on the lower structure 2 during an earthquake is transmitted to the upper structure 3 via the horizontal force generating mechanism 100 and the rubber elastic body 5. The horizontal force generation mechanism 100 converts the inertial force acting on the lower structure 2 into a horizontal force in the opposite direction, and the rubber-based elastic body 5 connected to the horizontal force generation mechanism 100 acts on the lower structure 2. Since it is deformed in the direction opposite to the direction and transmitted to the upper structure 3, the energy of the inertial force of the lower structure 2 is consumed and transmitted to the upper structure 3. Further, the rubber-based elastic body 5 is deformed in the direction opposite to the direction of the inertial force acting on the lower structure 2 when the horizontal force generating mechanism 100 converts the horizontal force into the reverse direction.

水平力発生機構100による水平力の発生とゴム系弾性体5の変形により下部構造2に作用する慣性力は軽減され上部構造3に伝達され、上部構造3の水平変位量も低減する。ゴム系弾性体5を高減衰性ゴムや鉛プラグ入り積層ゴムとすることで地震エネルギーが減衰され免震効果が向上する。軽減されて上部構造3に伝達された下部構造2に作用する慣性力と逆方向の水平力は、上部構造3に作用する加速度成分が加わり矢印に示すような地震時慣性力が上部構造3に作用する。上部構造2には軽減された下部構造2の慣性力が伝達されるため、上部構造3に作用する地震時慣性力も低減し、上部構造3の水平変位量も低減する。また、上部構造3の地震時慣性力に対して、ゴム系弾性体5が下部構造2に作用する慣性力と逆方向に弾性変形するので、上部構造3の地震時慣性力に対する抵抗力となり、下部構造2に矢印に示す上部構造3に作用する地震時慣性力と逆方向のFaという軽減された負荷慣性力が作用し、下部構造2の水平変位量も低減する。下部構造2に作用する負荷慣性力Faは、図12に示される従来技術の上部構造3の地震時慣性力により下部構造2に作用する負荷慣性力Fに比較して、水平力発生機構100による逆方向の水平力への変換に伴う抵抗およびゴム系弾性体5の下部構造2の慣性力方向と逆方向への変形に伴う抵抗により大幅に減衰されるため、F>Faの関係になる。   The inertial force that acts on the lower structure 2 due to the generation of the horizontal force by the horizontal force generating mechanism 100 and the deformation of the rubber-based elastic body 5 is reduced and transmitted to the upper structure 3, and the horizontal displacement of the upper structure 3 is also reduced. Seismic energy is attenuated and the seismic isolation effect is improved by using the rubber-based elastic body 5 as a high-damping rubber or a laminated rubber containing a lead plug. The horizontal force in the opposite direction to the inertial force acting on the lower structure 2 that has been reduced and transmitted to the upper structure 3 adds an acceleration component acting on the upper structure 3 and the inertial force during an earthquake as shown by the arrow is applied to the upper structure 3. Works. Since the reduced inertia force of the lower structure 2 is transmitted to the upper structure 2, the earthquake inertia force acting on the upper structure 3 is also reduced, and the horizontal displacement of the upper structure 3 is also reduced. Moreover, since the rubber-based elastic body 5 is elastically deformed in the opposite direction to the inertial force acting on the lower structure 2 with respect to the inertial force of the upper structure 3 during the earthquake, it becomes a resistance force against the inertial force of the upper structure 3 during the earthquake, A reduced load inertia force of Fa in the opposite direction to the inertial force at the time of earthquake acting on the upper structure 3 indicated by an arrow acts on the lower structure 2, and the horizontal displacement amount of the lower structure 2 is also reduced. The load inertia force Fa acting on the lower structure 2 is caused by the horizontal force generation mechanism 100 as compared with the load inertia force F acting on the lower structure 2 due to the inertial force of the upper structure 3 of the prior art shown in FIG. Since the resistance due to the conversion to the horizontal force in the reverse direction and the resistance due to the deformation in the direction opposite to the inertial force direction of the lower structure 2 of the rubber-based elastic body 5 are greatly attenuated, the relation of F> Fa is established.

地震時に上部構造3に作用する地震時慣性力による下部構造2の負荷が大幅に軽減されることで、下部構造の耐震設計強度の増加を抑制することが可能となる。また、水平力発生機構100及びゴム系弾性体によるにより、上部構造3の水平変位量を抑制できるので、上部構造3に設置される伸縮装置遊間が狭く、したがって装置のメンテナンス期間を長くすることが可能となる。   Since the load on the lower structure 2 due to the inertial force at the time of earthquake acting on the upper structure 3 during the earthquake is greatly reduced, it is possible to suppress an increase in the seismic design strength of the lower structure. In addition, since the horizontal displacement of the upper structure 3 can be suppressed by the horizontal force generating mechanism 100 and the rubber-based elastic body, the space between the extension devices installed in the upper structure 3 is narrow, and therefore the maintenance period of the device can be lengthened. It becomes possible.

図2は、橋台2E,2Fの間に複数の橋脚2A、2B、2C、2Dを配置し、下部構造2である橋台2E,2Fと橋脚2A、2B、2C、2D上に上部構造3である主桁を支持した多径間連続橋に本発明の構造物制震および免震方法を多径間連続橋に適用した実施例を示す図である。   In FIG. 2, a plurality of piers 2A, 2B, 2C and 2D are arranged between the abutments 2E and 2F, and the upper structure 3 is provided on the abutments 2E and 2F and the piers 2A, 2B, 2C and 2D as the lower structure 2. It is a figure which shows the Example which applied the structure seismic control and seismic isolation method of this invention to the multi span continuous bridge to the multi span continuous bridge which supported the main girder.

橋台2E,2Fと複数の橋脚2A、2B、2C、2D(下部構造2)に連続した主桁(上部構造3)が支持される多径間連続橋に水平力発生機構100とゴム系弾性体5からなる制震および免震装置1が配置される。地震時に下部構造3である橋台2E,2Fと複数の橋脚2A、2B、2C、2Dには、矢印で示す慣性力が作用する。   Horizontal force generating mechanism 100 and rubber-based elastic body on a multi-span continuous bridge where a main girder (upper structure 3) is supported by abutments 2E, 2F and a plurality of piers 2A, 2B, 2C, 2D (lower structure 2) A seismic control and seismic isolation device 1 consisting of 5 is arranged. At the time of the earthquake, the inertial force indicated by the arrow acts on the abutments 2E and 2F and the plurality of piers 2A, 2B, 2C and 2D which are the lower structure 3.

地震時、下部構造3である橋台2E,2Fと各橋脚2A、2B、2C、2Dに作用する慣性力は、水平力発生機構100とゴム系弾性体5からなる制震および免震装置1を介して、軽減され逆方向の水平力として上部構造3である主桁に伝達される。軽減され上部構造3に伝達される水平力は上部構造3の水平変位量を低減し、連続した主桁3全体に作用する地震時慣性力を低減し、橋台2E,2Fと各橋脚2A、2B、2C、2Dの地震時慣性力による負荷を軽減し、下部構造2の耐震設計強度を低く抑えることが可能となる。また、上部構造3及び下部構造2の水平変位量を低減することで、伸縮装置遊間が狭くすることができ、したがって装置のメンテナンス期間を長くすることが可能となる。   In the event of an earthquake, the inertial force acting on the abutments 2E and 2F, which are the substructure 3, and the piers 2A, 2B, 2C, and 2D causes the vibration control and seismic isolation device 1 including the horizontal force generating mechanism 100 and the rubber-based elastic body 5 to act. Therefore, it is reduced and transmitted to the main girder as the upper structure 3 as a horizontal force in the reverse direction. The horizontal force that is reduced and transmitted to the superstructure 3 reduces the horizontal displacement of the superstructure 3, reduces the earthquake inertia force acting on the entire continuous main girder 3, and the abutments 2E and 2F and the piers 2A and 2B. It is possible to reduce the load caused by the 2C, 2D earthquake inertia force, and to keep the seismic design strength of the lower structure 2 low. Further, by reducing the horizontal displacement amount of the upper structure 3 and the lower structure 2, the space between the telescopic devices can be narrowed, and therefore the maintenance period of the device can be lengthened.

図3は、多径間連続橋に本発明の構造物制震および免震方法を適用した他の実施例を示す図である。   FIG. 3 is a diagram showing another embodiment in which the structural seismic control and seismic isolation method of the present invention is applied to a multi-span continuous bridge.

多径間連続橋の下部構造2である橋台2e,2fと複数の橋脚2a、2b、2c、2dと上部構造3である主桁との間に、水平力発生機構100とゴム系弾性体5からなる制震および免震装置1と、バッファー、免震支承、固定支承、可動支承、ダンパーの内のいずれかを混在して配置する。   Between the abutment 2e, 2f which is the lower structure 2 of the multi-span continuous bridge, the plurality of piers 2a, 2b, 2c, 2d and the main girder which is the upper structure 3, the horizontal force generating mechanism 100 and the rubber elastic body 5 The seismic control and seismic isolation device 1 and the buffer, seismic isolation bearing, fixed bearing, movable bearing, and damper are mixed and arranged.

水平力発生機構100とゴム系弾性体5からなる制震および免震装置1を配置した橋脚2a、2c上の上部構造3には、橋脚2a、2cに作用する慣性力が逆方向の水平力に変換され、軽減されその水平変位量が低減されて伝達される。また、バッファー、免震支承、固定支承、可動支承、ダンパーの内のいずれか23を配置した橋台2e,2fと橋脚2b、2d上の上部構造3には、橋台2e,2fと橋脚2b、2dに作用する慣性力と同方向の地震時慣性力が作用する。その結果、連続した上部構造3に方向の異なる地震時慣性力が作用し、方向の異なる地震時慣性力同士が干渉し合い、連続した上部構造3全体としての地震時慣性力を低減すると共に上部構造3全体の水平変位量を低減する。その結果、下部構造2である橋台2e,2fと各橋脚2a、2b、2c、2dの地震時慣性力による負荷を軽減し、下部構造2の耐震設計強度を低く抑えることが可能となる。また、上部構造3及び下部構造2の水平変位量を低減することで、伸縮装置遊間が狭くすることができ、したがって装置のメンテナンス期間を長くすることが可能となる。   In the superstructure 3 on the piers 2a and 2c on which the damping and seismic isolation device 1 composed of the horizontal force generating mechanism 100 and the rubber elastic body 5 is arranged, the inertial force acting on the piers 2a and 2c is a horizontal force in the reverse direction. Is reduced, and the amount of horizontal displacement is reduced and transmitted. In addition, the abutments 2e and 2f and the piers 2b and 2d are provided in the upper structure 3 on the abutments 2e and 2f and the piers 2b and 2d in which any one of the buffer, the seismic isolation bearing, the fixed bearing, the movable bearing, and the damper 23 is arranged. The inertial force at the time of earthquake acts in the same direction as the inertial force acting on the. As a result, seismic inertial forces in different directions act on the continuous superstructure 3 and the seismic inertial forces in different directions interfere with each other, reducing the seismic inertial force of the continuous superstructure 3 as a whole and Reduce horizontal displacement of structure 3 as a whole. As a result, it is possible to reduce the load caused by the inertial force during the earthquake of the abutments 2e, 2f and the piers 2a, 2b, 2c, 2d, which are the lower structure 2, and to keep the seismic design strength of the lower structure 2 low. Further, by reducing the horizontal displacement amount of the upper structure 3 and the lower structure 2, the space between the telescopic devices can be narrowed, and therefore the maintenance period of the device can be lengthened.

図4は、本発明の構造物制震および免震方法を、橋脚、橋台等の1つの下部構造2と上部構造3との間に配置した別の実施例を示す図である。   FIG. 4 is a diagram showing another embodiment in which the structural seismic control and seismic isolation method of the present invention is arranged between one lower structure 2 and an upper structure 3 such as a pier and an abutment.

この実施例では、橋脚、橋台等の1つの下部構造2と主桁等の上部構造3との間に、水平力発生機構100とゴム系弾性体5からなる制震および免震装置1と、バッファー、免震支承、固定支承、可動支承、ダンパーの内のいずれ23の少なくとも1つを組み合わせて配置する。地震時、下部構造2である橋脚、橋台等に作用する慣性力は、水平力発生機構100とゴム系弾性体5からなる制震および免震装置1を介して、軽減され逆方向の水平力として上部構造3である主桁に伝達される。軽減され上部構造3に伝達される水平力は上部構造3の水平変位量を低減し、上部構造に作用する地震時慣性力を低減し、下部構造2の地震時慣性力による負荷を軽減し、下部構造2の耐震設計強度を低く抑えることが可能となる。また、上部構造3及び下部構造2の水平変位量を低減することで、伸縮装置遊間が狭くすることができ、したがって装置のメンテナンス期間を長くすることが可能となる。   In this embodiment, a damping and seismic isolation device 1 comprising a horizontal force generating mechanism 100 and a rubber elastic body 5 between one lower structure 2 such as a bridge pier and abutment and an upper structure 3 such as a main girder, At least one of a buffer, a seismic isolation bearing, a fixed bearing, a movable bearing, and a damper is arranged in combination. In the event of an earthquake, the inertial force acting on the pier, abutment, etc., which are the substructure 2, is reduced through the vibration control and seismic isolation device 1 comprising the horizontal force generating mechanism 100 and the rubber-based elastic body 5, and the horizontal force in the reverse direction. To the main girder which is the superstructure 3. The horizontal force that is reduced and transmitted to the upper structure 3 reduces the horizontal displacement of the upper structure 3, reduces the inertial force during the earthquake acting on the upper structure, reduces the load caused by the inertial force during the earthquake of the lower structure 2, It is possible to keep the seismic design strength of the lower structure 2 low. Further, by reducing the horizontal displacement amount of the upper structure 3 and the lower structure 2, the space between the telescopic devices can be narrowed, and therefore the maintenance period of the device can be lengthened.

図5、図6は、本発明の構造物制震および免震方法に用いる制震および免震装置1の第1実施形態を示す図である。第1実施形態では、ゴム系弾性体5を下部構造2側に固定した実施例に基づいて説明するが、ゴム系弾性体5を上部構造3側に固定しても良い。   5 and 6 are views showing a first embodiment of the seismic isolation and seismic isolation device 1 used in the structural seismic isolation and seismic isolation method of the present invention. In the first embodiment, the rubber-based elastic body 5 is fixed to the lower structure 2 side. However, the rubber-based elastic body 5 may be fixed to the upper structure 3 side.

水平力発生機構100とゴム系弾性体5からなる制震および免震装置1は、下部構造2と上部構造3との間に設置される。下部構造2にはベースプレート4がアンカーボルト(図示せず)等の固定手段を介して設置される。ベースプレート4上には、ゴム系弾性体5とリンク部材支持台7が設置される。ゴム系弾性体5として、ゴム、ゴムと補強鋼板を鉛直方向に積層した積層ゴム、高減衰性ゴム、積層ゴムに鉛プラグを挿入した鉛プラグ入り積層ゴム等の弾性変形可能なものを用いる。ゴム系弾性体5上にはゴム系弾性体5の平面形状よりも大きい所定厚みの連結鋼板6が固定される。   The vibration control and seismic isolation device 1 including the horizontal force generation mechanism 100 and the rubber-based elastic body 5 is installed between the lower structure 2 and the upper structure 3. A base plate 4 is installed in the lower structure 2 via fixing means such as anchor bolts (not shown). A rubber-based elastic body 5 and a link member support 7 are installed on the base plate 4. As the rubber-based elastic body 5, an elastically deformable material such as rubber, laminated rubber obtained by laminating rubber and a reinforcing steel plate in the vertical direction, highly-damping rubber, laminated rubber containing a lead plug in which a lead plug is inserted into the laminated rubber is used. A connected steel plate 6 having a predetermined thickness larger than the planar shape of the rubber-based elastic body 5 is fixed on the rubber-based elastic body 5.

ベースプレート4上のゴム系弾性体5の両側に互いに平行に伸びるリンク部材支持台7が設置される。リンク支持台7に中央垂直軸10の一端が固定される。下部構造2側に固定されたゴム系弾性体5と一体化された連結鋼板6に第1垂直軸10の一端が固定される。上部構造3に固定された上鋼板9に第2垂直軸14の一端が固定される。   Link member support bases 7 extending in parallel to each other are installed on both sides of the rubber-based elastic body 5 on the base plate 4. One end of the central vertical shaft 10 is fixed to the link support 7. One end of the first vertical shaft 10 is fixed to the connecting steel plate 6 integrated with the rubber-based elastic body 5 fixed to the lower structure 2 side. One end of the second vertical shaft 14 is fixed to the upper steel plate 9 fixed to the upper structure 3.

リンク部材支持台7に水平力発生機構100を構成するリンク部材8が中央垂直軸10を介して回動可能に軸支される。図5、図6に示される実施形態では、リンク部材支持台7にそれぞれ1個のリンク部材8を配置しているが、リンク部材8の数は構造物の規模等により増やしても良い。   A link member 8 constituting the horizontal force generating mechanism 100 is pivotally supported on the link member support 7 via a central vertical shaft 10. In the embodiment shown in FIGS. 5 and 6, one link member 8 is arranged on each link member support 7. However, the number of link members 8 may be increased depending on the scale of the structure.

リンク部材8両端部側に、第1スライド係合部11と第2スライド係合部12である長穴、U字状切り欠き又はスライド溝が形成される。第1スライド係合部11には、下部構造2側に固定されたゴム系弾性体5と一体化された連結鋼板6に一端を固定した第1垂直軸13が第1スライド係合部11に沿って相対移動可能に係合される。第1垂直軸13の連結鋼板6への固定位置は、ゴム系弾性体5の外側に張り出した連結鋼板6の部分とする。ゴム系弾性体5として、ゴム、ゴムと補強鋼板を鉛直方向に積層した積層ゴム、高減衰性ゴム、積層ゴムに鉛プラグを挿入した鉛プラグ入り積層ゴム等の弾性変形可能なものを用いる。   Long holes, U-shaped cutouts, or slide grooves, which are the first slide engagement portion 11 and the second slide engagement portion 12, are formed on both ends of the link member 8. The first slide engaging portion 11 includes a first vertical shaft 13 having one end fixed to a connecting steel plate 6 integrated with a rubber-based elastic body 5 fixed to the lower structure 2 side. And are engaged with each other so as to be relatively movable. The position where the first vertical shaft 13 is fixed to the connecting steel plate 6 is a portion of the connecting steel plate 6 projecting outside the rubber-based elastic body 5. As the rubber-based elastic body 5, an elastically deformable material such as rubber, laminated rubber obtained by laminating rubber and a reinforcing steel plate in the vertical direction, highly-damping rubber, laminated rubber containing a lead plug in which a lead plug is inserted into the laminated rubber is used.

第2スライド係合部12には、上部構造3に固定された上鋼板9に一端を固定した第2垂直軸14が第2長穴12に沿って相対移動可能に係合する。この実施形態では、第1垂直軸13と第2垂直軸14の中央垂直軸10からの距離が同じになるように設定しているが、後述するように、中央垂直軸10と第1垂直軸13との距離と中央垂直軸10と第2垂直軸14との距離およびその比は、各種設計要件に応じた変数として設定される。   A second vertical shaft 14 having one end fixed to the upper steel plate 9 fixed to the upper structure 3 is engaged with the second slide engaging portion 12 along the second elongated hole 12 so as to be relatively movable. In this embodiment, the distance between the first vertical axis 13 and the second vertical axis 14 from the central vertical axis 10 is set to be the same. However, as described later, the central vertical axis 10 and the first vertical axis 10 13, the distance between the central vertical axis 10 and the second vertical axis 14 and the ratio thereof are set as variables according to various design requirements.

地震時に下部構造2に作用する慣性力は、下部構造2に固定されたゴム系弾性体5と一体化された連結鋼板6に一端を固定された第1垂直軸13と第1スライド係合部11との係合によりリンク部材8に伝達される。第1垂直軸13に伝達された下部構造2の慣性力によりリンク部材8は中央垂直軸10を軸として回動する。第1垂直軸13と第1スライド係合部11の係合部の位置は、リンク部材8の中央垂直軸10を軸とした回動によりその軌跡が円弧状となるため第1スライド係合部11に沿って相対移動する。リンク部材8の中央垂直軸10を軸とした回動力は、第2垂直軸14と第2スライド係合部12の係合により上部構造3に下部構造3に作用する慣性力と逆方向の水平力に変換して伝達される。水平力発生機構100による下部構造に作用する慣性力と逆方向の水平力への変換の際の力は、ゴム系弾性体5を下部構造2に作用する慣性力と逆方向に変形させる。リンク部材8の回動に伴う抵抗力およびゴム系弾性体5の変形により抵抗力により下部構造に作用する慣性力を軽減させ、水平変位量が低減されて上部構造3に伝達する。ゴム系弾性体として、高減衰性ゴム、鉛プラグ入り積層ゴムを用いることにより地震エネルギーの減衰効果を高めることが可能となる。   The inertial force acting on the lower structure 2 at the time of an earthquake is such that the first vertical shaft 13 and the first slide engaging portion fixed at one end to a connecting steel plate 6 integrated with the rubber elastic body 5 fixed to the lower structure 2. 11 is transmitted to the link member 8 by engagement with 11. The link member 8 rotates about the central vertical shaft 10 by the inertial force of the lower structure 2 transmitted to the first vertical shaft 13. Since the position of the engaging portion between the first vertical shaft 13 and the first slide engaging portion 11 is turned around the central vertical shaft 10 of the link member 8, the locus becomes an arc shape. 11 moves relative to each other. The rotational force about the central vertical shaft 10 of the link member 8 is horizontal in the direction opposite to the inertial force acting on the upper structure 3 by the engagement of the second vertical shaft 14 and the second slide engaging portion 12. It is converted into force and transmitted. The force at the time of conversion to the horizontal force in the direction opposite to the inertial force acting on the lower structure by the horizontal force generating mechanism 100 deforms the rubber-based elastic body 5 in the direction opposite to the inertial force acting on the lower structure 2. The resistance force accompanying the rotation of the link member 8 and the inertial force acting on the lower structure due to the resistance force due to the deformation of the rubber-based elastic body 5 are reduced, and the horizontal displacement is reduced and transmitted to the upper structure 3. The use of high-damping rubber and laminated rubber with lead plugs as the rubber-based elastic body makes it possible to enhance the seismic energy damping effect.

上部構造3に軽減され、水平変位量が低減されて伝達した水平力は、加速度成分が加わり上部構造3に地震時慣性力として作用する。地震時に上部構造3に作用する地震時慣性力に対して、ゴム系弾性体5の下部構造3に作用する慣性力と逆方向の変形が抵抗力となり、下部構造に作用する負荷慣性力をより低減する。下部構造2の上部構造2の地震時慣性力による負荷が軽減されることで下部構造2の耐震補強強度の増加を抑制することが可能となる。また、水平力発生機構100により発生する水平力により上部構造3の水平方向の変位を低く抑えることができる。そのため、上部構造3に設置される伸縮装置遊間が狭く、したがって装置のメンテナンス期間を長くすることが可能となる。   The horizontal force that is reduced by the superstructure 3 and transmitted with a reduced amount of horizontal displacement acts on the superstructure 3 as an inertial force during an earthquake by adding an acceleration component. The deformation in the opposite direction to the inertial force acting on the lower structure 3 of the rubber-based elastic body 5 becomes a resistance force against the inertial force acting on the upper structure 3 during an earthquake, and the load inertial force acting on the lower structure is further increased. Reduce. It is possible to suppress an increase in the seismic reinforcement strength of the lower structure 2 by reducing the load due to the inertial force during the earthquake of the upper structure 2 of the lower structure 2. Further, the horizontal force generated by the horizontal force generating mechanism 100 can suppress the displacement of the upper structure 3 in the horizontal direction. Therefore, the space between the expansion and contraction devices installed in the upper structure 3 is narrow, so that the maintenance period of the device can be lengthened.

図7、図8は、中央垂直軸10と第1垂直軸13との距離と中央垂直軸10と第2垂直軸14との距離およびその比を設計要件に応じた変数として設定した実施形態を示す図である。   7 and 8 show an embodiment in which the distance between the central vertical axis 10 and the first vertical axis 13, the distance between the central vertical axis 10 and the second vertical axis 14, and the ratio thereof are set as variables according to the design requirements. FIG.

図7に示す実施形態は、リンク部材8を回動自在に軸支する中央垂直軸10と第2スライド係合部12に係合される上部構造3に固定される第2垂直軸14間の距離が、中央垂直軸10と第1スライド係合部11に係合される下部構造2に固定される第1垂直軸13間との距離より短くしている。上部構造3に固定される第2垂直軸14と中央垂直軸10間の距離を短く設定することにより上部構造3の水平変位を制限することが可能となる。   In the embodiment shown in FIG. 7, the central vertical shaft 10 that pivotally supports the link member 8 and the second vertical shaft 14 fixed to the upper structure 3 engaged with the second slide engaging portion 12 are provided. The distance is shorter than the distance between the central vertical shaft 10 and the first vertical shaft 13 fixed to the lower structure 2 engaged with the first slide engaging portion 11. By setting the distance between the second vertical axis 14 fixed to the upper structure 3 and the central vertical axis 10 short, the horizontal displacement of the upper structure 3 can be limited.

図8に示す実施形態は、リンク部材8を回動自在に軸支する中央垂直軸10と第1スライド係合部11に係合される下部構造2に固定される第1垂直軸13間の距離が、中央垂直軸10と第2スライド係合部12に係合される上部構造3に固定される第2垂直軸14間の距離より短くしている。下部構造2に固定されたゴム系弾性体5と一体化された連結鋼板6に固定される第1垂直軸13と中央垂直軸10間の距離を短く設定することにより弾性体5の弾性変形を制限することが可能となる。   In the embodiment shown in FIG. 8, the center vertical shaft 10 that pivotally supports the link member 8 and the first vertical shaft 13 fixed to the lower structure 2 engaged with the first slide engaging portion 11 are provided. The distance is shorter than the distance between the central vertical shaft 10 and the second vertical shaft 14 fixed to the upper structure 3 engaged with the second slide engaging portion 12. By elastically deforming the elastic body 5 by setting the distance between the first vertical shaft 13 and the central vertical shaft 10 fixed to the connecting steel plate 6 integrated with the rubber-based elastic body 5 fixed to the lower structure 2. It becomes possible to restrict.

図7、図8に示すように、中央垂直軸10と第1垂直軸13間の距離と中央垂直軸10と第2垂直軸14間の距離とその比の関係は、支承設計の際の各種設計要件に応じて設定する。   As shown in FIGS. 7 and 8, the relationship between the distance between the central vertical axis 10 and the first vertical axis 13, the distance between the central vertical axis 10 and the second vertical axis 14, and the ratio thereof is various in the design of the bearing. Set according to design requirements.

図9は、本発明の構造物制震および免震方法に用いる制震および免震装置1の第2実施形態を示す図である。第2実施形態では、ゴム系弾性体5を下部構造2側に固定した実施例に基づいて説明するが、ゴム系弾性体5を上部構造3側に固定しても良い。   FIG. 9 is a diagram showing a second embodiment of the vibration control and seismic isolation device 1 used in the structure vibration control and seismic isolation method of the present invention. In the second embodiment, the rubber-based elastic body 5 is fixed to the lower structure 2 side. However, the rubber-based elastic body 5 may be fixed to the upper structure 3 side.

第2実施形態では、ゴム系弾性体5を挟んで一方の1対のリンク部材支持台7を平行に設置し、ゴム系弾性体5を挟んで他方の1対のリンク部材支持台7を平行に設置する。一方の一対のリンク部材7と他方の一対のリンク部材7をゴム系弾性体5を挟んで直交する位置に設置する。一方の一対のリンク部材支持台7に、一方の直線状のリンク部材8が中央垂直軸10により回動自在に軸支される。他方の一対のリンク部材に、他方の直線状のリンク部材8が中央垂直軸10により回動自在に軸支される。ゴム系弾性体5を挟んで、互いに直交する方向にそれぞれリンク部材8を配置することにより、下部構造2に作用する全方向の慣性力に対して対応が可能な制震および免震装置1とすることができる。他の構成は、図5,図6に示される第1実施形態と同様であるので説明を省略する。   In the second embodiment, one pair of link member support bases 7 are installed in parallel with the rubber-based elastic body 5 in between, and the other pair of link member support bases 7 in parallel with the rubber-based elastic body 5 in between. Install in. One pair of link members 7 and the other pair of link members 7 are installed at positions orthogonal to each other with the rubber-based elastic body 5 interposed therebetween. One linear link member 8 is pivotally supported by a central vertical shaft 10 on one pair of link member support bases 7. The other linear link member 8 is pivotally supported on the other pair of link members by a central vertical shaft 10. A seismic control and seismic isolation device 1 capable of dealing with omnidirectional inertial forces acting on the lower structure 2 by disposing the link members 8 in directions orthogonal to each other with the rubber-based elastic body 5 interposed therebetween. can do. Other configurations are the same as those of the first embodiment shown in FIGS.

図10、図11は、本発明の水平力発生機構100とゴム系弾性体5からなる制震および免震装置1の第3実施形態を示す図である。   10 and 11 are views showing a third embodiment of the vibration control and seismic isolation device 1 including the horizontal force generating mechanism 100 and the rubber-based elastic body 5 according to the present invention.

第3実施形態では、下部構造2にアンカーボルト15で固定されるベースプレート4にゴム系弾性体5の下面が固定される。ゴム系弾性体5として、ゴム、ゴムと補強鋼板を鉛直方向に積層した積層ゴム、高減衰性ゴム、積層ゴムに鉛プラグを挿入した鉛プラグ入り積層ゴム等の弾性変形可能なものを用いる。ベースプレート4に配置したゴム系弾性体5の慣性力方向の両側にサイドブロック16が設置される。サイドブロック16には、サイドブロック16の表面から一部が突き出す軸部材17が固定される。軸部材17のサイドブロック17の表面から突き出した部分に、水平力発生機構100を構成するギヤ18を回転自在に軸支する。   In the third embodiment, the lower surface of the rubber-based elastic body 5 is fixed to the base plate 4 fixed to the lower structure 2 with anchor bolts 15. As the rubber-based elastic body 5, an elastically deformable material such as rubber, laminated rubber obtained by laminating rubber and a reinforcing steel plate in the vertical direction, highly-damping rubber, laminated rubber containing a lead plug in which a lead plug is inserted into the laminated rubber is used. Side blocks 16 are installed on both sides in the direction of inertial force of the rubber-based elastic body 5 disposed on the base plate 4. A shaft member 17 that is partially protruded from the surface of the side block 16 is fixed to the side block 16. A gear 18 constituting the horizontal force generating mechanism 100 is rotatably supported on a portion protruding from the surface of the side block 17 of the shaft member 17.

上部構造3側に固定される上鋼板19の下面には、慣性力方向に平行に延びる2つの溝部20が形成される。溝部20の内側の両側壁部には、慣性力方向に延びる水平力発生機構100を構成するギヤレール21が配置される。上鋼板19の2つの溝部20の間でゴム系弾性体5の上面を固定ボルト等の固定手段を介して固定する。下部構造2側のギヤ18と上部構造3側のギヤレール21を噛合わせる。第3実施形態では、ギヤ18を下部構造2側に配置し、ギヤレール21を上部構造3側に配置しているが、その配置を逆にしても良い。   Two grooves 20 extending in parallel to the direction of inertial force are formed on the lower surface of the upper steel plate 19 fixed to the upper structure 3 side. Gear rails 21 constituting a horizontal force generating mechanism 100 extending in the inertial force direction are arranged on both side wall portions inside the groove portion 20. The upper surface of the rubber-based elastic body 5 is fixed between the two groove portions 20 of the upper steel plate 19 through fixing means such as fixing bolts. The gear 18 on the lower structure 2 side and the gear rail 21 on the upper structure 3 side are engaged with each other. In the third embodiment, the gear 18 is arranged on the lower structure 2 side and the gear rail 21 is arranged on the upper structure 3 side. However, the arrangement may be reversed.

地震時に下部構造2に作用する慣性力により、下部構造2側に配置されたギヤ18は上部構造3側に配置されたギヤレール21が噛合しつつ回転する。ギヤ18のギヤレール21との噛合しながらの回転により、上部構造3と下部構造3が相対移動する。ギヤ18とギヤレール21の噛合しながらの回転による相対移動に伴い、下部構造2の慣性力と逆方向の水平力が発生し上部構造3に伝達される。水平力発生機構100による下部構造2の慣性力と逆方向の水平力が発生に伴い、ゴム系弾性体5が、下部構造2に作用する慣性力方向と逆方向に変形する。   Due to the inertial force acting on the lower structure 2 during an earthquake, the gear 18 arranged on the lower structure 2 side rotates while the gear rail 21 arranged on the upper structure 3 side meshes. The upper structure 3 and the lower structure 3 move relative to each other by the rotation while meshing with the gear rail 21 of the gear 18. Along with the relative movement caused by the rotation of the gear 18 and the gear rail 21 while meshing, a horizontal force in a direction opposite to the inertial force of the lower structure 2 is generated and transmitted to the upper structure 3. As the horizontal force in the direction opposite to the inertial force of the lower structure 2 is generated by the horizontal force generating mechanism 100, the rubber-based elastic body 5 is deformed in the direction opposite to the direction of the inertial force acting on the lower structure 2.

ギヤ18とギヤレール21の噛合しながらの回転による下部構造2と上部構造3の相対移動による下部構造2の慣性力と逆方向の水平力が発生と、ゴム系弾性体5の下部構造2の慣性力方向と逆方向の変形により、下部構造に作用する慣性力が軽減され、下部構造2に作用する慣性力とは逆方向の水平力として上部構造3に伝達される。   A horizontal force in the opposite direction to the inertial force of the lower structure 2 is generated by the relative movement of the lower structure 2 and the upper structure 3 due to the rotation while the gear 18 and the gear rail 21 are engaged, and the inertia of the lower structure 2 of the rubber-based elastic body 5 is generated. Due to the deformation in the direction opposite to the force direction, the inertial force acting on the lower structure is reduced, and the inertial force acting on the lower structure 2 is transmitted to the upper structure 3 as a horizontal force in the opposite direction.

上部構造3に軽減されて伝達した水平力は、加速度成分が加わり上部構造3に地震時慣性力が作用する。地震時に上部構造3に作用する地震時慣性力に対して、ゴム弾性体5の下部構造3に作用する慣性力と逆方向の変形が抵抗力となり、下部構造2に作用する負荷慣性力をより低減する。下部構造2の上部構造3に作用する地震時慣性力による負荷が軽減されることで下部構造2の耐震補強強度の増加を抑制することが可能となる。また、水平力発生機構100により発生する水平力により上部構造3の水平方向の変位を低く抑えることができる。そのため、上部構造3に設置される伸縮装置遊間が狭く、したがって装置のメンテナンス期間を長くすることが可能となる。ゴム系弾性体5として、高減衰性ゴム、鉛プラグ入り積層ゴムを用いることにより地震エネルギーの減衰効果を高めることが可能となる。   The horizontal force that has been reduced and transmitted to the upper structure 3 is added with an acceleration component, and an inertial force during an earthquake acts on the upper structure 3. The deformation in the opposite direction to the inertial force acting on the lower structure 3 of the rubber elastic body 5 becomes a resistance force against the inertial force acting on the upper structure 3 during the earthquake, and the load inertial force acting on the lower structure 2 is further increased. Reduce. It is possible to suppress an increase in the seismic reinforcement strength of the lower structure 2 by reducing the load due to the inertial force during the earthquake that acts on the upper structure 3 of the lower structure 2. Further, the horizontal force generated by the horizontal force generating mechanism 100 can suppress the displacement of the upper structure 3 in the horizontal direction. Therefore, the space between the expansion and contraction devices installed in the upper structure 3 is narrow, so that the maintenance period of the device can be lengthened. As the rubber-based elastic body 5, it is possible to enhance the damping effect of seismic energy by using a high-damping rubber and a laminated rubber with a lead plug.

以上のように、本発明の構造物制震・振免震方法によれば、水平力発生機構による下部構造の慣性力方向逆方向の水平力への変換とゴム系弾性体の下部構造の慣性力方向と逆方向の変形により地震エネルギーを軽減して上部構造に伝達するので、上部構造に作用する地震時慣性力を低減し、下部構造の地震時慣性力による負荷を軽減することで下部構造の耐震設計強度を低く抑えることが可能となる。また、上部構造及び下部構造の水平変位量を抑えることができるため伸縮装置遊間が狭くすることができ、したがって装置のメンテナンス期間を長くすることが可能となる。   As described above, according to the structure vibration control / vibration isolation method of the present invention, the horizontal force generation mechanism converts the lower structure into a horizontal force in the direction opposite to the inertial force direction and the inertia of the lower structure of the rubber-based elastic body. Since the seismic energy is reduced and transmitted to the superstructure by deformation in the direction opposite to the force direction, the substructure can be reduced by reducing the earthquake inertia force acting on the superstructure and reducing the load of the substructure caused by the earthquake inertial force. It is possible to keep the seismic design strength of the low. Further, since the horizontal displacement amount of the upper structure and the lower structure can be suppressed, the space between the expansion and contraction devices can be narrowed, and therefore the maintenance period of the device can be lengthened.

1:制震および免震装置、2:下部構造、3:上部構造、4:ベースプレート、5:ゴム系弾性体、6:連結鋼板、7:リンク部材支持台、8:リンク部材、9:上鋼板、10:中央垂直軸、11:第1スライド係合部、12:第2スライド係合部、13:第1垂直軸、14:第2垂直軸、15:アンカーボルト、16:サイドブロック、17:軸部材、18:ギヤ、19:上鋼板 、20:溝部、21:ギヤレール、23:バッファー、免震支承、固定支承、可動支承、ダンパーの内のいずれか、24:支承装置、25:積層ゴム   1: damping and seismic isolation device, 2: lower structure, 3: upper structure, 4: base plate, 5: rubber-based elastic body, 6: connecting steel plate, 7: link member support, 8: link member, 9: upper Steel plate, 10: central vertical shaft, 11: first slide engaging portion, 12: second slide engaging portion, 13: first vertical shaft, 14: second vertical shaft, 15: anchor bolt, 16: side block, 17: shaft member, 18: gear, 19: upper steel plate, 20: groove, 21: gear rail, 23: buffer, seismic isolation bearing, fixed bearing, movable bearing, damper, 24: bearing device, 25: Laminated rubber

Claims (8)

建築物や橋梁等の構造物の上部構造と下部構造との間に、地震時前記下部構造に作用する慣性力に対して逆方向の水平力を発生させる水平力発生機構と前記水平力発生機構に連結されたゴム系弾性体からなる制震および免震装置を配置し、
地震時前記水平力発生機構が下部構造に作用する慣性力を逆方向の水平力に変換し前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させ、上部構造に伝達される地震エネルギーを軽減すると共に上部構造及び下部構造の水平変位量を低減することを特徴とする構造物制震および免震方法。
A horizontal force generating mechanism that generates a horizontal force in the opposite direction to the inertial force acting on the lower structure during an earthquake between the upper structure and the lower structure of a structure such as a building or a bridge, and the horizontal force generating mechanism A seismic control and seismic isolation device consisting of a rubber-based elastic body connected to the
In the event of an earthquake, the horizontal force generation mechanism converts the inertial force acting on the lower structure into a horizontal force in the reverse direction, transforms the rubber elastic body in the direction opposite to the direction of the inertial force of the lower structure, and is transmitted to the upper structure Structural seismic control and seismic isolation method characterized by reducing seismic energy and reducing horizontal displacement of superstructure and substructure.
前記水平力発生機構と前記ゴム系弾性体からなる制震および免震装置を、多径間連続桁橋の橋脚、橋台等の下部構造と主桁等の上部構造との間に配置し、連続した上部構造の水平変位量を低減し、且つ、複数の下部構造の水平変位量を低減することを特徴とする請求項1に記載の構造物用制震および免震方法。   The vibration control and seismic isolation device comprising the horizontal force generation mechanism and the rubber-based elastic body is disposed between the lower structure of the multi-span continuous girder bridge, the lower structure such as the abutment, and the upper structure of the main girder, etc. 2. The structural vibration control and seismic isolation method according to claim 1, wherein a horizontal displacement amount of the upper structure is reduced and a horizontal displacement amount of the plurality of lower structures is reduced. 前記水平力発生機構と前記ゴム系弾性体からなる制震および免震装置と、バッファー、免震支承、固定支承、可動支承およびダンパーの内のいずれかを多径間連続桁橋の橋脚、橋台等の下部構造と主桁等の上部構造との間に混在させて配置し、連続した上部構造の水平変位量を低減し、且つ、複数の下部構造の水平変位量を低減することを特徴とする請求項1に記載の構造物制震および免震方法。   Any of the horizontal force generating mechanism and the rubber-based elastic damping and seismic isolation device, and the buffer, seismic isolation bearing, fixed bearing, movable bearing and damper are used for the piers and abutments of the multi-span continuous girder bridge. It is arranged between a lower structure such as a main girder and the like and mixed together to reduce the horizontal displacement of a continuous upper structure and reduce the horizontal displacement of a plurality of lower structures. The structure seismic control and seismic isolation method according to claim 1. 前記水平力発生機構と前記ゴム系弾性体からなる制震および免震装置と、バッファー、免震支承、固定支承、可動支承およびダンパーの内の少なくとも1つを、橋脚、橋台等の下部構造と主桁等の上部構造との間に組み合わせて配置し、上部構造および下部構造の水平変位量を低減することを特徴とする請求項1に記載の構造物制震および免震方法。   At least one of a vibration damping and seismic isolation device comprising the horizontal force generating mechanism and the rubber-based elastic body, a buffer, a seismic isolation bearing, a fixed bearing, a movable bearing, and a damper, and a substructure such as a pier and an abutment The structural seismic control and seismic isolation method according to claim 1, wherein the structure is disposed in combination with an upper structure such as a main girder to reduce the horizontal displacement of the upper structure and the lower structure. 前記制震および免震装置は、
上部構造または下部構造の一方に固定したゴム系弾性体と、
前記ゴム系弾性体が固定された構造側の前記ゴム系弾性体の外側に一端を固定した中央垂直軸と、前記中央垂直軸に回転自在に軸支され、両端に長穴、U字状切り欠き又はスライド溝等のスライド係合部を形成したリンク部材と、前記リンク部材の一方の側の前記スライド係合部に係合される前記ゴム系弾性体に一端を固定した第1垂直軸と、前記リンク部材の他方の側の前記スライド係合部に係合される前記ゴム系弾性体の固定されない構造側に一端を固定した第2垂直軸とからなる水平力発生機構と、を備え、地震時に下部構造に作用する慣性力を前記リンク部材の回動により逆方向の水平力に変換して上部構造に伝達すると共に、前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させることを特徴とする請求項1ないし4のいずれか1項に記載の構造物制震および免震方法。
The vibration control and seismic isolation device
A rubber-based elastic body fixed to one of the upper structure or the lower structure;
A central vertical shaft having one end fixed to the outside of the rubber elastic body on the structure side to which the rubber elastic body is fixed, and a central vertical shaft that is rotatably supported by the central vertical shaft. A link member formed with a slide engaging portion such as a notch or a slide groove, and a first vertical shaft having one end fixed to the rubber-based elastic body engaged with the slide engaging portion on one side of the link member A horizontal force generating mechanism comprising a second vertical shaft having one end fixed to the unfixed structure side of the rubber-based elastic body engaged with the slide engagement portion on the other side of the link member, The inertial force acting on the lower structure during an earthquake is converted into a horizontal force in the reverse direction by the rotation of the link member and transmitted to the upper structure, and the rubber-based elastic body is moved in the direction opposite to the direction of the inertial force of the lower structure. 5. The method according to claim 1, wherein the deformation is performed. Structure seismic response control and seismic isolation method according to any one.
前記中央垂直軸と前記第1垂直軸間の距離と前記中央垂直軸と前記第2垂直軸間の距離およびその比を、上部構造の変位制限またはゴム系弾性体の弾性変形制限の設計要件に応じた変数としたことを特徴とする請求項5に記載の構造物制震および免震方法。   The distance between the central vertical axis and the first vertical axis, the distance between the central vertical axis and the second vertical axis, and the ratio thereof are used as design requirements for the displacement restriction of the superstructure or the elastic deformation restriction of the rubber-based elastic body. The structure seismic control and seismic isolation method according to claim 5, wherein the variable is a variable. 一方のリンク部材と他方のリンク部材を直交する方向に配置したことを特徴とする請求項5又は6に記載の構造物制震および免震方法。   The structure seismic control and seismic isolation method according to claim 5 or 6, wherein one link member and the other link member are arranged in a direction orthogonal to each other. 前記制震および免震装置は、
上部構造または下部構造の一方に配置される慣性力方向に直線的に延びるギヤレールと、
他方の構造に回転自在に配置されるギヤと、
前記上部構造及び下部構造に上下が固定されるゴム系弾性体と、
を備え、
前記ギヤと前記ギヤレールを噛み合わせ、地震時に下部構造に作用する慣性力を前記ギヤレールと前記ギヤの噛合しながら相対移動することで逆方向の水平力に変換して上部構造に伝達すると共に、前記ゴム系弾性体を前記下部構造の慣性力方向と逆方向に変形させることを特徴とする請求項1ないし4のいずれか1項に記載の構造物制震および免震方法。
The vibration control and seismic isolation device
A gear rail linearly extending in the direction of inertial force disposed on one of the upper structure or the lower structure;
A gear rotatably arranged in the other structure;
A rubber-based elastic body whose top and bottom are fixed to the upper structure and the lower structure;
With
The gear and the gear rail mesh with each other, and the inertial force acting on the lower structure at the time of an earthquake is relatively moved while meshing with the gear rail and the gear, thereby converting it into a horizontal force in the reverse direction and transmitting it to the upper structure. The structural vibration control and seismic isolation method according to any one of claims 1 to 4, wherein the rubber-based elastic body is deformed in a direction opposite to an inertial force direction of the lower structure.
JP2011211911A 2011-07-25 2011-09-28 Structure vibration control and base isolation method Withdrawn JP2013047433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211911A JP2013047433A (en) 2011-07-25 2011-09-28 Structure vibration control and base isolation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011161597 2011-07-25
JP2011161597 2011-07-25
JP2011211911A JP2013047433A (en) 2011-07-25 2011-09-28 Structure vibration control and base isolation method

Publications (1)

Publication Number Publication Date
JP2013047433A true JP2013047433A (en) 2013-03-07

Family

ID=48010557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211911A Withdrawn JP2013047433A (en) 2011-07-25 2011-09-28 Structure vibration control and base isolation method

Country Status (1)

Country Link
JP (1) JP2013047433A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078252A (en) * 2015-10-19 2017-04-27 株式会社ビービーエム Performance reinforcement structure for rubber bearing device or base isolation bearing device, using structure vibration damper
JP2018003558A (en) * 2016-07-08 2018-01-11 東日本高速道路株式会社 Aseismatic structure, and method to improve aseismatic performance
CN108505434A (en) * 2018-05-02 2018-09-07 福建工程学院 A kind of seamless curved bridge using semi-rigid Integral Abutment
CN108691266A (en) * 2018-05-30 2018-10-23 林同棪国际工程咨询(中国)有限公司 The multidirectional damping device of bridge pier
CN110175426A (en) * 2019-05-31 2019-08-27 中铁二院工程集团有限责任公司 Railroad bridge Elasto-plastic Metal limits shock absorption energy consuming device design method
CN110529567A (en) * 2019-09-25 2019-12-03 大连理工大学 Fluctuating acceleration curved surface helical gear drive mechanism for shift quality damping system
CN114635346A (en) * 2022-03-10 2022-06-17 应急管理部国家自然灾害防治研究院 Anti-beam-falling device used in ice water area when earthquake landslide surge impacts bridge and installation method
CN115307802A (en) * 2022-10-11 2022-11-08 广州大学 Stress detection system and method for rubber vibration isolation support
CN116467781A (en) * 2023-04-21 2023-07-21 合肥工业大学 Design method of economic quasi-shock-isolation system of highway bridge

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078252A (en) * 2015-10-19 2017-04-27 株式会社ビービーエム Performance reinforcement structure for rubber bearing device or base isolation bearing device, using structure vibration damper
JP2018003558A (en) * 2016-07-08 2018-01-11 東日本高速道路株式会社 Aseismatic structure, and method to improve aseismatic performance
CN108505434B (en) * 2018-05-02 2023-11-21 福建工程学院 Seamless curved bridge adopting semi-rigid integral bridge abutment
CN108505434A (en) * 2018-05-02 2018-09-07 福建工程学院 A kind of seamless curved bridge using semi-rigid Integral Abutment
CN108691266A (en) * 2018-05-30 2018-10-23 林同棪国际工程咨询(中国)有限公司 The multidirectional damping device of bridge pier
CN108691266B (en) * 2018-05-30 2023-12-12 林同棪国际工程咨询(中国)有限公司 Multidirectional damping device for bridge pier
CN110175426A (en) * 2019-05-31 2019-08-27 中铁二院工程集团有限责任公司 Railroad bridge Elasto-plastic Metal limits shock absorption energy consuming device design method
CN110529567A (en) * 2019-09-25 2019-12-03 大连理工大学 Fluctuating acceleration curved surface helical gear drive mechanism for shift quality damping system
CN110529567B (en) * 2019-09-25 2024-05-07 大连理工大学 Variable acceleration curved surface helical gear transmission mechanism for variable speed mass damping system
CN114635346A (en) * 2022-03-10 2022-06-17 应急管理部国家自然灾害防治研究院 Anti-beam-falling device used in ice water area when earthquake landslide surge impacts bridge and installation method
CN114635346B (en) * 2022-03-10 2023-08-22 应急管理部国家自然灾害防治研究院 Beam falling prevention device used for bridge impact caused by earthquake landslide surge in ice water area and installation method
CN115307802B (en) * 2022-10-11 2023-08-25 广州大学 Stress detection system and method for rubber vibration isolation support
CN115307802A (en) * 2022-10-11 2022-11-08 广州大学 Stress detection system and method for rubber vibration isolation support
CN116467781B (en) * 2023-04-21 2023-09-22 合肥工业大学 Design method of economic quasi-shock-isolation system of highway bridge
CN116467781A (en) * 2023-04-21 2023-07-21 合肥工业大学 Design method of economic quasi-shock-isolation system of highway bridge

Similar Documents

Publication Publication Date Title
JP2013047433A (en) Structure vibration control and base isolation method
US9238919B2 (en) Seismic isolation mechanism
Mazza et al. Nonlinear dynamic response of RC buildings with different base isolation systems subjected to horizontal and vertical components of near-fault ground motions
US9206616B2 (en) Negative stiffness device and method
Park et al. A comparative study on aseismic performances of base isolation systems for multi-span continuous bridge
JP4545920B2 (en) Seismic isolation system for bridges
KR100731210B1 (en) Earthquake Isolation Bearing for Bridges Using Shape Memory Alloy
Li et al. Advances in structural control in civil engineering in China
Shen et al. Effects of seismic devices on transverse responses of piers in the Sutong Bridge
JP2013044155A (en) Vibration control structure
Abbasi et al. Effect of shear keys on seismic response of irregular bridge configurations
JP5316849B2 (en) Damping structure
WO2013051702A1 (en) Seismic isolation support device for traveling crane
JP2004197502A (en) Vibration control structure of bridge
JP7228401B2 (en) Seismic isolation device
Warnotte et al. State of the art in the pounding mitigation techniques
Pasala Seismic response control of structures using novel adaptive passive and semi-active variable stiffness and negative stiffness devices
JP2013092009A (en) Structure vibration damping device and structure vibration damping method
JP5327647B2 (en) Damping structure
Javanmardi Seismic Behaviour Investigation of a Cablestayed Bridge with Hybrid Passive Control System
Ismail New approach to seismic-resistant design and structural torsion mitigation
JP4471238B1 (en) Bridge or building support device
JP5706952B1 (en) Bridge structure and existing bridge reinforcement method
JP3753264B2 (en) Building seismic isolation device
KR101975572B1 (en) Seismic control apparatus for reducing the lateral responses of apartment houses

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202