JP2013043168A - Pulverizer and pulverizing method using the same - Google Patents

Pulverizer and pulverizing method using the same Download PDF

Info

Publication number
JP2013043168A
JP2013043168A JP2011194363A JP2011194363A JP2013043168A JP 2013043168 A JP2013043168 A JP 2013043168A JP 2011194363 A JP2011194363 A JP 2011194363A JP 2011194363 A JP2011194363 A JP 2011194363A JP 2013043168 A JP2013043168 A JP 2013043168A
Authority
JP
Japan
Prior art keywords
rotor
concrete
pulverization
pulverized
pulverizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011194363A
Other languages
Japanese (ja)
Inventor
Shinichi Kaeba
信一 替場
Masaji Sato
政次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO CORE KK
Techno Core Corp
Original Assignee
TECHNO CORE KK
Techno Core Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO CORE KK, Techno Core Corp filed Critical TECHNO CORE KK
Priority to JP2011194363A priority Critical patent/JP2013043168A/en
Publication of JP2013043168A publication Critical patent/JP2013043168A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for pulverizing concrete or the like to fine powder of 150 μm or smaller in a short period of time and also pulverizing aggregates.SOLUTION: A pulverizer including a rotor to be driven by a motor and a fixed bottomed cylindrical member fitted to the outer periphery of the rotor is used, and by turning and vertically moving the rotor, impact force and grinding power are made to act on an object to be pulverized and it is pulverized at the bottom part and the inner side face of the bottomed cylindrical member.

Description

本発明は、コンクリートの性状を分析する等の目的のために、コンクリート塊等を微細な粉末に粉砕する粉砕機及びこれを用いた粉砕方法に関する。The present invention relates to a pulverizer for pulverizing a concrete lump or the like into a fine powder and a pulverization method using the same for the purpose of analyzing the properties of concrete.

従来、コンクリートの塊を粉砕、または破砕するものとして破砕駆動ロール及び破砕従転ロールを用いたものが多用されている。(例えば、特許文献1参照)。これは廃コンクリートが投入される破砕室、回転するように軸支された破砕駆動ロールと、破砕室内にて回転し、かつ外周面が破砕駆動ロールに対して近づく水平方向へ移動可能に設けられた破砕駆動ロールを備えた構造をしており、可動ロールを、破砕荷重力で押圧付勢することができる。こうしたコンクリート破砕機は破砕駆動ロールの回転を中断させることなく、破砕作業を継続して行うことができ、破砕作業を効率的に行うことができる。2. Description of the Related Art Conventionally, those using a crushing drive roll and a crushing follower roll have been frequently used to crush or crush concrete lumps. (For example, refer to Patent Document 1). This is a crushing chamber into which waste concrete is charged, a crushing drive roll that is pivotally supported to rotate, and a crushing drive roll that rotates in the crushing chamber and that can move in the horizontal direction in which the outer peripheral surface approaches the crushing drive roll. The movable rolls can be pressed and urged with a crushing load force. Such a concrete crusher can continue the crushing operation without interrupting the rotation of the crushing drive roll, and can efficiently perform the crushing operation.

しかしながら、こうしたコンクリート破砕機の主な使用目的は、コンクリート構造物の解体によって発生するコンクリート塊を、破砕処理した後に生じた破砕物を比較的付加価値が低い道路舗装用路盤材等に活用するものが多い。そのため、破砕処理後の破砕物の大きさは20mm以上程度である。However, the main purpose of such a concrete crusher is to utilize the crushed material generated after crushing the concrete lump generated by the demolition of the concrete structure as a road pavement material for road pavement with relatively low added value. There are many. Therefore, the size of the crushed material after the crushing process is about 20 mm or more.

また、近年良質な砂利、すなわち粗骨材の入手が困難になってきている。川砂などの粗骨材は、資源として限りある上に、採取により環境破壊につながる虞があり、省資源や再資源化のため代替材料が模索されている。また、高度成長期に建造されたコンクリート構造物が一斉に寿命を迎えることから、こうした構造物の解体によって発生するコンクリート塊からコンクリートを作る材料となり得る砂利、すなわち粗骨材を再生する目的で上述したコンクリート粉砕機を使用する場合が多い。In recent years, it has become difficult to obtain high-quality gravel, that is, coarse aggregate. Coarse aggregates such as river sand are limited in resources, and may lead to environmental destruction by sampling, and alternative materials are being sought for resource saving and recycling. In addition, since concrete structures built during the period of high growth reach the end of their lives at the same time, the above-mentioned purpose is to recycle gravel that can be used to make concrete from concrete blocks generated by the dismantling of such structures, that is, coarse aggregate. Often used concrete crushers.

しかしながら、こうしたコンクリート構造物の解体によって発生するコンクリート塊を粉砕するコンクリート粉砕機の主な使用目的は、粗骨材の再生であり、そのため粉砕処理後の粉砕物の大きさは5〜20mm程度である。However, the main purpose of the concrete crusher for crushing the concrete lump generated by the dismantling of the concrete structure is to recycle the coarse aggregate, and the size of the pulverized product after the crushing treatment is about 5 to 20 mm. is there.

近年、例えばトンネル、橋、堤防、建築物などのコンクリートからなる構造物の老朽化に対応するため、種々の検査を行って劣化した部分を特定し、その劣化した部分を補修することによってコンクリート構造物を維持することが行われている。このような検査にはコンクリート構造物の浮き、はく離、ひび割れなどの物理的な劣化状態の検査と、コンクリート構造物の中性化、塩化物量などの化学的な劣化状態の検査とがある。この化学的な劣化状態を検査するものとしては、例えばコンクリート構造物にボーリングなどを行って当該構造物よりサンプルを採取し、その採取したサンプルを試薬などを用いて検査するものがある。In recent years, concrete structures such as tunnels, bridges, dikes, buildings, etc. have been subjected to aging to identify deteriorated parts by repairing the deteriorated parts through various inspections. Keeping things is done. Such inspection includes inspection of physical deterioration state such as floating, peeling, and cracking of concrete structure, and inspection of chemical deterioration state such as neutralization and chloride content of concrete structure. As a method for inspecting this chemical deterioration state, for example, there is a method in which a concrete structure is subjected to boring or the like, a sample is collected from the structure, and the collected sample is inspected using a reagent or the like.

特開2011−20039号公報JP 2011-20039 A

こうしたコンクリート構造物の中性化、塩化物量などの化学的な劣化状態の検査のためには、試薬などとの反応性を考慮し、最大粒径150μm以下に粉砕することが必要である。しかしながら上述したように従来のコンクリート粉砕機では、粉砕後の粉砕物の大きさは5〜20mm程度である。In order to inspect the chemical deterioration state such as neutralization and chloride content of such a concrete structure, it is necessary to pulverize to a maximum particle size of 150 μm or less in consideration of reactivity with reagents. However, as described above, in the conventional concrete pulverizer, the size of the pulverized material after pulverization is about 5 to 20 mm.

粉砕後の粉砕物として、最大粒径150μm以下の粉砕物にする、すなわち微粉砕化する粉砕機として、縦型の容器内に配置した垂直方向の攪拌軸の周りにある環状空間内に、被粉砕物であるコンクリート粗粉末と水を懸濁させスラリーとし、そのスラリーを通して連続的に粉砕分散する媒体攪拌ミルがある。As a pulverized product after pulverization, a pulverized product having a maximum particle size of 150 μm or less, that is, as a pulverizer for fine pulverization, is placed in an annular space around a vertical stirring shaft arranged in a vertical container. There is a medium agitation mill in which a coarse concrete powder which is a pulverized product and water are suspended to form a slurry, and the slurry is continuously pulverized and dispersed through the slurry.

しかしながら、コンクリート構造物の中性化、塩化物量などの化学的な劣化状態の検査に供するコンクリート微粉末を得る粉砕機として、上述のスラリーを通して連続的に粉砕分散する媒体攪拌ミルを使用すると、スラリー中への塩化物イオンの溶出が生じてしまい、正確な分析値が得られない。However, when a medium agitation mill that continuously pulverizes and disperses through the above-mentioned slurry is used as a pulverizer to obtain a concrete fine powder for use in inspecting a chemical deterioration state such as neutralization and chloride content of a concrete structure, As a result, elution of chloride ions occurs, and accurate analytical values cannot be obtained.

こうした塩化物イオンの溶出を防止するため、スラリーの代わりにコンクリート粗粉末のみを媒体攪拌ミルに通して連続的に粉砕することも行われている。しかしながら、コンクリート粗粉末のみを媒体攪拌ミルに通す粉砕方法では、粒径10mm程度のコンクリート粗粉末を最大粒径150μm以下の粉砕物に粉砕するのに10時間程度かかってしまう。コンクリート構造物の中性化、塩化物量などの化学的な劣化状態の検査の需要は年々高まっており、検査用検体の数は多数に上るため、より短時間で最大粒径150μm以下の粉砕物に粉砕する粉砕機と粉砕方法が望まれていた。また、高度成長期に建造されたコンクリート構造物の解体物中のコンクリート塊には良質な砂利、すなわち粗骨材が多く含有され、これらは非常に硬いため上述のコンクリート粗粉末のみを媒体攪拌ミルに通す粉砕方法では、10時間粉砕した後も最大粒径150μm以下とならず、例えば目開き150μmのJIS試験用ふるいを通過せず、ふるい上に残分として存在するため、粉砕後の微粉末を上述のコンクリート構造物の中性化、塩化物量などの化学的な劣化状態の検査に供したとしても、正確な分析値が得られないという問題があった。In order to prevent such elution of chloride ions, instead of slurry, only concrete coarse powder is continuously pulverized through a medium stirring mill. However, in the pulverization method in which only the concrete coarse powder is passed through the medium stirring mill, it takes about 10 hours to pulverize the concrete coarse powder having a particle size of about 10 mm into a pulverized product having a maximum particle size of 150 μm or less. The demand for chemical deterioration tests such as the neutralization of concrete structures and the amount of chloride is increasing year by year, and the number of specimens for testing increases. Therefore, a pulverizer and a pulverizing method were desired. Also, the concrete lump in the demolished concrete structure built during the high growth period contains a lot of high-quality gravel, that is, coarse aggregate, and these are very hard, so only the above-mentioned concrete coarse powder is used as a medium stirring mill. In the pulverization method, the maximum particle size does not become 150 μm or less even after pulverization for 10 hours. For example, it does not pass through a JIS test sieve having an opening of 150 μm and remains as a residue on the sieve. Even when subjected to the above-described neutralization of the concrete structure and the inspection of the chemical deterioration state such as the amount of chloride, there was a problem that an accurate analytical value could not be obtained.

そこで本発明者は、コンクリート構造物の検査に供せられるほどの十分に微細なコンクリート粉砕物を得るための好適な粉砕機および粉砕方法について種々検討した結果、縦型の一軸回転式粉砕機を用いてコンクリート粗粉末を粉砕することにより上記の問題を解決した。Therefore, as a result of various studies on a suitable pulverizer and a pulverization method for obtaining a sufficiently fine concrete pulverized product that can be used for inspection of a concrete structure, the present inventor obtained a vertical uniaxial rotary pulverizer. The above problem was solved by pulverizing the concrete coarse powder.

すなわち本発明は
[1]モーターにより駆動される回転子と、その回転子の外周に、固定の有底円筒部材が嵌合載置された粉砕機、
[2]回転子が回動するとともに上下動する機構を有することを特徴とする[1]記載の粉砕機、
[3]回転子が、その回転軸を中心軸として時計回り、及び反時計回りに回動する機構を有することを特徴とする[1]記載の粉砕機、
である。
That is, the present invention provides [1] a rotor driven by a motor, and a pulverizer in which a fixed bottomed cylindrical member is fitted and placed on the outer periphery of the rotor,
[2] The pulverizer according to [1], wherein the rotator has a mechanism that moves up and down while rotating.
[3] The pulverizer according to [1], wherein the rotor has a mechanism that rotates clockwise and counterclockwise about the rotation axis thereof,
It is.

また本発明は
[4]固定の有底円筒部材と回転子との間隙に被粉砕物を投入し、回転子を回動及び上下動させ被粉砕物を粉砕することを特徴とする粉砕方法、
[5]粉砕時間をt(秒)、粉砕物のうち最大粒径が150μm以下の粉砕物の割合をy(%)としたとき、
y≧97−3960×(1/t)
であることを特徴とする[4]記載の粉砕方法、
[6]回転子のモーターと接続する部位を手前側、先端部を奥側としたとき、回転子を反時計方向に回動させることを特徴とする[4]記載の粉砕方法、
[7]回転子の回転数が、毎分100〜3,000回転の間で回動することを特徴とする[4]記載の粉砕方法、
[8]被粉砕物がコンクリート、砕石、砂利、金属、陶磁器、セラミックスであることを特徴とする[4]記載の粉砕方法、
である。
The present invention also provides [4] a pulverization method, wherein a material to be pulverized is inserted into a gap between a fixed bottomed cylindrical member and a rotor, and the pulverized material is pulverized by rotating and moving the rotor up and down.
[5] When the pulverization time is t (seconds) and the ratio of the pulverized product having a maximum particle size of 150 μm or less among the pulverized product is y (%),
y ≧ 97-3960 × (1 / t)
The pulverization method according to [4], characterized in that:
[6] The pulverization method according to [4], wherein the rotor is rotated counterclockwise when a portion connected to the motor of the rotor is the front side and the tip is the back side,
[7] The pulverization method according to [4], wherein the rotational speed of the rotor rotates between 100 and 3,000 revolutions per minute,
[8] The pulverization method according to [4], wherein the object to be pulverized is concrete, crushed stone, gravel, metal, ceramics, ceramics,
It is.

本発明によれば、モーターにより回転子を回動及び上下動で駆動させるので、回転子と有底円筒部材の間隙に投入されたコンクリート等の被粉砕物は、回転子の上下動による衝撃力と、有底円筒部材と回転子との間の摩砕力を同時に受ける。これにより、コンクリート等の被粉砕物は短時間で確実に微粉末化することが可能となる。According to the present invention, since the rotor is driven to rotate and move up and down by the motor, the object to be crushed such as concrete put into the gap between the rotor and the bottomed cylindrical member is subjected to an impact force caused by the vertical movement of the rotor. And the grinding force between a bottomed cylindrical member and a rotor is received simultaneously. As a result, the object to be crushed such as concrete can be pulverized reliably in a short time.

本発明によれば、最大粒径150μm以下のコンクリート等の粉砕物を2分から20分と極めて短時間で得ることができる。また、コンクリートの粉砕は乾式粉砕であるため、スラリーを用いた湿式粉砕と異なり、スラリー中への塩化物イオンの溶出が生じず、粉砕物をそのままコンクリート構造物の中性化、塩化物量などの化学的な劣化状態の検査に供することができ、多数の試験検体を短時間で検査することが可能となる。According to the present invention, a pulverized material such as concrete having a maximum particle size of 150 μm or less can be obtained in an extremely short time of 2 to 20 minutes. In addition, concrete pulverization is dry pulverization. Unlike wet pulverization using slurry, elution of chloride ions does not occur in the slurry. It can be used for the inspection of the chemical deterioration state, and a large number of test specimens can be inspected in a short time.

本発明の一実施例である粉砕機を、回転子(2)の軸心に対して垂直方向からみた正面図である。It is the front view which looked at the grinder which is one Example of this invention from the orthogonal | vertical direction with respect to the axial center of a rotor (2). 回転子(2)、回動及び上下動に駆動させる機構(4)、及びモーター(5)を上方に移動させた状態の図である。It is a figure of the state which moved the rotor (2), the mechanism (4) driven to rotate and a vertical motion, and the motor (5) upward. 回転子(2)の回動方向を示す図である。It is a figure which shows the rotation direction of a rotor (2).

本発明の一実施形態を図面に基づいて説明する。図1は本発明の粉砕機(1)を示している。この粉砕機は回転子(2)、有底円筒部材(3)を有しており、回転子(2)は回動及び上下動に駆動させる機構(4)を介してモーター(5)に接続される。An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a pulverizer (1) according to the present invention. This crusher has a rotor (2) and a bottomed cylindrical member (3), and the rotor (2) is connected to a motor (5) through a mechanism (4) that is driven to rotate and move up and down. Is done.

回転子(2)の外周面には、先端部から連続する螺旋状の捻れ溝部(6)が設けられている。捻れ溝部の捻れ角は、回転子本体の先端部から基端部に向かって一定にしたものでも、先端部から基端部に向かって漸次大きく形成したものでも差し支えない。また、回転子(2)として一般的な穿孔ドリルを用いても良く、これも本発明に包含される。コンクリート等の被粉砕物は、粉砕の過程においてこの外周面の捻れ溝部(6)によって上下に移動せしめることが可能である。On the outer peripheral surface of the rotor (2), a spiral twist groove (6) continuous from the tip is provided. The twist angle of the twist groove portion may be constant from the distal end portion of the rotor body toward the proximal end portion, or may be gradually increased from the distal end portion toward the proximal end portion. Moreover, you may use a general drill drill as a rotor (2), and this is also included by this invention. An object to be crushed, such as concrete, can be moved up and down by the twisted groove (6) on the outer peripheral surface during the pulverization process.

回転子(2)の先端部は、軸心に対して垂直方向から見た回転軌跡での先端角の角度は、好ましくは60°〜160°である。60°より小さいと回転子(2)が破損しやすく、160°より大きいと粉砕効率が低下するため好ましくない。The angle of the tip angle of the tip of the rotor (2) in the rotation locus viewed from the direction perpendicular to the axis is preferably 60 ° to 160 °. If it is smaller than 60 °, the rotor (2) is likely to be damaged, and if it is larger than 160 °, the pulverization efficiency is lowered, which is not preferable.

回転子(2)の基材の材質は通常の超硬合金が好適に用いられる。回転子(2)の耐久性を向上させるために、先端部に硬質皮膜を設けても良い。前記硬質皮膜は、例えば、ダイヤモンド、ダイヤモンドライクカーボン(以下DLC)、または金属元素としてアルミニウム、チタン、クロム、シリコンから選択される1種または2種以上の元素から成る窒化物、炭化物、炭窒化物、炭酸窒化物などが推奨される。As the material of the base material of the rotor (2), a normal cemented carbide is preferably used. In order to improve the durability of the rotor (2), a hard film may be provided at the tip. The hard coating is, for example, diamond, diamond-like carbon (hereinafter DLC), or a nitride, carbide, or carbonitride composed of one or more elements selected from aluminum, titanium, chromium, and silicon as a metal element. Carbonic nitride is recommended.

回転子(2)の外周に、固定の有底円筒部材(3)を嵌合載置するが、回転子(2)と有底円筒部材(3)の間隙は0.5〜10mmの間が好ましい。0.5mmより小さいと間隙中に存在するコンクリート等の被粉砕物の固着により、モーター(5)に過大な負荷がかかり、また有底円筒部材(3)の内面に損傷を与える虞があるため好ましくない。また、間隙が10mmより大きいと、回転子(2)と有底円筒部材(3)の間の摩砕による粉砕効果が低下するため好ましくない。The fixed bottomed cylindrical member (3) is fitted and mounted on the outer periphery of the rotor (2). The gap between the rotor (2) and the bottomed cylindrical member (3) is between 0.5 and 10 mm. preferable. If it is smaller than 0.5 mm, the motor (5) may be overloaded and the inner surface of the bottomed cylindrical member (3) may be damaged due to the adhering of the concrete to be crushed in the gap. It is not preferable. On the other hand, if the gap is larger than 10 mm, the grinding effect by grinding between the rotor (2) and the bottomed cylindrical member (3) is lowered, which is not preferable.

被粉砕物の粒径が、回転子(2)と有底円筒部材(3)の間隙より大きい場合は、図2に示すように、回転子(2)、回動及び上下動に駆動させる機構(4)、及びモーター(5)を上方に移動し、有底円筒部材(3)の内部にコンクリート等の被粉砕物を投入する。この場合は、被粉砕物の粉砕は、粉砕の初期段階では主として回転子(2)の上下動による衝撃力によって進行する。粉砕が進行するに伴いコンクリート等の被粉砕物は、自発的に回転子(2)と有底円筒部材(3)の間隙へと移動するとともに、上方へ移動させた回転子(2)、回動及び上下動に駆動させる機構(4)、及びモーター(5)も下方へと移動する。それに伴い、コンクリート等の被粉砕物は、回転子(2)の回動により先端部、および外周面で摩砕による粉砕が進行する。When the particle size of the material to be crushed is larger than the gap between the rotor (2) and the bottomed cylindrical member (3), as shown in FIG. 2, the rotor (2) is driven to rotate and move up and down. (4) The motor (5) is moved upward, and a material to be crushed such as concrete is put inside the bottomed cylindrical member (3). In this case, the pulverization of the material to be crushed proceeds mainly by the impact force caused by the vertical movement of the rotor (2) in the initial stage of pulverization. As the pulverization progresses, the object to be crushed, such as concrete, spontaneously moves to the gap between the rotor (2) and the bottomed cylindrical member (3), and moves upward to the rotor (2), The mechanism (4) and the motor (5) that are driven to move and move up and down also move downward. Accordingly, the object to be crushed, such as concrete, is pulverized by grinding at the tip and the outer peripheral surface by the rotation of the rotor (2).

回転子(2)の回動方向は、図3に示すように反時計方向であることが好ましい。
回転子の外周には先端部から連続する螺旋状の捻れ溝部(6)が設けられているため、粉砕が不十分で比較的粒径の大きい被粉砕物は、上述の螺旋状の捻れ溝部(6)に沿って回転子(2)の先端部へ移動し、衝撃力と摩砕力を同時に受けることにより、短時間で十分粉砕が進行する。
The rotation direction of the rotor (2) is preferably counterclockwise as shown in FIG.
Since the spiral torsion groove (6) continuous from the tip is provided on the outer periphery of the rotor, the object to be crushed with insufficient pulverization and a relatively large particle size has the above-described spiral torsion groove ( By moving to the tip of the rotor (2) along 6) and receiving the impact force and the grinding force at the same time, the grinding proceeds sufficiently in a short time.

上述の短時間で十分粉砕が進行するとは、具体的には以下の式で表現することができる。
y≧97−3960×(1/t)
ここで、yは粉砕物のうち最大粒径が150μm以下の粉砕物の割合(%)であり、tは粉砕時間(秒)である。こうした短時間での粉砕の十分な進行は、被粉砕物がコンクリートの場合は後述するように回転子(2)の回動方向を、図3に示すように反時計方向とすることで達成される。
More specifically, the fact that the pulverization sufficiently proceeds in the above-mentioned short time can be expressed by the following formula.
y ≧ 97-3960 × (1 / t)
Here, y is the ratio (%) of the pulverized product having a maximum particle size of 150 μm or less, and t is the pulverization time (seconds). When the material to be pulverized is concrete, sufficient progress of the pulverization in a short time is achieved by setting the rotation direction of the rotor (2) to be counterclockwise as shown in FIG. The

回転子(2)の回転数は、毎分100〜3,000回転の間であることが好ましい。100回転未満では、十分な摩砕力が生じないため、粉砕効率が低下するので好ましくない。一方、3,000回転を超えると、摩擦熱により間隙中に存在する被粉砕物の固着が生じやすく、モーターに過大な負荷がかかり、また有底円筒部材(3)の内面に損傷を与える虞があるため好ましくない。The rotational speed of the rotor (2) is preferably between 100 and 3,000 revolutions per minute. Less than 100 revolutions is not preferable because sufficient grinding force is not generated and the grinding efficiency is lowered. On the other hand, if it exceeds 3,000 revolutions, the object to be ground existing in the gap is likely to stick due to frictional heat, an excessive load is applied to the motor, and the inner surface of the bottomed cylindrical member (3) may be damaged. This is not preferable.

このようにして微粉化されたコンクリート粉砕物は、目開き150μmのJIS試験用ふるいを通過させ、必要に応じてコンクリート構造物の中性化、塩化物量などの化学的な劣化状態の検査のために供せられる。The pulverized concrete pulverized material in this way is passed through a JIS test sieve having an opening of 150 μm, and if necessary, it is necessary to inspect the chemical deterioration state such as neutralization of the concrete structure and the amount of chloride. To be served.

以下、実施例を挙げて、本発明をより一層具体的に説明する。Hereinafter, the present invention will be described more specifically with reference to examples.

(コンクリート被粉砕物の性状)
コンクリート塊をハンマーで砕き、粒径8〜10mmの大きさのものを100g分取して媒体攪拌ミル(容積200mLの鉄製ポットに直径5mmのジルコニアボールを30g入れたもの)に投入して、20分間回転を加え粉砕した。ポット中の粉砕物を取り出し、目開き150μmのJIS試験用ふるいを通過させ、骨材のみを選別した。骨材の重量からコンクリート中の骨材含有率を算出したところ、骨材含有率は70〜73重量%であった。
(Properties of concrete ground material)
A concrete lump is crushed with a hammer, 100 g of a particle having a particle size of 8 to 10 mm is taken and put into a medium stirring mill (a steel pot with a capacity of 200 mL, containing 30 g of zirconia balls having a diameter of 5 mm). The mixture was crushed with rotation for a minute. The pulverized material in the pot was taken out and passed through a JIS test sieve having an opening of 150 μm to select only the aggregate. When the aggregate content in the concrete was calculated from the weight of the aggregate, the aggregate content was 70 to 73% by weight.

(粉砕機による粉砕)(Crushing with a crusher)

コンクリート被粉砕物(粒径10mm)70gを本発明の粉砕機の有底円筒部材(3)に投入した。回転子(2)の回転数を毎分1,100回転とし、打撃数を毎分4,500回として、粉砕時間を90秒としてコンクリート被粉砕物の粉砕を行った。回転子(2)の回動方向は反時計方向とした。粉砕後の粉砕物を有底円筒部材(3)から取り出し、目開き150μmのJIS試験用ふるい中に入れ、手で振動を加えて粉砕物を通過させた。通過した粉砕物の重量を測定し、有底円筒部材(3)に投入したコンクリート被粉砕物の重量で除して、150μm篩の通過割合(%)を算出した。得られた結果を表1に示す。150μm篩の通過割合は53%であった。70 g of the concrete to be crushed (particle size: 10 mm) was charged into the bottomed cylindrical member (3) of the pulverizer of the present invention. The rotational speed of the rotor (2) was 1,100 rotations per minute, the number of impacts was 4,500 rotations per minute, and the pulverization time was 90 seconds. The rotating direction of the rotor (2) was counterclockwise. The pulverized product after the pulverization was taken out from the bottomed cylindrical member (3), placed in a sieve for JIS testing with an opening of 150 μm, and the pulverized product was passed by applying vibration by hand. The weight of the pulverized material that passed through was measured and divided by the weight of the concrete pulverized material that was put into the bottomed cylindrical member (3), and the passage ratio (%) of the 150 μm sieve was calculated. The obtained results are shown in Table 1. The passing rate of the 150 μm sieve was 53%.

コンクリート被粉砕物の粒径を8mm、粉砕時間を120秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は83%であった。The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Example 1 except that the particle size of the concrete ground material was 8 mm and the grinding time was 120 seconds. The passage ratio was 83%. .

コンクリート被粉砕物の粒径を8mm、粉砕時間を90秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は60%であった。The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Example 1 except that the particle size of the concrete ground material was 8 mm and the grinding time was 90 seconds. The passage ratio was 60%. .

コンクリート被粉砕物の粒径を9mm、粉砕時間を60秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は50%であった。The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Example 1 except that the concrete particle size was 9 mm and the grinding time was 60 seconds. The passage ratio was 50%. .

コンクリート被粉砕物の粒径を10mm、粉砕時間を180秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は75%であった。The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Example 1 except that the particle size of the concrete ground material was 10 mm and the grinding time was 180 seconds. The passage ratio was 75%. .

コンクリート被粉砕物の粒径を10mm、粉砕時間を60秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は40%であった。The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Example 1 except that the concrete particle size was 10 mm and the pulverization time was 60 seconds. The passage ratio was 40%. .

コンクリート被粉砕物の粒径を9mm、粉砕時間を90秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は60%であった。The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Example 1 except that the particle size of the concrete ground material was 9 mm and the grinding time was 90 seconds. The passage ratio was 60%. .

コンクリート被粉砕物の粒径を10mm、粉砕時間を60秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は43%であった。The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Example 1 except that the concrete particle size was 10 mm and the grinding time was 60 seconds. The passage ratio was 43%. .

コンクリート被粉砕物の粒径を10mm、粉砕時間を120秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は71%であった。The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Example 1 except that the concrete particle size was 10 mm and the pulverization time was 120 seconds. The passage ratio was 71%. .

(比較例)
(比較例1)
回転子(2)の回動方向は時計方向とし、コンクリート被粉砕物の粒径を10mm、粉砕時間を60秒とした以外は実施例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は25%であった。
(比較例2)
コンクリート被粉砕物の粒径を10mm、粉砕時間を180秒とした以外は比較例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は60%であった。
(比較例3)
コンクリート被粉砕物の粒径を9mm、粉砕時間を180秒とした以外は比較例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は64%であった。
(比較例4)
コンクリート被粉砕物の粒径を10mm、粉砕時間を120秒とした以外は比較例1と同様の方法及び手段で150μm篩の通過割合(%)を算出したところ、通過割合は50%であった。
(Comparative example)
(Comparative Example 1)
The rotation rate of the rotor (2) is clockwise, the passage rate of the 150 μm sieve (%) by the same method and means as in Example 1 except that the particle size of the concrete to be ground is 10 mm and the grinding time is 60 seconds. ) Was calculated and the passing rate was 25%.
(Comparative Example 2)
The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Comparative Example 1 except that the concrete particle size was 10 mm and the grinding time was 180 seconds. The passage ratio was 60%. .
(Comparative Example 3)
The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Comparative Example 1 except that the concrete particle size was 9 mm and the grinding time was 180 seconds. The passage ratio was 64%. .
(Comparative Example 4)
The passage ratio (%) of the 150 μm sieve was calculated by the same method and means as in Comparative Example 1 except that the concrete particle size was 10 mm and the pulverization time was 120 seconds. The passage ratio was 50%. .

図4に、粉砕時間の逆数1/t(秒−1)を横軸に、150μm篩の通過割合y(%)を縦軸にとってデータをプロットしたものを示す。図4から明らかなように、回転子(2)の回動方向が反時計方向の場合は、y≧97−3960×(1/t)であり粉砕効率が高いことが分る。一方、回動方向が時計方向の場合は、y<97−3960×(1/t)の範囲にとどまっており、粉砕効率が反時計方向の場合に比較して劣る。FIG. 4 shows data plotted with the reciprocal 1 / t (second −1 ) of the grinding time on the horizontal axis and the passage ratio y (%) of the 150 μm sieve on the vertical axis. As can be seen from FIG. 4, when the rotation direction of the rotor (2) is counterclockwise, y ≧ 97-3960 × (1 / t), indicating that the grinding efficiency is high. On the other hand, when the rotation direction is clockwise, the range is y <97-3960 × (1 / t), and the grinding efficiency is inferior to that when counterclockwise.

1 粉砕機
2 回転子
3 有底円筒部材
4 回動及び上下動に駆動させる機構
5 モーター
DESCRIPTION OF SYMBOLS 1 Crusher 2 Rotor 3 Bottomed cylindrical member 4 Mechanism driven to rotate and move up and down 5 Motor

本発明の一実施例である粉砕機を、回転子(2)の軸心に対して垂直方向からみた正面図である。It is the front view which looked at the grinder which is one Example of this invention from the orthogonal | vertical direction with respect to the axial center of a rotor (2). 回転子(2)、回動及び上下動に駆動させる機構(4)、及びモーター(5)を上方に移動させた状態の図である。It is a figure of the state which moved the rotor (2), the mechanism (4) driven to rotate and a vertical motion, and the motor (5) upward. 回転子(2)の回動方向を示す図である。It is a figure which shows the rotation direction of a rotor (2). 粉砕時間の逆数1/t (秒−1)と粉砕物のうちの150μm篩の通過割合y(%)との関係を示す図である。It is a figure which shows the relationship between the reciprocal 1 / t (second -1 ) of grinding | pulverization time, and the passage ratio y (%) of the 150 micrometers sieve among pulverized products.

Claims (8)

モーターにより駆動される回転子と、その回転子の外周に、固定の有底円筒部材が嵌合載置された粉砕機。A pulverizer in which a fixed bottomed cylindrical member is fitted and placed on the outer periphery of a rotor driven by a motor and the rotor. 回転子が回動するとともに上下動する機構を有することを特徴とする請求項1記載の粉砕機。The pulverizer according to claim 1, further comprising a mechanism for rotating the rotor and moving up and down. 回転子が、その回転軸を中心軸として時計回り、及び反時計回りに回動する機構を有することを特徴とする請求項1記載の粉砕機。2. The pulverizer according to claim 1, wherein the rotator has a mechanism that rotates clockwise and counterclockwise about the rotation axis thereof. 固定の有底円筒部材と回転子との間隙に被粉砕物を投入し、回転子を回動及び上下動させ被粉砕物を粉砕することを特徴とする粉砕方法。A pulverization method comprising: putting a material to be crushed into a gap between a fixed bottomed cylindrical member and a rotor, and pulverizing the material to be ground by rotating and vertically moving the rotor. 粉砕時間をt(秒)、粉砕物のうち最大粒径が150μm以下の粉砕物の割合をy(%)としたとき、
y≧97−3960×(1/t)
であることを特徴とする請求項4記載の粉砕方法。
When the pulverization time is t (seconds) and the ratio of the pulverized product having a maximum particle size of 150 μm or less among the pulverized product is y (%),
y ≧ 97-3960 × (1 / t)
The pulverization method according to claim 4, wherein:
回転子のモーターと接続する部位を手前側、先端部を奥側としたとき、回転子を反時計方向に回動させることを特徴とする請求項4記載の粉砕方法。5. The pulverization method according to claim 4, wherein the rotor is rotated counterclockwise when a portion connected to the motor of the rotor is the front side and the tip is the back side. 回転子の回転数が、毎分100〜3,000回転の間で回動することを特徴とする請求項4記載の粉砕方法。The pulverization method according to claim 4, wherein the rotational speed of the rotor rotates between 100 and 3,000 revolutions per minute. 被粉砕物がコンクリート、砕石、砂利、金属、陶磁器、セラミックスであることを特徴とする請求項4記載の粉砕方法。The pulverization method according to claim 4, wherein the object to be pulverized is concrete, crushed stone, gravel, metal, ceramics, or ceramics.
JP2011194363A 2011-08-22 2011-08-22 Pulverizer and pulverizing method using the same Withdrawn JP2013043168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194363A JP2013043168A (en) 2011-08-22 2011-08-22 Pulverizer and pulverizing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194363A JP2013043168A (en) 2011-08-22 2011-08-22 Pulverizer and pulverizing method using the same

Publications (1)

Publication Number Publication Date
JP2013043168A true JP2013043168A (en) 2013-03-04

Family

ID=48007505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194363A Withdrawn JP2013043168A (en) 2011-08-22 2011-08-22 Pulverizer and pulverizing method using the same

Country Status (1)

Country Link
JP (1) JP2013043168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219388A (en) * 2013-04-08 2014-11-20 一般財団法人電力中央研究所 Method for analyzing fluorine elution amount from plaster
JP2021075675A (en) * 2019-11-05 2021-05-20 温州市倣浩電子科技有限公司 Device for manufacturing natural inorganic mineral pigment for chinese paintings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219388A (en) * 2013-04-08 2014-11-20 一般財団法人電力中央研究所 Method for analyzing fluorine elution amount from plaster
JP2021075675A (en) * 2019-11-05 2021-05-20 温州市倣浩電子科技有限公司 Device for manufacturing natural inorganic mineral pigment for chinese paintings

Similar Documents

Publication Publication Date Title
Shi et al. Comparison of energy efficiency between ball mills and stirred mills in coarse grinding
CN104324782B (en) Stirring and the vibrating compound nano powder of a kind of AC synchronous sampling prepare ball mill
TW201210697A (en) Vertical type mill roller
JP2013043168A (en) Pulverizer and pulverizing method using the same
Hamzah et al. Properties of geometrically cubical aggregates and its mixture design
Umucu et al. The effect of ball type in fine particles grinding on kinetic breakage parameters
WO2015184102A1 (en) Method of ball milling aluminum metaphosphate
CN102580836A (en) Equipment used for crushing fluorite tailings, crushing method and fluorite flotation method
JPH09150072A (en) Manufacture of slurry and device therefor
WO2009077940A1 (en) A method of grinding a mineral-containing ore
CN107803243A (en) A kind of anti-blocking anti-storage sample disintegrating machine
Sulaiman et al. Development of a horizontal shaft hammer mill
CN105149049B (en) Vertical roller mill
CN110270394A (en) A kind of aggregate crushing device and breaking method
JP2002066365A (en) Frictional crushing machine
RU212775U1 (en) SHREDDER BUBBLE HORIZONTAL
Ryou Examination of grinding techniques for the reuse of by-products of cement production
JP2004082108A (en) Method of pulverizing cerium compound using ball mill
CN207546635U (en) A kind of Dry-crusher
JP2001151542A (en) Production process of ground cement
JP4017168B2 (en) Manufacturing method of recycled cement and concrete sand
JP6949787B2 (en) Silica stone slurry manufacturing method
Ścieszka et al. A technique to investigate pulverising and abrasive properties of bulk materials
CN211913993U (en) Scraper device for cleaning grinding roller of vertical grinding machine
JP2010188335A (en) Crushing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104