JP2013037825A - Manufacturing method of fuel cell - Google Patents

Manufacturing method of fuel cell Download PDF

Info

Publication number
JP2013037825A
JP2013037825A JP2011171496A JP2011171496A JP2013037825A JP 2013037825 A JP2013037825 A JP 2013037825A JP 2011171496 A JP2011171496 A JP 2011171496A JP 2011171496 A JP2011171496 A JP 2011171496A JP 2013037825 A JP2013037825 A JP 2013037825A
Authority
JP
Japan
Prior art keywords
electrode structure
electrolyte membrane
electrolyte
electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011171496A
Other languages
Japanese (ja)
Other versions
JP5781860B2 (en
Inventor
Hiroyuki Tanaka
広行 田中
Shigetoshi Sugita
成利 杉田
Taisuke Okonogi
泰介 小此木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011171496A priority Critical patent/JP5781860B2/en
Publication of JP2013037825A publication Critical patent/JP2013037825A/en
Application granted granted Critical
Publication of JP5781860B2 publication Critical patent/JP5781860B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To integrate an electrolyte/electrode structure and a separator by fusing a resin frame member, and to impart an appropriate surface pressure reliably to the electrolyte/electrode structure.SOLUTION: In the manufacturing method of a fuel cell 10, while sandwiching a metal separator 12 between a pair of electrolyte membrane/electrode structures 14, the electrode part of the electrolyte membrane/electrode structure 14 is pressed in the lamination direction, and a protrusion 22b provided in a thick portion 22a of a frame 22 is fused while deforming the electrolyte membrane/electrode structure 14 so that a prescribed surface pressure is applied. Fusion processing of the frame 22 is continued until the protrusion 22b of the frame 22 is fused and deformed by the same amount as that of the electrolyte membrane/electrode structure 14, thus integrating the metal separator 12 and the electrolyte membrane/electrode structure 14.

Description

本発明は、電解質の両側に一対の電極を配設した電解質・電極構造体とセパレータとが積層されるとともに、前記電解質・電極構造体の外周には、樹脂枠部材が一体に設けられる燃料電池の製造方法に関する。   The present invention provides a fuel cell in which an electrolyte / electrode structure having a pair of electrodes disposed on both sides of an electrolyte and a separator are laminated, and a resin frame member is integrally provided on the outer periphery of the electrolyte / electrode structure. It relates to the manufacturing method.

例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。この燃料電池では、固体高分子電解質膜の両側に、それぞれ電極触媒層と多孔質カーボンからなるアノード電極及びカソード電極を配設した電解質膜・電極構造体(電解質・電極構造体)(MEA)を、セパレータ(バイポーラ板)によって挟持することにより単位セルが構成されている。通常、この単位セルを所定数だけ積層した燃料電池スタックが、例えば、車載用燃料電池スタックとして使用されている。   For example, a solid polymer fuel cell employs a solid polymer electrolyte membrane made of a polymer ion exchange membrane. In this fuel cell, an electrolyte membrane / electrode structure (electrolyte / electrode structure) (MEA) in which an electrode catalyst layer and an anode electrode made of porous carbon and a cathode electrode are disposed on both sides of a solid polymer electrolyte membrane, respectively. A unit cell is configured by being sandwiched between separators (bipolar plates). Usually, a fuel cell stack in which a predetermined number of unit cells are stacked is used as an in-vehicle fuel cell stack, for example.

通常、燃料電池スタックでは、多数の電解質膜・電極構造体が積層されており、前記電解質膜・電極構造体を安価に構成することが要請されている。このため、特に高価な固体高分子電解質膜の使用量を削減するとともに、前記固体高分子電解質膜を確実に保持するため、種々の提案がなされている。   In general, in a fuel cell stack, a large number of electrolyte membrane / electrode structures are laminated, and it is required to construct the electrolyte membrane / electrode structures at low cost. For this reason, various proposals have been made in order to reduce the amount of use of an especially expensive solid polymer electrolyte membrane and to reliably hold the solid polymer electrolyte membrane.

例えば、特許文献1に開示されている単電池では、図14に示すように、MEA1と、互いに溶着される一対の樹脂製フレーム2とを備えている。MEA1は、電解質膜3と、前記電解質膜3の両側に構成される2つの電極4とを有している。各フレーム2の互いに対向する面には、電解質膜3を挟持する位置に突起部5が設けられるとともに、前記電解質膜3の外方位置に突起部6が設けられている。   For example, the cell disclosed in Patent Document 1 includes MEA 1 and a pair of resin frames 2 welded to each other, as shown in FIG. The MEA 1 includes an electrolyte membrane 3 and two electrodes 4 configured on both sides of the electrolyte membrane 3. Projecting portions 5 are provided on the surfaces of the frames 2 facing each other so as to sandwich the electrolyte membrane 3, and protruding portions 6 are provided on the outer side of the electrolyte membrane 3.

そして、一対のフレーム2は、各突起部5により電解質膜3の両面外周縁部を挟持するとともに、各突起部6同士が当接するように、重ね合わされる。この状態で、一方のフレーム2に超音波振動を与えて、突起部5、6を溶着することにより、一対のフレーム2と電解質膜3とが一体化されて樹脂枠付きMEA7が製造されている。   And a pair of flame | frame 2 is piled up so that each projection part 6 may contact | abut while pinching the double-sided outer periphery part of the electrolyte membrane 3 with each projection part 5. FIG. In this state, ultrasonic vibration is applied to one of the frames 2 to weld the projections 5 and 6 so that the pair of frames 2 and the electrolyte membrane 3 are integrated to manufacture the MEA 7 with a resin frame. .

特開平7−235314号公報JP 7-235314 A

ところで、上記の特許文献1では、燃料電池スタックを構成する場合、樹脂枠付きMEA7とセパレータ(図示せず)とが交互に積層されるとともに、前記樹脂枠付きMEA7では、フレーム2同士を重ね合わせて溶着する場合がある。その際、燃料電池の外周部から決まるセル厚さのばらつきと、組み付け後のMEA1の厚さのばらつきとの組み合わせにより、電極4への面圧にばらつきが発生するという問題がある。   By the way, in the above-mentioned Patent Document 1, when configuring a fuel cell stack, MEA 7 with a resin frame and a separator (not shown) are alternately stacked, and in MEA 7 with a resin frame, frames 2 are overlapped. May be welded. At this time, there is a problem that the surface pressure applied to the electrode 4 varies due to the combination of the variation in the cell thickness determined from the outer periphery of the fuel cell and the variation in the thickness of the MEA 1 after assembly.

電極4への面圧が低いと(低面圧)、発電に必要な面圧が確保されずに抵抗が上昇してしまう。電極4への面圧が高いと(高面圧)、過剰な面圧によりガス拡散性や水排出性が低下するとともに、MEA1に破損が惹起するという問題がある。   When the surface pressure to the electrode 4 is low (low surface pressure), the surface pressure necessary for power generation is not ensured and the resistance increases. When the surface pressure on the electrode 4 is high (high surface pressure), there are problems that gas diffusibility and water discharge performance are lowered due to excessive surface pressure and that the MEA 1 is damaged.

本発明は、この種の問題を解決するものであり、樹脂枠部材を溶融させて電解質・電極構造体とセパレータとを一体化するとともに、前記電解質・電極構造体に適切な面圧を確実に付与することが可能な燃料電池の製造方法を提供することを目的とする。   The present invention solves this type of problem. The resin frame member is melted to integrate the electrolyte / electrode structure and the separator, and an appropriate surface pressure is reliably applied to the electrolyte / electrode structure. It is an object of the present invention to provide a method for manufacturing a fuel cell that can be provided.

本発明は、電解質の両側に一対の電極を配設した電解質・電極構造体とセパレータとが積層されるとともに、前記電解質・電極構造体の外周には、樹脂枠部材が一体に設けられる燃料電池の製造方法に関するものである。   The present invention provides a fuel cell in which an electrolyte / electrode structure having a pair of electrodes disposed on both sides of an electrolyte and a separator are laminated, and a resin frame member is integrally provided on the outer periphery of the electrolyte / electrode structure. It is related with the manufacturing method.

この製造方法は、電解質・電極構造体の電極部位をセパレータとの積層方向に押圧し、前記電解質・電極構造体を規定面圧が加わるように変形させながら、樹脂枠部材を溶融させる工程と、前記樹脂枠部材が、前記電解質・電極構造体の変形量と同一量だけ溶融変形するまで、該樹脂枠部材の溶融処理を継続することにより、前記セパレータと前記樹脂枠部材とを一体化させる工程とを有している。   This manufacturing method includes a step of melting the resin frame member while pressing the electrode part of the electrolyte / electrode structure in the stacking direction with the separator and deforming the electrolyte / electrode structure so that a specified surface pressure is applied; The process of integrating the separator and the resin frame member by continuing the melting process of the resin frame member until the resin frame member is melted and deformed by the same amount as the deformation amount of the electrolyte / electrode structure. And have.

また、この製造方法では、一方の電解質・電極構造体の樹脂枠部材と、他方の電解質・電極構造体の樹脂枠部材とは、セパレータを挟んで互いに接触して配置され、又は、前記セパレータの外周に設けられた樹脂枠部材と前記電解質・電極構造体の前記樹脂枠部材とは、互いに接触して配置され、前記樹脂枠部材同士の接触部位が溶融変形されることが好ましい。   In this manufacturing method, the resin frame member of one electrolyte / electrode structure and the resin frame member of the other electrolyte / electrode structure are arranged in contact with each other with the separator interposed therebetween, or It is preferable that the resin frame member provided on the outer periphery and the resin frame member of the electrolyte / electrode structure are arranged in contact with each other, and a contact portion between the resin frame members is melt-deformed.

さらに、この製造方法では、接触部位には、樹脂枠部材に一体に、又は、別体に樹脂部が配置され、前記樹脂部が溶融変形することが好ましい。   Furthermore, in this manufacturing method, it is preferable that the resin part is disposed in the contact part integrally with the resin frame member or separately, and the resin part melts and deforms.

本発明によれば、電解質・電極構造体を規定面圧が加わるように変形させながら、樹脂枠部材を溶融させるとともに、前記樹脂枠部材は、前記電解質・電極構造体の変形量と同一量だけ溶融変形されている。このため、樹脂枠部材を溶融させて電解質・電極構造体とセパレータとを一体化するとともに、前記電解質・電極構造体に適切な面圧を確実に付与することが可能になる。   According to the present invention, the resin frame member is melted while the electrolyte / electrode structure is deformed so that a specified surface pressure is applied, and the resin frame member is the same amount as the deformation amount of the electrolyte / electrode structure. It is melted and deformed. Therefore, the resin frame member is melted to integrate the electrolyte / electrode structure and the separator, and an appropriate surface pressure can be reliably applied to the electrolyte / electrode structure.

本発明の第1の実施形態に係る製造方法が適用される燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of the fuel cell to which the manufacturing method according to the first embodiment of the present invention is applied. 前記燃料電池の、図1中、II−II線断面図である。It is the II-II sectional view taken on the line of the said fuel cell in FIG. 前記燃料電池を構成する金属セパレータの正面説明図である。It is front explanatory drawing of the metal separator which comprises the said fuel cell. 前記燃料電池の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the said fuel cell. 電極面圧とMEA厚さとの関係説明図である。It is explanatory drawing of the relationship between an electrode surface pressure and MEA thickness. 溶着時間及び圧力と溶着幅との関係説明図である。It is a relation explanatory view of welding time and pressure, and welding width. 本発明の第2の実施形態に係る製造方法が適用される燃料電池の一部断面説明図である。It is a partial cross section explanatory view of a fuel cell to which a manufacturing method concerning a 2nd embodiment of the present invention is applied. 本発明の第3の実施形態に係る製造方法が適用される燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of the fuel cell to which the manufacturing method according to the third embodiment of the present invention is applied. 前記燃料電池の図8中、IX−IX線製造方法の説明図である。It is explanatory drawing of the IX-IX line manufacturing method in FIG. 8 of the said fuel cell. 本発明の第4の実施形態に係る製造方法が適用される燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory drawing of the fuel cell with which the manufacturing method concerning the 4th Embodiment of this invention is applied. 前記燃料電池の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the said fuel cell. 本発明の第5の実施形態に係る製造方法が適用される燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of a fuel cell to which a manufacturing method according to a fifth embodiment of the present invention is applied. 前記燃料電池の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the said fuel cell. 特許文献1に開示されている単電池の説明図である。It is explanatory drawing of the cell disclosed by patent document 1. FIG.

図1及び図2に示すように、本発明の第1の実施形態に係る製造方法が適用される燃料電池10は、金属セパレータ12と電解質膜・電極構造体(電解質・電極構造体)(MEA)14とが交互に積層される。なお、金属セパレータ12に代えて、例えば、カーボンセパレータを使用してもよい。   As shown in FIGS. 1 and 2, a fuel cell 10 to which the manufacturing method according to the first embodiment of the present invention is applied includes a metal separator 12 and an electrolyte membrane / electrode structure (electrolyte / electrode structure) (MEA). 14) are alternately stacked. For example, a carbon separator may be used instead of the metal separator 12.

図2に示すように、電解質膜・電極構造体14は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜16と、前記固体高分子電解質膜16を挟持するアノード電極18及びカソード電極20とを備える。アノード電極18及びカソード電極20は、カーボンペーパ等からなるガス拡散層(図示せず)と、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層の表面に一様に塗布されて形成される電極触媒層(図示せず)とを有する。電極触媒層は、固体高分子電解質膜16の両面に形成される。   As shown in FIG. 2, the electrolyte membrane / electrode structure 14 includes, for example, a solid polymer electrolyte membrane 16 in which a perfluorosulfonic acid thin film is impregnated with water, and an anode electrode sandwiching the solid polymer electrolyte membrane 16 18 and the cathode electrode 20. The anode electrode 18 and the cathode electrode 20 are formed by uniformly applying a gas diffusion layer (not shown) made of carbon paper or the like and porous carbon particles carrying a platinum alloy on the surface thereof to the surface of the gas diffusion layer. And an electrode catalyst layer (not shown) to be formed. The electrode catalyst layers are formed on both surfaces of the solid polymer electrolyte membrane 16.

固体高分子電解質膜16は、アノード電極18及びカソード電極20と同一の表面積、又はこれらよりも大きな表面積に設定される。固体高分子電解質膜16の外周端部には、樹脂製の額縁部(額縁状枠部材)22が、例えば、射出成形により一体成形される。樹脂材としては、例えば、汎用プラスチックの他、エンジニアリングプラスチックやスーパーエンジニアリングプラスチック等が採用される。   The solid polymer electrolyte membrane 16 is set to have the same surface area as the anode electrode 18 and the cathode electrode 20 or a surface area larger than these. A resin frame portion (frame-shaped frame member) 22 is integrally formed on the outer peripheral end portion of the solid polymer electrolyte membrane 16 by, for example, injection molding. As the resin material, for example, engineering plastics, super engineering plastics, etc. are adopted in addition to general-purpose plastics.

額縁部22の一方の面、例えば、アノード電極18(又はカソード電極20)側の面には、外周縁部を周回して厚肉部22aが厚さ方向に膨出形成される。厚肉部22aは、所定の幅寸法を有しており、先端面には、矢印A方向に突出する突起部(樹脂部)22bが一体成形される。突起部22bは、厚肉部22aの先端面に額縁部22を周回して設けられる。   On one surface of the frame portion 22, for example, the surface on the anode electrode 18 (or cathode electrode 20) side, a thick portion 22a bulges out in the thickness direction around the outer peripheral edge. The thick portion 22a has a predetermined width dimension, and a protrusion (resin portion) 22b protruding in the direction of arrow A is integrally formed on the tip surface. The protrusion 22b is provided around the frame portion 22 on the tip surface of the thick portion 22a.

図1に示すように、額縁部22の矢印C方向の一端縁部(上端縁部)には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔24a、冷却媒体を供給するための冷却媒体入口連通孔26a、及び燃料ガス、例えば、水素含有ガスを供給するための燃料ガス入口連通孔28aが、矢印B方向(水平方向)に配列して設けられる。   As shown in FIG. 1, one end edge (upper edge) in the arrow C direction of the frame portion 22 communicates with each other in the arrow A direction to oxidize for supplying an oxidant gas, for example, an oxygen-containing gas. An agent gas inlet communication hole 24a, a cooling medium inlet communication hole 26a for supplying a cooling medium, and a fuel gas inlet communication hole 28a for supplying a fuel gas, for example, a hydrogen-containing gas, are provided in an arrow B direction (horizontal direction). Are provided in an array.

額縁部22の矢印C方向の他端縁部(下端縁部)には、矢印A方向に互いに連通して、燃料ガスを排出するための燃料ガス出口連通孔28b、冷却媒体を排出するための冷却媒体出口連通孔26b、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔24bが、矢印B方向に配列して設けられる。   The other end edge (lower end edge) of the frame portion 22 in the direction of arrow C communicates with each other in the direction of arrow A, the fuel gas outlet communication hole 28b for discharging the fuel gas, and for discharging the cooling medium The cooling medium outlet communication holes 26b and the oxidant gas outlet communication holes 24b for discharging the oxidant gas are arranged in the arrow B direction.

金属セパレータ12の外周端部は、酸化剤ガス入口連通孔24a、冷却媒体入口連通孔26a、燃料ガス入口連通孔28a、燃料ガス出口連通孔28b、冷却媒体出口連通孔26b及び酸化剤ガス出口連通孔24bの内側に配置される。   The outer peripheral end of the metal separator 12 has an oxidant gas inlet communication hole 24a, a cooling medium inlet communication hole 26a, a fuel gas inlet communication hole 28a, a fuel gas outlet communication hole 28b, a cooling medium outlet communication hole 26b, and an oxidant gas outlet communication. It arrange | positions inside the hole 24b.

金属セパレータ12は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した薄板状の金属板により構成される。図1及び図2に示すように、金属セパレータ12は、単一の金属板を折り返し部位30で折り返して形成される。金属セパレータ12の両面には、電解質膜・電極構造体14のアノード電極18に対向するアノードセパレータ面32と、前記電解質膜・電極構造体14のカソード電極20に対向するカソードセパレータ面34とを有する。   The metal separator 12 is made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plated steel plate, or a thin plate-like metal plate whose surface is subjected to anticorrosion treatment. As shown in FIGS. 1 and 2, the metal separator 12 is formed by folding a single metal plate at a folding portion 30. On both surfaces of the metal separator 12, there are an anode separator surface 32 facing the anode electrode 18 of the electrolyte membrane / electrode structure 14 and a cathode separator surface 34 facing the cathode electrode 20 of the electrolyte membrane / electrode structure 14. .

図3に示すように、金属セパレータ12のアノードセパレータ面32には、波形状にプレス加工して断面凹凸形状を有する燃料ガス流路36が形成される。燃料ガス流路36は、矢印C方向に延在しており、燃料ガスを鉛直上方向から鉛直下方向に向かって流動させる。   As shown in FIG. 3, a fuel gas flow path 36 having a corrugated cross section is formed on the anode separator surface 32 of the metal separator 12 by pressing into a wave shape. The fuel gas channel 36 extends in the direction of arrow C, and causes the fuel gas to flow from the vertically upward direction to the vertically downward direction.

金属セパレータ12は、図1に示すように、カソードセパレータ面34に、波形状にプレス加工して断面凹凸形状を有する酸化剤ガス流路38が形成される。酸化剤ガス流路38は、酸化剤ガスを矢印C方向に流通させる。カソードセパレータ面34には、酸化剤ガス流路38の上下両側に、それぞれ複数の冷却媒体供給孔部40aと冷却媒体排出孔部40bとが形成される。   As shown in FIG. 1, the metal separator 12 is formed into an oxidant gas flow path 38 having a corrugated cross section by pressing into a wave shape on the cathode separator surface 34. The oxidant gas flow path 38 causes the oxidant gas to flow in the direction of arrow C. A plurality of cooling medium supply holes 40 a and cooling medium discharge holes 40 b are formed on the upper and lower sides of the oxidant gas flow path 38 on the cathode separator surface 34.

金属セパレータ12の内部には、冷却媒体供給孔部40a及び冷却媒体排出孔部40bに連通して冷却媒体を矢印C方向に流通させる冷却媒体流路42が形成される。冷却媒体流路42は、燃料ガス流路36の裏面形状と酸化剤ガス流路38の裏面形状との重なり形状により構成される。   Inside the metal separator 12, a cooling medium flow path 42 is formed which communicates with the cooling medium supply hole 40 a and the cooling medium discharge hole 40 b and distributes the cooling medium in the direction of arrow C. The cooling medium flow path 42 is configured by an overlapping shape of the back surface shape of the fuel gas flow channel 36 and the back surface shape of the oxidant gas flow channel 38.

図1に示すように、額縁部22には、シール部材44が一体成形される。シール部材44としては、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材が用いられる。   As shown in FIG. 1, a seal member 44 is integrally formed on the frame portion 22. As the sealing member 44, for example, a sealing material such as EPDM, NBR, fluorine rubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroplane or acrylic rubber, a cushioning material, or a packing material is used.

シール部材44は、カソード電極20側の面に、酸化剤ガス入口連通孔24a及び酸化剤ガス出口連通孔24bを酸化剤ガス流路38に連通するとともに、冷却媒体入口連通孔26a、燃料ガス入口連通孔28a、燃料ガス出口連通孔28b及び冷却媒体出口連通孔26bを周回して、前記酸化剤ガス流路38から遮蔽する第1シール部44aを設ける。   The seal member 44 communicates the oxidant gas inlet communication hole 24a and the oxidant gas outlet communication hole 24b to the oxidant gas flow path 38 on the surface on the cathode electrode 20 side, the cooling medium inlet communication hole 26a, and the fuel gas inlet. A first seal portion 44a that shields from the oxidant gas flow path 38 is provided around the communication hole 28a, the fuel gas outlet communication hole 28b, and the cooling medium outlet communication hole 26b.

シール部材44は、アノード電極18側の面に、燃料ガス入口連通孔28a及び燃料ガス出口連通孔28bを燃料ガス流路36に連通するとともに、酸化剤ガス入口連通孔24a、冷却媒体入口連通孔26a、冷却媒体出口連通孔26b及び酸化剤ガス出口連通孔24bを周回して、前記燃料ガス流路36から遮蔽する第2シール部44bを設ける。   The seal member 44 communicates the fuel gas inlet communication hole 28a and the fuel gas outlet communication hole 28b to the fuel gas flow path 36 on the surface on the anode electrode 18 side, the oxidant gas inlet communication hole 24a, and the cooling medium inlet communication hole. 26a, the coolant outlet communication hole 26b and the oxidant gas outlet communication hole 24b are provided around the fuel gas flow path 36 so as to be shielded from the second seal portion 44b.

このように構成される燃料電池10を製造する方法について、以下に説明する。   A method for manufacturing the fuel cell 10 configured as described above will be described below.

図4に示すように、一対の電解質膜・電極構造体14は、単一の金属セパレータ12を挟持して配置される。そして、電解質膜・電極構造体14の電極面が、積層方向(矢印A方向)に押圧され、前記電解質膜・電極構造体14が規定面圧が加わるように圧縮変形された状態で、例えば、レーザ光Lの照射により額縁部22の厚肉部22aに設けられている突起部22bが、全周にわたって気密状態を確保して溶融される。   As shown in FIG. 4, the pair of electrolyte membrane / electrode structures 14 are disposed with a single metal separator 12 interposed therebetween. Then, the electrode surface of the electrolyte membrane / electrode structure 14 is pressed in the stacking direction (arrow A direction), and the electrolyte membrane / electrode structure 14 is compressed and deformed so that a specified surface pressure is applied. The projection 22b provided on the thick portion 22a of the frame portion 22 is melted while ensuring an airtight state over the entire circumference by irradiation with the laser light L.

溶融方式は、使用される樹脂の融点以下になるような出力を発生させる条件下で、レーザ光Lを照射する他、超音波、高周波、赤外線及び電気等から選択することができる。   The melting method can be selected from ultrasonic waves, high frequencies, infrared rays, electricity, and the like in addition to irradiating the laser beam L under conditions that generate an output that is lower than the melting point of the resin used.

ここで、図5に示すように、電解質膜・電極構造体14への規定面圧が設定されており、前記規定面圧に対する前記電解質膜・電極構造体14の厚さの範囲(下限値から上限値までの間)が求められている。この電解質膜・電極構造体14の規定面圧に対応する厚さまでの変形量と同一量だけ、額縁部22の突起部22bが溶融変形される。なお、面圧管理範囲(OK範囲)は、成形後の自由厚さのばらつき(面圧ばらつき)を吸収するために、規定面圧を含んで所定の面圧範囲内に設定される。   Here, as shown in FIG. 5, a prescribed surface pressure to the electrolyte membrane / electrode structure 14 is set, and a range of the thickness of the electrolyte membrane / electrode structure 14 with respect to the prescribed surface pressure (from a lower limit value). Up to the upper limit). The protrusion 22b of the frame 22 is melted and deformed by the same amount as the deformation up to the thickness corresponding to the prescribed surface pressure of the electrolyte membrane / electrode structure 14. The surface pressure management range (OK range) is set within a predetermined surface pressure range including the specified surface pressure in order to absorb the variation in the free thickness after molding (surface pressure variation).

図4に示すように、電解質膜・電極構造体14が規定面圧が加わるように圧縮変形された状態で、額縁部22には、圧縮力が付与されている。そこで、額縁部22の突起部22bが、電解質膜・電極構造体14の変形量と同一量だけ溶融変形するまで、前記額縁部22の溶融処理が継続される。これにより、金属セパレータ12を挟んで一対の電解質膜・電極構造体14が一体化される。   As shown in FIG. 4, a compressive force is applied to the frame portion 22 in a state where the electrolyte membrane / electrode structure 14 is compressed and deformed so that a specified surface pressure is applied. Therefore, the melting process of the frame portion 22 is continued until the protrusion 22b of the frame portion 22 is melted and deformed by the same amount as the deformation amount of the electrolyte membrane / electrode structure 14. As a result, the pair of electrolyte membrane / electrode structures 14 are integrated with the metal separator 12 interposed therebetween.

この場合、第1の実施形態では、電解質膜・電極構造体14を規定面圧が加わるように変形させながら、額縁部22の突起部22bを溶融させるとともに、前記額縁部22の前記突起部22bは、前記電解質膜・電極構造体14の変形量と同一量だけ溶融変形されている。このため、額縁部22の突起部22bを溶融させて電解質膜・電極構造体14と金属セパレータ12とを一体化するとともに、前記電解質膜・電極構造体14に適切な面圧を確実に付与することが可能になる。   In this case, in the first embodiment, while the electrolyte membrane / electrode structure 14 is deformed so as to apply a specified surface pressure, the projection 22b of the frame portion 22 is melted and the projection 22b of the frame portion 22 is melted. Is melt deformed by the same amount as the deformation of the electrolyte membrane / electrode structure 14. For this reason, the projection 22b of the frame 22 is melted to integrate the electrolyte membrane / electrode structure 14 and the metal separator 12, and an appropriate surface pressure is reliably applied to the electrolyte membrane / electrode structure 14. It becomes possible.

これにより、溶着処理後に、例えば、金属セパレータ12に積層方向に変形が発生したり、電解質膜・電極構造体14の面圧不足や面圧過剰による損傷等を可及的に抑制することができるという効果が得られる。   Thus, after the welding process, for example, the metal separator 12 can be deformed in the stacking direction, or damage due to insufficient surface pressure or excessive surface pressure of the electrolyte membrane / electrode structure 14 can be suppressed as much as possible. The effect is obtained.

さらにまた、第1の実施形態では、額縁部22の圧縮量に加えて、図6に示すように、溶着時間と圧力とで溶着幅を制御することが可能である。溶融幅は、図4に示すように、先端がテーパ形状の突起部22bが隣接する額縁部22に溶着する幅寸法hであり、せん断強度は、セパレータ面方向(矢印B方向)の強度であり、剥離強度は、積層方向(矢印A方向)の強度である。必要溶着幅とは、所望のせん断強度及び剥離強度を維持する幅寸法をいう。   Furthermore, in the first embodiment, in addition to the amount of compression of the frame portion 22, as shown in FIG. 6, the welding width can be controlled by the welding time and pressure. As shown in FIG. 4, the melt width is the width dimension h at which the projection 22b having a tapered tip is welded to the adjacent frame portion 22, and the shear strength is the strength in the separator surface direction (arrow B direction). The peel strength is the strength in the stacking direction (arrow A direction). The required welding width refers to a width dimension that maintains desired shear strength and peel strength.

図6に示すように、溶着時間により溶着幅を管理範囲内に設定することができるとともに、溶着圧力を高めることにより、溶着時間を短縮することが可能になる。   As shown in FIG. 6, the welding width can be set within the control range by the welding time, and the welding time can be shortened by increasing the welding pressure.

このように製造される燃料電池10では、図1に示すように、酸化剤ガス入口連通孔24aに供給された酸素含有ガス等の酸化剤ガスは、金属セパレータ12の酸化剤ガス流路38に供給される。酸化剤ガスは、電解質膜・電極構造体14のカソード電極20に沿って矢印C方向に流通した後、酸化剤ガス出口連通孔24bに排出される。   In the fuel cell 10 manufactured in this way, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas supplied to the oxidant gas inlet communication hole 24 a is supplied to the oxidant gas flow path 38 of the metal separator 12. Supplied. The oxidant gas flows in the direction of arrow C along the cathode electrode 20 of the electrolyte membrane / electrode structure 14, and then is discharged to the oxidant gas outlet communication hole 24b.

一方、燃料ガス入口連通孔28aに供給された水素含有ガス等の燃料ガスは、金属セパレータ12の燃料ガス流路36に供給される。燃料ガスは、燃料ガス流路36に沿って矢印C方向に流通した後、燃料ガス出口連通孔28bに排出される。   On the other hand, the fuel gas such as the hydrogen-containing gas supplied to the fuel gas inlet communication hole 28 a is supplied to the fuel gas flow path 36 of the metal separator 12. After the fuel gas flows in the direction of arrow C along the fuel gas flow path 36, it is discharged to the fuel gas outlet communication hole 28b.

従って、電解質膜・電極構造体14では、カソード電極20に供給される酸化剤ガスと、アノード電極18に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費され、発電が行われる。   Therefore, in the electrolyte membrane / electrode structure 14, the oxidant gas supplied to the cathode electrode 20 and the fuel gas supplied to the anode electrode 18 are consumed by an electrochemical reaction in the electrode catalyst layer to generate power. Is called.

また、冷却媒体入口連通孔26aに供給された純水やエチレングリコール、オイル等の冷却媒体は、金属セパレータ12を構成するカソードセパレータ面34に形成されている複数の冷却媒体供給孔部40aから前記金属セパレータ12の内部に導入される。   Further, the cooling medium such as pure water, ethylene glycol, or oil supplied to the cooling medium inlet communication hole 26 a passes through the plurality of cooling medium supply holes 40 a formed on the cathode separator surface 34 constituting the metal separator 12. It is introduced inside the metal separator 12.

金属セパレータ12の内部には、冷却媒体流路42が形成されている。このため、冷却媒体は、冷却媒体流路42に沿って矢印C方向に流通した後、複数の冷却媒体排出孔部40bから冷却媒体出口連通孔26bに排出される(図1参照)。   A cooling medium flow path 42 is formed inside the metal separator 12. Therefore, the cooling medium flows in the direction of arrow C along the cooling medium flow path 42, and is then discharged from the plurality of cooling medium discharge holes 40b to the cooling medium outlet communication hole 26b (see FIG. 1).

第1の実施形態では、額縁部22の厚肉部22aに突起部22bを一体成形しているが、これに限定されるものではない。例えば、対向する各額縁部22に、互いに近接する方向に膨出して一対の突起部を設けてもよい。   In 1st Embodiment, although the projection part 22b is integrally molded in the thick part 22a of the frame part 22, it is not limited to this. For example, each of the opposing frame portions 22 may be provided with a pair of protrusions that bulge in a direction close to each other.

図7に示すように、本発明の第2の実施形態に係る製造方法が適用される燃料電池50では、額縁部22の厚肉部22aに、別体で構成される樹脂部52が配置される。この樹脂部52は、例えば、額縁部22と同一の材料で構成されており、互いに隣接する額縁部22同士を溶着する。   As shown in FIG. 7, in the fuel cell 50 to which the manufacturing method according to the second embodiment of the present invention is applied, the resin portion 52 configured separately is disposed on the thick portion 22 a of the frame portion 22. The For example, the resin portion 52 is made of the same material as the frame portion 22 and welds the frame portions 22 adjacent to each other.

図8は、本発明の第3の実施形態に係る製造方法が適用される燃料電池60の要部分解斜視説明図である。なお、第1の実施形態に係る燃料電池10と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第4以降の実施形態においても同様に、その詳細な説明は省略する。   FIG. 8 is an exploded perspective view of a main part of a fuel cell 60 to which the manufacturing method according to the third embodiment of the present invention is applied. The same components as those of the fuel cell 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Similarly, in the fourth and subsequent embodiments described below, detailed description thereof is omitted.

燃料電池60は、電解質膜・電極構造体14、金属セパレータ12、電解質膜・電極構造体14、金属セパレータ62及び電解質膜・電極構造体14が積層されたセルユニットを備える。   The fuel cell 60 includes a cell unit in which the electrolyte membrane / electrode structure 14, the metal separator 12, the electrolyte membrane / electrode structure 14, the metal separator 62, and the electrolyte membrane / electrode structure 14 are laminated.

金属セパレータ62は、単一の金属プレートにより構成され、一方の電解質膜・電極構造体14のアノード電極18に対向して燃料ガス流路36を設けるとともに、他方の電解質膜・電極構造体14のカソード電極20に対向して酸化剤ガス流路38を設ける。燃料電池60は、金属セパレータ62を挟んで一対の電解質膜・電極構造体14間には冷却媒体流路が設けられておらず、所謂、間引き冷却構造を採用する。   The metal separator 62 is composed of a single metal plate, and is provided with a fuel gas flow path 36 facing the anode electrode 18 of one electrolyte membrane / electrode structure 14 and the other electrolyte membrane / electrode structure 14. An oxidant gas flow path 38 is provided facing the cathode electrode 20. The fuel cell 60 does not have a cooling medium flow path between the pair of electrolyte membrane / electrode structures 14 with the metal separator 62 interposed therebetween, and adopts a so-called thinning cooling structure.

このように構成される燃料電池60では、図9に示すように、3枚の電解質膜・電極構造体14が規定面圧が加わるように圧縮変形された状態で、各額縁部22には、圧縮力が付与されている。そして、各額縁部22の突起部22bが、3枚の電解質膜・電極構造体14の合計変形量と同一量だけ溶融変形するまで、前記額縁部22の溶融処理が継続される。これにより、2枚の金属セパレータ12、62と3枚の電解質膜・電極構造体14とが一体化される。   In the fuel cell 60 configured in this manner, as shown in FIG. 9, the three electrolyte membrane / electrode structures 14 are compressed and deformed so that a prescribed surface pressure is applied. A compressive force is applied. The frame portion 22 is continuously melted until the protrusions 22b of the frame portions 22 are melted and deformed by the same amount as the total deformation amount of the three electrolyte membrane / electrode structures 14. Thereby, the two metal separators 12 and 62 and the three electrolyte membrane / electrode structures 14 are integrated.

なお、第3の実施形態では、セルユニット全体を同時に溶着しているが、これに限定されるものではなく、2枚の電解質膜・電極構造体14同士を、順次、溶着してもよい。   In the third embodiment, the entire cell unit is welded simultaneously. However, the present invention is not limited to this, and the two electrolyte membrane / electrode structures 14 may be welded sequentially.

この第3の実施形態では、額縁部22の突起部22bを溶融させて3枚の電解質膜・電極構造体14と2枚の金属セパレータ12、62とを一体化するとともに、前記電解質膜・電極構造体14に適切な面圧を確実に付与することが可能になる等、上記の第1の実施形態と同様の効果が得られる。   In the third embodiment, the projection 22b of the frame portion 22 is melted to integrate the three electrolyte membrane / electrode structures 14 and the two metal separators 12, 62, and the electrolyte membrane / electrode An effect similar to that of the first embodiment described above can be obtained, for example, an appropriate surface pressure can be reliably applied to the structure 14.

図10は、本発明の第4の実施形態に係る製造方法が適用される燃料電池70の要部分解斜視説明図である。   FIG. 10 is an exploded perspective view of a main part of a fuel cell 70 to which the manufacturing method according to the fourth embodiment of the present invention is applied.

図10及び図11に示すように、燃料電池70は、電解質膜・電極構造体72を一対のセパレータ74、76で挟持して構成される。電解質膜・電極構造体72は、固体高分子電解質膜16とアノード電極18及びカソード電極20とを備えるとともに、前記固体高分子電解質膜16の外周端部には、樹脂製の額縁部(額縁状枠部材)78が一体成形される。   As shown in FIGS. 10 and 11, the fuel cell 70 is configured by sandwiching an electrolyte membrane / electrode structure 72 between a pair of separators 74 and 76. The electrolyte membrane / electrode structure 72 includes a solid polymer electrolyte membrane 16, an anode electrode 18, and a cathode electrode 20, and a resin frame portion (frame shape) is provided at the outer peripheral end of the solid polymer electrolyte membrane 16. Frame member) 78 is integrally formed.

セパレータ74は、金属プレート80の外周端縁部に樹脂製の額縁部(額縁状枠部材)82が一体成形されて構成される。セパレータ76は、同様に金属プレート84の外周端縁部に額縁部86(額縁状枠部材)が一体成形されて構成される。なお、セパレータ74、76は、金属プレート80、84に樹脂絶縁材を被覆して構成してもよく、また、樹脂含有のカーボンセパレータにより構成してもよい。以下に説明する第5の実施形態においても、同様である。   The separator 74 is configured by integrally molding a resin frame portion (frame-shaped frame member) 82 on the outer peripheral edge portion of the metal plate 80. Similarly, the separator 76 is configured by integrally forming a frame portion 86 (frame-shaped frame member) on the outer peripheral edge portion of the metal plate 84. The separators 74 and 76 may be configured by covering the metal plates 80 and 84 with a resin insulating material, or may be configured by a resin-containing carbon separator. The same applies to the fifth embodiment described below.

図11に示すように、額縁部78、82及び86の外周縁部には、厚さ方向(矢印A方向)に突出する突起部(樹脂部)78a、82a及び86aが一体成形される。なお、突起部78a、82a及び86aに代えて、別体の樹脂製シール部材を用いてもよい。   As shown in FIG. 11, projections (resin portions) 78a, 82a and 86a projecting in the thickness direction (arrow A direction) are integrally formed on the outer peripheral edge portions of the frame portions 78, 82 and 86. Instead of the protrusions 78a, 82a and 86a, a separate resin seal member may be used.

図10に示すように、額縁部78、82及び86には、酸化剤ガス入口連通孔24a、冷却媒体入口連通孔26a、燃料ガス入口連通孔28a、燃料ガス出口連通孔28b、冷却媒体出口連通孔26b及び酸化剤ガス出口連通孔24bが形成される。   As shown in FIG. 10, the frame portions 78, 82, and 86 are connected to the oxidant gas inlet communication hole 24a, the cooling medium inlet communication hole 26a, the fuel gas inlet communication hole 28a, the fuel gas outlet communication hole 28b, and the cooling medium outlet communication. A hole 26b and an oxidant gas outlet communication hole 24b are formed.

額縁部82には、シール部材88が設けられるとともに、前記シール部材88は、電解質膜・電極構造体72に対向する面で、酸化剤ガス入口連通孔24a及び酸化剤ガス出口連通孔24bと酸化剤ガス流路38とを連通させる。   The frame portion 82 is provided with a seal member 88. The seal member 88 is a surface facing the electrolyte membrane / electrode structure 72, and is oxidized with the oxidant gas inlet communication hole 24a and the oxidant gas outlet communication hole 24b. The agent gas flow path 38 is communicated.

額縁部86には、シール部材90が設けられる。シール部材90は、電解質膜・電極構造体72に対向する面で、燃料ガス入口連通孔28a及び燃料ガス出口連通孔28bと燃料ガス流路36とを連通させる一方、反対側の面(セパレータ74に対向する面)で、冷却媒体入口連通孔26a及び冷却媒体入口連通孔26aと冷却媒体流路42とを連通させる。   A seal member 90 is provided on the frame portion 86. The seal member 90 is a surface facing the electrolyte membrane / electrode structure 72, and communicates the fuel gas inlet communication hole 28 a and the fuel gas outlet communication hole 28 b with the fuel gas flow path 36, while the opposite surface (separator 74). The cooling medium inlet communication hole 26a, the cooling medium inlet communication hole 26a, and the cooling medium flow path 42 are communicated with each other.

このように構成される第4の実施形態では、図11に示すように、電解質膜・電極構造体72を規定面圧が加わるように変形させながら、額縁部78、82及び86の各突起部78a、82a及び86aを溶融させるとともに、前記突起部78a、82a及び86aは、前記電解質膜・電極構造体72の変形量と同一量だけ溶融変形されている。   In the fourth embodiment configured as described above, as shown in FIG. 11, the projections of the frame portions 78, 82, and 86 are deformed while the electrolyte membrane / electrode structure 72 is deformed so that a prescribed surface pressure is applied. 78 a, 82 a and 86 a are melted, and the protrusions 78 a, 82 a and 86 a are melted and deformed by the same amount as the deformation of the electrolyte membrane / electrode structure 72.

このため、額縁部78、82及び86の各突起部78a、82a及び86aを溶融させて電解質膜・電極構造体72とセパレータ74、76とを一体化するとともに、前記電解質膜・電極構造体72に適切な面圧を確実に付与することが可能になる等、上記の第1〜第3の実施形態と同様の効果が得られる。   Therefore, the projections 78 a, 82 a and 86 a of the frame portions 78, 82 and 86 are melted to integrate the electrolyte membrane / electrode structure 72 and the separators 74, 76, and the electrolyte membrane / electrode structure 72. The same effects as those of the first to third embodiments can be obtained, for example, it is possible to reliably apply an appropriate surface pressure.

図12は、本発明の第5の実施形態に係る製造方法が適用される燃料電池100の要部分解斜視説明図の説明図である。   FIG. 12 is an explanatory view of an essential part exploded perspective view of the fuel cell 100 to which the manufacturing method according to the fifth embodiment of the present invention is applied.

燃料電池100は、セパレータ74、電解質膜・電極構造体72、セパレータ102、電解質膜・電極構造体72及びセパレータ76が積層されたセルユニットを備える。   The fuel cell 100 includes a cell unit in which a separator 74, an electrolyte membrane / electrode structure 72, a separator 102, an electrolyte membrane / electrode structure 72, and a separator 76 are stacked.

図12及び図13に示すように、セパレータ102は、一方の電解質膜・電極構造体72のアノード電極18に対向して燃料ガス流路36を設けるとともに、他方の電解質膜・電極構造体72のカソード電極20に対向して酸化剤ガス流路38を設ける。   As shown in FIGS. 12 and 13, the separator 102 is provided with a fuel gas flow path 36 facing the anode electrode 18 of one electrolyte membrane / electrode structure 72 and the other electrolyte membrane / electrode structure 72. An oxidant gas flow path 38 is provided facing the cathode electrode 20.

セパレータ102は、金属プレート104の外周端縁部に樹脂製の額縁部(額縁状枠部材)106が一体成形されて構成される。額縁部106には、積層方向に突出して突起部106aが一体成形される。   The separator 102 is formed by integrally molding a resin frame portion (frame-shaped frame member) 106 on the outer peripheral edge portion of the metal plate 104. A protrusion 106a is integrally formed on the frame portion 106 so as to protrude in the stacking direction.

図12に示すように、セパレータ102の額縁部106には、シール部材108が設けられる。シール部材108は、一方の電解質膜・電極構造体72に対向する面で、燃料ガス入口連通孔28a及び燃料ガス出口連通孔28bと燃料ガス流路36とを連通させる一方、他方の電解質膜・電極構造体72に対向する面で、酸化剤ガス入口連通孔24a及び酸化剤ガス出口連通孔24bと酸化剤ガス流路38とを連通させる。   As shown in FIG. 12, a seal member 108 is provided on the frame portion 106 of the separator 102. The seal member 108 communicates the fuel gas inlet communication hole 28a and the fuel gas outlet communication hole 28b with the fuel gas flow path 36 on the surface facing the one electrolyte membrane / electrode structure 72, while the other electrolyte membrane The oxidant gas inlet communication hole 24a and the oxidant gas outlet communication hole 24b communicate with the oxidant gas flow path 38 on the surface facing the electrode structure 72.

このように構成される第5の実施形態では、図13に示すように、2枚の電解質膜・電極構造体72を規定面圧が加わるように変形させながら、額縁部86、78、106、78及び82の各突起部86a、78a、106a、78a及び82aを溶融させるとともに、前記突起部86a、78a、106a、78a及び82aは、2枚の電解質膜・電極構造体72の変形量と同一量だけ溶融変形されている。   In the fifth embodiment configured as described above, as shown in FIG. 13, the frame portions 86, 78, 106, while deforming the two electrolyte membrane / electrode structures 72 so that the prescribed surface pressure is applied. The protrusions 86a, 78a, 106a, 78a, and 82a of 78 and 82 are melted, and the protrusions 86a, 78a, 106a, 78a, and 82a are the same as the deformation amount of the two electrolyte membrane / electrode structures 72. It is melt deformed by the amount.

このため、2枚の電解質膜・電極構造体72とセパレータ74、102及び76とを一体化するとともに、前記電解質膜・電極構造体72に適切な面圧を確実に付与することが可能になる等、上記の第1〜第4の実施形態と同様の効果が得られる。   Therefore, the two electrolyte membrane / electrode structures 72 and the separators 74, 102, and 76 can be integrated, and an appropriate surface pressure can be reliably applied to the electrolyte membrane / electrode structures 72. The same effects as those of the first to fourth embodiments are obtained.

10、50、60、70、100…燃料電池
12、62…金属セパレータ 14、72…電解質膜・電極構造体
16…固体高分子電解質膜 18…アノード電極
20…カソード電極
22、78、82、86、106…額縁部
22a…厚肉部
22b、78a、82a、86a、106a…突起部
24a…酸化剤ガス入口連通孔 24b…酸化剤ガス出口連通孔
26a…冷却媒体入口連通孔 26b…冷却媒体出口連通孔
28a…燃料ガス入口連通孔 28b…燃料ガス出口連通孔
36…燃料ガス流路 38…酸化剤ガス流路
42…冷却媒体流路 52…樹脂部
74、76、102…セパレータ
DESCRIPTION OF SYMBOLS 10, 50, 60, 70, 100 ... Fuel cell 12, 62 ... Metal separator 14, 72 ... Electrolyte membrane and electrode structure 16 ... Solid polymer electrolyte membrane 18 ... Anode electrode 20 ... Cathode electrode 22, 78, 82, 86 106 ... Frame portion 22a ... Thick portion 22b, 78a, 82a, 86a, 106a ... Projection portion 24a ... Oxidant gas inlet communication hole 24b ... Oxidant gas outlet communication hole 26a ... Cooling medium inlet communication hole 26b ... Cooling medium outlet Communication hole 28a ... Fuel gas inlet communication hole 28b ... Fuel gas outlet communication hole 36 ... Fuel gas flow path 38 ... Oxidant gas flow path 42 ... Cooling medium flow path 52 ... Resin portions 74, 76, 102 ... Separator

Claims (3)

電解質の両側に一対の電極を配設した電解質・電極構造体とセパレータとが積層されるとともに、前記電解質・電極構造体の外周には、樹脂枠部材が一体に設けられる燃料電池の製造方法であって、
前記電解質・電極構造体の電極部位を前記セパレータとの積層方向に押圧し、該電解質・電極構造体を規定面圧が加わるように変形させながら、前記樹脂枠部材を溶融させる工程と、
前記樹脂枠部材が、前記電解質・電極構造体の変形量と同一量だけ溶融変形するまで、該樹脂枠部材の溶融処理を継続することにより、前記セパレータと前記樹脂枠部材とを一体化させる工程と、
を有することを特徴とする燃料電池の製造方法。
An electrolyte / electrode structure having a pair of electrodes disposed on both sides of an electrolyte and a separator are laminated, and a resin frame member is integrally provided on the outer periphery of the electrolyte / electrode structure. There,
Pressing the electrode part of the electrolyte / electrode structure in the stacking direction with the separator and melting the resin frame member while deforming the electrolyte / electrode structure so that a specified surface pressure is applied;
The process of integrating the separator and the resin frame member by continuing the melting process of the resin frame member until the resin frame member is melted and deformed by the same amount as the deformation amount of the electrolyte / electrode structure. When,
A method for producing a fuel cell, comprising:
請求項1記載の製造方法において、一方の前記電解質・電極構造体の前記樹脂枠部材と、他方の前記電解質・電極構造体の前記樹脂枠部材とは、前記セパレータを挟んで互いに接触して配置され、又は、前記セパレータの外周に設けられた樹脂枠部材と前記電解質・電極構造体の前記樹脂枠部材とは、互いに接触して配置され、前記樹脂枠部材同士の接触部位が溶融変形されることを特徴とする燃料電池の製造方法。   2. The manufacturing method according to claim 1, wherein the resin frame member of one electrolyte / electrode structure and the resin frame member of the other electrolyte / electrode structure are arranged in contact with each other with the separator interposed therebetween. Alternatively, the resin frame member provided on the outer periphery of the separator and the resin frame member of the electrolyte / electrode structure are arranged in contact with each other, and the contact portion between the resin frame members is melted and deformed. A method for manufacturing a fuel cell. 請求項2記載の製造方法において、前記接触部位には、前記樹脂枠部材に一体に、又は、別体に樹脂部が配置され、前記樹脂部が溶融変形することを特徴とする燃料電池の製造方法。   3. The method of manufacturing a fuel cell according to claim 2, wherein a resin part is disposed at the contact portion integrally with the resin frame member or separately, and the resin part melts and deforms. Method.
JP2011171496A 2011-08-05 2011-08-05 Manufacturing method of fuel cell Expired - Fee Related JP5781860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171496A JP5781860B2 (en) 2011-08-05 2011-08-05 Manufacturing method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171496A JP5781860B2 (en) 2011-08-05 2011-08-05 Manufacturing method of fuel cell

Publications (2)

Publication Number Publication Date
JP2013037825A true JP2013037825A (en) 2013-02-21
JP5781860B2 JP5781860B2 (en) 2015-09-24

Family

ID=47887278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171496A Expired - Fee Related JP5781860B2 (en) 2011-08-05 2011-08-05 Manufacturing method of fuel cell

Country Status (1)

Country Link
JP (1) JP5781860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174944A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Insulating structure, fuel cell and fuel cell stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249417A (en) * 1994-03-10 1995-09-26 Toyota Motor Corp Unit cell for fuel cell and manufacture thereof
JP2006210060A (en) * 2005-01-26 2006-08-10 Honda Motor Co Ltd Fuel cell
JP2008091110A (en) * 2006-09-29 2008-04-17 Showa Denko Kk Separator for fuel cell, cell for the fuel cell, cell unit for the fuel cell, and manufacturing method of separator for the fuel cell and cell unit for the fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249417A (en) * 1994-03-10 1995-09-26 Toyota Motor Corp Unit cell for fuel cell and manufacture thereof
JP2006210060A (en) * 2005-01-26 2006-08-10 Honda Motor Co Ltd Fuel cell
JP2008091110A (en) * 2006-09-29 2008-04-17 Showa Denko Kk Separator for fuel cell, cell for the fuel cell, cell unit for the fuel cell, and manufacturing method of separator for the fuel cell and cell unit for the fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174944A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Insulating structure, fuel cell and fuel cell stack
US9450252B2 (en) 2013-04-25 2016-09-20 Nissan Motor Co., Ltd. Insulating structure, fuel cell and fuel cell stack
JPWO2014174944A1 (en) * 2013-04-25 2017-02-23 日産自動車株式会社 Insulation structure, fuel cell and fuel cell stack

Also Published As

Publication number Publication date
JP5781860B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5681792B2 (en) ELECTROLYTE MEMBRANE / ELECTRODE STRUCTURE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5683433B2 (en) Fuel cell stack
JP5643146B2 (en) Fuel cell
JP2018097917A (en) Resin frame-attached electrolyte membrane-electrode structure and method of manufacturing the same
JP2014132548A (en) Fuel battery
JP5778044B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2008171613A (en) Fuel cells
JP6618762B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP6092053B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2017068956A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel cell
JP2016100152A (en) Polymer electrolyte electrode structure with resin frame for fuel cell
JP2012227132A (en) Method of manufacturing metal separator
JP2013157093A (en) Fuel cell
JP5781860B2 (en) Manufacturing method of fuel cell
KR20200132294A (en) Elastomer cell frame for fuel cell and Manufacturing method thereof and Fuel cell stack comprising thereof
JP5012395B2 (en) Fuel cell separator and method for producing fuel cell separator
JP2009093838A (en) Fuel cell, and manufacturing method of separator
JP6170868B2 (en) Fuel cell
JP5734823B2 (en) Fuel cell stack
US11018363B2 (en) Fuel cell including frame member
JP6150528B2 (en) Fuel cell stack
JP5604404B2 (en) Fuel cell
JP2016091936A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP6174524B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150716

R150 Certificate of patent or registration of utility model

Ref document number: 5781860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees