JP2013043286A - Membrane material for structure and method for estimating replacement time thereof - Google Patents

Membrane material for structure and method for estimating replacement time thereof Download PDF

Info

Publication number
JP2013043286A
JP2013043286A JP2011180044A JP2011180044A JP2013043286A JP 2013043286 A JP2013043286 A JP 2013043286A JP 2011180044 A JP2011180044 A JP 2011180044A JP 2011180044 A JP2011180044 A JP 2011180044A JP 2013043286 A JP2013043286 A JP 2013043286A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin layer
membrane
membrane material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011180044A
Other languages
Japanese (ja)
Other versions
JP5828246B2 (en
Inventor
Hiroshi Suzuki
博 鈴木
Yoko Matsushita
陽子 松下
Hiroshi Toyoda
宏 豊田
Takahiro Hatakeyama
孝宏 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Taiyo Kogyo Co Ltd
Original Assignee
Hiraoka and Co Ltd
Taiyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd, Taiyo Kogyo Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2011180044A priority Critical patent/JP5828246B2/en
Publication of JP2013043286A publication Critical patent/JP2013043286A/en
Application granted granted Critical
Publication of JP5828246B2 publication Critical patent/JP5828246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Tents Or Canopies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane material in which the deterioration progression of a membrane material can be easily noticed without braking membrane structure and a replacement time of the membrane structure can be properly determined, when the membrane structure such as a middle or large sized tent or a tent warehouse is used outdoors for a long period of time.SOLUTION: A flexible laminate includes: a base cloth formed of a fabric material; a first thermoplastic resin layer coating at least one face thereof; and a second thermoplastic resin layer coating the first thermoplastic resin layer. Only the first thermoplastic resin layer contains spherical minute beads, and the occupancy of the first thermoplastic resin layer with respect to the mass of the flexible laminate is 20-40 mass%.

Description

本発明は、構造物用膜材料の屋外使用において張替時期(耐候劣化状況)が容易に確認できる膜材料に関するものである。更に詳しく述べるならば、本発明は、中大型テント、テント倉庫などの建築物部材、トラック用幌、看板用サインシートなどの産業用資材として好適に用いられる膜材料において、膜材料を屋外で長期使用した際に膜材料の耐候劣化状況が容易に確認でき、膜材料の強力低下に伴う膜材料の破れや破損を未然に防ぐために、膜材料の張替え時期を容易に的確に認知できる膜材料に関するものである。   TECHNICAL FIELD The present invention relates to a membrane material in which the replacement time (weather-resistance degradation state) can be easily confirmed when the membrane material for structures is used outdoors. More specifically, the present invention relates to a membrane material suitably used as an industrial material such as a building member such as a medium-to-large tent or a tent warehouse, a truck hood, a signboard for a signboard, etc. It is related to a membrane material that can easily confirm the weathering deterioration status of the membrane material when it is used, and can easily recognize the timing of changing the membrane material in order to prevent the membrane material from being torn or damaged due to the strength reduction of the membrane material. Is.

中大型テント、テント倉庫などの建築物部材、トラック用幌、看板用サインシートなどの産業用資材として屋外で使用される膜材料は、繊維基布の表面に熱可塑性樹脂層が形成されており、長期間の使用において紫外線などの影響により、表面の樹脂層および基布が徐々に劣化し膜材料の引張強さが低下していく。劣化が進み膜材料の引張強さが低下し過ぎると、突然の暴風や大型台風等により膜材料の破れや破損を生じ、中大型テント、テント倉庫などの膜構造物の場合には内容物に甚大な被害を及ぼし、人的被害も想定される。このような被害を未然に防ぐため、中大型テント、テント倉庫などの膜構造物の場合には、各種耐久試験や実績に基づく強度の劣化状況から、5〜10年で膜材料の張替えを推奨しているが、膜材料の残存強度を非破壊で確認する方法がないため、使用中の膜構造物から膜材料の一部を切り取って試験するのが一般的である。しかしながら、この方法では、膜構造物の外観や性能(強度や防水性)を損ねるという問題がある。そこで、屋上用塩ビ防水シートにおいて、塩ビ層の内側層を彩色層として、経時的に外側層の風化劣化により彩色層が露出することによって、防水層の改修時期を認知する提案が開示されているが(特許文献1)、中大型テント、テント倉庫、トラック用幌、看板用サインシートなどの膜構造物では、屋上用塩ビ防水シートとは異なり、膜構造物内の住居空間の観点から採光性と透過色が重要である。このため、内外で異なる着色(彩色)を設けることは採光性と透過色に影響があり、経時的に透過色が変わったり、また汚れの付着や光劣化による樹脂の変色も要因して、色相変化が識別しにくい問題があった。   Film materials used outdoors as industrial materials such as medium and large tents, building materials such as tent warehouses, truck hoods, signboards for signboards, etc. have a thermoplastic resin layer formed on the surface of the fiber base fabric In the long-term use, due to the influence of ultraviolet rays or the like, the resin layer and the base fabric on the surface gradually deteriorate and the tensile strength of the film material decreases. If the membrane material deteriorates and the tensile strength of the membrane material decreases too much, the membrane material is torn or damaged due to sudden storms or large typhoons, etc., and in the case of membrane structures such as medium-sized tents and tent warehouses, the contents It will cause enormous damage and human damage is also expected. In order to prevent such damage, in the case of membrane structures such as medium- and large-sized tents and tent warehouses, it is recommended to replace the membrane material in 5 to 10 years due to the deterioration of strength based on various durability tests and results. However, since there is no method for confirming the remaining strength of the membrane material in a non-destructive manner, it is common to test by cutting a part of the membrane material from the membrane structure in use. However, this method has a problem of deteriorating the appearance and performance (strength and waterproofness) of the membrane structure. Therefore, in the rooftop PVC waterproof sheet, a proposal has been disclosed in which the inner layer of the PVC layer is used as a coloring layer, and the coloring layer is exposed due to weathering deterioration of the outer layer over time, thereby recognizing the repair timing of the waterproof layer. (Patent Document 1), membrane structures such as medium- and large-sized tents, tent warehouses, truck hoods, signboards for signboards, etc. are different from roofing PVC waterproof sheets in terms of daylighting from the viewpoint of residential space in the membrane structure. And the transmission color is important. For this reason, providing different colors (colors) on the inside and outside has an effect on the daylighting and transmission colors, and the hue changes due to changes in the transmission color over time, and also due to stains and resin discoloration due to light deterioration. There was a problem that changes were difficult to identify.

特開2010−168762号公報JP 2010-168762 A

本発明は、中大型テント、テント倉庫などの建築物部材、トラック用幌、看板用サインシートなどの産業用資材として好適に用いられる膜材料において、膜材料を屋外で長期使用した際に耐候劣化による膜材料の強力低下に伴う破れや破損を未然に防ぐために、膜材料の劣化状況を膜構造物を破壊せず容易に認知でき、膜構造物の膜材料の張替え時期が容易に的確に分る膜材料、及びその予測方法を提供しようとするものである。   The present invention is a membrane material suitably used as an industrial material such as medium and large tents, building members such as tent warehouses, truck hoods, signboards for signboards, and the like, when the membrane material is used outdoors for a long period of time. In order to prevent tearing and breakage due to the weakening of the membrane material due to damage, it is possible to easily recognize the deterioration status of the membrane material without destroying the membrane structure, and to easily and accurately identify the timing of the membrane material replacement of the membrane structure. It is intended to provide a film material and a prediction method thereof.

本発明者らは、構造物用膜材料について上記の現状に鑑みて研究、検討を重ねた結果、繊維基布の表面上に形成する熱可塑性樹脂層を第一層と、第二層に分け、膜材料に対する第一層の占有率を特定し、第一層が露出した場合に識別可能な特定形状物質として第一層のみに球状微小ビーズを含有させることによって、採光性や透過色に影響を与えないこと、そして第二層が耐候劣化などで脱落した時に、容易に球状微小ビーズの露出を認識できるので、この時点で基布の経年劣化による材料強度の低下を、膜構造物の一部を破壊すること無く予測でき、この予測が膜材料の実際の経年耐久性データとの相関性を見出して本発明を完成するに至った。   As a result of repeated research and examination of the membrane material for structures in view of the above-mentioned present situation, the present inventors have divided the thermoplastic resin layer formed on the surface of the fiber base fabric into a first layer and a second layer. By specifying the occupancy ratio of the first layer with respect to the membrane material and including spherical microbeads only in the first layer as a specific shape substance that can be identified when the first layer is exposed, it affects lighting and transmission color When the second layer falls off due to weathering deterioration, etc., the exposure of the spherical microbeads can be easily recognized. Thus, the present invention was completed by finding a correlation with the actual aged durability data of the membrane material.

すなわち本発明の構造物用膜材料は、繊維材料より形成された基布と、その少なくとも1面上に被覆形成された第一熱可塑性樹脂層と、この第一熱可塑性樹脂層上に被覆形成された第二熱可塑性樹脂層とからなる可撓性積層体であって、前記第一熱可塑性樹脂層のみが球状微小ビーズを含有し、前記第一熱可塑性樹脂層の前記可撓性積層体の質量に対する占有率が20〜40質量%であることが好ましい。本発明の構造物用膜材料は、前記球状微小ビーズが、平均粒子径10〜100μmの範囲で、前記第一熱可塑性樹脂層に対し5〜50質量%含有していることが好ましい。このような球状微小ビーズを含むことで膜材料自体の採光性や透過色に影響を与えず、それでいて球状微小ビーズの存在が目視や触感で認知し易い利点を有する。本発明の構造物用膜材料は、第二熱可塑性樹脂層の上に、アクリル系樹脂、フッ素系樹脂、光触媒性無機材料から選ばれた少なくとも1種を含む防汚層がさらに形成されていることが好ましい。これによって本発明の構造物用膜材料の外観を長期間美麗に維持することができる。本発明の構造物用膜材料は、前記第二熱可塑性樹脂層が光触媒性無機材料を含み、光触媒作用により分解される自己崩壊性を示すことが好ましい。これによって本発明の構造物用膜材料の表面にカビや藻類が付着した場合でも、第二熱可塑性樹脂層の経時的な自己崩壊によってカビや藻類を第二熱可塑性樹脂層ごと脱落させる効果を発揮するものである。   That is, the membrane material for a structure of the present invention comprises a base fabric formed from a fiber material, a first thermoplastic resin layer coated on at least one surface thereof, and a coating formed on the first thermoplastic resin layer A flexible laminate comprising the second thermoplastic resin layer, wherein only the first thermoplastic resin layer contains spherical microbeads, and the flexible laminate of the first thermoplastic resin layer It is preferable that the occupation ratio with respect to the mass of 20-40 mass%. In the membrane material for a structure of the present invention, the spherical microbeads are preferably contained in an average particle diameter of 10 to 100 μm in an amount of 5 to 50% by mass with respect to the first thermoplastic resin layer. By including such spherical microbeads, there is an advantage that the daylighting property and transmitted color of the membrane material itself are not affected, and that the presence of the spherical microbeads is easily recognized by visual or tactile sensation. In the film material for a structure of the present invention, an antifouling layer containing at least one selected from an acrylic resin, a fluorine resin, and a photocatalytic inorganic material is further formed on the second thermoplastic resin layer. It is preferable. As a result, the appearance of the structural membrane material of the present invention can be maintained beautifully for a long period of time. In the film material for a structure of the present invention, it is preferable that the second thermoplastic resin layer contains a photocatalytic inorganic material and exhibits a self-disintegrating property that is decomposed by a photocatalytic action. Thus, even when mold or algae adheres to the surface of the structural membrane material of the present invention, the second thermoplastic resin layer has the effect of dropping off the mold and algae together with the second thermoplastic resin layer by self-disintegration over time. It is something that demonstrates.

本発明の構造物用膜材張替時期予測方法は、繊維材料より形成された基布と、その少なくとも1面上に被覆形成された第一熱可塑性樹脂層と、この第一熱可塑性樹脂層上に被覆形成された第二熱可塑性樹脂層とからなり、前記第一熱可塑性樹脂層のみが球状微小ビーズを含有する膜材料からなる膜構造物を屋外使用した時に、前記第二熱可塑性樹脂層の経時的風化劣化に伴って、前記構造物用膜材の表面に前記球状微小ビーズの露出を目視検知した時点を前記膜構造物の交換時期と診断することが好ましい。本発明の構造物用膜材張替時期予測方法において、前記第二熱可塑性樹脂層が、前記可撓性積層体の質量に対する占有率が30〜60質量%であることが好ましい。この占有率の範囲内において球状微小ビーズ露出までの時間を任意にコントロールでき、具体的には本発明膜材料の経年実測強度(強度残存率)と照合し、実測値を根拠として第二熱可塑性樹脂層の占有率を定めることができる。   The method for predicting the time for replacing a membrane material for a structure according to the present invention includes a base fabric formed of a fiber material, a first thermoplastic resin layer formed on a surface of at least one surface, and the first thermoplastic resin layer. The second thermoplastic resin when a membrane structure comprising a membrane material containing only spherical microbeads is used outdoors, the second thermoplastic resin comprising a second thermoplastic resin layer coated thereon It is preferable that the time when the exposure of the spherical microbeads is visually detected on the surface of the structural membrane material as the layer is weathered and deteriorated with time is diagnosed as the replacement timing of the membrane structure. In the structural film material replacement time prediction method of the present invention, the second thermoplastic resin layer preferably has an occupancy ratio of 30 to 60% by mass with respect to the mass of the flexible laminate. Within this range of occupancy, the time until spherical microbead exposure can be controlled arbitrarily. Specifically, it is compared with the actual measured strength (strength residual rate) of the membrane material of the present invention, and the second thermoplasticity is based on the measured value. The occupation ratio of the resin layer can be determined.

本発明の膜材料、およびその張替時期予測方法によると、中大型テント、テント倉庫などの建築物部材、トラック用幌、看板用サインシートなどの産業資材を屋外で長期に亘り使用する際に生じる耐候劣化による膜材料のダメージを、膜構造物を破壊して実測する必要なく容易に判断できるようになったので、ダメージ蓄積による突然の膜構造物の破れや破損を未然に防ぐための、張替え時期をタイミング良く、しかも本発明膜材料の経年実測強度(強度残存率)と照合し、実測値を根拠として的確に提案できるようになった。   According to the membrane material of the present invention and the method for predicting its replacement time, when industrial materials such as medium and large tents, building members such as tent warehouses, truck hoods, sign sheets for signboards, etc. are used outdoors for a long time. Because it is now possible to easily judge the damage to the membrane material due to the resulting weather resistance deterioration without the need to destroy and actually measure the membrane structure, in order to prevent the membrane structure from being suddenly torn or broken due to damage accumulation, It is now possible to make an accurate proposal based on the actually measured values by checking the re-sampling time in a timely manner and comparing it with the aged measured strength (strength residual rate) of the membrane material of the present invention.

本発明の構造物用膜材料の一例を示す断面図Sectional drawing which shows an example of the film | membrane material for structures of this invention 本発明の構造物用膜材料の第一熱可塑性樹脂層と第二熱可塑性樹脂層の積層 断面の一例を示す図The figure which shows an example of the lamination | stacking cross section of the 1st thermoplastic resin layer of the film material for structures of this invention, and the 2nd thermoplastic resin layer 本発明の構造物用膜材料の第二熱可塑性樹脂層が侵食劣化して第一熱可塑性 樹脂層表面が露出して球状微小ビーズの存在が認知されるようになった時の 第一熱可塑性樹脂層の断面の一例を示す図The first thermoplastic resin when the second thermoplastic resin layer of the structural membrane material of the present invention is eroded and deteriorated and the surface of the first thermoplastic resin layer is exposed to recognize the presence of spherical microbeads. The figure which shows an example of the cross section of a resin layer

本発明の構造物用膜材料において、繊維材料より形成された基布に用いられる繊維としては、ポリプロピレン繊維、ポリエチレン繊維、ポリエステル繊維、ナイロン繊維、ビニロン繊維などの合成繊維、木綿、麻などの天然繊維、アセテートなどの半合成繊維、ガラス繊維、シリカ繊維、アルミナ繊維、炭素繊維などの無機繊維が挙げられ、これらは単独または2種以上からなる混用繊維によって構成されていてもよく、その形状はマルチフィラメント糸条、短繊維紡績糸条、モノフィラメント糸条、スプリットヤーン糸条、テープヤーン糸条などいずれであってもよい。本発明に使用される繊維基布は、織布、編布、不織布のいずれでもよい、織布を用いる場合、平織、綾織、繻子織、模紗織などいずれの構造をとるものでもよいが、平織織物は、得られる構造物用膜材の縦緯物性バランスに優れているため好ましく用いられる。繊維基布には必要に応じて撥水処理、吸水防止処理、接着処理、難燃処理などが施されていても良い。   In the structural membrane material of the present invention, the fibers used for the base fabric formed from the fiber material include synthetic fibers such as polypropylene fiber, polyethylene fiber, polyester fiber, nylon fiber and vinylon fiber, and natural fibers such as cotton and linen. Examples thereof include inorganic fibers such as fibers, semi-synthetic fibers such as acetate, glass fibers, silica fibers, alumina fibers, and carbon fibers, and these may be composed of single or two or more kinds of mixed fibers, and the shape is Any of a multifilament yarn, a short fiber spun yarn, a monofilament yarn, a split yarn yarn, a tape yarn yarn and the like may be used. The fiber base fabric used in the present invention may be any of a woven fabric, a knitted fabric, and a non-woven fabric. When a woven fabric is used, it may have any structure such as a plain weave, a twill weave, a satin weave, and a patterned weave. A woven fabric is preferably used because it is excellent in the balance of physical properties of the obtained film material for a structure. The fiber base fabric may be subjected to water repellent treatment, water absorption prevention treatment, adhesion treatment, flame retardant treatment, and the like as necessary.

本発明の構造物用膜材料において、第一熱可塑性樹脂層、及び第二熱可塑性樹脂層とに使用される樹脂としては、塩化ビニル樹脂、塩化ビニル系共重合体樹脂、オレフィン樹脂、オレフィン系共重合体樹脂、ウレタン樹脂、ウレタン系共重合体樹脂、アクリル樹脂、アクリル系共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル系共重合体樹脂、スチレン樹脂、スチレン系共重合体樹脂、ポリエステル樹脂、ポリエステル系共重合体樹脂、およびフッ素含有共重合体樹脂などを、単独で用いてもよくもしくは、2種以上併用してもよい。これらの熱可塑性樹脂のなかでは、塩化ビニル樹脂、及び塩化ビニル系共重合体樹脂は樹脂物性、加工性、価格等の面から好んで使用される。この塩化ビニル樹脂及び、塩化ビニル系共重合体樹脂とは、具体的に、ポリ塩化ビニル、塩化ビニル−エチレン共重合体樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、塩化ビニル−塩化ビニリデン共重合体樹脂、塩化ビニル−アクリル酸共重合体樹脂、及び塩化ビニル−ウレタン共重合体樹脂などを包含する。本発明の構造物用膜材料の第一及び第二熱可塑性樹脂層には、必要に応じて、可塑剤、二次可塑剤、安定剤、滑剤、防炎剤、難燃剤、発泡剤、帯電防止剤、界面活性剤、撥水剤、撥油剤、架橋剤、硬化剤、顔料着色剤、導電性フィラー、各種フィラー、防黴剤、抗菌剤、紫外線吸収剤などの公知の添加剤を含むことができる。   In the film material for a structure of the present invention, the resin used for the first thermoplastic resin layer and the second thermoplastic resin layer is vinyl chloride resin, vinyl chloride copolymer resin, olefin resin, olefin resin. Copolymer resin, urethane resin, urethane copolymer resin, acrylic resin, acrylic copolymer resin, vinyl acetate resin, vinyl acetate copolymer resin, styrene resin, styrene copolymer resin, polyester resin, Polyester copolymer resins and fluorine-containing copolymer resins may be used alone or in combination of two or more. Among these thermoplastic resins, vinyl chloride resins and vinyl chloride copolymer resins are preferably used in terms of resin physical properties, processability, cost, and the like. The vinyl chloride resin and the vinyl chloride copolymer resin specifically include polyvinyl chloride, vinyl chloride-ethylene copolymer resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinylidene chloride copolymer. Examples include coalesced resins, vinyl chloride-acrylic acid copolymer resins, and vinyl chloride-urethane copolymer resins. The first and second thermoplastic resin layers of the structural membrane material of the present invention may be provided with a plasticizer, a secondary plasticizer, a stabilizer, a lubricant, a flame retardant, a flame retardant, a foaming agent, a charge as necessary. Including known additives such as inhibitors, surfactants, water repellents, oil repellents, crosslinking agents, curing agents, pigment colorants, conductive fillers, various fillers, antifungal agents, antibacterial agents, ultraviolet absorbers, etc. Can do.

本発明の構造物用膜材料に占める第一熱可塑性樹脂層の占有率は、構造物用膜材料(可撓性積層体)の質量に対して20〜40質量%、特に25〜35質量%であることが好ましい。この占有率が20質量%未満だと、本発明の構造物用膜材料が風化劣化して、第一熱可塑性樹脂層が表面に露出する頃合には本発明の構造物用膜材料本体の機械的強度(残存強度)が低くなり過ぎて、突然の暴風や大型台風による膜構造物破壊のリスクが多大となることがある。また占有率が40質量%を越えると、本来の張替時期よりも早い段階で交換時期を指示することになり信頼性を欠くことがある。   The occupation ratio of the first thermoplastic resin layer in the structural membrane material of the present invention is 20 to 40 mass%, particularly 25 to 35 mass%, based on the mass of the structural membrane material (flexible laminate). It is preferable that If the occupation ratio is less than 20% by mass, the structural membrane material of the present invention is weathered and deteriorated, and the first thermoplastic resin layer is exposed on the surface. The mechanical strength (residual strength) becomes too low, and the risk of membrane structure destruction due to sudden storms or large typhoons may increase. On the other hand, if the occupation ratio exceeds 40% by mass, the replacement time is instructed at an earlier stage than the original replacement time, and reliability may be lost.

本発明の構造物用膜材料における第一熱可塑性樹脂層に含有する球状微小ビーズとしては、第一熱可塑性樹脂層の耐候性への影響、色相の自由度、透光性の維持および第二熱可塑性樹脂層が露出した場合の識別性のある特定形状を有することを必要とし、具体的には形状が球形、または碁石形で透明〜半透明のガラスビーズ、グラスバブルズ(中空ガラスビーズ)、樹脂ビーズなどが適する。具体的には、ソーダ石灰ガラスビーズ、耐摩耗性が良い低アルカリガラスビーズ、反射用高屈折ガラスビーズ、ソーダ石灰ガラスからなるグラスバブルス、シラスバルーン等が挙げられる。また、樹脂ビーズとしてはアクリルビーズ、高密度ポリエチレンビーズ、低密度ポリエチレンビーズ、スチレンビーズ、ウレタンビーズ等が挙げられる。   The spherical microbeads contained in the first thermoplastic resin layer in the structural membrane material of the present invention include the influence on the weather resistance of the first thermoplastic resin layer, the degree of freedom of hue, the maintenance of translucency, and the second It needs to have a specific shape that is distinguishable when the thermoplastic resin layer is exposed. Specifically, the shape is spherical or meteorite-shaped, transparent to translucent glass beads, glass bubbles (hollow glass beads) Resin beads are suitable. Specific examples include soda lime glass beads, low alkali glass beads with good wear resistance, high refractive glass beads for reflection, glass bubbles made of soda lime glass, and shirasu balloons. Examples of the resin beads include acrylic beads, high density polyethylene beads, low density polyethylene beads, styrene beads, and urethane beads.

球状微小ビーズの平均粒子径は、10〜100μmであることが好ましい。平均粒子径が10μm未満の場合には、膜材料の張替交換時期が到来しても、球状微小ビーズ露出の存在を識別確認できずに張替交換時期を逸してしまう場合がある。また、平均粒子径が100μmを越えると、第一熱可塑性樹脂層と基布との密着性を悪くして、膜材料の屈曲疲労により第一熱可塑性樹脂層と基布との界面剥離のトラブルを生じることがある。球状微小ビーズは、第一熱可塑性樹脂層の質量に対し5〜50質量%含有していることが好ましい。含有率が5質量%未満の場合は、第一熱可塑性樹脂層が露出して膜材料の張替交換時期が到来しても、球状微小ビーズをの存在を確認識別できずに張替交換時期を逸してしまう場合がある。また、含有率が50質量%を越えると、第一熱可塑性樹脂層と基布との密着性を悪くして、膜材料の屈曲疲労により第一熱可塑性樹脂層と基布との界面剥離のトラブルを生じることがある。   The average particle size of the spherical microbeads is preferably 10 to 100 μm. When the average particle size is less than 10 μm, even if the replacement time of the membrane material comes, there is a case where the presence of the spherical microbead exposure cannot be identified and confirmed and the replacement time is lost. Also, if the average particle size exceeds 100 μm, the adhesion between the first thermoplastic resin layer and the base fabric is deteriorated, and the trouble of the interface peeling between the first thermoplastic resin layer and the base fabric due to the bending fatigue of the film material. May occur. The spherical microbeads are preferably contained in an amount of 5 to 50% by mass with respect to the mass of the first thermoplastic resin layer. When the content is less than 5% by mass, even if the first thermoplastic resin layer is exposed and the replacement time of the membrane material comes, the presence of the spherical microbeads cannot be confirmed and identified, and the replacement time May be missed. Further, if the content exceeds 50% by mass, the adhesion between the first thermoplastic resin layer and the base fabric is deteriorated, and the interfacial peeling between the first thermoplastic resin layer and the base fabric is caused by bending fatigue of the film material. Trouble may occur.

本発明の構造物用膜材料に占める第二熱可塑性樹脂層の占有率は、構造物用膜材料(可撓性積層体)の質量に対して30〜60質量%、特に40〜50質量%であることが好ましい。この占有率が30質量%未満だと、本来の張替時期よりも早い段階で交換時期を指示することになり信頼性を欠くことがある。また、占有率が60質量%を越えると、本発明の構造物用膜材料が風化劣化して、第一熱可塑性樹脂層が表面に露出する頃合には本発明の構造物用膜材料本体の機械的強度(残存強度)が低くなり過ぎて、突然の暴風や大型台風による膜構造物破壊のリスクが多大となることがある。   The occupation ratio of the second thermoplastic resin layer in the structural film material of the present invention is 30 to 60% by mass, particularly 40 to 50% by mass, based on the mass of the structural film material (flexible laminate). It is preferable that If this occupation ratio is less than 30% by mass, the replacement time is instructed at an earlier stage than the original replacement time, and reliability may be lost. When the occupation ratio exceeds 60% by mass, the structural membrane material of the present invention is weathered and deteriorated, and the first thermoplastic resin layer is exposed on the surface. The mechanical strength (residual strength) becomes too low, and the risk of destruction of the membrane structure due to sudden storms or large typhoons may increase.

本発明の構造物用膜材料において、第二熱可塑性樹脂層の上に、アクリル系樹脂、フッ素系樹脂、光触媒性無機材料から選ばれた少なくとも1種を含む防汚層がさらに形成されていることが好ましい。防汚層の形成の方法には、グラビアコート法、マイクログラビアコート法、コンマコート法、ロールコート法、リバースロールコート法、バーコート法、キスコート法、フローコート法などが挙げれる。   In the film material for a structure of the present invention, an antifouling layer containing at least one selected from an acrylic resin, a fluorine resin, and a photocatalytic inorganic material is further formed on the second thermoplastic resin layer. It is preferable. Examples of the method for forming the antifouling layer include a gravure coating method, a micro gravure coating method, a comma coating method, a roll coating method, a reverse roll coating method, a bar coating method, a kiss coating method, and a flow coating method.

防汚層に用いるアクリル系樹脂としては、アクリル酸もしくはメタクリル酸のC1〜C4アルコールのエステルを主構成モノマーとする重合体もしくは共重合体を主成分とする樹脂が好ましい。このようなアクリル酸エステル系樹脂の主構成モノマーは具体的にはメチルアクリレート、メチルメタクリレート、エチルアクリレート、メチルメタクリレート、プロピルアクリレート、プロピルメタアクリレート、ブチルアクリレート及びブチルメタアクリレートである。また、これらの主構成モノマーと共重合させるコモノマーとしては、例えば、アクリル酸もしくはメタクリル酸のC1〜C12アルコールのエステル、フッ化ビニル、フッ化ビニリデン、塩化ビニル、塩化ビニリデン、酢酸ビニル、スチレン、アクリロニトリル、メタクリロニトリル、ブタジエンなどのモノマーがある。他の共重合体として例えば、メチルメタクリレート重合体にフッ化ビニリデンがグラフト重合した重合体などを使用することもできる。また、アミノ基、イミノ基、エチレンイミン残基、アルキレンジアミン残基を含むアクリレートを用いることもでき、これらをエポキシ樹脂と組み合わせて用いることもできる。   As the acrylic resin used for the antifouling layer, a resin containing a polymer or copolymer having a C1 to C4 alcohol ester of acrylic acid or methacrylic acid as a main constituent monomer is preferred. Specifically, the main constituent monomer of such an acrylic ester resin is methyl acrylate, methyl methacrylate, ethyl acrylate, methyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate and butyl methacrylate. Examples of comonomers to be copolymerized with these main constituent monomers include, for example, esters of C1 to C12 alcohols of acrylic acid or methacrylic acid, vinyl fluoride, vinylidene fluoride, vinyl chloride, vinylidene chloride, vinyl acetate, styrene, acrylonitrile. , Monomers such as methacrylonitrile and butadiene. As another copolymer, for example, a polymer obtained by graft polymerization of vinylidene fluoride on a methyl methacrylate polymer can be used. Also, an acrylate containing an amino group, an imino group, an ethyleneimine residue, or an alkylenediamine residue can be used, and these can be used in combination with an epoxy resin.

防汚層に使用するフッ素系樹脂としては、ポリフッ化ビニリデン系樹脂が使用され、ポリフッ化ビニリデン(PVDF)や、少なくともポリフッ化ビニリデン(PVDF)単位を含む2元以上のコポリマーや、これらの混合物を挙げることができる。ポリフッ化ビニリデン(PVDF)単位を含む2元以上のコポリマーとしては、例えば、ポリフッ化ビニリデン(PVDF)−テトラフルオロエチレン(PTFE)コポリマーや、ポリフッ化ビニリデン(PVDF)−ヘキサフルオロプロピレン(PHFP)コポリマーや、ポリフッ化ビニリデン(PVDF)−ヘキサフルオロプロピレン(PHFP)−テトラフルオロエチレン(PTFE)コポリマーを挙げることができる。   As the fluororesin used for the antifouling layer, a polyvinylidene fluoride resin is used, and a polyvinylidene fluoride (PVDF), a copolymer of at least two containing at least a polyvinylidene fluoride (PVDF) unit, or a mixture thereof is used. Can be mentioned. Examples of the two or more copolymers containing a polyvinylidene fluoride (PVDF) unit include a polyvinylidene fluoride (PVDF) -tetrafluoroethylene (PTFE) copolymer, a polyvinylidene fluoride (PVDF) -hexafluoropropylene (PHFP) copolymer, And polyvinylidene fluoride (PVDF) -hexafluoropropylene (PHFP) -tetrafluoroethylene (PTFE) copolymer.

防汚層に使用する光触媒性無機材料としては、光触媒作用である分解性と親水性を示す酸化物半導体等であり、具体的には、酸化チタン、BaTiO、SrTiO、CaTiO、ZnO、SiC、GaP、CdS、CdSe、MoS、SnO、WO、Fe、Bi、Vなどが使用できるが、特に好ましくは酸化チタンである。勿論、これらの光触媒は、単独で用いてもよいし、複数種を混合して用いることもできる。この酸化チタンとは、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、無定形酸化チタン、メタチタン酸、オルトチタン酸などの酸化チタンの他に水酸化チタン、酸化チタン水和物なども含むが、特に安価で高い活性をもつアナターゼ型酸化チタンが好ましい。また、光触媒と、金属又は金属酸化物等の無機材料との混合物又は光触媒を金属又は金属酸化物等の無機材料で部分被覆した被覆物であることが好ましい。なかでも、酸化チタンと二酸化ケイ素の混合物又は酸化チタンを二酸化ケイ素で被覆した被覆物、若しくは、酸化チタンとリン酸カルシウムの混合物又は酸化チタンをリン酸カルシウムで部分的にランダム被覆した被覆物であることが好ましい。光触媒が、上記光触媒材料と金属又は金属酸化物等の無機材料との混合物又は上記光触媒材料を金属又は金属酸化物等の無機材料で部分的にランダム被覆した被覆物であると、光触媒の分解作用のコントロールが容易である。 The photocatalytic inorganic material used for the antifouling layer is an oxide semiconductor or the like that exhibits decomposability and hydrophilicity, which are photocatalytic actions. Specifically, titanium oxide, BaTiO 3 , SrTiO 3 , CaTiO 3 , ZnO, SiC, GaP, CdS, CdSe, MoS 3 , SnO 2 , WO 3 , Fe 2 O 3 , Bi 2 O 3 , V 2 O 5 and the like can be used, and titanium oxide is particularly preferable. Of course, these photocatalysts may be used alone or in combination of two or more. In addition to titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, etc., this titanium oxide includes titanium hydroxide, titanium oxide hydrate, etc. In particular, anatase-type titanium oxide which is inexpensive and has high activity is preferable. Further, a mixture of a photocatalyst and an inorganic material such as a metal or a metal oxide, or a coating obtained by partially coating the photocatalyst with an inorganic material such as a metal or a metal oxide is preferable. Among these, a mixture of titanium oxide and silicon dioxide or a coating in which titanium oxide is coated with silicon dioxide, or a mixture of titanium oxide and calcium phosphate or a coating in which titanium oxide is partially coated with calcium phosphate is preferable. When the photocatalyst is a mixture of the photocatalyst material and an inorganic material such as a metal or metal oxide, or a coating obtained by partially coating the photocatalyst material with an inorganic material such as a metal or metal oxide, the photocatalytic decomposition action Easy to control.

また、本発明の構造物用膜材料の第二熱可塑性樹脂層に光触媒性無機材料を均一分散して含むことによって、屋外での太陽光下の紫外線での光触媒励起により第二熱可塑性樹脂層の熱可塑性樹脂成分が表面層から緩やかに分解して、表面の風化劣化を促す自己崩落効果によって表面を更新しながら防汚性を発現し、この効果は分解が進み球状微小ビーズを含有した第一熱可塑性樹脂層が露出して、構造物用膜材料の張替時期に至るまで安定した防汚性を維持することができる。これによって膜材料の表面にカビや藻類が付着した場合でも、第二熱可塑性樹脂層の経時的な自己崩壊によってカビや藻類を第二熱可塑性樹脂層ごと脱落させ、表面層を常時クリーンな状態とすることができる。第二熱可塑性樹脂層に含む光触媒性無機材料としては、光触媒作用である分解性を示す酸化物半導体等であり、特に酸化チタンで、アナターゼ型酸化チタンが好ましい。なかでも、酸化チタンと二酸化ケイ素の混合物又は酸化チタンを二酸化ケイ素で部分的にランダム被覆した被覆物、若しくは、酸化チタンとリン酸カルシウムの混合物又は酸化チタンをリン酸カルシウムで部分的にランダム被覆した被覆物であることが好ましい。このようなランダムな部分的表面被覆型光触媒であると、光触媒の分解作用のコントロールが容易である。   In addition, the second thermoplastic resin layer of the structural film material of the present invention includes a photocatalytic inorganic material uniformly dispersed in the second thermoplastic resin layer by photocatalytic excitation with ultraviolet rays under sunlight outdoors. The thermoplastic resin component slowly decomposes from the surface layer and exhibits antifouling properties while renewing the surface by the self-collapse effect that promotes weathering deterioration of the surface. One thermoplastic resin layer is exposed, and stable antifouling properties can be maintained until the structural film material is replaced. As a result, even when mold or algae adheres to the surface of the membrane material, the mold and algae are removed along with the second thermoplastic resin layer by the self-disintegration of the second thermoplastic resin layer over time, and the surface layer is always clean. It can be. The photocatalytic inorganic material contained in the second thermoplastic resin layer is an oxide semiconductor or the like that exhibits decomposability, which is a photocatalytic action, and is particularly titanium oxide, preferably anatase type titanium oxide. Among them, a mixture of titanium oxide and silicon dioxide or a coating in which titanium oxide is partially randomly coated with silicon dioxide, or a mixture of titanium oxide and calcium phosphate or a coating in which titanium oxide is partially randomly coated with calcium phosphate. It is preferable. Such a random partially surface-coated photocatalyst is easy to control the decomposition action of the photocatalyst.

本発明の構造物用膜材料において、第一熱可塑性樹脂層の形成には、球状微小ビーズを混合分散させた塩化ビニル系樹脂エマルジョン、ポリオレフィン系樹脂エマルジョン、アクリル系樹脂エマルジョン、ウレタン系樹脂エマルジョンなどの前記熱可塑性樹脂のエマルジョン、及びペースト塩化ビニル樹脂ゾルを使用し、得られた熱可塑性樹脂組成物を塗布方法、例えば、ドクターナイフコート法、グラビアコート法、ロータリースクリーンコート法、又は含浸方法としてディップコート法などにより基布にコーティングし、これを乾燥・熱処理することで行うが、フィルムやシートに球状微小ビーズを練り込んだものを基布に熱ラミネートまたは接着剤で積層する方法で行うこともできる。第一熱可塑性樹脂層の厚さは、構造物用膜材料(可撓性積層体)の質量に対して20〜40質量%の占有率となる範囲である。   In the membrane material for a structure of the present invention, the first thermoplastic resin layer is formed by mixing and dispersing spherical fine beads, a vinyl chloride resin emulsion, a polyolefin resin emulsion, an acrylic resin emulsion, a urethane resin emulsion, etc. The thermoplastic resin emulsion and paste vinyl chloride resin sol are used, and the obtained thermoplastic resin composition is applied as, for example, a doctor knife coating method, a gravure coating method, a rotary screen coating method, or an impregnation method. This is done by coating the base fabric by the dip coating method, etc., and drying and heat-treating it, but by using a method in which spherical fine beads are kneaded into a film or sheet and laminated to the base fabric with heat lamination or an adhesive. You can also. The thickness of the first thermoplastic resin layer is within a range of 20 to 40% by mass with respect to the mass of the structural film material (flexible laminate).

本発明の構造物用膜材料において、第二熱可塑性樹脂層の形成は、第一熱可塑性樹脂層の形成と同様に行うことができるが、但し第二熱可塑性樹脂層を形成する熱可塑性樹脂に球状微小ビーズは含まない。例えば熱可塑性樹脂組成物を、T−ダイ法、インフレーション法、又はカレンダー法など公知のフィルム、シート加工技術によって製造されたフィルムまたは、シートを第一熱可塑性樹脂層の上に熱圧着によりラミネートする方法を用いることができるが、熱可塑性樹脂のエマルジョン、及びペースト塩化ビニル樹脂ゾルを第一熱可塑性樹脂層上に塗布する方法であってもよい。第二熱可塑性樹脂層の厚さは、構造物用膜材料(可撓性積層体)の質量に対して30〜60質量%の占有率となる範囲である。   In the film material for a structure of the present invention, the second thermoplastic resin layer can be formed in the same manner as the first thermoplastic resin layer, provided that the thermoplastic resin forming the second thermoplastic resin layer is used. Does not contain spherical microbeads. For example, a thermoplastic resin composition is laminated on a first thermoplastic resin layer by thermocompression bonding with a known film such as a T-die method, an inflation method, or a calendar method, a film manufactured by a sheet processing technique, or a sheet. Although a method can be used, the method of apply | coating the emulsion of a thermoplastic resin and the paste vinyl chloride resin sol on a 1st thermoplastic resin layer may be sufficient. The thickness of the second thermoplastic resin layer is in a range where the occupation ratio is 30 to 60% by mass with respect to the mass of the structural film material (flexible laminate).

本発明の構造物用膜材料を中大型テント、テント倉庫、トラック用幌、看板用サインシートなどの膜構造物に用いた場合、その膜材張替時期予測方法は、第二熱可塑性樹脂層の表面からの緩やかで長時間の経時的風化劣化に伴って徐々に第二熱可塑性樹脂層が痩せ細って消失し、膜材料の表面が第一熱可塑性樹脂層に到達し、第一熱可塑性樹脂層のみに含む球状微小ビーズの存在が目視、または触感により認知した時点とする。本質的に第一熱可塑性樹脂層と第二熱可塑性樹脂層とは同一の熱可塑性樹脂を用いることが多いため樹脂そのものだけでの層の区別は困難で、明瞭な区別は第一熱可塑性樹脂層のみに含まれる球状微小ビーズの存在に依存する。本発明による膜材張替時期予測方法は、本発明の構造物用膜材料において占める、第一熱可塑性樹脂層及び第二熱可塑性樹脂層との占有比率、第一熱可塑性樹脂層の膜材料の質量に対する占有率20〜40質量%の範囲、及び第二熱可塑性樹脂層の膜材料の質量に対する占有率30〜60質量%の範囲における実際の膜材料を屋外曝露や促進暴露による耐候劣化試験を行い、それによって得た膜材料本体の残存強度や残存伸度、引き裂き残存強度などの自己の保有する実測値と、ユーザーが使用している本発明の膜材料仕様との照合を根拠として張替時期を提案する診断システムが好ましい。   When the membrane material for a structure of the present invention is used for a membrane structure such as a medium- and large-sized tent, a tent warehouse, a truck hood, a signboard for a signboard, etc. With the mild and long-term weathering deterioration from the surface, the second thermoplastic resin layer gradually faded and disappeared, and the surface of the membrane material reached the first thermoplastic resin layer, and the first thermoplastic The time when the presence of spherical microbeads contained only in the resin layer is recognized visually or by touch. In principle, the first thermoplastic resin layer and the second thermoplastic resin layer often use the same thermoplastic resin, so it is difficult to distinguish the layers by the resin itself. The clear distinction is the first thermoplastic resin. Depends on the presence of spherical microbeads contained only in the layer. According to the present invention, the method of predicting the film material replacement time includes the occupation ratio between the first thermoplastic resin layer and the second thermoplastic resin layer in the structural film material of the present invention, and the film material of the first thermoplastic resin layer. Test of actual film material in the range of 20 to 40% by mass with respect to the mass of the resin and the range of 30 to 60% by mass with respect to the mass of the film material of the second thermoplastic resin layer by outdoor exposure or accelerated exposure Based on the comparison of the actual measured values such as the residual strength, residual elongation, and tearing residual strength of the membrane material body obtained with the specifications of the membrane material of the present invention used by the user, A diagnostic system that suggests replacement times is preferred.

本発明を下記実施例によりさらに説明するが、本発明の範囲はこれらの例により限定されるものではない。下記実施例及び比較例において膜材料の評価に用いた試験方法は下記の通りである。
試験(1)促進曝露試験
(社)日本膜構造協会試験標準(MSAJ/M-03-2003)促進暴露試験に準じて、膜材料の表面に、キセノンアーク光源(照度 180W/m照射時間208時間:屋外曝露1年相当)による照射を照射時間2080時間(屋外曝露10年相当)まで行ない促進曝露試験を実施した。
試験(2)膜材料表面状態の観察
膜材料の促進曝露試験において、照射時間208時間(屋外曝露1年相当)毎にライト付顕微鏡(ナショナルライトスコープ100 FF-394倍率100倍)を使用し、膜材料の表面の変化を確認した。
試験(3)膜材料の引張強さ測定
膜材料の促進曝露試験で表面状態の変化が最初に確認した照射時間の前後で引張強さを、JISL1096に準じて測定し、初期引張強さに対する促進曝露試験後の引張強さの保持率を算出し、下記の判定基準により評価した。
促進曝露試験後の引張強さの保持率
100%〜60%:○ = 構造物用膜材料として継続使用可能
60〜40%:△ = 構造物用膜材料の張替え時期である
〜40%:× = 構造物用膜材料の張替え時期が過ぎており危険である
The present invention will be further illustrated by the following examples, but the scope of the present invention is not limited by these examples. The test methods used for the evaluation of the film material in the following examples and comparative examples are as follows.
Test (1) Accelerated exposure test In accordance with the Japan Membrane Structure Association test standard (MSAJ / M-03-2003) accelerated exposure test, the surface of the membrane material is exposed to a xenon arc light source (illuminance 180 W / m 2 irradiation time 208 Time: Equivalent to outdoor exposure for 1 year) Irradiation was performed up to an irradiation time of 2080 hours (equivalent to outdoor exposure of 10 years), and an accelerated exposure test was conducted.
Test (2) Observation of surface condition of membrane material In the accelerated exposure test of membrane material, use a microscope with light (National Lightscope 100 FF-394 magnification 100 times) every 208 hours of irradiation time (equivalent to 1 year of outdoor exposure) Changes in the surface of the membrane material were confirmed.
Test (3) Measurement of tensile strength of membrane material Measure the tensile strength according to JISL1096 before and after the irradiation time when the surface condition change was first confirmed in the accelerated exposure test of the membrane material, and accelerate the initial tensile strength. The retention rate of tensile strength after the exposure test was calculated and evaluated according to the following criteria.
Tensile strength retention rate after accelerated exposure test 100% to 60%: ○ = Continuous use as structural membrane material 60-40%: Δ = Renewal time of structural membrane material
~ 40%: × = Dangerous because the rehabilitation period for structural membrane materials has passed

[実施例1]
基布として下記組織のポリエステルフィラメント平織物を用いた。
(1111dtex×1111dtex)/(18/25.4mm×20/25.4mm)
質量:170g/m
この基布を、ペースト塩化ビニル樹脂と球状微小ビーズを含む下記配合(1)の樹脂組成物の溶剤希釈液中に浸漬して、基布に樹脂液を含浸塗布し、150℃で1分間乾燥後、185℃で1分間熱処理し、前記樹脂を140g/m付着させて、第一熱可塑性樹脂層を形成した。次に、ストレート塩化ビニル樹脂を含む、下記配合(2)の樹脂組成物からなるフィルム(厚み50μ:68g/m)をカレンダーを用いて作製し、これを第一熱可塑性樹脂層の両面に貼着して、第二熱可塑性樹脂層を表裏に形成し、膜材料を作製した。得られた膜材料の第一熱可塑性樹脂層の占有率31.4%、第二熱可塑性樹脂層の占有率30.5%であった。
配合(1)
ペースト塩化ビニル樹脂 100質量部
DOP(可塑剤) 70質量部
三酸化アンチモン(防炎剤) 10質量部
エポキシ化大豆油 4質量部
Ba−Zn系安定剤 2質量部
球状微小ビーズ 47質量部(20質量%)
トルエン(溶剤) 20質量部
球状微小ビーズ・・・品名:NS170-250(ブライト標識工業(株))
高屈折ガラスビーズ 粒径:63〜90μm
配合(2)
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
三酸化アンチモン(防炎剤) 5質量部
エポキシ化大豆油 4質量部
Ba−Zn系安定剤 2質量部
顔料(TiO) 5質量部
この膜材料を前記試験に供した。試験結果を表1に示す。
[Example 1]
A polyester filament plain fabric having the following structure was used as the base fabric.
(1111 dtex × 1111 dtex) / (18 / 25.4 mm × 20 / 25.4 mm)
Mass: 170 g / m 2
This base fabric is dipped in a solvent diluted solution of a resin composition of the following formulation (1) containing a paste vinyl chloride resin and spherical microbeads, impregnated with the resin solution on the base fabric, and dried at 150 ° C. for 1 minute. Thereafter, heat treatment was performed at 185 ° C. for 1 minute, and the resin was adhered to 140 g / m 2 to form a first thermoplastic resin layer. Next, a film (thickness 50 μ: 68 g / m 2 ) made of a resin composition of the following formulation (2) containing a straight vinyl chloride resin was prepared using a calendar, and this was formed on both surfaces of the first thermoplastic resin layer. A second thermoplastic resin layer was formed on the front and back, and a film material was produced. In the obtained film material, the occupation ratio of the first thermoplastic resin layer was 31.4%, and the occupation ratio of the second thermoplastic resin layer was 30.5%.
Formulation (1)
Paste vinyl chloride resin 100 parts by weight DOP (plasticizer) 70 parts by weight Antimony trioxide (flameproofing agent) 10 parts by weight Epoxidized soybean oil 4 parts by weight Ba-Zn stabilizer 2 parts by weight Spherical microbeads * 47 parts by weight ( 20% by mass)
Toluene (solvent) 20 parts by mass Spherical microbeads * ... Product name: NS170-250 (Bright Label Industry Co., Ltd.)
High refractive glass beads Particle size: 63-90μm
Formula (2)
Straight vinyl chloride resin 100 parts by weight DOP (plasticizer) 55 parts by weight Antimony trioxide (flameproofing agent) 5 parts by weight Epoxidized soybean oil 4 parts by weight Ba-Zn stabilizer 2 parts by weight Pigment (TiO 2 ) 5 parts by weight This membrane material was subjected to the test. The test results are shown in Table 1.

[実施例2]
実施例1と同様にして膜材料を作製した。但し、ストレート塩化ビニル樹脂を含む、配合(2)のフィルムからなる第二熱可塑性樹脂層の厚みを100μ(136g/m)に変更した。得られた膜材料の第一熱可塑性樹脂層の占有率24%、第二熱可塑性樹脂層の占有率46.7%であった。この膜材料を前記試験に供した。試験結果を表1に示す。
[Example 2]
A film material was produced in the same manner as in Example 1. However, the thickness of the 2nd thermoplastic resin layer which consists of a film of a mixing | blending (2) containing a straight vinyl chloride resin was changed into 100 micrometer (136 g / m < 2 >). In the obtained film material, the occupation ratio of the first thermoplastic resin layer was 24%, and the occupation ratio of the second thermoplastic resin layer was 46.7%. This membrane material was subjected to the test. The test results are shown in Table 1.

[実施例3]
実施例1と同様にして膜材料を作製した。但し、第二熱可塑性樹脂層の上に、下記配合(3)に示された組成のPVDF系樹脂防汚層処理液をグラビヤコーターで30g/mの塗布量で塗布し、100℃で1分間乾燥後冷却して、6.0g/mのPVDF系樹脂防汚層を形成した。
配合(3)PVDF系樹脂防汚層処理液
フッ化ビニリデン系樹脂 20質量部
(商標:KYNAR710、エルフ・アトケム・ジャパン(株)製)
MEK−トルエン−DMF (40/30/30重量比)(溶剤)
80質量部
得られた膜材料の第一熱可塑性樹脂層の占有率31%、第二熱可塑性樹脂層の占有率30.1%であった。この膜材料を前記試験に供した。試験結果を表1に示す。
[Example 3]
A film material was produced in the same manner as in Example 1. However, on the second thermoplastic resin layer, a PVDF-based resin antifouling layer treatment liquid having the composition shown in the following formulation (3) was applied at a coating amount of 30 g / m 2 with a gravure coater, and 1 at 100 ° C. After drying for a minute, the mixture was cooled to form a 6.0 g / m 2 PVDF-based resin antifouling layer.
Compound (3) PVDF-based resin antifouling layer treatment solution 20 parts by mass of vinylidene fluoride-based resin (trademark: KYNAR710, manufactured by Elf Atchem Japan Co., Ltd.)
MEK-toluene-DMF (40/30/30 weight ratio) (solvent)
The film material obtained had an occupation ratio of 31% for the first thermoplastic resin layer and an occupation ratio of the second thermoplastic resin layer of 30.1%. This membrane material was subjected to the test. The test results are shown in Table 1.

[実施例4]
実施例2と同様にして膜材料を作製した。但し、第二熱可塑性樹脂層に光触媒性無機材料を含み、下記配合(4)の樹脂組成物からなるフィルムを貼着して第二熱可塑性樹脂層を形成した。得られた膜材料の第一熱可塑性樹脂層の占有率24%、第二熱可塑性樹脂層の占有率46.7%であった。この膜材料を前記試験に供した。試験結果を表1に示す。
配合(4)
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
三酸化アンチモン(防炎剤) 5質量部
エポキシ化大豆油 4質量部
Ba−Zn系安定剤 2質量部
酸化チタン光触媒粉末 5質量部
(品名:PC-101※(住友化学(株)))
顔料(TiO) 5質量部
PC-101※・・・粒径:1μm、分散径:BET300m/g
この膜材料を前記試験に供した。試験結果を表1に示す。
[Example 4]
A film material was produced in the same manner as in Example 2. However, the 2nd thermoplastic resin layer was formed by sticking the film which consists of a resin composition of the following mixing | blending (4) including the photocatalytic inorganic material in the 2nd thermoplastic resin layer. In the obtained film material, the occupation ratio of the first thermoplastic resin layer was 24%, and the occupation ratio of the second thermoplastic resin layer was 46.7%. This membrane material was subjected to the test. The test results are shown in Table 1.
Formula (4)
Straight vinyl chloride resin 100 parts by weight DOP (plasticizer) 55 parts by weight Antimony trioxide (flameproofing agent) 5 parts by weight Epoxidized soybean oil 4 parts by weight Ba-Zn stabilizer 2 parts by weight Titanium oxide photocatalyst powder 5 parts by weight ( Product name: PC-101 * (Sumitomo Chemical Co., Ltd.)
Pigment (TiO 2 ) 5 parts by mass PC-101 * ・ ・ ・ Particle size: 1 μm, dispersion diameter: BET 300 m 2 / g
This membrane material was subjected to the test. The test results are shown in Table 1.

実施例1〜4で得られた膜材料は、表1に示すように、促進曝露試験において膜材料の表面状態の変化(球状微小ビーズの露出)が最初に確認された照射時間での初期引張強さに対する引張強さ保持率が50%前後を示し、膜材料表面において球状微小ビーズが最初に露出する照射時間と膜材料の張替え時期の目安となる引張強さ保持率50%が対応しており、膜材料の表面状態の変化を確認することにより、膜材料の劣化状況を膜構造物を破壊せず容易に確認でき、膜構造物の張替え時期を容易に的確に判断できる。また、実施例3では、第二熱可塑性樹脂層の表面に防汚層を形成しており、優れた防汚性を示す。更に、実施例4では、第二熱可塑性樹脂層に光触媒性無機材料を含有させ、第二熱可塑性樹脂層を光触媒作用により積極的に分解される自己崩壊性を示すことにより、構造物用膜材料として継続使用可能な期間(引張強さ保持率が60%以上を示す期間)の間は、常に非常に優れた防汚性を示し、且つ球状微小ビーズが露出した時点で張替え時期を的確に判断できる膜材料である。   As shown in Table 1, the membrane materials obtained in Examples 1 to 4 were initially tensioned at the irradiation time when the surface condition change (exposure of spherical microbeads) was first confirmed in the accelerated exposure test. The tensile strength retention with respect to the strength is around 50%, and the irradiation time when the spherical microbeads are first exposed on the surface of the membrane material corresponds to the tensile strength retention of 50%, which is a guideline for the timing of the membrane material replacement. Thus, by confirming the change in the surface state of the membrane material, the deterioration state of the membrane material can be easily confirmed without destroying the membrane structure, and the replacement time of the membrane structure can be easily and accurately determined. Moreover, in Example 3, the antifouling layer is formed on the surface of the second thermoplastic resin layer and exhibits excellent antifouling properties. Furthermore, in Example 4, the second thermoplastic resin layer contains a photocatalytic inorganic material, and the second thermoplastic resin layer exhibits a self-disintegrating property that is actively decomposed by photocatalytic action. During the period of continuous use as a material (period in which the tensile strength retention rate is 60% or more), it always shows very excellent antifouling properties, and when the spherical microbeads are exposed, the time for rehanging is accurately determined. It is a film material that can be judged.

[比較例1]
実施例3と同様にして膜材料を作製した。但し、実施例3の第一熱可塑性樹脂層に球状微小ビーズを添加しなかった。得られた膜材料の第一熱可塑性樹脂層の占有率31.4%、第二熱可塑性樹脂層の占有率30.5%であった。この膜材料を前記試験に供した。試験結果を表2に示す。この膜材料は、表2に示すように、膜材料の表面状態の変化が分かりにくく、気が付いた時には基布が露出しており、その時点での引張強さ保持率は30%と低く、膜構造物の張替え時期は既に過ぎており、危険な状態で継続使用していることとなり、張替え時期を的確に判断できない。
[Comparative Example 1]
A film material was produced in the same manner as in Example 3. However, spherical microbeads were not added to the first thermoplastic resin layer of Example 3. In the obtained film material, the occupation ratio of the first thermoplastic resin layer was 31.4%, and the occupation ratio of the second thermoplastic resin layer was 30.5%. This membrane material was subjected to the test. The test results are shown in Table 2. As shown in Table 2, this membrane material is difficult to understand the change in the surface state of the membrane material, the base fabric is exposed when it is noticed, and the tensile strength retention at that time is as low as 30%. The replacement time of the structure has already passed, and it is being used continuously in a dangerous state, so the replacement time cannot be accurately determined.

[比較例2]
実施例3と同様にして膜材料を作製した。但し、実施例3の第一熱可塑性樹脂層を56g/mとした。得られた膜材料の第一熱可塑性樹脂層の占有率15.2%、第二熱可塑性樹脂層の占有率36.9%であった。この膜材料を前記試験に供した。試験結果を表2に示す。この膜材料は、表2に示すように、促進曝露試験において膜材料の表面状態の変化(球状微小ビーズの露出)が確認されたが、その照射時間での初期引張強さに対する引張強さ保持率が30%程度と低く、膜構造物の張替え時期は既に過ぎており、危険な状態で継続使用していることとなり張替え時期を的確に判断できない。これは、第一熱可塑性樹脂層の、膜材料本体に対する占有率が15.2%と低すぎるため、球状微小ビーズが露出した時点で既に膜材料の引張強さが大きく低下していると考えられる。
[Comparative Example 2]
A film material was produced in the same manner as in Example 3. However, the first thermoplastic resin layer of Example 3 was 56 g / m 2 . In the obtained film material, the occupation ratio of the first thermoplastic resin layer was 15.2%, and the occupation ratio of the second thermoplastic resin layer was 36.9%. This membrane material was subjected to the test. The test results are shown in Table 2. As shown in Table 2, this membrane material was confirmed to have a change in the surface state of the membrane material (exposure of spherical microbeads) in the accelerated exposure test. However, the tensile strength retention relative to the initial tensile strength at the irradiation time was maintained. The rate is as low as about 30%, and the replacement time of the membrane structure has already passed, and it is used continuously in a dangerous state, so the replacement time cannot be determined accurately. This is because the occupancy ratio of the first thermoplastic resin layer to the membrane material body is too low at 15.2%, so that the tensile strength of the membrane material is already greatly reduced when the spherical microbeads are exposed. It is done.

[比較例3]
実施例3と同様にして膜材料を作製した。但し、実施例3の第一熱可塑性樹脂層を260g/mとした。得られた膜材料の第一熱可塑性樹脂層の占有率45.4%、第二熱可塑性樹脂層の占有率23.7%であった。この膜材料を前記試験に供した。試験結果を表2に示す。この膜材料は、表2に示すように、促進曝露試験において膜材料の表面状態の変化(球状微小ビーズの露出)が確認されたが、その照射時間での初期引張強さに対する引張強さ保持率が70%程度と高く、膜構造物の継続使用が可能であり、張替え時期との対応がなく、張替え時期を的確に判断できない。これは、第一熱可塑性樹脂層の、膜材料本体に対する占有率が45.4%と高過ぎるため、球状微小ビーズが露出した時点でもまだ構造物用膜材料の引張強さを十分に維持していると考えられる。
[Comparative Example 3]
A film material was produced in the same manner as in Example 3. However, the first thermoplastic resin layer of Example 3 was 260 g / m 2 . In the obtained film material, the occupation ratio of the first thermoplastic resin layer was 45.4%, and the occupation ratio of the second thermoplastic resin layer was 23.7%. This membrane material was subjected to the test. The test results are shown in Table 2. As shown in Table 2, this membrane material was confirmed to have a change in the surface state of the membrane material (exposure of spherical microbeads) in the accelerated exposure test. However, the tensile strength retention relative to the initial tensile strength at the irradiation time was maintained. The rate is as high as about 70%, and the membrane structure can be used continuously. There is no correspondence with the replacement time, and the replacement time cannot be determined accurately. This is because the occupation ratio of the first thermoplastic resin layer to the membrane material body is too high at 45.4%, so that the tensile strength of the membrane material for structures is still sufficiently maintained even when the spherical microbeads are exposed. It is thought that.

[比較例4]
実施例3と同様にして膜材料を作製した。但し、実施例3の第一熱可塑性樹脂層に球状微小ビーズの代わりに水酸化アルミニウムを添加した。得られた膜材料の第一熱可塑性樹脂層の占有率31%、第二熱可塑性樹脂層の占有率30.1%であった。この膜材料を前記試験に供した。試験結果を表2に示す。この膜材料は、表2に示すように、第一熱可塑性樹脂層に含有した水酸化アルミニウムは、無定形の粉末であり、球状微小ビーズのように形状が特定でないため他の三酸化アンチモンなどの充填剤と見分けが付かず、膜材料の表面状態の変化が分かりにくく、気が付いた時には基布が露出しており、その時点での引張強さ保持率は30%と低く、膜構造物の張替え時期は既に過ぎており、危険な状態で継続使用していることとなり、張替え時期を的確に判断できない。
[Comparative Example 4]
A film material was produced in the same manner as in Example 3. However, aluminum hydroxide was added to the first thermoplastic resin layer of Example 3 instead of the spherical microbeads. In the obtained film material, the occupation ratio of the first thermoplastic resin layer was 31% and the occupation ratio of the second thermoplastic resin layer was 30.1%. This membrane material was subjected to the test. The test results are shown in Table 2. As shown in Table 2, the aluminum hydroxide contained in the first thermoplastic resin layer is an amorphous powder, and the shape of the membrane material is not specific as in the case of spherical microbeads. The change in the surface condition of the membrane material is difficult to understand, and when it is noticed, the base fabric is exposed, and the tensile strength retention at that point is as low as 30%. The reassignment time has already passed, and it has been used continuously in a dangerous state, so the reassignment time cannot be determined accurately.

中大型テント、テント倉庫などの建築物部材、トラック用幌、看板用サインシートなどの産業用資材として好適に用いられる膜材料において、これら膜材料を屋外で長期使用した際に膜材料の劣化状況を膜構造物を破壊せず容易に確認できるため、膜構造物の張替え時期が的確に分り、使用者に理解が得られやすく、構造物用膜材料の耐候劣化による強力低下に伴う破れや破損を未然に防ぐことが可能となる。   Deterioration of membrane materials when these membrane materials are used outdoors for a long time in membrane materials suitable for industrial materials such as medium and large tents, building materials such as tent warehouses, truck hoods, signboards for signboards, etc. Can be easily confirmed without destroying the membrane structure, so it is easy to understand when the membrane structure is replaced, and it is easy for the user to understand. Can be prevented in advance.

1:構造物用膜材料(可撓性積層体)
2:基布
3:第一熱可塑性樹脂層
4:球状微小ビーズ
5:第二熱可塑性樹脂層
6:防汚層
1: Structural membrane material (flexible laminate)
2: Base fabric 3: First thermoplastic resin layer 4: Spherical fine beads 5: Second thermoplastic resin layer 6: Antifouling layer

Claims (6)

繊維材料より形成された基布と、その少なくとも1面上に被覆形成された第一熱可塑性樹脂層と、この第一熱可塑性樹脂層上に被覆形成された第二熱可塑性樹脂層とからなる可撓性積層体であって、前記第一熱可塑性樹脂層のみが球状微小ビーズを含有し、前記第一熱可塑性樹脂層の前記可撓性積層体の質量に対する占有率が20〜40質量%であることを特徴とする構造物用膜材料。   A base fabric made of a fiber material, a first thermoplastic resin layer coated on at least one surface thereof, and a second thermoplastic resin layer coated on the first thermoplastic resin layer. A flexible laminate, wherein only the first thermoplastic resin layer contains spherical microbeads, and the occupation ratio of the first thermoplastic resin layer to the mass of the flexible laminate is 20 to 40% by mass. A film material for a structure, characterized in that 前記球状微小ビーズが、平均粒子径10〜100μmの範囲で、前記第一熱可塑性樹脂層に対し5〜50質量%含有している、請求項1に記載の構造物用膜材料。   The membrane material for a structure according to claim 1, wherein the spherical microbeads are contained in an average particle diameter of 10 to 100 µm in an amount of 5 to 50 mass% with respect to the first thermoplastic resin layer. 前記第二熱可塑性樹脂層の上に、アクリル系樹脂、フッ素系樹脂、光触媒性無機材料から選ばれた少なくとも1種を含む防汚層がさらに形成されている、請求項1又は2に記載の構造物用膜材料。   The antifouling layer containing at least one selected from an acrylic resin, a fluorine resin, and a photocatalytic inorganic material is further formed on the second thermoplastic resin layer. Structural membrane materials. 前記第二熱可塑性樹脂層が光触媒性無機材料を含み、光触媒作用により分解される自己崩壊性を示す、請求項1〜3のいずれか1項に記載の構造物用膜材料。   The film material for a structure according to any one of claims 1 to 3, wherein the second thermoplastic resin layer contains a photocatalytic inorganic material and exhibits self-degradability that is decomposed by a photocatalytic action. 繊維材料より形成された基布と、その少なくとも1面上に被覆形成された第一熱可塑性樹脂層と、この第一熱可塑性樹脂層上に被覆形成された第二熱可塑性樹脂層とからなり、前記第一熱可塑性樹脂層のみが球状微小ビーズを含有する膜材料からなる膜構造物を屋外使用した時に、前記第二熱可塑性樹脂層の経時的風化劣化に伴って、前記構造物用膜材の表面に前記球状微小ビーズの露出を目視検知した時点を前記膜構造物の交換時期と診断する、構造物用膜材張替時期予測方法。   A base fabric made of a fiber material, a first thermoplastic resin layer coated on at least one surface thereof, and a second thermoplastic resin layer coated on the first thermoplastic resin layer. In addition, when the membrane structure made only of the first thermoplastic resin layer is made of a membrane material containing spherical microbeads is used outdoors, the membrane for the structure is accompanied by the weathering deterioration of the second thermoplastic resin layer over time. A method for predicting the replacement time of a membrane material for a structure, wherein the time when the exposure of the spherical microbeads is visually detected on the surface of the material is diagnosed as the replacement time of the membrane structure. 前記第二熱可塑性樹脂層が、前記可撓性積層体の質量に対する占有率が30〜60質量%である請求項5に記載の構造物用膜材張替時期予測方法。   6. The structural film material replacement timing prediction method according to claim 5, wherein the second thermoplastic resin layer has an occupation ratio of 30 to 60% by mass with respect to the mass of the flexible laminate.
JP2011180044A 2011-08-22 2011-08-22 Method for predicting the replacement time of membrane materials for structures Active JP5828246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180044A JP5828246B2 (en) 2011-08-22 2011-08-22 Method for predicting the replacement time of membrane materials for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180044A JP5828246B2 (en) 2011-08-22 2011-08-22 Method for predicting the replacement time of membrane materials for structures

Publications (2)

Publication Number Publication Date
JP2013043286A true JP2013043286A (en) 2013-03-04
JP5828246B2 JP5828246B2 (en) 2015-12-02

Family

ID=48007590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180044A Active JP5828246B2 (en) 2011-08-22 2011-08-22 Method for predicting the replacement time of membrane materials for structures

Country Status (1)

Country Link
JP (1) JP5828246B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089011A (en) * 2014-11-04 2016-05-23 群馬県 Polyvinyl chloride molded article mixed with photocatalyst, and method for producing the same
CN110792707A (en) * 2019-10-29 2020-02-14 中车长春轨道客车股份有限公司 Friction-resistant brake block for high-speed train
CN110805633A (en) * 2019-10-29 2020-02-18 中车长春轨道客车股份有限公司 Friction-resistant brake block of high-speed train and preparation method thereof
JP2020114632A (en) * 2019-01-17 2020-07-30 凸版印刷株式会社 Ultraviolet reactive time indicator film, label, and packaging material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286733A (en) * 1986-06-05 1987-12-12 平岡織染株式会社 Thermal insulating sheet
JP2002201567A (en) * 2000-12-28 2002-07-19 Shozo Miya Antifouling sheet and sewn material thereof
JP2004098697A (en) * 2003-10-24 2004-04-02 Hiraoka & Co Ltd Stainproof tent sheet
JP2005271490A (en) * 2004-03-26 2005-10-06 Kanbo Pras Corp Stain-proof film material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286733A (en) * 1986-06-05 1987-12-12 平岡織染株式会社 Thermal insulating sheet
JP2002201567A (en) * 2000-12-28 2002-07-19 Shozo Miya Antifouling sheet and sewn material thereof
JP2004098697A (en) * 2003-10-24 2004-04-02 Hiraoka & Co Ltd Stainproof tent sheet
JP2005271490A (en) * 2004-03-26 2005-10-06 Kanbo Pras Corp Stain-proof film material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089011A (en) * 2014-11-04 2016-05-23 群馬県 Polyvinyl chloride molded article mixed with photocatalyst, and method for producing the same
JP2020114632A (en) * 2019-01-17 2020-07-30 凸版印刷株式会社 Ultraviolet reactive time indicator film, label, and packaging material
JP7255192B2 (en) 2019-01-17 2023-04-11 凸版印刷株式会社 UV-reactive time indicator films and labels and packaging materials
CN110792707A (en) * 2019-10-29 2020-02-14 中车长春轨道客车股份有限公司 Friction-resistant brake block for high-speed train
CN110805633A (en) * 2019-10-29 2020-02-18 中车长春轨道客车股份有限公司 Friction-resistant brake block of high-speed train and preparation method thereof

Also Published As

Publication number Publication date
JP5828246B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5828246B2 (en) Method for predicting the replacement time of membrane materials for structures
CN101360605B (en) Weatherable multilayer film
CA2470071C (en) Stainproof, waterproof sheet
EP2684926A1 (en) Shatterproofing member with hardenable pressure-sensitive adhesive layer
JP5383228B2 (en) Heat ray shielding sheet having visible light permeability
JP3709929B2 (en) Antifouling film body and method for producing the same
SA110310592B1 (en) Antistaining sheet
JP2001199014A (en) Antistaining sheet
KR100490462B1 (en) Photocatalyst-carrying tent cloth canvas and production method therefor
JP2014201024A (en) Natural lighting nonflammable sheet
JP3826311B2 (en) Antifouling tarpaulin
JP2008012901A (en) Light-accumulating fluorescent screen material and its production method
JP2005246639A (en) Anti-staining olefinic resin sheet
JP3868405B2 (en) Anti-fouling sheet for tents with excellent anti-fouling properties
JP5544485B2 (en) Self-cleaning antifouling sheet
JP6852887B2 (en) Membrane material for seat shutter
CN210262474U (en) Anti-wicking building membrane material
JP3777478B2 (en) Antifouling waterproof sheet with excellent rain streak prevention effect
JP2012086401A (en) Self-cleaning stain preventive sheet
SA04250227B1 (en) Photocatalyst sheet and method of manufacturing the same
JP2001295174A (en) Photocatalyst carriered tent canvas and method for producing the same
JP5568744B2 (en) Self-cleaning antifouling sheet
JP2016017308A (en) Blind sheet for privacy protection
JP6883319B2 (en) Membrane material for seat shutter
JP3871662B2 (en) Anti-fouling sheet for tents with excellent anti-fouling properties

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

R150 Certificate of patent or registration of utility model

Ref document number: 5828246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250