JP2013046586A - Oligonucleotide derivative bound by chemical bond with 2-(4-aminostyryl) benzothiazolium salt, method for producing the same, and method for detecting nucleic acid using the same as oligonucleotide probe - Google Patents

Oligonucleotide derivative bound by chemical bond with 2-(4-aminostyryl) benzothiazolium salt, method for producing the same, and method for detecting nucleic acid using the same as oligonucleotide probe Download PDF

Info

Publication number
JP2013046586A
JP2013046586A JP2011186337A JP2011186337A JP2013046586A JP 2013046586 A JP2013046586 A JP 2013046586A JP 2011186337 A JP2011186337 A JP 2011186337A JP 2011186337 A JP2011186337 A JP 2011186337A JP 2013046586 A JP2013046586 A JP 2013046586A
Authority
JP
Japan
Prior art keywords
nucleic acid
group
oligonucleotide derivative
target nucleic
oligonucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011186337A
Other languages
Japanese (ja)
Inventor
Munenobu Inoue
宗宣 井上
Masahiro Shiozaki
雅宏 潮崎
Takaya Tawarada
隆哉 俵田
Akinori Kobuna
昭徳 小鮒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Priority to JP2011186337A priority Critical patent/JP2013046586A/en
Publication of JP2013046586A publication Critical patent/JP2013046586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oligonucleotide derivative which is large in fluorescence intensity value and high in fluorescence sensitizing factor in the presence of a target nucleic acid having a nucleotide sequence which is large in Stokes shift and complementary.SOLUTION: There is provided an oligonucleotide derivative bound by chemical bond with a 2-(4-aminostyryl) benzothiazolium salt which is expressed by general formula (1a).

Description

本発明は、オリゴヌクレオチドと2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合することで得られるオリゴヌクレオチド誘導体、該誘導体の製造方法、および該誘導体を用いた、該誘導体が有するヌクレオチド配列と相補的な配列を有する核酸の検出方法に関するものである。   The present invention relates to an oligonucleotide derivative obtained by chemically bonding an oligonucleotide and 2- (4-aminostyryl) benzothiazolium salt, a method for producing the derivative, and a nucleotide of the derivative using the derivative The present invention relates to a method for detecting a nucleic acid having a sequence complementary to a sequence.

近年、遺伝子診断技術の発達に伴い、遺伝子を検出する技術の重要性が増している。二本鎖DNAやDNA−RNAハイブリッド等の二本鎖核酸の検出には、従来よりエチジウムブロミドやオキサゾールイエロー等の蛍光色素を用いた検出が用いられている(非特許文献1)。また、それらの蛍光色素とオリゴヌクレオチドを化学結合で結合したオリゴヌクレオチド誘導体は、該誘導体が有するヌクレオチド配列と相補的な配列を有するオリゴヌクレオチドまたはポリヌクレオチド(標的核酸)と二本鎖核酸を形成することができ、該二本鎖核酸の形成に伴い蛍光増感を示すことから、遺伝子診断において遺伝子やウイルス等の検出に用いられる(特許文献1)。特に、エチジウムブロミド類縁体である3,8−ジアミノ−6−フェニルフェナントリジニウム塩を化学結合で結合したオリゴヌクレオチド誘導体は、該誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸を検出するためのオリゴヌクレオチドプローブとして広く用いられている。(特許文献2、非特許文献1)。   In recent years, with the development of genetic diagnosis technology, the importance of technology for detecting genes has increased. Conventionally, detection using a fluorescent dye such as ethidium bromide or oxazole yellow has been used to detect double-stranded nucleic acids such as double-stranded DNA and DNA-RNA hybrids (Non-patent Document 1). In addition, oligonucleotide derivatives obtained by binding these fluorescent dyes and oligonucleotides by chemical bonds form double-stranded nucleic acids with oligonucleotides or polynucleotides (target nucleic acids) having a complementary sequence to the nucleotide sequence of the derivatives. Since it exhibits fluorescence sensitization with the formation of the double-stranded nucleic acid, it is used for detection of genes, viruses and the like in genetic diagnosis (Patent Document 1). In particular, an oligonucleotide derivative in which 3,8-diamino-6-phenylphenanthridinium salt, which is an ethidium bromide analog, is bound by a chemical bond, detects a target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative. It is widely used as an oligonucleotide probe. (Patent Document 2, Non-Patent Document 1).

なお、2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合した、本発明のオリゴヌクレオチド誘導体はこれまでに全く報告されておらず、新規の化合物である。   In addition, the oligonucleotide derivative of this invention which couple | bonded 2- (4-aminostyryl) benzothiazolium salt by the chemical bond has not been reported at all until now, and is a novel compound.

特開2001−13147号公報JP 2001-13147 A 国際特許公開WO97/27329号International Patent Publication WO 97/27329 特開2000−316587号公報JP 2000-316587 A 特許第2650159号公報Japanese Patent No. 2650159 欧州公開特許第373960号公報European Published Patent No. 373960 特開平8−211050号公報Japanese Patent Laid-Open No. 8-211050 特開2000−14400号公報JP 2000-14400 A 特開2001−037500号公報JP 2001-037500 A

Nucleic Acids Research,22,920−928(1994)Nucleic Acids Research, 22, 920-928 (1994) Dyes and Pigments,11,21−35(1989)Dies and Pigments, 11, 21-35 (1989) Anal. Biochem.,314,1247−1252(2003)Anal. Biochem. , 314, 1247-1252 (2003)

前述したように、エチジウムブロミド類縁体である3,8−ジアミノ−6−フェニルフェナントリジニウム塩を化学結合で結合したオリゴヌクレオチド誘導体は、該誘導体が有するヌクレオチド配列と相補的な配列を有するオリゴヌクレオチドまたはポリヌクレオチド(標的核酸)を検出するためのオリゴヌクレオチドプローブとして従来より用いられているものの、蛍光強度値が小さく、二本鎖核酸の形成に伴う蛍光強度値の増加割合、いわゆる蛍光増感率が低いという問題点があった。   As described above, an oligonucleotide derivative in which 3,8-diamino-6-phenylphenanthridinium salt, which is an ethidium bromide analog, is bonded by a chemical bond is an oligonucleotide having a sequence complementary to the nucleotide sequence of the derivative. Although conventionally used as an oligonucleotide probe for detecting nucleotides or polynucleotides (target nucleic acids), the fluorescence intensity value is small and the rate of increase in fluorescence intensity value associated with the formation of double-stranded nucleic acid, so-called fluorescence sensitization There was a problem that the rate was low.

そこで本発明の課題は、ストークスシフトが大きく、かつ、相補的なヌクレオチド配列を有する標的核酸存在下における蛍光強度値が大きく、蛍光増感率も高い、オリゴヌクレオチド誘導体を提供することにある。   An object of the present invention is to provide an oligonucleotide derivative having a large Stokes shift, a large fluorescence intensity value in the presence of a target nucleic acid having a complementary nucleotide sequence, and a high fluorescence sensitization rate.

本発明者らは、前記課題を鑑み鋭意検討を重ねた結果、本発明の2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体が、ストークスシフトが大きく、かつ、該誘導体が有するヌクレオチド配列と相補的な配列を有するオリゴヌクレオチドまたはポリヌクレオチド(標的核酸)存在下における蛍光強度値が大きく、蛍光増感率も高いため、該標的核酸を検出するためのオリゴヌクレオチドプローブとして有用であることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventors have found that an oligonucleotide derivative obtained by binding the 2- (4-aminostyryl) benzothiazolium salt of the present invention with a chemical bond has a large Stokes shift, and The oligonucleotide for detecting the target nucleic acid because the fluorescence intensity value is large and the fluorescence sensitization rate is high in the presence of the oligonucleotide or polynucleotide (target nucleic acid) having a sequence complementary to the nucleotide sequence of the derivative It has been found useful as a probe, and the present invention has been completed.

すなわち本発明は、一般式(1a)   That is, the present invention relates to the general formula (1a)

Figure 2013046586
(式中、R6−1、R6−2、R6−3およびR6−4は各々独立に水素原子またはメトキシ基を表し、RおよびRは各々独立に9−アデニル基、9−グアニル基、1−シトシニル基または1−チミニル基を表し、Xは対アニオンを表す。lは1から8の整数を表し、mは1から4の整数を表し、nは1から4の整数を表す。Bはアデニン、グアニン、シトシンまたはチミンを表し、qは0から30の整数を表し、qが2以上の時、複数のBは同一または相異なっていてもよい。Bはアデニン、グアニン、シトシンまたはチミンを表し、rは0から30の整数を表し、rが2以上の時、複数のBは同一または相異なっていてもよい。ただし、qとrの和は15以上30以下である。Zは水酸基またはアミノ基を表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体に関する。
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 each independently represents a hydrogen atom or a methoxy group, R 7 and R 8 each independently represent a 9-adenyl group, 9 - guanyl group, a 1-cytosinyl group or 1-thyminyl group, X - pairs .l representing the anion is an integer of from 1 to 8, m is an integer of from 1 4, n is from 1 to 4 .B 1 represents an integer represents adenine, guanine, cytosine or thymine, q represents an integer of 0 to 30, when q is 2 or more, plural B 1 represents an optionally identical or different .B 2 Represents adenine, guanine, cytosine or thymine, r represents an integer of 0 to 30, and when r is 2 or more, a plurality of B 2 may be the same or different, provided that the sum of q and r is It is 15 or more and 30 or less, Z represents a hydroxyl group or an amino group. ) Represented by a chemical bond.

また本発明は、一般式(1c)   The present invention also provides a compound represented by the general formula (1c)

Figure 2013046586
(式中、R6−1、R6−2、R6−3およびR6−4は各々独立に水素原子またはメトキシ基を表し、R7−1およびR8−1は各々独立に9−アデニル基または1−チミニル基を表し、Xは対アニオンを表し、lは1から8の整数を表す。Bはアデニン、グアニン、シトシンまたはチミンを表し、sは0から27の整数を表し、sが2以上の時、複数のBは同一または相異なっていてもよい。Bはアデニン、グアニン、シトシンまたはチミンを表し、tは0から27の整数を表し、tが2以上の時、複数のBは同一または相異なっていてもよい。ただし、sとtの和は9以上24以下である。Bは同一または相異なってアデニンまたはチミンを表し、Bは同一または相異なってアデニンまたはチミンを表す。Zは水酸基またはアミノ基を表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体に関する。
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 each independently represent a hydrogen atom or a methoxy group, and R 7-1 and R 8-1 each independently represent 9- Represents an adenyl group or 1-thyminyl group, X represents a counter anion, l represents an integer of 1 to 8, B 3 represents adenine, guanine, cytosine or thymine, and s represents an integer of 0 to 27 , S is 2 or more, a plurality of B 3 may be the same or different, B 6 represents adenine, guanine, cytosine or thymine, t represents an integer of 0 to 27, and t is 2 or more And a plurality of B 6 may be the same or different, provided that the sum of s and t is 9 or more and 24 or less, B 4 is the same or different and represents adenine or thymine, and B 5 is the same or different. Differently, it represents adenine or thymine. Represents a hydroxyl group or an amino group.) Represented by 2- (4-aminostyryl) relates to oligonucleotides derivative bound benzothiazolium salts by a chemical bond.

また本発明は、一般式(1b)   The present invention also provides a compound represented by the general formula (1b)

Figure 2013046586
(式中、R6−1およびR6−4は各々独立に水素原子またはメトキシ基を表し、Xは対アニオンを表し、lは1から8の整数を表し、Zは水酸基またはアミノ基を表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体に関する。
Figure 2013046586
(Wherein R 6-1 and R 6-4 each independently represents a hydrogen atom or a methoxy group, X represents a counter anion, l represents an integer of 1 to 8, Z represents a hydroxyl group or an amino group, It represents an oligonucleotide derivative in which 2- (4-aminostyryl) benzothiazolium salt represented by

また本発明は、一般式(2d)   The present invention also provides a compound represented by the general formula (2d)

Figure 2013046586
(式中、R6−1、R6−2、R6−3およびR6−4は各々独立に水素原子またはメトキシ基を表し、Yはヨウ素原子、臭素原子または塩素原子を表し、Xはハロゲン原子、炭素数1から8のアルコキシスルホニルオキシ基、メチルスルホニルオキシ基またはトリフルオロメチルスルホニルオキシ基を表し、lは1から8の整数を表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩を、一般式(6)
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 each independently represents a hydrogen atom or a methoxy group, Y represents an iodine atom, a bromine atom or a chlorine atom, and X 1 Represents a halogen atom, an alkoxysulfonyloxy group having 1 to 8 carbon atoms, a methylsulfonyloxy group, or a trifluoromethylsulfonyloxy group, and l represents an integer of 1 to 8). A styryl) benzothiazolium salt represented by the general formula (6)

Figure 2013046586
(式中、RおよびRは各々独立に9−アデニル基、9−グアニル基、1−シトシニル基または1−チミニル基を表し、mは1から4の整数を表し、nは1から4の整数を表す。Bはアデニン、グアニン、シトシンまたはチミンを表し、qは0から30の整数を表し、qが2以上の時、複数のBは同一または相異なっていてもよい。Bはアデニン、グアニン、シトシンまたはチミンを表し、rは0から30の整数を表し、rが2以上の時、複数のBは同一または相異なっていてもよい。ただし、qとrの和は15以上30以下である。Zは水酸基またはアミノ基を表す。)で表されるオリゴヌクレオチド誘導体と、還元剤の存在下反応させることを特徴とする、一般式(1a)
Figure 2013046586
(Wherein R 7 and R 8 each independently represents a 9-adenyl group, 9-guanyl group, 1-cytosinyl group or 1-thyminyl group, m represents an integer of 1 to 4, and n represents 1 to 4) B 1 represents adenine, guanine, cytosine or thymine, q represents an integer of 0 to 30, and when q is 2 or more, a plurality of B 1 may be the same or different. 2 represents adenine, guanine, cytosine or thymine, r represents an integer of 0 to 30, and when r is 2 or more, a plurality of B 2 may be the same or different, provided that the sum of q and r Is from 15 to 30. Z represents a hydroxyl group or an amino group), and is reacted in the presence of a reducing agent.

Figure 2013046586
(式中、R6−1、R6−2、R6−3、R6−4、R、R、l、m、n、q、r、Z、BおよびBは前記と同じ意味を表し、Xは対アニオンを表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体の製造方法に関する。
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 , R 6-4 , R 7 , R 8 , l, m, n, q, r, Z, B 1 and B 2 are The present invention relates to a method for producing an oligonucleotide derivative in which a 2- (4-aminostyryl) benzothiazolium salt represented by the same meaning and X represents a counter anion is bound by a chemical bond.

また本発明は、本発明の2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体と、該誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸とで二本鎖核酸を形成させ、該二本鎖核酸の形成に伴う前記オリゴヌクレオチド誘導体の蛍光特性の変化を測定することで標的核酸を検出する方法に関する。   In addition, the present invention comprises two oligonucleotide derivatives obtained by binding the 2- (4-aminostyryl) benzothiazolium salt of the present invention with a chemical bond and a target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative. The present invention relates to a method for detecting a target nucleic acid by forming a double-stranded nucleic acid and measuring a change in fluorescence property of the oligonucleotide derivative accompanying the formation of the double-stranded nucleic acid.

また本発明は、本発明の2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体と、該誘導体が有するヌクレオチド配列と相補的な配列を有する第一の標的核酸とで二本鎖核酸を形成させるとともに、一般式(2d)   The present invention also provides an oligonucleotide derivative in which the 2- (4-aminostyryl) benzothiazolium salt of the present invention is bound by a chemical bond, and a first target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative. To form a double-stranded nucleic acid and the general formula (2d)

Figure 2013046586
(式中、R6−1、R6−2、R6−3およびR6−4は各々独立に水素原子またはメトキシ基を表し、Yはヨウ素原子、臭素原子または塩素原子を表し、Xはハロゲン原子、炭素数1から8のアルコキシスルホニルオキシ基、メチルスルホニルオキシ基またはトリフルオロメチルスルホニルオキシ基を表し、lは1から8の整数を表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩とは異なる蛍光波長を示す蛍光色素を化学結合で結合したオリゴヌクレオチド誘導体と、該誘導体が有するヌクレオチド配列と相補的な配列を有する第二の標的核酸とで二本鎖核酸を形成させ、前記二本鎖核酸の形成に伴う各オリゴヌクレオチド誘導体の蛍光特性の変化を測定することで標的核酸を検出する方法に関する。
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 each independently represents a hydrogen atom or a methoxy group, Y represents an iodine atom, a bromine atom or a chlorine atom, and X 1 Represents a halogen atom, an alkoxysulfonyloxy group having 1 to 8 carbon atoms, a methylsulfonyloxy group, or a trifluoromethylsulfonyloxy group, and l represents an integer of 1 to 8). (Styryl) benzothiazolium salt, an oligonucleotide derivative in which a fluorescent dye having a fluorescence wavelength different from that of the benzothiazolium salt is bound by a chemical bond, and a second target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative The present invention relates to a method for detecting a target nucleic acid by forming a nucleic acid and measuring a change in fluorescence characteristics of each oligonucleotide derivative accompanying the formation of the double-stranded nucleic acid.

本発明の2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体は、該誘導体が有するヌクレオチド配列と相補的な配列を有するオリゴヌクレオチドまたはポリヌクレオチド(標的核酸)と二本鎖核酸を形成することで蛍光増感を示すことから、前記標的核酸を特異的に検出するオリゴヌクレオチドプローブとして用いることができる。   An oligonucleotide derivative obtained by binding a 2- (4-aminostyryl) benzothiazolium salt of the present invention by a chemical bond is an oligonucleotide or polynucleotide (target nucleic acid) having a sequence complementary to the nucleotide sequence of the derivative. Since fluorescence sensitization is exhibited by forming a double-stranded nucleic acid, it can be used as an oligonucleotide probe for specifically detecting the target nucleic acid.

本発明のオリゴヌクレオチド誘導体が有する蛍光特性は、同一波長領域で励起することができ、かつ、従来よりオリゴヌクレオチドプローブとして用いられている、3,8−ジアミノ−6−フェニルフェナントリジニウム塩を化学結合で結合したオリゴヌクレオチド誘導体よりも、蛍光強度値が顕著に高く、蛍光増感率も大きい。よって、本発明のオリゴヌクレオチド誘導体は標的核酸を検出する上で極めて有用な新規化合物であり、遺伝子診断等の臨床診断分野での利用に有用である。   The fluorescent property possessed by the oligonucleotide derivative of the present invention is the 3,8-diamino-6-phenylphenanthridinium salt that can be excited in the same wavelength region and that has been conventionally used as an oligonucleotide probe. The fluorescence intensity value is significantly higher than that of the oligonucleotide derivative bonded by chemical bonding, and the fluorescence sensitization rate is also large. Accordingly, the oligonucleotide derivative of the present invention is a novel compound that is extremely useful for detecting a target nucleic acid, and is useful for use in the field of clinical diagnosis such as genetic diagnosis.

実施例8にて、化合物1−1をオリゴヌクレオチド誘導体として用いたときの、核酸増幅反応に伴う蛍光強度(610nm)の経時変化を示す図。The figure which shows a time-dependent change of the fluorescence intensity (610 nm) accompanying a nucleic acid amplification reaction when the compound 1-1 is used as an oligonucleotide derivative in Example 8. 実施例8にて、化合物1−3をオリゴヌクレオチド誘導体として用いたときの、核酸増幅反応に伴う蛍光強度(610nm)の経時変化を示す図。The figure which shows a time-dependent change of the fluorescence intensity (610 nm) accompanying a nucleic acid amplification reaction when the compound 1-3 is used as an oligonucleotide derivative in Example 8. 実施例9にて、化合物1−1をオリゴヌクレオチド誘導体として用いたときの、核酸増幅反応に伴う蛍光強度(610nm)の経時変化を示す図。The figure which shows the time-dependent change of the fluorescence intensity (610 nm) accompanying a nucleic acid amplification reaction when the compound 1-1 is used as an oligonucleotide derivative in Example 9. 実施例9にて、化合物1−4をオリゴヌクレオチド誘導体として用いたときの、核酸増幅反応に伴う蛍光強度(610nm)の経時変化を示す図。The figure which shows a time-dependent change of the fluorescence intensity (610 nm) accompanying a nucleic acid amplification reaction when the compound 1-4 is used as an oligonucleotide derivative in Example 9. 実施例9にて、化合物1−5をオリゴヌクレオチド誘導体として用いたときの、核酸増幅反応に伴う蛍光強度(610nm)の経時変化を示す図。The figure which shows a time-dependent change of the fluorescence intensity (610 nm) accompanying a nucleic acid amplification reaction when the compound 1-5 is used as an oligonucleotide derivative in Example 9. 実施例9にて、化合物1−6をオリゴヌクレオチド誘導体として用いたときの、核酸増幅反応に伴う蛍光強度(610nm)の経時変化を示す図。The figure which shows a time-dependent change of the fluorescence intensity (610 nm) accompanying a nucleic acid amplification reaction when the compound 1-6 is used as an oligonucleotide derivative in Example 9. 実施例10にて、化合物1−1とプローブBを添加した核酸増幅反応における蛍光強度(520nm)の経時変化を示す図。The figure which shows the time-dependent change of the fluorescence intensity (520 nm) in the nucleic acid amplification reaction which added the compound 1-1 and the probe B in Example 10. 実施例10にて、化合物1−1とプローブBを添加した核酸増幅反応における蛍光強度(610nm)の経時変化を示す図。The figure which shows the time-dependent change of the fluorescence intensity (610 nm) in the nucleic acid amplification reaction which added the compound 1-1 and the probe B in Example 10. FIG. 実施例10にて、化合物1−3とプローブBを添加した核酸増幅反応における蛍光強度(520nm)の経時変化を示す図。The figure which shows the time-dependent change of the fluorescence intensity (520 nm) in the nucleic acid amplification reaction which added the compound 1-3 and the probe B in Example 10. 実施例10にて、化合物1−3とプローブBを添加した核酸増幅反応における蛍光強度(610nm)の経時変化を示す図。The figure which shows the time-dependent change of the fluorescence intensity (610 nm) in the nucleic acid amplification reaction which added the compound 1-3 and the probe B in Example 10. FIG.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明の2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体(以下、本発明のオリゴヌクレオチド誘導体という)中、R6−1、R6−2、R6−3およびR6−4は水素原子またはメトキシ基を表す。中でもR6−2およびR6−3は蛍光強度が強い点で水素原子が好ましい。 Among the oligonucleotide derivatives (hereinafter referred to as the oligonucleotide derivatives of the present invention) in which the 2- (4-aminostyryl) benzothiazolium salt of the present invention is bound by a chemical bond, R 6-1 , R 6-2 , R 6 -3 and R 6-4 represent a hydrogen atom or a methoxy group. Among these, R 6-2 and R 6-3 are preferably hydrogen atoms in terms of strong fluorescence intensity.

本発明のオリゴヌクレオチド誘導体中、Rは9−アデニル基、9−グアニル基、1−シトシニル基、1−チミニル基のいずれかを表す。中でも蛍光強度が強い点で9−アデニル基または1−チミニル基が好ましく、1−チミニル基がさらに好ましい。 In the oligonucleotide derivative of the present invention, R 7 represents any of 9-adenyl group, 9-guanyl group, 1-cytosinyl group, and 1-thyminyl group. Of these, a 9-adenyl group or 1-thyminyl group is preferable in terms of strong fluorescence intensity, and a 1-thyminyl group is more preferable.

本発明のオリゴヌクレオチド誘導体中、Rは9−アデニル基、9−グアニル基、1−シトシニル基、1−チミニル基のいずれかを表す。中でも蛍光強度が強い点で9−アデニル基または1−チミニル基が好ましく、9−アデニル基がさらに好ましい。 In the oligonucleotide derivative of the present invention, R 8 represents any one of 9-adenyl group, 9-guanyl group, 1-cytosinyl group, and 1-thyminyl group. Of these, a 9-adenyl group or 1-thyminyl group is preferable in terms of strong fluorescence intensity, and a 9-adenyl group is more preferable.

本発明のオリゴヌクレオチド誘導体中、Xで表される対アニオンとしては、塩素アニオン、臭素アニオン、ヨウ素アニオン等のハロゲンアニオン、メトキシスルホニルオキシアニオン、エトキシスルホニルオキシアニオン、プロポキシスルホニルオキシアニオン、ブトキシスルホニルオキシアニオン、ペントキシスルホニルオキシアニオン、ヘキサノキシスルホニルオキシアニオン、ヘプタノキシスルホニルオキシアニオン、オクタノキシスルホニルオキシアニオン等の炭素数1から8のアルコキシスルホニルオキシアニオン、メチルスルホニルオキシアニオン、トリフルオロメチルスルホニルオキシアニオン、酢酸アニオン、リン酸アニオン、水酸化物イオン、4−(2−ヒドロキシエチル)−1−ピペラジンエチルスルホニルオキシアニオンを例示することができる。なお、分子内のカルボン酸アニオンまたはリン酸アニオンが対アニオンになっていてもよい。 An oligonucleotide derivative of the present invention, X - as the counter anion represented by chlorine anion, bromine anion, halogen anion, such as iodine anion, methoxy sulfonyloxy anion, ethoxy sulfonyloxy anion, propoxy sulfonyloxy anion, butoxy sulfonyloxy C1-C8 alkoxysulfonyloxy anion such as anion, pentoxysulfonyloxy anion, hexanoxysulfonyloxy anion, heptanoxysulfonyloxy anion, octanoxysulfonyloxy anion, methylsulfonyloxy anion, trifluoromethylsulfonyl Oxy anion, acetate anion, phosphate anion, hydroxide ion, 4- (2-hydroxyethyl) -1-piperazine ethylsulfonyloxy Nion can be exemplified. In addition, the carboxylate anion or phosphate anion in the molecule may be a counter anion.

本発明のオリゴヌクレオチド誘導体中、lは1から8の整数のいずれかを表す。中でも蛍光強度が強い点でlは3から6のいずれかが好ましく、特に4が好ましい。   In the oligonucleotide derivative of the present invention, l represents an integer of 1 to 8. Among them, l is preferably any one of 3 to 6, particularly 4 in terms of strong fluorescence intensity.

本発明のオリゴヌクレオチド誘導体中、mは1から4の整数のいずれかを表す。中でも蛍光強度が強い点でmは2が好ましい。   In the oligonucleotide derivative of the present invention, m represents an integer of 1 to 4. Among these, m is preferably 2 in terms of strong fluorescence intensity.

本発明のオリゴヌクレオチド誘導体中、nは1から4の整数のいずれかを表す。中でも蛍光強度が強い点でnは2が好ましい。   In the oligonucleotide derivative of the present invention, n represents any integer of 1 to 4. Among these, n is preferably 2 in terms of strong fluorescence intensity.

次に、本発明のオリゴヌクレオチド誘導体(1a)の製造方法について詳細に説明する。本発明のオリゴヌクレオチド誘導体(1a)は、下記スキームにより製造することができる。   Next, the manufacturing method of the oligonucleotide derivative (1a) of this invention is demonstrated in detail. The oligonucleotide derivative (1a) of the present invention can be produced by the following scheme.

Figure 2013046586
(式中、R6−1、R6−2、R6−3、R6−4、R、R、X、l、m、nは前記と同じ意味を表す。Xはハロゲン原子、炭素数1から8のアルコキシスルホニルオキシ基、メチルスルホニルオキシ基またはトリフルオロメチルスルホニルオキシ基を表し、Yはヨウ素原子、臭素原子または塩素原子を表す。Bはアデニン、グアニン、シトシンまたはチミンを表す。qは0から30の整数を表し、qが2以上の時、複数のBは同一または相異なっていてもよい。Bはアデニン、グアニン、シトシンまたはチミンを表す。rは0から30の整数を表し、rが2以上の時、複数のBは同一または相異なっていてもよい。ただし、qとrの和は15以上30以下である。Zは水酸基またはアミノ基を表す。)
前記スキームのうち、Xで表されるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子を例示することができる。また、Xで表される炭素数1から8のアルコキシスルホニルオキシ基としては、メトキシスルホニルオキシ基、エトキシスルホニルオキシ基、プロポキシスルホニルオキシ基、ブトキシスルホニルオキシ基、ペントキシスルホニルオキシ基、ヘキサノキシスルホニルオキシ基、ヘプタノキシスルホニルオキシ基、オクタノキシスルホニルオキシ基を例示することができる。中でも調製が容易な点でヨウ素原子がXとして好ましい。
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 , R 6-4 , R 7 , R 8 , X , l, m, n represent the same meaning as described above. X 1 is halogen. An atom, an alkoxysulfonyloxy group having 1 to 8 carbon atoms, a methylsulfonyloxy group or a trifluoromethylsulfonyloxy group, Y represents an iodine atom, a bromine atom or a chlorine atom, B 1 represents adenine, guanine, cytosine or thymine; Q represents an integer of 0 to 30, and when q is 2 or more, a plurality of B 1 may be the same or different, B 2 represents adenine, guanine, cytosine or thymine, r is 0 And when r is 2 or more, the plurality of B 2 may be the same or different, provided that the sum of q and r is 15 or more and 30 or less, Z is a hydroxyl group or an amino group. Represents.)
Among the schemes, examples of the halogen atom represented by X 1 include a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkoxysulfonyloxy group having 1 to 8 carbon atoms represented by X 1 include methoxysulfonyloxy group, ethoxysulfonyloxy group, propoxysulfonyloxy group, butoxysulfonyloxy group, pentoxysulfonyloxy group, hexanoxy Examples include a sulfonyloxy group, a heptanoxysulfonyloxy group, and an octanoxysulfonyloxy group. Among them, an iodine atom is preferable as X 1 because it is easy to prepare.

前記スキームのうち、Yはヨウ素原子、臭素原子または塩素原子を表す。中でも収率がよい点でヨウ素原子がYとして好ましい。   In the scheme, Y represents an iodine atom, a bromine atom or a chlorine atom. Among them, an iodine atom is preferable as Y in terms of a good yield.

前記スキームのうち工程−1は、2−メチルベンゾチアゾリウム塩(4a)と4−(ジメチルアミノ)ベンズアルデヒド(5a)を縮合させ、2−(4−アミノスチリル)ベンゾチアゾリウム塩(2d)を製造する工程である。   In the scheme, Step-1 comprises condensation of 2-methylbenzothiazolium salt (4a) and 4- (dimethylamino) benzaldehyde (5a) to give 2- (4-aminostyryl) benzothiazolium salt (2d). ).

工程−1の原料である2−メチルベンゾチアゾリウム塩(4a)は、例えば文献記載の方法(Dyes and Pigments,11,21−35(1989):非特許文献2)を参考に、対応する2−メチルベンゾチアゾール誘導体から調製することができる。   The 2-methylbenzothiazolium salt (4a) which is the raw material of Step-1 corresponds, for example, with reference to a method described in the literature (Dyes and Pigments, 11, 21-35 (1989): Non-Patent Document 2). It can be prepared from 2-methylbenzothiazole derivatives.

工程−1の反応は、縮合剤の存在下に行なうことが必須である。縮合剤としては、塩基または脱水剤を用いることができる。本工程の縮合剤として用いることができる塩基としては、ピペリジン、ピロリジン、モルフォリン等の有機塩基を例示することができる。また、本工程の縮合剤として用いることのできる脱水剤としては、無水酢酸、無水トリフルオロ酢酸等の酸無水物を例示することができる。中でも収率のよい点で、ピペリジンまたは無水酢酸が縮合剤として好ましい。   It is essential to carry out the reaction of Step-1 in the presence of a condensing agent. As the condensing agent, a base or a dehydrating agent can be used. Examples of the base that can be used as the condensing agent in this step include organic bases such as piperidine, pyrrolidine, and morpholine. Examples of the dehydrating agent that can be used as the condensing agent in this step include acid anhydrides such as acetic anhydride and trifluoroacetic anhydride. Of these, piperidine or acetic anhydride is preferred as the condensing agent because of its good yield.

工程−1の反応は反応を阻害しない溶媒であれば、溶媒中で行なってもよい。本工程で用いることができる溶媒として、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、メチル−tert−ブチルエーテル、1,2−ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン系溶媒、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、N−メチル−2−ピロリドン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン等の非プロトン性極性溶媒、メタノール、エタノール、tert−ブチルアルコール等のアルコール系溶媒、水を例示することができ、これらの溶媒の中から2種類以上を混合して用いてよい。また前述した縮合剤である、ピペリジン、ピロリジン、モルフォリン等の有機塩基、無水酢酸、無水トリフルオロ酢酸等の酸無水物を溶媒として用いてもよい。   The reaction in Step-1 may be performed in a solvent as long as it does not inhibit the reaction. Specific examples of solvents that can be used in this step include ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, methyl-tert-butyl ether, 1,2-dimethoxyethane, and cyclopentylmethyl ether, hexane, Hydrocarbon solvents such as pentane, heptane, cyclohexane, aromatic hydrocarbon solvents such as benzene, toluene, xylene, halogen solvents such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, acetonitrile, dimethyl sulfoxide, Aprotic polar solvents such as dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, methanol, ethanol, tert-butyl alcohol, etc. No alcohol System solvent, water can be exemplified may be used in combination of two or more from among these solvents. In addition, an organic base such as piperidine, pyrrolidine, and morpholine, and an acid anhydride such as acetic anhydride and trifluoroacetic anhydride, which are the aforementioned condensing agents, may be used as a solvent.

工程−1の反応で、2−メチルベンゾチアゾリウム塩(4a)と4−(ジメチルアミノ)ベンズアルデヒド(5a)とのモル比に特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率がよい点で1:1から1:3の範囲がさらに好ましい。   There is no particular limitation on the molar ratio of 2-methylbenzothiazolium salt (4a) to 4- (dimethylamino) benzaldehyde (5a) in the reaction of Step-1, but the range is from 1: 1 to 1:10. Among these, the range of 1: 1 to 1: 3 is more preferable in terms of good yield.

工程−1の反応において、2−メチルベンゾチアゾリウム塩(4a)と縮合剤とのモル比に特に制限はないが、縮合剤を溶媒として用いない場合には、1:1から1:10の範囲が好ましく、中でも収率がよい点で1:1から1:3の範囲がさらに好ましい。   In the reaction of Step-1, the molar ratio of the 2-methylbenzothiazolium salt (4a) and the condensing agent is not particularly limited, but when the condensing agent is not used as a solvent, it is 1: 1 to 1:10. The range of 1: 1 to 1: 3 is more preferable in terms of good yield.

工程−1の反応において、反応温度は−78℃から150℃の範囲から適宜選ばれた温度で行なうことができる。中でも収率がよい点で室温から120℃の範囲が好ましい。   In the reaction of Step-1, the reaction temperature can be carried out at a temperature appropriately selected from the range of −78 ° C. to 150 ° C. Among these, the range from room temperature to 120 ° C. is preferable from the viewpoint of good yield.

工程−1の反応で得られる2−(4−アミノスチリル)ベンゾチアゾリウム塩(2d)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定はないが、溶媒抽出、シリカゲルカラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。   The 2- (4-aminostyryl) benzothiazolium salt (2d) obtained by the reaction in Step-1 can be purified from the reaction solution after completion of the reaction, if necessary. The purification method is not particularly limited, but the target product may be purified by a general-purpose method such as solvent extraction, silica gel column chromatography, preparative thin layer chromatography, preparative liquid chromatography, recrystallization or sublimation. it can.

工程−2は、2−(4−アミノスチリル)ベンゾチアゾリウム塩(2d)とオリゴヌクレオチド誘導体(6)とを反応させ、本発明の2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体(1a)を製造する工程である。   Step-2 is a reaction of 2- (4-aminostyryl) benzothiazolium salt (2d) with oligonucleotide derivative (6) to produce 2- (4-aminostyryl) benzothiazolium salt of the present invention. This is a step of producing an oligonucleotide derivative (1a) bonded by chemical bonding.

工程−2の原料であるオリゴヌクレオチド誘導体(6)は、例えば文献記載の方法(特開2000−316587号公報:特許文献3)を参考に、下記スキームにより調製することができる。化合物(13)から化合物(14)への変換工程の条件を選ぶことにより、オリゴヌクレオチド誘導体(6)の置換基Zは、水酸基またはアミノ基に作り分けることができる。   The oligonucleotide derivative (6) which is the raw material of step-2 can be prepared by the following scheme with reference to, for example, a method described in the literature (Japanese Patent Laid-Open No. 2000-316587: Patent Literature 3). By selecting the conditions for the conversion step from the compound (13) to the compound (14), the substituent Z of the oligonucleotide derivative (6) can be made into a hydroxyl group or an amino group.

Figure 2013046586
(式中、R、R、m、n、q、r、B、BおよびZは前記と同じ意味を表す。)
工程−2の反応は、還元剤の存在下に行なうことが必須であり、還元剤としては、水素化ホウ素ナトリウム、2−メルカプトエタノール、ジチオスレイトール、2−メルカプトエチルアミン、ジチオエリスリトール、還元型グルタチオン、システイン、モノチオリン酸および亜硫酸塩等を用いることができる。
Figure 2013046586
(In the formula, R 7 , R 8 , m, n, q, r, B 1 , B 2 and Z have the same meaning as described above.)
It is essential to perform the reaction in Step-2 in the presence of a reducing agent. Examples of the reducing agent include sodium borohydride, 2-mercaptoethanol, dithiothreitol, 2-mercaptoethylamine, dithioerythritol, and reduced glutathione. Cysteine, monothiophosphoric acid, sulfite and the like can be used.

工程−2の反応は反応を阻害しない溶媒であれば、溶媒中で行なってもよい。工程−2で用いることができる溶媒としては、トリス−塩酸緩衝液、酢酸ナトリウム緩衝液、HEPES−KOH緩衝液、リン酸ナトリウム緩衝液、リン酸カリウム緩衝液等の緩衝液を例示することができる。また、これらの緩衝液に、0%から80%の割合でジメチルスルホキシド、メタノール、エタノール、ヘキサメチルリン酸トリアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,4−ジオキサン、テトラヒドロフラン等、水と混和可能な有機溶媒を混合して用いてもよい。なお、前記有機溶媒の割合を0%から20%の範囲とすると好ましい。   The reaction of step-2 may be performed in a solvent as long as it does not inhibit the reaction. Examples of the solvent that can be used in Step-2 include buffer solutions such as Tris-hydrochloric acid buffer solution, sodium acetate buffer solution, HEPES-KOH buffer solution, sodium phosphate buffer solution, and potassium phosphate buffer solution. . Also, in these buffers, dimethyl sulfoxide, methanol, ethanol, hexamethylphosphoric triamide, N, N-dimethylformamide, N, N-dimethylacetamide, 1,4-dioxane, tetrahydrofuran at a ratio of 0% to 80% For example, an organic solvent miscible with water may be mixed. In addition, it is preferable when the ratio of the organic solvent is in the range of 0% to 20%.

工程−2の反応において、2−(4−アミノスチリル)ベンゾチアゾリウム塩(2d)とオリゴヌクレオチド誘導体(6)とのモル比に特に制限はなく、2−(4−アミノスチリル)ベンゾチアゾリウム塩(2d)を大過剰に用いてもよい。   In the reaction of Step-2, the molar ratio of 2- (4-aminostyryl) benzothiazolium salt (2d) and oligonucleotide derivative (6) is not particularly limited, and 2- (4-aminostyryl) benzothia Zorium salt (2d) may be used in a large excess.

工程−2の反応において、オリゴヌクレオチド誘導体(6)と還元剤とのモル比に特に制限はなく、還元剤を大過剰に用いてもよい。   In the reaction of Step-2, the molar ratio between the oligonucleotide derivative (6) and the reducing agent is not particularly limited, and the reducing agent may be used in a large excess.

工程−2の反応において、反応温度は0℃から100℃の範囲から適宜選ばれた温度で行なうことができる。中でも収率がよい点で室温から60℃の範囲が好ましい。   In the reaction of Step-2, the reaction temperature can be carried out at a temperature appropriately selected from the range of 0 ° C to 100 ° C. Among these, the range from room temperature to 60 ° C. is preferable in terms of a good yield.

工程−2で得られた本発明のオリゴヌクレオチド誘導体(1a)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定はないが、溶媒抽出、シリカゲルカラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。   The oligonucleotide derivative (1a) of the present invention obtained in Step-2 can be purified from the reaction solution after completion of the reaction, if necessary. The purification method is not particularly limited, but the target product may be purified by a general-purpose method such as solvent extraction, silica gel column chromatography, preparative thin layer chromatography, preparative liquid chromatography, recrystallization or sublimation. it can.

なお、本発明のオリゴヌクレオチド誘導体(1a)のカウンターアニオン(X)は、工程−2の反応において、反応に用いる緩衝液中の陰イオンまたは分子内の陰イオンとアニオン交換反応が起こる場合がある。しかしながら、いずれのカウンターアニオン(X)であっても、オリゴヌクレオチドプローブとしての性能に影響はない。 The counter anion (X ) of the oligonucleotide derivative (1a) of the present invention may undergo an anion exchange reaction with an anion in the buffer used for the reaction or an anion in the molecule in the reaction of Step-2. is there. However, any counter anion (X ) does not affect the performance as an oligonucleotide probe.

本発明のオリゴヌクレオチド誘導体(1a)は、該誘導体が有するヌクレオチド配列と相補的な配列を有するオリゴヌクレオチドまたはポリヌクレオチド(標的核酸)と二本鎖核酸を形成することで、形成前と比較し蛍光特性が変化する(すなわち、蛍光強度値が増大する)ため、該標的核酸を特異的に検出するためのオリゴヌクレオチドプローブとして用いることができる。なお該標的核酸の由来に特に限定はなく、例えば、PCR等に代表される核酸増幅反応により合成されたポリヌクレオチドであってもよいし、化学的に合成されたオリゴヌクレオチドであってもよいし、血液、組織、細胞等から抽出されたポリヌクレオチドであってもよいし、食品、土壌、排水等から抽出されたポリヌクレオチドであってもよい。   The oligonucleotide derivative (1a) of the present invention forms a double-stranded nucleic acid with an oligonucleotide or a polynucleotide (target nucleic acid) having a sequence complementary to the nucleotide sequence of the derivative, so that it is fluorescent compared to before formation. Since the property changes (that is, the fluorescence intensity value increases), it can be used as an oligonucleotide probe for specifically detecting the target nucleic acid. The source of the target nucleic acid is not particularly limited, and may be, for example, a polynucleotide synthesized by a nucleic acid amplification reaction typified by PCR or a chemically synthesized oligonucleotide. It may be a polynucleotide extracted from blood, tissue, cells or the like, or may be a polynucleotide extracted from food, soil, waste water or the like.

本発明のオリゴヌクレオチド誘導体と標的核酸とで二本鎖核酸を形成させる際の溶媒に特に制限はないものの、緩衝液を用いることが好ましい。用いることのできる緩衝液としては、トリス−塩酸緩衝液、酢酸ナトリウム緩衝液、HEPES−KOH緩衝液、リン酸ナトリウム緩衝液、リン酸カリウム緩衝液を例示することができる。なお、本発明のオリゴヌクレオチド誘導体と標的核酸とで形成される二本鎖核酸の熱的安定性を向上させるために、前述の緩衝液に任意の濃度で無機塩またはカルボン酸塩を添加してもよい。該無機塩としては、塩化ナトリウム、塩化マグネシウム、塩化カリウム、臭化ナトリウム、臭化マグネシウム、臭化カリウム、ヨウ化ナトリウム、ヨウ化カリウムを例示することができ、該カルボン酸塩としては、酢酸マグネシウム、酢酸マンガンを例示することができる。これらの無機塩およびカルボン酸塩のうち2種類以上を混合して用いてもよい。無機塩またはカルボン酸塩の添加濃度は0Mから5Mの範囲が好ましい。さらに、緩衝液に混和可能な有機溶媒を0%から80%の割合で添加してもよい。該有機溶媒としては、ジメチルスルホキシド、メタノール、エタノール、ヘキサメチルリン酸トリアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,4−ジオキサン、テトラヒドロフラン、エチレングリコール、グリセリンを例示することができ、これらの有機溶媒のうち2種類以上を混合して用いてもよい。有機溶媒の割合は、本発明のオリゴヌクレオチド誘導体と標的核酸とで安定的に二本鎖核酸を形成できる点で、0%から20%の範囲が好ましい。   Although there is no particular limitation on the solvent for forming the double-stranded nucleic acid with the oligonucleotide derivative of the present invention and the target nucleic acid, it is preferable to use a buffer. Examples of buffers that can be used include Tris-hydrochloric acid buffer, sodium acetate buffer, HEPES-KOH buffer, sodium phosphate buffer, and potassium phosphate buffer. In addition, in order to improve the thermal stability of the double-stranded nucleic acid formed with the oligonucleotide derivative of the present invention and the target nucleic acid, an inorganic salt or a carboxylate is added to the aforementioned buffer at an arbitrary concentration. Also good. Examples of the inorganic salt include sodium chloride, magnesium chloride, potassium chloride, sodium bromide, magnesium bromide, potassium bromide, sodium iodide, and potassium iodide. Examples of the carboxylate include magnesium acetate. An example is manganese acetate. Two or more of these inorganic salts and carboxylates may be mixed and used. The addition concentration of the inorganic salt or carboxylate is preferably in the range of 0M to 5M. Further, an organic solvent miscible with the buffer may be added at a ratio of 0% to 80%. Examples of the organic solvent include dimethyl sulfoxide, methanol, ethanol, hexamethylphosphoric triamide, N, N-dimethylformamide, N, N-dimethylacetamide, 1,4-dioxane, tetrahydrofuran, ethylene glycol, and glycerin. Two or more of these organic solvents may be mixed and used. The proportion of the organic solvent is preferably in the range of 0% to 20% in that a double-stranded nucleic acid can be stably formed with the oligonucleotide derivative of the present invention and the target nucleic acid.

本発明のオリゴヌクレオチド誘導体と標的核酸とで二本鎖核酸を形成させる温度は、形成される二本鎖核酸の融解温度(Tm値)以下であればよく、具体的には、一般的な標的核酸の場合、0℃から80℃の範囲の中から、形成される二本鎖核酸のヌクレオチド配列および二本鎖核酸を形成させる際の溶媒の組成を考慮の上、適宜設定すればよい。   The temperature at which the oligonucleotide derivative of the present invention and the target nucleic acid form a double-stranded nucleic acid may be equal to or lower than the melting temperature (Tm value) of the formed double-stranded nucleic acid. In the case of a nucleic acid, it may be appropriately set within the range of 0 ° C. to 80 ° C. in consideration of the nucleotide sequence of the double-stranded nucleic acid to be formed and the composition of the solvent for forming the double-stranded nucleic acid.

本発明のオリゴヌクレオチド誘導体の蛍光特性は、蛍光色素部位、すなわち2−(4−アミノスチリル)ベンゾチアゾリウム塩部位に依存し、400nmから600nmの非常に幅広い波長領域で励起可能であり、その際、525nmから675nmの波長領域の蛍光を生じる。なお、最大励起波長は540nm付近であり、最大蛍光波長は590nm付近である。   The fluorescent property of the oligonucleotide derivative of the present invention depends on the fluorescent dye site, that is, the 2- (4-aminostyryl) benzothiazolium salt site, and can be excited in a very wide wavelength region from 400 nm to 600 nm. At this time, fluorescence in the wavelength region of 525 nm to 675 nm is generated. The maximum excitation wavelength is around 540 nm, and the maximum fluorescence wavelength is around 590 nm.

本発明のオリゴヌクレオチド誘導体は、標的核酸の増幅反応を行なう際、増幅反応液中に共存させることができる。これにより、該標的核酸を増幅させながら本発明のオリゴヌクレオチド誘導体と二本鎖核酸を形成させることができ、該二本鎖核酸の形成に伴う本発明のオリゴヌクレオチド誘導体が有する蛍光特性の変化(蛍光強度値の変化)を経時的に測定することで、該標的核酸のリアルタイム検出が可能となる。標的核酸のリアルタイム検出方法の一例として、標的核酸増幅反応中のある時点で測定した反応液中の蛍光強度値を反応前の反応液中の蛍光強度値で割った値(蛍光増感率)が一定の値(しきい値)を超えた場合、標的核酸検出と判定する方法がある。   The oligonucleotide derivative of the present invention can coexist in the amplification reaction solution when performing the amplification reaction of the target nucleic acid. Thus, a double-stranded nucleic acid can be formed with the oligonucleotide derivative of the present invention while amplifying the target nucleic acid, and a change in fluorescence characteristics of the oligonucleotide derivative of the present invention accompanying the formation of the double-stranded nucleic acid ( By measuring the change in fluorescence intensity over time, the target nucleic acid can be detected in real time. As an example of the target nucleic acid real-time detection method, the value obtained by dividing the fluorescence intensity value in the reaction solution measured at a certain time during the target nucleic acid amplification reaction by the fluorescence intensity value in the reaction solution before the reaction (fluorescence sensitization rate) is There is a method of determining target nucleic acid detection when a certain value (threshold value) is exceeded.

また本発明のオリゴヌクレオチド誘導体を用いた標的核酸のリアルタイム検出は、密閉容器内にて一段階で行なうことができる。すなわち標的核酸のリアルタイム検出を行なう際、当該検出に必要な試薬(標的核酸増幅試薬および標的核酸を検出するためのオリゴヌクレオチドプローブ)の全てを容器内に収容し、標的核酸を含む試料を添加した後、当該容器を密閉することで、後から試薬を添加する操作や不要な試薬を除去する操作なしに、標的核酸をリアルタイムに検出(標的核酸の増幅および検出)することができる。   In addition, real-time detection of a target nucleic acid using the oligonucleotide derivative of the present invention can be performed in one step in a sealed container. That is, when performing real-time detection of the target nucleic acid, all the reagents necessary for the detection (target nucleic acid amplification reagent and oligonucleotide probe for detecting the target nucleic acid) are housed in a container, and a sample containing the target nucleic acid is added. Thereafter, by sealing the container, the target nucleic acid can be detected in real time (amplification and detection of the target nucleic acid) without an operation of adding a reagent later or an operation of removing an unnecessary reagent.

本発明のオリゴヌクレオチド誘導体を用いた標的核酸のリアルタイム検出における、標的核酸の増幅方法に特に制限はなく、一例として特許文献4から6に記載された方法を採用することができる。さらに具体的には、標的RNAに対し相同的なヌクレオチド配列を有する第一のプライマーと、標的RNAに対し相補的なヌクレオチド配列を有する第二のプライマー(該プライマーのうちいずれか一方は、その5’末端にプロモーター配列が付加されている)からなるプライマーの組合せを用いて、
(1)逆転写酵素によりプロモーター配列を含む二本鎖DNAを生成し、
(2)当該二本鎖DNAを鋳型としてRNAポリメラーゼによりRNA逆転写産物を生成し、
(3)当該RNA転写産物が引き続き前記逆転写酵素によるDNA合成の鋳型となって前記二本鎖DNAを生成する、
RNA増幅反応させる際に、本発明のオリゴヌクレオチド誘導体を当該増幅反応系中に共存させ、当該誘導体が有する蛍光特性の変化(蛍光強度値の変化)を経時的に測定することで、標的RNAをリアルタイム検出することができる。
The method for amplifying the target nucleic acid in the real-time detection of the target nucleic acid using the oligonucleotide derivative of the present invention is not particularly limited, and the methods described in Patent Documents 4 to 6 can be adopted as an example. More specifically, a first primer having a nucleotide sequence homologous to the target RNA and a second primer having a nucleotide sequence complementary to the target RNA (any one of these primers is Using a primer combination consisting of 'with a promoter sequence at the end)
(1) generating double-stranded DNA containing a promoter sequence by reverse transcriptase,
(2) generating an RNA reverse transcript by RNA polymerase using the double-stranded DNA as a template,
(3) The RNA transcript is subsequently used as a template for DNA synthesis by the reverse transcriptase to produce the double-stranded DNA.
When the RNA amplification reaction is performed, the oligonucleotide derivative of the present invention is allowed to coexist in the amplification reaction system, and the change in the fluorescence characteristics (change in the fluorescence intensity value) of the derivative is measured over time. Real-time detection is possible.

本発明のオリゴヌクレオチド誘導体(第一のオリゴヌクレオチド誘導体)に、本発明のオリゴヌクレオチド誘導体とは蛍光波長の異なる蛍光色素を化学結合で結合したオリゴヌクレオチド誘導体(第二のオリゴヌクレオチド誘導体)をさらに添加することで、第一のオリゴヌクレオチド誘導体が有するヌクレオチド配列と相補的な配列を有する第一の標的核酸と、第二のオリゴヌクレオチド誘導体が有するヌクレオチド配列と相補的な配列を有する第二の標的核酸を同時に検出することができる。なお、第一および第二の標的核酸をリアルタイム検出することも可能であり、その具体例として、第一の標的RNAに対し相同的なヌクレオチド配列を有する第一のプライマーと第一の標的RNAに対し相補的なヌクレオチド配列を有する第二のプライマー(該プライマーのいずれか一方は、その5’末端にプロモーター配列が付加されている)からなるプライマーの組合せと、第二の標的RNAに対し相同的なヌクレオチド配列を有する第一のプライマーと第二の標的RNAに対し相補的なヌクレオチド配列を有する第二のプライマー(該プライマーのいずれか一方は、その5’末端にプロモーター配列が付加されている)からなるプライマーの組合せとを用いて、前記(1)から(3)に記載のRNA増幅反応させる際に、第一および第二のオリゴヌクレオチド誘導体を増幅反応系中に共存させ、各誘導体が有する蛍光特性の変化(蛍光強度値の変化)をそれぞれ経時的に測定することで、第一および第二の標的RNAを独立にリアルタイム検出することができる。   An oligonucleotide derivative (second oligonucleotide derivative) in which a fluorescent dye having a fluorescence wavelength different from that of the oligonucleotide derivative of the present invention is chemically bonded to the oligonucleotide derivative of the present invention (first oligonucleotide derivative) is further added. The first target nucleic acid having a sequence complementary to the nucleotide sequence of the first oligonucleotide derivative and the second target nucleic acid having a sequence complementary to the nucleotide sequence of the second oligonucleotide derivative Can be detected simultaneously. In addition, it is also possible to detect the first and second target nucleic acids in real time. Specific examples thereof include a first primer having a nucleotide sequence homologous to the first target RNA and a first target RNA. A primer combination consisting of a second primer having a complementary nucleotide sequence (one of the primers has a promoter sequence added to its 5 ′ end) and homologous to the second target RNA A first primer having a unique nucleotide sequence and a second primer having a nucleotide sequence complementary to a second target RNA (one of the primers has a promoter sequence added to its 5 ′ end) When the RNA amplification reaction according to any one of (1) to (3) is performed using the primer combination consisting of The first and second target RNAs are independently real-time independently by measuring the changes in fluorescence characteristics (changes in fluorescence intensity values) of each derivative over time in the amplification reaction system. Can be detected.

第二のオリゴヌクレオチド誘導体において、化学結合で結合する蛍光色素に特に制限はなく、例えばオキサゾールイエローやチアゾールオレンジがあげられる。中でも検出感度が良い点で、オキサゾールイエローが蛍光色素として好ましい。   In the second oligonucleotide derivative, there is no particular limitation on the fluorescent dye bonded by chemical bonding, and examples thereof include oxazole yellow and thiazole orange. Of these, oxazole yellow is preferred as the fluorescent dye because of its good detection sensitivity.

次に本発明を実施例および参考例によってさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example and a reference example demonstrate this invention further in detail, this invention is not limited to these.

実施例1   Example 1

Figure 2013046586
一本鎖オリゴヌクレオチド(化合物6−1)(配列番号1)(4.4nmol)を0.1Mトリス−塩酸緩衝液(pH5.1)275μLに溶解し、1Mジチオスレイトール水溶液25μLを添加した。1時間後、反応液に(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4−メトキシベンゾチアゾリウム=ヨージドのDMF−0.1Mリン酸ナトリウム緩衝液(pH9.5)溶液(1mg/mL,500μL)を添加した。2時間後、反応液をn−ブタノールで洗浄し、得られた水層を濃縮した後、エタノールを添加し、−78℃で30分静置した。析出した固体を遠心濃縮により集めた。得られた沈殿物をHPLC(ODS−120T、東ソー株式会社製)により精製し、目的の化合物(化合物1−1)(2.4nmol)を得た。得られた化合物1−1のTOF−Mass測定を行なったところ、化合物1−1のカチオン部位の分子量:7557.41に対応するピークが7557.60に観測され、目的とするオリゴヌクレオチド誘導体の生成を確認した。
Figure 2013046586
Single-stranded oligonucleotide (Compound 6-1) (SEQ ID NO: 1) (4.4 nmol) was dissolved in 275 μL of 0.1 M Tris-HCl buffer (pH 5.1), and 25 μL of 1 M aqueous dithiothreitol solution was added. After 1 hour, (E) -2- [4- (dimethylamino) styryl] -3- (4-iodobutyl) -4-methoxybenzothiazolium iodide in DMF-0.1M sodium phosphate buffer was added to the reaction solution. Solution (pH 9.5) solution (1 mg / mL, 500 μL) was added. After 2 hours, the reaction solution was washed with n-butanol, the obtained aqueous layer was concentrated, ethanol was added, and the mixture was allowed to stand at -78 ° C for 30 minutes. The precipitated solid was collected by centrifugal concentration. The resulting precipitate was purified by HPLC (ODS-120T, manufactured by Tosoh Corporation) to obtain the target compound (Compound 1-1) (2.4 nmol). When the TOF-Mass measurement of the obtained compound 1-1 was performed, a peak corresponding to the molecular weight of the cation moiety of the compound 1-1: 7557.41 was observed at 7557.60, and the production of the target oligonucleotide derivative was produced. It was confirmed.

実施例2   Example 2

Figure 2013046586
(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4−メトキシベンゾチアゾリウム=ヨージドの代わりに(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4,7−ジメトキシベンゾチアゾリウム=ヨージドを用いた以外は実施例1と同様の反応を行ない、目的とするオリゴヌクレオチド誘導体(化合物1−2)(1.9nmol)を得た。
Figure 2013046586
(E) -2- [4- (dimethylamino) styryl] -3- (4-iodobutyl) -4-methoxybenzothiazolium = (E) -2- [4- (dimethylamino) styryl instead of iodide ] -3- (4-Iodobutyl) -4,7-dimethoxybenzothiazolium = The same reaction as in Example 1 was performed except that iodide was used, and the target oligonucleotide derivative (compound 1-2) (1 0.9 nmol).

実施例3   Example 3

Figure 2013046586
(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4−メトキシベンゾチアゾリウム=ヨージドの代わりに(E)−2−[2−(4−ジメチルアミノ)スチリル]−3−(4−ヨードブチル)ベンゾチアゾリウム=ヨージドを用いた以外は実施例1と同様の反応を行ない、目的の化合物(化合物1−3)(0.9nmol)を得た。得られた化合物1−3のTOF−Mass測定を行なったところ、化合物1−3のカチオン部位の分子量:7527.40に対応するピークが7528.34に観測され、目的物とするオリゴヌクレオチド誘導体を確認した。
Figure 2013046586
(E) -2- [4- (Dimethylamino) styryl] -3- (4-iodobutyl) -4-methoxybenzothiazolium = (E) -2- [2- (4-dimethylamino) instead of iodide ) Styryl] -3- (4-iodobutyl) benzothiazolium = iodide was used, except that the same reaction as in Example 1 was carried out to obtain the target compound (Compound 1-3) (0.9 nmol). When TOF-Mass measurement of the obtained compound 1-3 was performed, a peak corresponding to the molecular weight of the cation moiety of the compound 1-3: 7527.40 was observed at 7528.34, and the target oligonucleotide derivative was obtained. confirmed.

実施例4   Example 4

Figure 2013046586
(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4−メトキシベンゾチアゾリウム=ヨージドの代わりに(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードプロピル)−4−メトキシベンゾチアゾリウム=ヨージドを用いた以外は実施例1と同様の反応を行ない、目的とするオリゴヌクレオチド誘導体(化合物1−4)(1.0nmol)を得た。
Figure 2013046586
(E) -2- [4- (dimethylamino) styryl] -3- (4-iodobutyl) -4-methoxybenzothiazolium = (E) -2- [4- (dimethylamino) styryl instead of iodide ] -3- (4-iodopropyl) -4-methoxybenzothiazolium = The same reaction as in Example 1 was performed except that iodide was used, and the target oligonucleotide derivative (compound 1-4) (1. 0 nmol) was obtained.

実施例5   Example 5

Figure 2013046586
(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4−メトキシベンゾチアゾリウム=ヨージドの代わりに(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードペンチル)−4−メトキシベンゾチアゾリウム=ヨージドを用いた以外は実施例1と同様の反応を行ない、目的とするオリゴヌクレオチド誘導体(化合物1−5)(0.6nmol)を得た。
Figure 2013046586
(E) -2- [4- (dimethylamino) styryl] -3- (4-iodobutyl) -4-methoxybenzothiazolium = (E) -2- [4- (dimethylamino) styryl instead of iodide ] -3- (4-Iodopentyl) -4-methoxybenzothiazolium = The same reaction as in Example 1 was performed except that iodide was used, and the target oligonucleotide derivative (Compound 1-5) (0. 6 nmol) was obtained.

実施例6   Example 6

Figure 2013046586
(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4−メトキシベンゾチアゾリウム=ヨージドの代わりに(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードヘキシル)−4−メトキシベンゾチアゾリウム=ヨージドを用いた以外は実施例1と同様の反応を行ない、目的とするオリゴヌクレオチド誘導体(化合物1−6)(0.4nmol)を得た。
Figure 2013046586
(E) -2- [4- (dimethylamino) styryl] -3- (4-iodobutyl) -4-methoxybenzothiazolium = (E) -2- [4- (dimethylamino) styryl instead of iodide ] -3- (4-iodohexyl) -4-methoxybenzothiazolium = The same reaction as in Example 1 was performed except that iodide was used, and the target oligonucleotide derivative (compound 1-6) (0. 4 nmol) was obtained.

実施例7 標的核酸の検出
実施例1から3で合成した本発明のオリゴヌクレオチド誘導体(化合物1−1、化合物1−2、化合物1−3)を用いて、標的核酸(DNAまたはRNA)の検出を行なった。
Example 7 Detection of Target Nucleic Acid Detection of target nucleic acid (DNA or RNA) using the oligonucleotide derivatives (compound 1-1, compound 1-2, compound 1-3) of the present invention synthesized in Examples 1 to 3 Was done.

a)方法
以下の組成の測定条件で、本発明のオリゴヌクレオチド誘導体(化合物1−1、化合物1−2、化合物1−3)に、標的核酸D(DNA1、配列番号2)または標的核酸E(RNA1、配列番号3)をそれぞれ添加し、蛍光スペクトルを測定した。また同様に、一本鎖オリゴヌクレオチド(配列番号4)と3,8−ジアミノ−6−フェニルフェナントリジニウム塩を化学結合で結合することで得られるオリゴヌクレオチド誘導体(プローブA)に、標的核酸F(DNA2、配列番号5)または標的核酸G(RNA2、配列番号6)をそれぞれ添加し、同様の条件で蛍光スペクトルを測定し、これを本発明のオリゴヌクレオチド誘導体の比較対照とした。
a) Method Under the measurement conditions of the following composition, the oligonucleotide derivative (compound 1-1, compound 1-2, compound 1-3) of the present invention is converted to target nucleic acid D (DNA1, SEQ ID NO: 2) or target nucleic acid E ( RNA1 and SEQ ID NO: 3) were added, and the fluorescence spectrum was measured. Similarly, a target nucleic acid is added to an oligonucleotide derivative (probe A) obtained by chemically bonding a single-stranded oligonucleotide (SEQ ID NO: 4) and 3,8-diamino-6-phenylphenanthridinium salt. F (DNA2, SEQ ID NO: 5) or target nucleic acid G (RNA2, SEQ ID NO: 6) was added, and the fluorescence spectrum was measured under the same conditions, and this was used as a comparative control for the oligonucleotide derivative of the present invention.

Figure 2013046586
標的核酸D(DNA1)の塩基配列:
5’−d(GTCGTATGGTATTATTTAGGGGC)−3’
(配列番号2)
標的核酸E(RNA1)の塩基配列:
5’−r(GUCGUAUGGUAUUAUUUAGGGGC)−3’
(配列番号3)
標的核酸F(DNA2)の塩基配列:
5’−d(CTGCTATCCACCCTCAAACA)−3’
(配列番号5)
標的核酸G(RNA2)の塩基配列:
5’−r(CUGCUAUCCACCCUCAAACA)−3’
(配列番号6)
測定溶液:
リン酸バッファー(pH7.4)(137mM NaCl、2.68mM KCl
、8.1mM NaHPO、1.47mM KHPO
オリゴヌクレオチド誘導体の濃度:0.1μM
標的核酸の濃度:0.1μM
測定温度:43℃
b)結果
本発明のオリゴヌクレオチド誘導体(化合物1−1、化合物1−2、化合物1−3)および比較対照のオリゴヌクレオチド誘導体(プローブA)のみでの最大励起波長、最大蛍光波長および蛍光強度、ならびに標的核酸(DNAまたはRNA)添加時の各オリゴヌクレオチド誘導体の最大蛍光波長、蛍光強度、蛍光増感率(標的核酸添加時の蛍光強度値をオリゴヌクレオチド誘導体のみでの蛍光強度値で割った値)を表1に示す。
Figure 2013046586
Base sequence of target nucleic acid D (DNA1):
5'-d (GTCGTATGGTATTATTTAGGGGC) -3 '
(SEQ ID NO: 2)
Base sequence of target nucleic acid E (RNA1):
5'-r (GUCGUAUUGGUAUUAUUUAGGGGC) -3 '
(SEQ ID NO: 3)
Base sequence of target nucleic acid F (DNA2):
5'-d (CTGCTATCCACCCTCAAACA) -3 '
(SEQ ID NO: 5)
Base sequence of target nucleic acid G (RNA2):
5'-r (CUGCUAUCCACCCUCAAACA) -3 '
(SEQ ID NO: 6)
Measurement solution:
Phosphate buffer (pH 7.4) (137 mM NaCl, 2.68 mM KCl
8.1 mM Na 2 HPO 4 , 1.47 mM KH 2 PO 4 )
Concentration of oligonucleotide derivative: 0.1 μM
Target nucleic acid concentration: 0.1 μM
Measurement temperature: 43 ° C
b) Results The maximum excitation wavelength, maximum fluorescence wavelength and fluorescence intensity of the oligonucleotide derivative of the present invention (compound 1-1, compound 1-2, compound 1-3) and the comparative oligonucleotide derivative (probe A) alone, And the maximum fluorescence wavelength, fluorescence intensity, and fluorescence sensitization rate of each oligonucleotide derivative when the target nucleic acid (DNA or RNA) is added (the value obtained by dividing the fluorescence intensity value when the target nucleic acid is added by the fluorescence intensity value of the oligonucleotide derivative alone) ) Is shown in Table 1.

Figure 2013046586
本発明のオリゴヌクレオチド誘導体は、該誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸の添加により大きな蛍光増感を示すことがわかる。具体的には、本発明のオリゴヌクレオチド誘導体(化合物1−1、化合物1−2、化合物1−3)に該誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸を添加したときの蛍光強度値は、本発明のオリゴヌクレオチド誘導体のみのときと比較し増大しており、その蛍光増感率は、標的核酸が一本鎖DNAのときでそれぞれ3.3倍、2.0倍、2.8倍であり、標的核酸が一本鎖RNAのときでそれぞれ2.4倍、2.5倍、3.1倍であった。また、本発明のオリゴヌクレオチド誘導体(化合物1−1、化合物1−2、化合物1−3)は、比較対照のオリゴヌクレオチド誘導体(プローブA)との比較で、蛍光強度値が著しく増大しており、蛍光増感率も増大していた。
Figure 2013046586
It can be seen that the oligonucleotide derivative of the present invention exhibits a large fluorescence sensitization when a target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative is added. Specifically, the fluorescence intensity when a target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative is added to the oligonucleotide derivative of the present invention (compound 1-1, compound 1-2, compound 1-3). The value is increased as compared to the case of the oligonucleotide derivative of the present invention alone, and the fluorescence sensitization rate is 3.3 times, 2.0 times and 2 times when the target nucleic acid is a single-stranded DNA, respectively. When the target nucleic acid was a single-stranded RNA, they were 2.4 times, 2.5 times, and 3.1 times, respectively. In addition, the oligonucleotide derivatives (compound 1-1, compound 1-2, compound 1-3) of the present invention have significantly increased fluorescence intensity values compared with the comparative oligonucleotide derivative (probe A). The fluorescence sensitization rate was also increased.

以上の結果より、本発明のオリゴヌクレオチド誘導体は、従来より核酸検出に用いられた蛍光色素である、3,8−ジアミノ−6−フェニルフェナントリジニウム塩をオリゴヌクレオチドと化学結合で結合して得られたオリゴヌクレオチド誘導体(プローブA)と比較し、オリゴヌクレオチド誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸の添加による、蛍光強度値の有意な増大および蛍光増感率の増加が確認できる。   From the above results, the oligonucleotide derivative of the present invention is obtained by binding a 3,8-diamino-6-phenylphenanthridinium salt, which is a fluorescent dye conventionally used for nucleic acid detection, to the oligonucleotide by a chemical bond. Compared with the obtained oligonucleotide derivative (probe A), a significant increase in the fluorescence intensity value and an increase in the fluorescence sensitization rate were confirmed by adding a target nucleic acid having a sequence complementary to the nucleotide sequence of the oligonucleotide derivative. it can.

実施例8 核酸増幅反応系における標的核酸のリアルタイム検出
実施例1および3で合成した本発明のオリゴヌクレオチド誘導体(化合物1−1および1−3)を用いて、核酸増幅反応により増幅した標的核酸のリアルタイム検出を行なった。核酸増幅反応にはTRC法(特許文献7、特許文献8および非特許文献3)を用いた。
Example 8 Real-Time Detection of Target Nucleic Acid in Nucleic Acid Amplification Reaction System Using the oligonucleotide derivatives (compounds 1-1 and 1-3) of the present invention synthesized in Examples 1 and 3, target nucleic acid amplified by nucleic acid amplification reaction Real-time detection was performed. The TRC method (Patent Document 7, Patent Document 8 and Non-Patent Document 3) was used for the nucleic acid amplification reaction.

a)方法
a−1)化学合成した標的核酸A(配列番号7)を希釈液(10mM Tris−HCl緩衝液(pH8.0)、1mM EDTA)を用いて、10コピー/5μLになるように希釈し、これを標的核酸試料Aとして用いた。
a) Method a-1) Chemically synthesized target nucleic acid A (SEQ ID NO: 7) is diluted to 10 4 copies / 5 μL using a diluent (10 mM Tris-HCl buffer (pH 8.0), 1 mM EDTA). Diluted and used as target nucleic acid sample A.

標的核酸Aの塩基配列:
5’−d(ATCCCACACCGCTAAAGCGCATAGCCCCTAAA
TAATACCATACGACTACCTGCCCCTAAATAATACCAT
ACGATTGTATCTCCGAAGAGACCTTTCCG)−3’
(配列番号7)
a−2)以下の組成からなる反応液20μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI製)に分注し、これに前記の標的核酸試料Aまたは水を5μL添加した。
Base sequence of target nucleic acid A:
5'-d (ATCCCACACCGCTAAAAGCGCATAGCCCCTAAA
TATATACCATACACTACTCTGCCCCCTAAATAATACCAT
ACGATTGTATCTCCGAAGAGACCTTTCCG) -3 '
(SEQ ID NO: 7)
a-2) 20 μL of a reaction solution having the following composition was dispensed into a 0.5 mL PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI), and 5 μL of the target nucleic acid sample A or water was added thereto.

反応液の組成:濃度は酵素液添加後(30μL中)の最終濃度
60mM Tris−HCl緩衝液(pH8.6)
17mM 塩化マグネシウム
100mM 塩化カリウム
1mM DTT
各0.25mM dATP、dCTP、dGTP、dTTP
各3.0mM ATP、CTP、GTP、UTP
3.6mM ITP
1μM 第一のプライマー(配列番号8)
1μM 第二のプライマー(配列番号9)
80nM オリゴヌクレオチド誘導体(化合物1−1または1−3)
10% DMSO
0.01% コール酸ナトリウム
第一のプライマーの配列:
5’−d(AATTCTAATACGACTCACTATAGGGAGACGGA
AAGGTCTCTTCGGACATAC)−3’
(配列番号8)
第二のプライマーの配列:
5’−d(CCCACACCGCTAAAGCGC)−3’
(配列番号9)
a−3)前記反応液を46℃で5分間保温後、あらかじめ43℃で2分間保温した以下の組成からなる酵素液5μLを添加した。
Composition of reaction solution: concentration is final concentration after addition of enzyme solution (in 30 μL) 60 mM Tris-HCl buffer (pH 8.6)
17 mM magnesium chloride 100 mM potassium chloride 1 mM DTT
0.25 mM dATP, dCTP, dGTP, dTTP each
Each 3.0 mM ATP, CTP, GTP, UTP
3.6 mM ITP
1 μM first primer (SEQ ID NO: 8)
1 μM second primer (SEQ ID NO: 9)
80 nM oligonucleotide derivative (compound 1-1 or 1-3)
10% DMSO
0.01% sodium cholate first primer sequence:
5'-d (AATTCTAATACGACTCACTATAGGGAGACGGA
AAGGTCTCTTCGAGATACAC) -3 '
(SEQ ID NO: 8)
Second primer sequence:
5'-d (CCCACACCGCTAAAAGGCC) -3 '
(SEQ ID NO: 9)
a-3) After the reaction solution was kept at 46 ° C. for 5 minutes, 5 μL of an enzyme solution having the following composition, which was kept at 43 ° C. for 2 minutes in advance, was added.

酵素液の組成
2.0% ソルビトール
6.4U AMV逆転写酵素
142U T7 RNAポリメラーゼ
3.6μg 牛血清アルブミン
a−4)引き続きPCRチューブを直接測定可能な温調機能つき蛍光分光光度計を用いて46℃で反応させると同時に、反応溶液の蛍光強度(励起波長470nm、蛍光波長610nm)を経時的に10分間測定した。
Composition of enzyme solution 2.0% Sorbitol 6.4 U AMV reverse transcriptase 142 U T7 RNA polymerase 3.6 μg bovine serum albumin a-4) Subsequently, using a fluorescence spectrophotometer with a temperature control function capable of directly measuring a PCR tube 46 Simultaneously with the reaction at 0 ° C., the fluorescence intensity of the reaction solution (excitation wavelength: 470 nm, fluorescence wavelength: 610 nm) was measured over time for 10 minutes.

b)結果
化合物1−1または1−3を添加したときの、核酸増幅反応に伴う蛍光強度の経時変化を示した図をそれぞれ図1および2に示す。なお図1および2において、白四角は試料として水を添加したときの蛍光強度を、黒三角は試料として標的核酸試料Aを添加したときの蛍光強度を、それぞれ示している。いずれの化合物を用いた場合も、試料として水を添加したときは蛍光強度の変化が確認できなかったのに対し、標的核酸試料Aを添加したときは標的核酸の増幅に伴い蛍光強度が増大した。酵素液添加10分後の蛍光増感率(酵素液添加10分後の溶液の蛍光強度値を酵素液添加前の溶液の蛍光強度値で割った値)は化合物1−1を用いたときで3.1倍、化合物1−3を用いたときで3.3倍であり、標的核酸の有無により蛍光強度値の明確な差が確認できた。このことから、本発明のオリゴヌクレオチド誘導体は、核酸増幅反応により増幅された、該誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸をリアルタイムに検出できることがわかる。
b) Results FIGS. 1 and 2 show the changes over time in the fluorescence intensity associated with the nucleic acid amplification reaction when compound 1-1 or 1-3 was added, respectively. 1 and 2, white squares indicate fluorescence intensity when water is added as a sample, and black triangles indicate fluorescence intensity when target nucleic acid sample A is added as a sample. When any compound was used, the change in fluorescence intensity could not be confirmed when water was added as a sample, whereas when the target nucleic acid sample A was added, the fluorescence intensity increased with the amplification of the target nucleic acid. . The fluorescence sensitization rate 10 minutes after the addition of the enzyme solution (the value obtained by dividing the fluorescence intensity value of the solution 10 minutes after the addition of the enzyme solution by the fluorescence intensity value of the solution before the addition of the enzyme solution) is obtained when Compound 1-1 was used. 3.1 times and 3.3 times when compound 1-3 was used, and a clear difference in fluorescence intensity value was confirmed depending on the presence or absence of the target nucleic acid. This shows that the oligonucleotide derivative of the present invention can detect in real time a target nucleic acid amplified by a nucleic acid amplification reaction and having a sequence complementary to the nucleotide sequence of the derivative.

実施例9 核酸増幅反応系における標的核酸のリアルタイム検出
実施例1、4、5および6で合成した本発明のオリゴヌクレオチド誘導体(化合物1−1、1−4、1−5および1−6)を用いて、核酸増幅反応により増幅した標的核酸のリアルタイム検出を行なった。核酸増幅反応には実施例8と同様、TRC法を用いた。
Example 9 Real-Time Detection of Target Nucleic Acid in Nucleic Acid Amplification Reaction System The oligonucleotide derivatives of the present invention (compounds 1-1, 1-4, 1-5 and 1-6) synthesized in Examples 1, 4, 5 and 6 were used. The target nucleic acid amplified by the nucleic acid amplification reaction was detected in real time. The TRC method was used in the nucleic acid amplification reaction as in Example 8.

a)方法
a−1)以下の組成からなる反応液20μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI製)に分注し、これに実施例8のa−1)で調製した標的核酸試料Aまたは水を5μL添加した。
a) Method a-1) 20 μL of a reaction solution having the following composition was dispensed into a 0.5 mL volume PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI), and this was prepared in Example 1 a-1). 5 μL of target nucleic acid sample A or water was added.

反応液の組成:濃度は酵素液添加後(30μL中)の最終濃度
60mM Tris−HCl緩衝液(pH8.6)
17mM 塩化マグネシウム
100mM 塩化カリウム
1mM DTT
各0.25mM dATP、dCTP、dGTP、dTTP
各3.0mM ATP、CTP、GTP、UTP
3.6mM ITP
1μM 第一のプライマー(配列番号8)
1μM 第二のプライマー(配列番号9)
80nM オリゴヌクレオチド誘導体(化合物1−1、1−4、1−5または1−
6)
13% DMSO
a−2)上記反応液を43℃で5分間保温後、あらかじめ43℃で2分間保温した、実施例8のa−3)に記載の酵素液5μLを添加した。
Composition of reaction solution: concentration is final concentration after addition of enzyme solution (in 30 μL) 60 mM Tris-HCl buffer (pH 8.6)
17 mM magnesium chloride 100 mM potassium chloride 1 mM DTT
0.25 mM dATP, dCTP, dGTP, dTTP each
Each 3.0 mM ATP, CTP, GTP, UTP
3.6 mM ITP
1 μM first primer (SEQ ID NO: 8)
1 μM second primer (SEQ ID NO: 9)
80 nM oligonucleotide derivative (compound 1-1, 1-4, 1-5 or 1-
6)
13% DMSO
a-2) The above reaction solution was incubated at 43 ° C. for 5 minutes, and then 5 μL of the enzyme solution described in a-3) of Example 8 which was previously incubated at 43 ° C. for 2 minutes was added.

a−3)引き続きPCRチューブを直接測定可能な温調機能つき蛍光分光光度計を用いて43℃で反応させると同時に、反応溶液の蛍光強度(励起波長470nm、蛍光波長610nm)を経時的に10分間測定した。   a-3) The reaction is continued at 43 ° C. using a fluorescence spectrophotometer with a temperature control function capable of directly measuring the PCR tube, and simultaneously the fluorescence intensity (excitation wavelength: 470 nm, fluorescence wavelength: 610 nm) of the reaction solution is increased by 10 over time. Measured for minutes.

b)結果
化合物1−1、1−4、1−5または1−6を添加したときの、核酸増幅反応に伴う蛍光強度の経時変化を示した図をそれぞれ図3から6に示す。なお図3から6において、白四角は試料として水を添加したときの蛍光強度を、黒三角は試料として標的核酸試料Aを添加したときの蛍光強度を、それぞれ示している。いずれの化合物を用いた場合も、試料として水を添加したときは蛍光強度の変化が確認できなかったのに対し、標的核酸試料Aを添加したときは標的核酸の増幅に伴い蛍光強度が増大した。酵素液添加10分後の蛍光増感率(酵素液添加10分後の溶液の蛍光強度値を酵素液添加前の溶液の蛍光強度値で割った値)は化合物1−1を用いたときで2.3倍、化合物1−4を用いたときで1.8倍、化合物1−5を用いたときで2.0倍、化合物1−6を用いたときで2.0倍であり、標的核酸の有無により蛍光強度値の明確な差が確認できた。このことから、本発明のオリゴヌクレオチド誘導体は、核酸増幅反応により増幅された、該誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸をリアルタイムに検出できることがわかる。
b) Results FIGS. 3 to 6 are graphs showing temporal changes in fluorescence intensity associated with the nucleic acid amplification reaction when the compound 1-1, 1-4, 1-5 or 1-6 is added. 3 to 6, white squares indicate fluorescence intensity when water is added as a sample, and black triangles indicate fluorescence intensity when target nucleic acid sample A is added as a sample. When any compound was used, the change in fluorescence intensity could not be confirmed when water was added as a sample, whereas when the target nucleic acid sample A was added, the fluorescence intensity increased with the amplification of the target nucleic acid. . The fluorescence sensitization rate 10 minutes after the addition of the enzyme solution (the value obtained by dividing the fluorescence intensity value of the solution 10 minutes after the addition of the enzyme solution by the fluorescence intensity value of the solution before the addition of the enzyme solution) is obtained when Compound 1-1 was used. 2.3 times, 1.8 times when using compound 1-4, 2.0 times when using compound 1-5, 2.0 times when using compound 1-6, target A clear difference in fluorescence intensity value was confirmed depending on the presence or absence of nucleic acid. This shows that the oligonucleotide derivative of the present invention can detect in real time a target nucleic acid amplified by a nucleic acid amplification reaction and having a sequence complementary to the nucleotide sequence of the derivative.

実施例10 核酸増幅反応系における2種類の標的核酸の同時検出
実施例1および3で合成した本発明のオリゴヌクレオチド誘導体(化合物1−1および1−3)と、オキサゾールイエローを化学結合で結合したオリゴヌクレオチド誘導体(プローブB、配列番号10)とを用いて、核酸増幅反応により増幅した二種類の標的核酸のリアルタイム検出を行なった。核酸増幅反応には実施例8と同様、TRC法を用いた。
Example 10 Simultaneous detection of two types of target nucleic acids in a nucleic acid amplification reaction system The oligonucleotide derivatives of the present invention (compounds 1-1 and 1-3) synthesized in Examples 1 and 3 were combined with oxazole yellow by a chemical bond. Using the oligonucleotide derivative (probe B, SEQ ID NO: 10), two types of target nucleic acids amplified by the nucleic acid amplification reaction were detected in real time. The TRC method was used in the nucleic acid amplification reaction as in Example 8.

Figure 2013046586
a)方法
a−1)標的核酸試料として、下記3種類の標的核酸試料を用意した。
Figure 2013046586
a) Method a-1) The following three types of target nucleic acid samples were prepared as target nucleic acid samples.

(i)実施例8のa−1)で調製した標的核酸試料A、
(ii)標的核酸B(配列番号11)を希釈液(10mM Tris−HCl緩衝液(pH8.0)、1mM EDTA)を用いて、10コピー/5μLになるように希釈した標的核酸試料B、
標的核酸Bの塩基配列:
5’−(ATCCCACACCGCTAAAGCGCATAGGAAAAGCA
AAAGGATACGAGTACCTGGAAAAGCAAAAGGATACG
AGTTGTATCTCCGAAGAGACCTTTCCG)−3’
(配列番号11)
(iii)標的核酸A(配列番号7)と標的核酸B(配列番号11)を希釈液(10mM Tris−HCl緩衝液(pH8.0)、1mM EDTA)を用いて、各核酸の終濃度が10コピー/5μLになるように混合/希釈した標的核酸試料C
a−2)以下の組成の反応液20μLを0.5mL容量PCRチューブ(Indicidual Dome Cap PCR Tube、SSI製)に分注し、これに標的核酸試料A、標的核酸試料B、標的核酸試料Cまたは水を5μL添加した。
(I) the target nucleic acid sample A prepared in a-1) of Example 8,
(Ii) Target nucleic acid sample B obtained by diluting target nucleic acid B (SEQ ID NO: 11) to 10 4 copies / 5 μL using a diluent (10 mM Tris-HCl buffer (pH 8.0), 1 mM EDTA),
Base sequence of target nucleic acid B:
5 '-(ATCCCACACCGCCTAAAGCGCATAGGAAAAGCA
AAAGGATACGAGTACTCTGGAAAAGCAAAAGGATACCG
AGTTGTATTCTCCGAAGAGACCCTTCCG) -3 '
(SEQ ID NO: 11)
(Iii) Target nucleic acid A (SEQ ID NO: 7) and target nucleic acid B (SEQ ID NO: 11) are diluted with 10 mM Tris-HCl buffer (pH 8.0, 1 mM EDTA), and the final concentration of each nucleic acid is 10 Target nucleic acid sample C mixed / diluted to 4 copies / 5 μL
a-2) Dispense 20 μL of the reaction solution having the following composition into a 0.5 mL capacity PCR tube (Indicial Dome Cap PCR Tube, manufactured by SSI), and target nucleic acid sample A, target nucleic acid sample B, target nucleic acid sample C or 5 μL of water was added.

反応液の組成:濃度は酵素液添加後(30μL中)の最終濃度
60mM Tris−HCl緩衝液(pH8.6)
17mM 塩化マグネシウム
100mM 塩化カリウム
1mM DTT
各0.25mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、GTP、UTP
3.6mM ITP
1μM 第一のプライマー(配列番号8)
1μM 第二のプライマー(配列番号9)
20nM オリゴヌクレオチド誘導体(プローブB)
80nM オリゴヌクレオチド誘導体(化合物1−1または1−3)
10% DMSO
0.01% コール酸ナトリウム
a−3)上記反応液を46℃で5分間保温後、あらかじめ40℃で2分間保温した、実施例8のa−3)に記載の酵素液5μLを添加した。
Composition of reaction solution: concentration is final concentration after addition of enzyme solution (in 30 μL) 60 mM Tris-HCl buffer (pH 8.6)
17 mM magnesium chloride 100 mM potassium chloride 1 mM DTT
0.25 mM dATP, dCTP, dGTP, dTTP each
Each 3 mM ATP, CTP, GTP, UTP
3.6 mM ITP
1 μM first primer (SEQ ID NO: 8)
1 μM second primer (SEQ ID NO: 9)
20 nM oligonucleotide derivative (probe B)
80 nM oligonucleotide derivative (compound 1-1 or 1-3)
10% DMSO
0.01% sodium cholate a-3) The above reaction solution was kept at 46 ° C. for 5 minutes, and then 5 μL of the enzyme solution described in a-3) of Example 8 which was kept at 40 ° C. for 2 minutes in advance was added.

a−4)引き続きPCRチューブを直接測定可能な温調機能つき蛍光分光光度計を用いて46℃で反応させると同時に、反応溶液の蛍光強度(励起波長:470nm、蛍光波長A:520nm、蛍光波長B:610nm)を経時的に10分間測定した。   a-4) Using a fluorescence spectrophotometer with a temperature control function capable of directly measuring a PCR tube at 46 ° C., the fluorescence intensity of the reaction solution (excitation wavelength: 470 nm, fluorescence wavelength A: 520 nm, fluorescence wavelength) B: 610 nm) was measured over time for 10 minutes.

b)結果
化合物1−1およびプローブBを添加したときの核酸増幅反応に伴う蛍光強度の経時変化を示した図をそれぞれ図7(蛍光波長A)および8(蛍光波長B)に示し、化合物1−3およびプローブBを添加したときの核酸増幅反応に伴う蛍光強度の経時変化を示した図をそれぞれ図9(蛍光波長A)および10(蛍光波長B)に示す。なお図7から10において、白四角は試料として水を添加したときの蛍光強度を、黒三角は試料として標的核酸試料Aを添加したときの蛍光強度を、黒丸は試料として標的核酸試料Bを添加したときの蛍光強度を、×は試料として標的核酸試料Cを添加したときの蛍光強度を、それぞれ示している。いずれの場合も、試料として水を添加したときは蛍光強度の変化が確認できなかったのに対し、標的核酸試料Aを添加したときは標的核酸の増幅に伴い蛍光波長Bの蛍光強度のみが増大し、標的核酸試料Bを添加したときは標的核酸の増幅に伴い蛍光波長Aの蛍光強度のみが増大し、標的核酸試料Cを添加したときは標的核酸の増幅に伴い蛍光波長Aの蛍光強度と蛍光波長Bの蛍光強度がともに増大した。蛍光波長Aの蛍光強度はプローブBに対して相補的なヌクレオチド配列を有する標的核酸Bに由来する蛍光強度であり、蛍光波長Bの蛍光強度は本発明のオリゴヌクレオチド誘導体に対して相補的なヌクレオチド配列を有する標的核酸Aに由来する蛍光強度である。各オリゴヌクレオチド誘導体(本発明のオリゴヌクレオチド誘導体およびプローブB)が有するヌクレオチド配列と相補的な配列を有する標的核酸(標的核酸Aおよび標的核酸B)の有無により、各蛍光波長(蛍光波長Aおよび蛍光波長B)における蛍光強度値に明確な差がみられたことから、本発明のオリゴヌクレオチド誘導体は、該誘導体と蛍光波長が異なる蛍光色素を化学結合で結合したオリゴヌクレオチド誘導体と併用することで、核酸増幅反応にて増幅された二種類の標的核酸を、それぞれ独立してリアルタイム検出できることが示された。
b) Results FIGS. 7 (fluorescence wavelength A) and 8 (fluorescence wavelength B) show the changes over time in the fluorescence intensity associated with the nucleic acid amplification reaction when compound 1-1 and probe B are added, respectively. FIGS. 9 (fluorescence wavelength A) and 10 (fluorescence wavelength B) show the temporal changes in fluorescence intensity associated with the nucleic acid amplification reaction when -3 and probe B are added, respectively. 7 to 10, white squares indicate the fluorescence intensity when water is added as a sample, black triangles indicate the fluorescence intensity when target nucleic acid sample A is added as a sample, and black circles indicate target nucleic acid sample B as a sample. X indicates the fluorescence intensity when the target nucleic acid sample C is added as a sample. In either case, when water was added as a sample, the change in fluorescence intensity could not be confirmed, whereas when the target nucleic acid sample A was added, only the fluorescence intensity at the fluorescence wavelength B increased with the amplification of the target nucleic acid. When the target nucleic acid sample B is added, only the fluorescence intensity at the fluorescence wavelength A increases with the amplification of the target nucleic acid, and when the target nucleic acid sample C is added, the fluorescence intensity at the fluorescence wavelength A increases with the amplification of the target nucleic acid. Both fluorescence intensities at the fluorescence wavelength B increased. The fluorescence intensity at the fluorescence wavelength A is the fluorescence intensity derived from the target nucleic acid B having a nucleotide sequence complementary to the probe B, and the fluorescence intensity at the fluorescence wavelength B is a nucleotide complementary to the oligonucleotide derivative of the present invention. It is the fluorescence intensity derived from the target nucleic acid A having a sequence. Depending on the presence or absence of target nucleic acids (target nucleic acid A and target nucleic acid B) having a sequence complementary to the nucleotide sequence of each oligonucleotide derivative (the oligonucleotide derivative of the present invention and probe B), each fluorescence wavelength (fluorescence wavelength A and fluorescence Since a clear difference was observed in the fluorescence intensity value at the wavelength B), the oligonucleotide derivative of the present invention was used in combination with an oligonucleotide derivative in which a fluorescent dye having a fluorescence wavelength different from that of the derivative was combined with a chemical bond, It was shown that two types of target nucleic acids amplified by the nucleic acid amplification reaction can be independently detected in real time.

参考例1   Reference example 1

Figure 2013046586
アルゴン雰囲気下、3−(3−ヨードプロピル)−4−メトキシ−2−メチルベンゾチアゾリウム=ヨージド(35.9mg,0.076mmol)、4−(ジメチルアミノ)ベンズアルデヒド(14.0mg,0.094mmol)と無水酢酸(1.0mL)の混合物を、110℃で一晩撹拌した。反応混合物にトルエン(5.0mL)を加えて減圧濃縮を行ない、得られた粗生成物をシリカゲルカラムクロマトグラフィー[クロロホルム−メタノール(10:1)]で精製することにより、(E)−2−[4−(ジメチルアミノ)スチリル]−3−(3−ヨードプロピル)−4−メトキシベンゾチアゾリウム=ヨージド(16.7mg,収率36%)を黒紫色の固体として得た。
H−NMR(400MHz,DMSO−d):δ 8.04(d,J=15.3Hz,1H),7.91(d,J=9.6Hz,2H),7.84(d,J=8.1Hz,1H),7.62(t,J=8.1Hz,1H),7.52(d,J=15.3Hz,1H),7.42(d,J=8.1Hz,1H),6.89(d,J=9.6Hz,2H),5.10−4.90(m,2H),4.09(s,3H),3.47(t,J=7.4Hz,2H),3.12(s,6H),2.41−2.37(m,2H).
参考例2
Figure 2013046586
Under an argon atmosphere, 3- (3-iodopropyl) -4-methoxy-2-methylbenzothiazolium iodide (35.9 mg, 0.076 mmol), 4- (dimethylamino) benzaldehyde (14.0 mg,. 094 mmol) and acetic anhydride (1.0 mL) were stirred at 110 ° C. overnight. Toluene (5.0 mL) was added to the reaction mixture, and the mixture was concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography [chloroform-methanol (10: 1)] to obtain (E) -2- [4- (Dimethylamino) styryl] -3- (3-iodopropyl) -4-methoxybenzothiazolium iodide (16.7 mg, 36% yield) was obtained as a black purple solid.
1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.04 (d, J = 15.3 Hz, 1H), 7.91 (d, J = 9.6 Hz, 2H), 7.84 (d, J = 8.1 Hz, 1H), 7.62 (t, J = 8.1 Hz, 1H), 7.52 (d, J = 15.3 Hz, 1H), 7.42 (d, J = 8.1 Hz) , 1H), 6.89 (d, J = 9.6 Hz, 2H), 5.10-4.90 (m, 2H), 4.09 (s, 3H), 3.47 (t, J = 7) .4 Hz, 2H), 3.12 (s, 6H), 2.41-2.37 (m, 2H).
Reference example 2

Figure 2013046586
アルゴン雰囲気下、3−(4−ヨードブチル)−4−メトキシ−2−メチルベンゾチアゾリウム=ヨージド(1.36g,2.78mmol)、4−(ジメチルアミノ)ベンズアルデヒド(416.6mg,2.79mmol)と無水酢酸(12.0mL)の混合物を、110℃で一晩撹拌した。反応混合物にトルエン(5.0mL)を加えて減圧濃縮を行ない、得られた粗生成物をシリカゲルカラムクロマトグラフィー[クロロホルム−メタノール(10:1)]で精製することにより、(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4−メトキシベンゾチアゾリウム=ヨージド(1.41g,収率82%)を紫色の固体として得た。
H−NMR(400MHz,DMSO−d):δ 8.07(d,J=15.2Hz,1H),7.91(d,J=9.0Hz,2H),7.83(d,J=8.1Hz,1H),7.62(d,J=8.1Hz,1H),7.54(d,J=15.2Hz,1H),7.39(d,J=8.1Hz,1H),6.84(d,J=9.0Hz,2H)5.10−5.00(m,2H),4.07(s,3H),3.40−3.35(m,2H),3.11(s,6H),2.00−1.90(m,4H).
参考例3
Figure 2013046586
Under an argon atmosphere, 3- (4-iodobutyl) -4-methoxy-2-methylbenzothiazolium iodide (1.36 g, 2.78 mmol), 4- (dimethylamino) benzaldehyde (416.6 mg, 2.79 mmol) ) And acetic anhydride (12.0 mL) was stirred at 110 ° C. overnight. Toluene (5.0 mL) was added to the reaction mixture, and the mixture was concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography [chloroform-methanol (10: 1)] to obtain (E) -2- [4- (Dimethylamino) styryl] -3- (4-iodobutyl) -4-methoxybenzothiazolium iodide (1.41 g, 82% yield) was obtained as a purple solid.
1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.07 (d, J = 15.2 Hz, 1H), 7.91 (d, J = 9.0 Hz, 2H), 7.83 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 15.2 Hz, 1H), 7.39 (d, J = 8.1 Hz) , 1H), 6.84 (d, J = 9.0 Hz, 2H) 5.10-5.00 (m, 2H), 4.07 (s, 3H), 3.40-3.35 (m, 2H), 3.11 (s, 6H), 2.00-1.90 (m, 4H).
Reference example 3

Figure 2013046586
アルゴン雰囲気下、3−(5−ヨードペンチル)−4−メトキシ−2−メチルベンゾチアゾリウム=ヨージド(39.6mg,0.073mmol)、4−(ジメチルアミノ)ベンズアルデヒド(20.2mg,0.14mmol)と無水酢酸(1.0mL)の混合物を、110℃で一晩撹拌した。反応混合物にトルエン(2.0mL)を加えて減圧濃縮を行ない、得られた粗生成物をシリカゲルカラムクロマトグラフィー[クロロホルム−メタノール(10:1)]で精製することにより、(E)−2−[4−(ジメチルアミノ)スチリル]−3−(5−ヨードペンチル)−4−メトキシベンゾチアゾリウム=ヨージド(11.2mg,収率24%)を黒紫色の固体として得た。
H−NMR(400MHz,DMSO−d):δ 8.06(d,J=15.3Hz,1H),7.91(d,J=9.2Hz,2H),7.83(d,J=8.2Hz,1H),7.63(t,J=8.2Hz,1H),7.56(d,J=15.3Hz,1H),7.39(d,J=8.2Hz,1H),6.83(d,J=9.2Hz,2H),4.96−4.93(m,2H),4.06(s,3H),3.30−3.29(m,2H),3.11(s,6H),1.90−1.80(m,4H),1.60−1.50(m,2H).
参考例4
Figure 2013046586
Under an argon atmosphere, 3- (5-iodopentyl) -4-methoxy-2-methylbenzothiazolium iodide (39.6 mg, 0.073 mmol), 4- (dimethylamino) benzaldehyde (20.2 mg, 0.0.2). 14 mmol) and acetic anhydride (1.0 mL) were stirred at 110 ° C. overnight. Toluene (2.0 mL) was added to the reaction mixture, followed by concentration under reduced pressure, and the resulting crude product was purified by silica gel column chromatography [chloroform-methanol (10: 1)] to obtain (E) -2- [4- (Dimethylamino) styryl] -3- (5-iodopentyl) -4-methoxybenzothiazolium iodide (11.2 mg, 24% yield) was obtained as a black purple solid.
1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.06 (d, J = 15.3 Hz, 1H), 7.91 (d, J = 9.2 Hz, 2H), 7.83 (d, J = 8.2 Hz, 1H), 7.63 (t, J = 8.2 Hz, 1H), 7.56 (d, J = 15.3 Hz, 1H), 7.39 (d, J = 8.2 Hz) , 1H), 6.83 (d, J = 9.2 Hz, 2H), 4.96-4.93 (m, 2H), 4.06 (s, 3H), 3.30-3.29 (m , 2H), 3.11 (s, 6H), 1.90-1.80 (m, 4H), 1.60-1.50 (m, 2H).
Reference example 4

Figure 2013046586
アルゴン雰囲気下、3−(6−ヨードヘキシル)−4−メトキシ−2−メチルベンゾチアゾリウム=ヨージド(38.6mg,0.075mmol)、4−(ジメチルアミノ)ベンズアルデヒド(16.6mg,0.11mmol)と無水酢酸(1.0mL)の混合物を、110℃で一晩撹拌した。反応混合物にトルエン(2.0mL)を加えて減圧濃縮を行ない、得られた粗生成物をシリカゲルカラムクロマトグラフィー[クロロホルム−メタノール(10:1)]で精製することにより、(E)−2−[4−(ジメチルアミノ)スチリル]−3−(6−ヨードヘキシル)−4−メトキシベンゾチアゾリウム=ヨージド(12.9mg,収率27%)を黒紫色の固体として得た。
H−NMR(400MHz,DMSO−d):δ 8.03(d,J=15.3Hz,1H),7.91(d,J=9.0Hz,2H),7.83(d,J=8.1Hz,1H),7.62(t,J=8.1Hz,1H),7.56(d,J=15.3Hz,1H),7.40(d,J=8.1Hz,1H),6.85(d,J=9.0Hz,2H),4.94(t,J=8.0Hz,2H),4.07(s,3H),3.29(t,J=6.8Hz,2H),3.12(s,6H),1.90−1.70(m,4H),1.52−1.40(m,4H).
参考例5
Figure 2013046586
Under an argon atmosphere, 3- (6-iodohexyl) -4-methoxy-2-methylbenzothiazolium iodide (38.6 mg, 0.075 mmol), 4- (dimethylamino) benzaldehyde (16.6 mg, 0. 11 mmol) and acetic anhydride (1.0 mL) were stirred at 110 ° C. overnight. Toluene (2.0 mL) was added to the reaction mixture, followed by concentration under reduced pressure, and the resulting crude product was purified by silica gel column chromatography [chloroform-methanol (10: 1)] to obtain (E) -2- [4- (Dimethylamino) styryl] -3- (6-iodohexyl) -4-methoxybenzothiazolium iodide (12.9 mg, 27% yield) was obtained as a black purple solid.
1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.03 (d, J = 15.3 Hz, 1H), 7.91 (d, J = 9.0 Hz, 2H), 7.83 (d, J = 8.1 Hz, 1H), 7.62 (t, J = 8.1 Hz, 1H), 7.56 (d, J = 15.3 Hz, 1H), 7.40 (d, J = 8.1 Hz) , 1H), 6.85 (d, J = 9.0 Hz, 2H), 4.94 (t, J = 8.0 Hz, 2H), 4.07 (s, 3H), 3.29 (t, J = 6.8 Hz, 2H), 3.12 (s, 6H), 1.90-1.70 (m, 4H), 1.52-1.40 (m, 4H).
Reference Example 5

Figure 2013046586
アルゴン雰囲気下、3−(4−ヨードブチル)−4,7−ジメトキシ−2−メチルベンゾチアゾリウム=ヨージド(201mg,0.39mmol)と4−(ジメチルアミノ)ベンズアルデヒド(59.0mg,0.39mmol)の無水酢酸(1.0mL)懸濁液を、110℃で一晩撹拌を行なった。反応混合物を室温に戻した後減圧濃縮を行ない、得られた粗成生物をシリカゲルカラムクロマトグラフィー[クロロホルム−メタノール(10:1)]により精製することで、(E)−2−[4−(ジメチルアミノ)スチリル]−3−(4−ヨードブチル)−4,7−ジメトキシベンゾチアゾリウム=ヨージド(225mg,収率89%)を暗赤色粉状として得た。
H−NMR(400MHz,DMSO−dH−NMR(400MHz,CDCl):δ 8.13(d,J=15.2Hz,1H),7.90(d,J=9.0Hz,2H),7.55(d,J=15.2Hz,1H),7.34(d,J=9.0Hz,1H),7.22(d,J=9.0Hz,1H),6.84(d,J=9.0Hz,2H),4.94(m,2H),4.00(s,3H),3.99(s,3H),3.38−3.35(m,2H),3.11(s,6H),1.96−1.80(m,4H).
参考例6
Figure 2013046586
Under an argon atmosphere, 3- (4-iodobutyl) -4,7-dimethoxy-2-methylbenzothiazolium iodide (201 mg, 0.39 mmol) and 4- (dimethylamino) benzaldehyde (59.0 mg, 0.39 mmol) ) In acetic anhydride (1.0 mL) was stirred at 110 ° C. overnight. The reaction mixture was returned to room temperature, concentrated under reduced pressure, and the resulting crude product was purified by silica gel column chromatography [chloroform-methanol (10: 1)] to obtain (E) -2- [4- ( Dimethylamino) styryl] -3- (4-iodobutyl) -4,7-dimethoxybenzothiazolium iodide (225 mg, 89% yield) was obtained as a dark red powder.
1 H-NMR (400 MHz, DMSO-d 6 ) 1 H-NMR (400 MHz, CDCl 3 ): δ 8.13 (d, J = 15.2 Hz, 1H), 7.90 (d, J = 9.0 Hz) , 2H), 7.55 (d, J = 15.2 Hz, 1H), 7.34 (d, J = 9.0 Hz, 1H), 7.22 (d, J = 9.0 Hz, 1H), 6 .84 (d, J = 9.0 Hz, 2H), 4.94 (m, 2H), 4.00 (s, 3H), 3.99 (s, 3H), 3.38-3.35 (m , 2H), 3.11 (s, 6H), 1.96-1.80 (m, 4H).
Reference Example 6

Figure 2013046586
アルゴン雰囲気下、3−(4−ヨードブチル)−2−メチルベンゾチアゾリウム=ヨージド(103.4mg,0.23mmol)と4−(ジメチルアミノ)ベンズアルデヒド(40.2mg,0.27mmol)の無水酢酸(2.0mL)溶液を、110℃で一晩撹拌を行なった。反応混合物を室温に戻した後減圧濃縮を行ない、得られた粗成生物をシリカゲルカラムクロマトグラフィー[クロロホルム−メタノール(10:1)]により精製することで、(E)−2−[2−(4−ジメチルアミノ)スチリル]−3−(4−ヨードブチル)ベンゾチアゾリウム=ヨージド(46.8mg,収率35%)を紫色の固体として得た。
H−NMR(400MHz,DMSO−d):δ 8.31(d,J=8.1Hz,1H),8.16(d,J=8.1Hz,1H),8.10(d,J=15.2Hz,1H),7.93(d,J=9.1Hz,2H),7.78(t,J=7.3Hz,1H),7.68(t,J=7.3Hz,1H),7.60(d,J=15.2Hz,1H),6.86(d,J=9.1Hz,2H),4.83(t,J=7.1Hz,2H),3.36(t,J=6.6Hz,2H),3.12(s,6H),1.96−1.91(m,4H).
Figure 2013046586
Acetic anhydride of 3- (4-iodobutyl) -2-methylbenzothiazolium iodide (103.4 mg, 0.23 mmol) and 4- (dimethylamino) benzaldehyde (40.2 mg, 0.27 mmol) under an argon atmosphere The (2.0 mL) solution was stirred at 110 ° C. overnight. The reaction mixture was returned to room temperature, concentrated under reduced pressure, and the resulting crude product was purified by silica gel column chromatography [chloroform-methanol (10: 1)] to obtain (E) -2- [2- ( 4-Dimethylamino) styryl] -3- (4-iodobutyl) benzothiazolium iodide (46.8 mg, 35% yield) was obtained as a purple solid.
1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.31 (d, J = 8.1 Hz, 1H), 8.16 (d, J = 8.1 Hz, 1H), 8.10 (d, J = 15.2 Hz, 1H), 7.93 (d, J = 9.1 Hz, 2H), 7.78 (t, J = 7.3 Hz, 1H), 7.68 (t, J = 7.3 Hz) , 1H), 7.60 (d, J = 15.2 Hz, 1H), 6.86 (d, J = 9.1 Hz, 2H), 4.83 (t, J = 7.1 Hz, 2H), 3 .36 (t, J = 6.6 Hz, 2H), 3.12 (s, 6H), 1.96-1.91 (m, 4H).

Claims (15)

一般式(1a)
Figure 2013046586
(式中、R6−1、R6−2、R6−3およびR6−4は各々独立に水素原子またはメトキシ基を表し、RおよびRは各々独立に9−アデニル基、9−グアニル基、1−シトシニル基または1−チミニル基を表し、Xは対アニオンを表す。lは1から8の整数を表し、mは1から4の整数を表し、nは1から4の整数を表す。Bはアデニン、グアニン、シトシンまたはチミンを表し、qは0から30の整数を表し、qが2以上の時、複数のBは同一または相異なっていてもよい。Bはアデニン、グアニン、シトシンまたはチミンを表し、rは0から30の整数を表し、rが2以上の時、複数のBは同一または相異なっていてもよい。ただし、qとrの和は15以上30以下である。Zは水酸基またはアミノ基を表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体。
General formula (1a)
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 each independently represents a hydrogen atom or a methoxy group, R 7 and R 8 each independently represent a 9-adenyl group, 9 - guanyl group, a 1-cytosinyl group or 1-thyminyl group, X - pairs .l representing the anion is an integer of from 1 to 8, m is an integer of from 1 4, n is from 1 to 4 .B 1 represents an integer represents adenine, guanine, cytosine or thymine, q represents an integer of 0 to 30, when q is 2 or more, plural B 1 represents an optionally identical or different .B 2 Represents adenine, guanine, cytosine or thymine, r represents an integer of 0 to 30, and when r is 2 or more, a plurality of B 2 may be the same or different, provided that the sum of q and r is It is 15 or more and 30 or less, Z represents a hydroxyl group or an amino group. The oligonucleotide derivative which couple | bonded the 2- (4-aminostyryl) benzothiazolium salt represented by chemical bond.
一般式(1a)が、下記一般式(1c)
Figure 2013046586
(式中、R6−1、R6−2、R6−3およびR6−4は各々独立に水素原子またはメトキシ基を表し、R7−1およびR8−1は各々独立に9−アデニル基または1−チミニル基を表し、Xは対アニオンを表し、lは1から8の整数を表す。Bはアデニン、グアニン、シトシンまたはチミンを表し、sは0から27の整数を表し、sが2以上の時、複数のBは同一または相異なっていてもよい。Bはアデニン、グアニン、シトシンまたはチミンを表し、tは0から27の整数を表し、tが2以上の時、複数のBは同一または相異なっていてもよい。ただし、sとtの和は9以上24以下である。Bは同一または相異なってアデニンまたはチミンを表し、Bは同一または相異なってアデニンまたはチミンを表す。Zは水酸基またはアミノ基を表す。)で表される、請求項1に記載のオリゴヌクレオチド誘導体。
General formula (1a) is the following general formula (1c)
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 each independently represent a hydrogen atom or a methoxy group, and R 7-1 and R 8-1 each independently represent 9- Represents an adenyl group or 1-thyminyl group, X represents a counter anion, l represents an integer of 1 to 8, B 3 represents adenine, guanine, cytosine or thymine, and s represents an integer of 0 to 27 , S is 2 or more, a plurality of B 3 may be the same or different, B 6 represents adenine, guanine, cytosine or thymine, t represents an integer of 0 to 27, and t is 2 or more And a plurality of B 6 may be the same or different, provided that the sum of s and t is 9 or more and 24 or less, B 4 is the same or different and represents adenine or thymine, and B 5 is the same or different. Differently, it represents adenine or thymine. It represents a hydroxyl group or an amino group.) Represented by the oligonucleotide derivative according to claim 1.
6−1、R6−2およびR6−3が水素原子であり、R6−4がメトキシ基である、請求項1または2に記載のオリゴヌクレオチド誘導体。 The oligonucleotide derivative according to claim 1 or 2, wherein R6-1 , R6-2, and R6-3 are hydrogen atoms, and R6-4 is a methoxy group. 6−1、R6−2、R6−3およびR6−4が水素原子である、請求項1または2に記載のオリゴヌクレオチド誘導体。 The oligonucleotide derivative according to claim 1 or 2, wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 are hydrogen atoms. 6−1およびR6−4がメトキシ基であり、R6−2およびR6−3が水素原子である、請求項1または2に記載のオリゴヌクレオチド誘導体。 R 6-1 and R 6-4 is a methoxy group, R 6-2 and R 6-3 is a hydrogen atom, an oligonucleotide derivative according to claim 1 or 2. 一般式(1a)が、下記一般式(1b)
Figure 2013046586
(式中、R6−1およびR6−4は各々独立に水素原子またはメトキシ基を表し、Xは対アニオンを表し、lは1から8の整数を表し、Zは水酸基またはアミノ基を表す。)で表される請求項1に記載のオリゴヌクレオチド誘導体。
General formula (1a) is represented by the following general formula (1b)
Figure 2013046586
(Wherein R 6-1 and R 6-4 each independently represents a hydrogen atom or a methoxy group, X represents a counter anion, l represents an integer of 1 to 8, Z represents a hydroxyl group or an amino group, The oligonucleotide derivative according to claim 1, which is represented by:
lが4である、請求項6に記載のオリゴヌクレオチド誘導体。 The oligonucleotide derivative according to claim 6, wherein l is 4. 6−1が水素原子で、R6−4がメトキシ基である、請求項6または7に記載のオリゴヌクレオチド誘導体。 The oligonucleotide derivative according to claim 6 or 7, wherein R6-1 is a hydrogen atom and R6-4 is a methoxy group. 6−1およびR6−4が水素原子である、請求項6または7に記載のオリゴヌクレオチド誘導体。 The oligonucleotide derivative according to claim 6 or 7, wherein R6-1 and R6-4 are hydrogen atoms. 6−1およびR6−4がメトキシ基である、請求項6または7に記載のオリゴヌクレオチド誘導体。 The oligonucleotide derivative according to claim 6 or 7, wherein R 6-1 and R 6-4 are methoxy groups. 一般式(2d)
Figure 2013046586
(式中、R6−1、R6−2、R6−3およびR6−4は各々独立に水素原子またはメトキシ基を表し、Yはヨウ素原子、臭素原子または塩素原子を表し、Xはハロゲン原子、炭素数1から8のアルコキシスルホニルオキシ基、メチルスルホニルオキシ基またはトリフルオロメチルスルホニルオキシ基を表し、lは1から8の整数を表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩を、一般式(6)
Figure 2013046586
(式中、RおよびRは各々独立に9−アデニル基、9−グアニル基、1−シトシニル基または1−チミニル基を表し、mは1から4の整数を表し、nは1から4の整数を表す。Bはアデニン、グアニン、シトシンまたはチミンを表し、qは0から30の整数を表し、qが2以上の時、複数のBは同一または相異なっていてもよい。Bはアデニン、グアニン、シトシンまたはチミンを表し、rは0から30の整数を表し、rが2以上の時、複数のBは同一または相異なっていてもよい。ただし、qとrの和は15以上30以下である。Zは水酸基またはアミノ基を表す。)で表されるオリゴヌクレオチド誘導体と、還元剤の存在下反応させることを特徴とする、一般式(1a)
Figure 2013046586
(式中、R6−1、R6−2、R6−3、R6−4、R、R、l、m、n、q、r、Z、BおよびBは前記と同じ意味を表し、Xは対アニオンを表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩を化学結合で結合したオリゴヌクレオチド誘導体の製造方法。
General formula (2d)
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 each independently represents a hydrogen atom or a methoxy group, Y represents an iodine atom, a bromine atom or a chlorine atom, and X 1 Represents a halogen atom, an alkoxysulfonyloxy group having 1 to 8 carbon atoms, a methylsulfonyloxy group, or a trifluoromethylsulfonyloxy group, and l represents an integer of 1 to 8). A styryl) benzothiazolium salt represented by the general formula (6)
Figure 2013046586
(Wherein R 7 and R 8 each independently represents a 9-adenyl group, 9-guanyl group, 1-cytosinyl group or 1-thyminyl group, m represents an integer of 1 to 4, and n represents 1 to 4) B 1 represents adenine, guanine, cytosine or thymine, q represents an integer of 0 to 30, and when q is 2 or more, a plurality of B 1 may be the same or different. 2 represents adenine, guanine, cytosine or thymine, r represents an integer of 0 to 30, and when r is 2 or more, a plurality of B 2 may be the same or different, provided that the sum of q and r Is from 15 to 30. Z represents a hydroxyl group or an amino group), and is reacted in the presence of a reducing agent.
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 , R 6-4 , R 7 , R 8 , l, m, n, q, r, Z, B 1 and B 2 are A method for producing an oligonucleotide derivative in which a 2- (4-aminostyryl) benzothiazolium salt represented by the same meaning is represented by X represents a counter anion.
請求項1から10のいずれかに記載のオリゴヌクレオチド誘導体と、該誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸とで二本鎖核酸を形成させ、
該二本鎖核酸の形成に伴う前記オリゴヌクレオチド誘導体の蛍光特性の変化を測定する、標的核酸の検出方法。
A double-stranded nucleic acid is formed by the oligonucleotide derivative according to any one of claims 1 to 10 and a target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative,
A method for detecting a target nucleic acid, comprising measuring a change in fluorescence characteristics of the oligonucleotide derivative accompanying the formation of the double-stranded nucleic acid.
請求項1から10のいずれかに記載の第一のオリゴヌクレオチド誘導体と、該誘導体が有するヌクレオチド配列と相補的な配列を有する第一の標的核酸とで二本鎖核酸を形成させるとともに、
一般式(2d)
Figure 2013046586
(式中、R6−1、R6−2、R6−3およびR6−4は各々独立に水素原子またはメトキシ基を表し、Yはヨウ素原子、臭素原子または塩素原子を表し、Xはハロゲン原子、炭素数1から8のアルコキシスルホニルオキシ基、メチルスルホニルオキシ基またはトリフルオロメチルスルホニルオキシ基を表し、lは1から8の整数を表す。)で表される2−(4−アミノスチリル)ベンゾチアゾリウム塩とは異なる蛍光波長を示す蛍光色素を化学結合で結合した第二のオリゴヌクレオチド誘導体と、該誘導体が有するヌクレオチド配列と相補的な配列を有する第二の標的核酸とで二本鎖核酸を形成させ、
前記二本鎖核酸の形成に伴う第一および第二のオリゴヌクレオチド誘導体の蛍光特性の変化を測定する、
第一および第二の標的核酸の検出方法。
Forming a double-stranded nucleic acid with the first oligonucleotide derivative according to any one of claims 1 to 10 and a first target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative;
General formula (2d)
Figure 2013046586
(Wherein R 6-1 , R 6-2 , R 6-3 and R 6-4 each independently represents a hydrogen atom or a methoxy group, Y represents an iodine atom, a bromine atom or a chlorine atom, and X 1 Represents a halogen atom, an alkoxysulfonyloxy group having 1 to 8 carbon atoms, a methylsulfonyloxy group, or a trifluoromethylsulfonyloxy group, and l represents an integer of 1 to 8). A second oligonucleotide derivative in which a fluorescent dye having a fluorescence wavelength different from that of the (styryl) benzothiazolium salt is bonded by a chemical bond, and a second target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative. Forming a double-stranded nucleic acid,
Measuring changes in the fluorescence properties of the first and second oligonucleotide derivatives accompanying the formation of the double-stranded nucleic acid,
First and second target nucleic acid detection methods.
第二のオリゴヌクレオチド誘導体における、化学結合で結合した蛍光色素がオキサゾールイエローである、請求項13に記載の方法。 The method according to claim 13, wherein the fluorescent dye bonded by a chemical bond in the second oligonucleotide derivative is oxazole yellow. オリゴヌクレオチド誘導体と、該誘導体が有するヌクレオチド配列と相補的な配列を有する標的核酸とで二本鎖核酸を形成させる際、該標的核酸を増幅させながら二本鎖核酸を形成させ、前記オリゴヌクレオチド誘導体が有する蛍光特性の変化を経時的に測定する、請求項12から14のいずれかに記載の方法。 When forming a double-stranded nucleic acid with an oligonucleotide derivative and a target nucleic acid having a sequence complementary to the nucleotide sequence of the derivative, a double-stranded nucleic acid is formed while amplifying the target nucleic acid, and the oligonucleotide derivative The method according to any one of claims 12 to 14, wherein a change in the fluorescence characteristics of the liquid crystal is measured over time.
JP2011186337A 2011-08-29 2011-08-29 Oligonucleotide derivative bound by chemical bond with 2-(4-aminostyryl) benzothiazolium salt, method for producing the same, and method for detecting nucleic acid using the same as oligonucleotide probe Pending JP2013046586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186337A JP2013046586A (en) 2011-08-29 2011-08-29 Oligonucleotide derivative bound by chemical bond with 2-(4-aminostyryl) benzothiazolium salt, method for producing the same, and method for detecting nucleic acid using the same as oligonucleotide probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186337A JP2013046586A (en) 2011-08-29 2011-08-29 Oligonucleotide derivative bound by chemical bond with 2-(4-aminostyryl) benzothiazolium salt, method for producing the same, and method for detecting nucleic acid using the same as oligonucleotide probe

Publications (1)

Publication Number Publication Date
JP2013046586A true JP2013046586A (en) 2013-03-07

Family

ID=48010044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186337A Pending JP2013046586A (en) 2011-08-29 2011-08-29 Oligonucleotide derivative bound by chemical bond with 2-(4-aminostyryl) benzothiazolium salt, method for producing the same, and method for detecting nucleic acid using the same as oligonucleotide probe

Country Status (1)

Country Link
JP (1) JP2013046586A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316587A (en) * 1999-03-05 2000-11-21 Tosoh Corp Nucleic acid probe
JP2002327130A (en) * 2001-01-11 2002-11-15 Tosoh Corp New fluorescent pigment and method for measuring nucleic acid
JP2006515863A (en) * 2002-12-05 2006-06-08 アフィメトリックス インコーポレイテッド Nucleic acid labeling compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316587A (en) * 1999-03-05 2000-11-21 Tosoh Corp Nucleic acid probe
JP2002327130A (en) * 2001-01-11 2002-11-15 Tosoh Corp New fluorescent pigment and method for measuring nucleic acid
JP2006515863A (en) * 2002-12-05 2006-06-08 アフィメトリックス インコーポレイテッド Nucleic acid labeling compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6015020377; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Okamoto, Akimitsu: 'Exciton-Controlled Hybridization-Sensitive Fluorescent Probes:' Angewandte Chemie, International Edition 48(35), 2009, 6480-6484 *
JPN6015030863; Chemistry -A European Journal Vol.12, 2006, p.2270-2281 *
JPN6015030864; Bioorganic & Medicinal Chemistry Letters Vol.10, 2000, p.2201-2204 *

Similar Documents

Publication Publication Date Title
US11530439B2 (en) Polymethine compounds and their use as fluorescent labels
JP6999976B2 (en) Simple detection method for RNA sequences
US11440933B2 (en) 3′ protected nucleotides
CA2347505A1 (en) Quenching oligonucleotides
JPH06271599A (en) Sulfocoumarin-containing nucleotides and their use in detection of nucleic acid
US9309409B2 (en) Polymethine compounds and their use as fluorescent labels
FR2824335A1 (en) DNA MARKING AND FRAGMENTATION PROCESS
Qiu et al. Design and synthesis of cleavable biotinylated dideoxynucleotides for DNA sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Xu et al. Two novel fan-shaped trinuclear Pt (ii) complexes act as G-quadruplex binders and telomerase inhibitors
JP4265134B2 (en) Novel fluorescent dye and method for measuring nucleic acid
EP2201009A2 (en) Monomethine dyes
JP2013046586A (en) Oligonucleotide derivative bound by chemical bond with 2-(4-aminostyryl) benzothiazolium salt, method for producing the same, and method for detecting nucleic acid using the same as oligonucleotide probe
Senthilvelan et al. Synthesis of acridine-1, 8-dione substituted (E)-5-(3-aminoallyl)-uridine-5′-triphosphate: a new potential fluorogenic molecular probe
US20230124451A1 (en) Novel quencher and reporter dye combinations
US20100228023A1 (en) ONE STEP PROCESS FOR THE PREPARATION OF SUBSTITUTED 5, 10-DIHYDRODIBENZO [b,e][1, 4]DIAZEPINE-11-ONES
JP2013040136A (en) 4-alkoxy-2-(4-aminostyryl)benzothiazolium salt, method for producing the same and detection method of nucleic acid using the same
EP1223226B1 (en) Novel fluorescent dye and method of measuring nucleic acid
JP2021175736A (en) Photoresponsive deoxyribonucleoside triphosphate
JP2013158290A (en) Nucleic acid detection probe bonded with silylated fluorescent, and method for detecting nucleic acid by the same
JP2001163895A (en) Fluorescent nucleotide
CN114805374A (en) Xanthene compound and preparation method thereof
CN114656394A (en) Fluorescent compound, preparation method thereof, fluorescence modified nucleotide and kit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151222