JP2013036867A - Millimeter wave passive imaging device - Google Patents

Millimeter wave passive imaging device Download PDF

Info

Publication number
JP2013036867A
JP2013036867A JP2011173586A JP2011173586A JP2013036867A JP 2013036867 A JP2013036867 A JP 2013036867A JP 2011173586 A JP2011173586 A JP 2011173586A JP 2011173586 A JP2011173586 A JP 2011173586A JP 2013036867 A JP2013036867 A JP 2013036867A
Authority
JP
Japan
Prior art keywords
thermal noise
voltage
millimeter
passive imaging
millimeter wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011173586A
Other languages
Japanese (ja)
Inventor
Toshihiko Kosugi
敏彦 小杉
Hiroki Sugiyama
弘樹 杉山
Hiroki Nakajima
裕樹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011173586A priority Critical patent/JP2013036867A/en
Publication of JP2013036867A publication Critical patent/JP2013036867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a millimeter wave passive imaging device which is stable, small-sized and low-cost more than before.SOLUTION: The millimeter wave passive imaging device comprises: an antenna part 1 for receiving thermal noise of a millimeter wave band radiated from an object; an amplification part 2a for amplifying the thermal noise received by the antenna part 1; a pulse generation part 6 for outputting pulses every time of detecting an instantaneous voltage equal to or higher than a prescribed threshold voltage, which is included in the thermal noise amplified by the amplification part 2a; and a pulse number voltage conversion part 7 for converting the number per unit time of the pulses outputted from the pulse generation part 6 to a voltage signal and outputting the voltage signal as a luminance signal 4.

Description

本発明は、物体から放射されるミリ波を受信して増幅し、画像を得るミリ波パッシブイメージング装置に関するものである。   The present invention relates to a millimeter wave passive imaging apparatus that receives and amplifies a millimeter wave emitted from an object and obtains an image.

従来より、物体から放射されるミリ波帯の熱雑音(電磁波)を受信して増幅し、画像を得るミリ波パッシブイメージング装置が研究されている。このようなミリ波パッシブイメージング装置においては、高利得な低雑音アンプが必要である。ナイキストの定理(非特許文献1参照)より、300Kにおいて平均熱雑音電力は−174dBm/Hz(=kBT:kはボルツマン定数、Bは受信周波数帯域幅、Tは絶対温度 )と極めて小さく、高利得なアンプがなければ十分大きな検波出力が得られない。検波出力が十分大きく得られないと、画像信号は検波器自らが発生する雑音に埋もれてしまうため、信号対雑音比S/Nが劣化する。その結果、見た目の画像が不明瞭になる。   Conventionally, millimeter-wave passive imaging devices that receive and amplify millimeter-wave band thermal noise (electromagnetic waves) emitted from an object to obtain an image have been studied. Such a millimeter-wave passive imaging apparatus requires a high-gain low-noise amplifier. From Nyquist's theorem (see Non-Patent Document 1), the average thermal noise power is -174 dBm / Hz (= kBT: k is Boltzmann's constant, B is the reception frequency bandwidth, and T is the absolute temperature) at 300K, and high gain Without a sufficient amplifier, a sufficiently large detection output cannot be obtained. If the detection output cannot be obtained sufficiently large, the image signal is buried in the noise generated by the detector itself, so that the signal-to-noise ratio S / N deteriorates. As a result, the visual image becomes unclear.

次に、これまでに提案されたくつかの改良方法を示す。まず、特殊なダイオードを開発して、検波器の感度を向上する方法が提案されている(非特許文献2参照)。しかし、検波感度を上げることにはダイオードを構成する半導体の物理的な限界もあり、さらにアンプを製造するプロセスとダイオードを製造するプロセスとの違いから、1つの高周波集積回路にアンプとダイオードを混載することは困難である。また、受信周波数帯域幅Bを増加させることで受信電力を増加することも考えられるが、周辺部品の動作周波数帯域幅Bの制限から広帯域化にも限界がある。また、ミリ波画像には周波数なりの透過特性や反射特性があり、用いる周波数によって得られる画像の性質が異なる。よって、動作周波数帯域幅Bをあまり広くすると、本来得たかった画像とは異なる性質のものが含まれることとなり不都合である。   Next, some improved methods proposed so far are shown. First, a method for improving the sensitivity of a detector by developing a special diode has been proposed (see Non-Patent Document 2). However, increasing the detection sensitivity is due to the physical limitations of the semiconductors that make up the diode. Furthermore, due to the difference between the process of manufacturing the amplifier and the process of manufacturing the diode, the amplifier and the diode are combined in one high-frequency integrated circuit. It is difficult to do. Although it is conceivable to increase the reception power by increasing the reception frequency bandwidth B, there is a limit to widening the bandwidth due to the limitation of the operating frequency bandwidth B of peripheral components. Further, the millimeter wave image has transmission characteristics and reflection characteristics corresponding to frequencies, and the properties of the image obtained differ depending on the frequency used. Therefore, if the operating frequency bandwidth B is too wide, it may be inconvenient because it includes a different property from the image originally desired.

以上から、従来のミリ波パッシブイメージング装置においては、できるだけ高感度な検波器を利用し、かつ受信周波数帯域幅Bを許容できる範囲で大きくしたうえで、受信信号を十分増幅するために高利得なアンプを用いる必要があった(非特許文献3参照)。上記の状況で求められる低雑音アンプの特徴的な利得は20〜40dBである。一方、1つの高周波集積回路内で安定的に得られる特徴的な利得は経験的に20dB以下であり、さらにこの特徴的な利得は動作周波数に反比例して低下する傾向がある。何故ならば集積回路の持つ高周波アイソレーションが周波数に反比例して低下し、回路間の電磁結合が大きくなるためである。   From the above, in the conventional millimeter-wave passive imaging apparatus, a high-gain detector is used to sufficiently amplify the received signal after using a detector with the highest possible sensitivity and increasing the reception frequency bandwidth B within an allowable range. It was necessary to use an amplifier (see Non-Patent Document 3). The characteristic gain of the low noise amplifier required in the above situation is 20 to 40 dB. On the other hand, the characteristic gain stably obtained in one high-frequency integrated circuit is empirically 20 dB or less, and this characteristic gain tends to decrease in inverse proportion to the operating frequency. This is because the high frequency isolation of the integrated circuit decreases in inverse proportion to the frequency, and electromagnetic coupling between the circuits increases.

本城和彦著,“マイクロ波半導体回路”,日刊工業新聞社,pp.95,ISBN4-526-03386-3,1993Kazuhiko Honjo, “Microwave Semiconductor Circuit”, Nikkan Kogyo Shimbun, pp.95, ISBN4-526-03386-3, 1993 H.P.Moyer,J.N.Schulman,J.J.Lynch,J.H.Schaffner,M.Sokolich,Y.Royter,R.L.Bowen,C.F.McGuire,M.Hu,and A.Schmitz,“W-Band Sb-Diode Detector MMICs for Passive Millimeter Wave Imaging”,IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS,VOL.18,NO.10,OCTOBER,pp.686-688,2008HPMoyer, JNSchulman, JJLynch, JHSchaffner, M. Sokolich, Y. Royter, RL Bowen, CFMcGuire, M. Hu, and A. Schmitz, “W-Band Sb-Diode Detector MMICs for Passive Millimeter Wave Imaging” , IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL.18, NO.10, OCTOBER, pp.686-688, 2008 Wayne Lam,Paul Lee,Larry Yujiri,John Berenz,and Jay Pearlman,“Millimeter-Wave Imaging Using Preamplified Diode Detector”,IEEE MICROWAVE AND GUIDED WAVE LETTERS,VOL.2,NO.7,JULY,pp.276-277,1992Wayne Lam, Paul Lee, Larry Yujiri, John Berenz, and Jay Pearlman, “Millimeter-Wave Imaging Using Preamplified Diode Detector”, IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL.2, NO.7, JULY, pp.276-277, 1992

以上のように、従来のミリ波パッシブイメージング装置では、十分な検波出力を得るために、受信した雑音信号を大幅に増幅する必要があった。しかし、高利得なアンプを用いると、回路の発振による不具合が発生するため、アンプの発振対策が必要であった。従来は、発振防止のため、(a)より高感度な検波器を用いて必要な利得を減らす、(b)動作周波数帯域幅Bを増加させて必要な利得を減らす、(c)低利得の複数のアンプに分けて実装する、(d)ヘテロダイン構成にして高周波と中間周波に分けて利得分配する、(d)アンテナやフィーダーの持つ高周波損失の低減で利得を補う、等の対応が複合的に行われてきたが、いずれにせよ装置サイズが大きくなったり、経済性が損なわれたりするため、さらに良い手法が求められてきた。   As described above, in the conventional millimeter-wave passive imaging apparatus, it is necessary to greatly amplify the received noise signal in order to obtain a sufficient detection output. However, if a high-gain amplifier is used, a problem due to circuit oscillation occurs, so that it is necessary to take measures against oscillation of the amplifier. Conventionally, in order to prevent oscillation, (a) a necessary gain is reduced by using a more sensitive detector, (b) an operating frequency bandwidth B is increased to reduce a necessary gain, and (c) a low gain. A combination of multiple amplifiers, (d) heterodyne configuration, gain distribution divided into high frequency and intermediate frequency, (d) low frequency loss of antenna and feeder to compensate for gain, etc. However, in any case, since the size of the apparatus is increased and the economic efficiency is impaired, a better method has been demanded.

本発明は、上記課題を解決するためになされたもので、従来よりも安定かつ小型で低コストなミリ波パッシブイメージング装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a millimeter-wave passive imaging apparatus that is more stable, smaller, and lower in cost than conventional ones.

本発明のミリ波パッシブイメージング装置は、物体から放射されるミリ波帯の熱雑音を受信するアンテナと、このアンテナが受信した熱雑音を増幅する増幅手段と、この増幅手段によって増幅された熱雑音に含まれる、所定の閾値電圧以上の瞬時電圧を検出する度にパルスを出力するパルス生成手段と、このパルス生成手段から出力されるパルスの単位時間あたりの数を電圧信号に変換して、電圧信号を輝度信号として出力するパルス数電圧変換手段とを備えることを特徴とするものである。
また、本発明のミリ波パッシブイメージング装置の1構成例において、前記閾値電圧は、前記増幅手段から出力される熱雑音の予想される平均電圧よりも高い値に設定される。
The millimeter-wave passive imaging device of the present invention includes an antenna that receives thermal noise in the millimeter-wave band radiated from an object, amplification means that amplifies the thermal noise received by the antenna, and thermal noise that is amplified by the amplification means. A pulse generating means for outputting a pulse each time an instantaneous voltage equal to or higher than a predetermined threshold voltage is detected, and converting the number of pulses output from the pulse generating means per unit time into a voltage signal, And pulse number voltage conversion means for outputting a signal as a luminance signal.
In one configuration example of the millimeter-wave passive imaging apparatus of the present invention, the threshold voltage is set to a value higher than an expected average voltage of thermal noise output from the amplification unit.

本発明においては、熱雑音から希に発生する大きなスパイク状信号に着目し、そのスパイク状信号の単位時間内での発生個数を数えることで、ミリ波パッシブイメージングにおける輝度情報を得る。熱雑音の振幅分布はレイリー分布であるため、平均電力に対して十分大きいピーク電力が発生する。この大きな受信信号だけを扱えば良いことから、必要利得が減少して、より安定な受信回路が得られる。このように、本発明では、従来と比べて増幅手段に要求される利得を減少させることができるので、増幅手段の安定性を向上させることができると共に、増幅手段の消費電力を減少させることができ、より小型で低コストなミリ波パッシブイメージング装置を実現することができる。   In the present invention, attention is paid to a large spike signal rarely generated from thermal noise, and the number of generated spike signals within a unit time is counted to obtain luminance information in millimeter wave passive imaging. Since the amplitude distribution of the thermal noise is a Rayleigh distribution, a peak power sufficiently large with respect to the average power is generated. Since only this large received signal needs to be handled, the required gain is reduced and a more stable receiving circuit can be obtained. As described above, according to the present invention, the gain required for the amplifying means can be reduced as compared with the prior art, so that the stability of the amplifying means can be improved and the power consumption of the amplifying means can be reduced. Therefore, it is possible to realize a millimeter-wave passive imaging apparatus that is smaller and less expensive.

物体から放射される熱雑音の波形の一例を示す図である。It is a figure which shows an example of the waveform of the thermal noise radiated | emitted from an object. レイリー分布の確率密度関数による計算結果の一例を示す図である。It is a figure which shows an example of the calculation result by the probability density function of Rayleigh distribution. 熱雑音のピーク数と閾値電圧との関係を示す図である。It is a figure which shows the relationship between the peak number of thermal noise, and a threshold voltage. 本発明の実施の形態に係るミリ波パッシブイメージング装置のセンサ部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the sensor part of the millimeter wave passive imaging device which concerns on embodiment of this invention. 従来のミリ波パッシブイメージング装置のセンサ部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the sensor part of the conventional millimeter wave passive imaging device.

まず、本発明の原理について詳細に説明していく。図1に物体から放射される熱雑音(ミリ波)の波形の一例を示す。熱雑音電圧の絶対値の平均値を平均電圧Vave.と定義する。熱雑音の振幅はレイリー分布となっていることから、熱雑音の波形には平均電圧Vave.を遥かに上回るピーク電圧値が見られる。これらのピーク電圧値の中で閾値電圧Vthを超えるものを電圧ピークVpeakと定義する。
次に、レイリー分布の確率密度関数P(v)を下記に示す。
First, the principle of the present invention will be described in detail. FIG. 1 shows an example of a waveform of thermal noise (millimeter wave) radiated from an object. The absolute value of the absolute value of the thermal noise voltage is calculated as the average voltage Vave. It is defined as Since the amplitude of the thermal noise has a Rayleigh distribution, the average voltage Vave. A peak voltage value far exceeding that is observed. Among these peak voltage values, the voltage exceeding the threshold voltage Vth is defined as a voltage peak Vpeak.
Next, the probability density function P (v) of Rayleigh distribution is shown below.

Figure 2013036867
Figure 2013036867

vは電圧振幅である。図2は式(1)のレイリー分布の確率密度関数P(v)による計算結果の一例を示す図である。ここでは、パラメータであるσを0.32Vとしている。図2の平均電圧Vave.は0.4Vであり、また装置が50Ω系であると仮定すれば平均電力は2mW(3dBm)と算出される。ここで、確率密度関数の定義より、図2に示す確率密度−振幅電圧の分布で電圧が閾値電圧Vthを超える確率は面積Sと等しいことが分かる。   v is the voltage amplitude. FIG. 2 is a diagram illustrating an example of a calculation result by the probability density function P (v) of the Rayleigh distribution of Expression (1). Here, the parameter σ is set to 0.32V. The average voltage Vave. Is 0.4 V, and if the device is assumed to be a 50Ω system, the average power is calculated as 2 mW (3 dBm). Here, it can be seen from the definition of the probability density function that the probability that the voltage exceeds the threshold voltage Vth in the probability density-amplitude voltage distribution shown in FIG.

次に、熱雑音に閾値電圧Vthを超えるピークが単位時間あたり何個現れるかを計算する。周波数帯域幅Bの狭帯域雑音は、その中心周波数をfcとすると、時間間隔1/fcの間では振幅および位相は急変しないことが知られている。また、熱雑音の包絡線の変動周期は周波数帯域幅Bを上限としているため、最低限でも変動周期1/Bより早い応答速度で信号の強さを測定すれば、取りこぼしなく全てのピークを検出できる。よって、以降は最も効率の高い変動周期1/Bでピーク検出を行うことに話をしぼる。また、通常の受信器では比帯域B/fcは1より小さい。よって、時間間隔1/fcより変動周期1/Bは長くなり、1つのピークには周波数fcの波が何周期か含まれていることになる。前述の閾値電圧Vthを超える確率(面積S)と包絡線の変動周期1/Bを併せて考えると、熱雑音に単位時間に発生する、閾値電圧Vthを超えるピークの数Nは以下の式で表される。
N=S×B ・・・(2)
Next, the number of peaks that exceed the threshold voltage Vth in the thermal noise per unit time is calculated. It is known that the amplitude and phase of the narrowband noise of the frequency bandwidth B do not change suddenly during the time interval 1 / fc, where the center frequency is fc. In addition, the fluctuation period of the thermal noise envelope has an upper limit of the frequency bandwidth B. Therefore, if the signal strength is measured at a response speed faster than the fluctuation period 1 / B at a minimum, all peaks are detected without being missed. it can. Therefore, in the following, we will focus on performing peak detection with the most efficient fluctuation period 1 / B. Further, in a normal receiver, the specific band B / fc is smaller than 1. Therefore, the fluctuation cycle 1 / B is longer than the time interval 1 / fc, and one peak includes several cycles of the frequency fc. Considering the above probability (area S) exceeding the threshold voltage Vth and the fluctuation period 1 / B of the envelope, the number N of peaks exceeding the threshold voltage Vth that occur in unit time due to thermal noise is given by the following equation. expressed.
N = S × B (2)

式(2)より、σ=0.32V、B=20GHzの場合のピーク数Nと閾値電圧Vthとの関係を図3に示す。ただし、図3では、閾値電圧Vthの代わりに、閾値電圧Vthに対応する50Ω系交流電力(dBm)を横軸としている。図3から、平均電圧Vave.=0.4Vに対応する平均電力である2mW(3dBm)よりも12dB高い瞬時電力(15dBm)のピークが1秒間に1万個以上観察されることが分かる。つまり、これらのピークだけを計数すれば良いのであれば、低雑音アンプの利得は従来よりも12dB低く設定できることになる。その結果、低雑音アンプの必要利得が減少し、回路の安定性が改善され、1つの集積回路で十分な装置性能が得られるようになる。   FIG. 3 shows the relationship between the number of peaks N and the threshold voltage Vth when σ = 0.32 V and B = 20 GHz from the equation (2). However, in FIG. 3, instead of the threshold voltage Vth, the horizontal axis represents 50Ω system AC power (dBm) corresponding to the threshold voltage Vth. From FIG. 3, the average voltage Vave. It can be seen that 10,000 or more peaks of instantaneous power (15 dBm) 12 dB higher than 2 mW (3 dBm), which is an average power corresponding to 0.4V, are observed per second. That is, if only these peaks need to be counted, the gain of the low noise amplifier can be set 12 dB lower than the conventional one. As a result, the required gain of the low noise amplifier is reduced, the stability of the circuit is improved, and sufficient device performance can be obtained with one integrated circuit.

図4は本発明の実施の形態に係るミリ波パッシブイメージング装置のセンサ部の構成例を示すブロック図である。比較のため、従来のミリ波パッシブイメージング装置のセンサ部の構成を図5に示す。本実施の形態のミリ波パッシブイメージング装置は、アンテナ部1と、増幅部2aと、パルス計数部5とを有する。パルス計数部5は、パルス生成部6と、パルス数電圧変換部7とから構成される。本実施の形態と従来との違いは、検波器3がパルス計数部5に変更されることと、増幅部2aの利得が12dB低減されることである。   FIG. 4 is a block diagram showing a configuration example of a sensor unit of the millimeter wave passive imaging apparatus according to the embodiment of the present invention. For comparison, FIG. 5 shows a configuration of a sensor unit of a conventional millimeter wave passive imaging apparatus. The millimeter wave passive imaging apparatus according to the present embodiment includes an antenna unit 1, an amplification unit 2 a, and a pulse counting unit 5. The pulse counting unit 5 includes a pulse generation unit 6 and a pulse number voltage conversion unit 7. The difference between the present embodiment and the prior art is that the detector 3 is changed to the pulse counting unit 5 and the gain of the amplifying unit 2a is reduced by 12 dB.

アンテナ部1は、対象となる物体(不図示)から放射される熱雑音(ミリ波)を受信する。増幅部2aは、アンテナ部1が受信した熱雑音を増幅する。ここで、図5に示す従来例では、増幅部2が例えば6dBの利得を有する5段の低雑音アンプからなるのに対し、本実施の形態では、増幅部2aが例えば6dBの利得を有する3段の低雑音アンプから構成されており、上記のとおり増幅部2aの利得が従来に対して12dB低減されている。   The antenna unit 1 receives thermal noise (millimeter wave) radiated from a target object (not shown). The amplifying unit 2a amplifies the thermal noise received by the antenna unit 1. Here, in the conventional example shown in FIG. 5, the amplifying unit 2 is composed of a five-stage low noise amplifier having a gain of 6 dB, for example. In the present embodiment, the amplifying unit 2a has a gain of 6 dB, for example. The amplifier is composed of a low-noise amplifier of a stage, and as described above, the gain of the amplifying unit 2a is reduced by 12 dB as compared with the prior art.

パルス生成部6は、増幅部2aから出力される熱雑音に含まれる、閾値電圧Vth以上の瞬時電圧を検出する度にパルスを出力する。パルス生成部6としては、周波数帯域幅B以上を持つフリップフロップやピークホールド回路等が利用可能である。閾値電圧Vthは、図3で説明したとおり交流電力に換算した値で15dBmとなる点の近辺に設定される。   The pulse generation unit 6 outputs a pulse every time it detects an instantaneous voltage that is included in the thermal noise output from the amplification unit 2a and is equal to or higher than the threshold voltage Vth. As the pulse generation unit 6, a flip-flop having a frequency bandwidth B or more, a peak hold circuit, or the like can be used. The threshold voltage Vth is set in the vicinity of the point at which the value converted to AC power is 15 dBm as described in FIG.

パルス数電圧変換部7は、パルス生成部6から出力されるパルスの単位時間あたりの数Nを電圧信号に変換して、この電圧信号を輝度信号4として出力する。パルス数電圧変換部7としては、パルスカウンターや低域ろ波フィルター等が利用可能である。
図示しない信号処理部は、パルス数電圧変換部7から出力された輝度信号4を信号処理して物体のミリ波画像を生成し、このミリ波画像を表示する。
The pulse number voltage converter 7 converts the number N of pulses output from the pulse generator 6 per unit time into a voltage signal, and outputs the voltage signal as the luminance signal 4. As the pulse number voltage converter 7, a pulse counter, a low-pass filter, or the like can be used.
A signal processing unit (not shown) processes the luminance signal 4 output from the pulse number voltage conversion unit 7 to generate a millimeter wave image of the object, and displays this millimeter wave image.

なお、図4に示した構成は2次元のミリ波画像の1画素に対応する。したがって、図4に示したセンサ部を2次元のアレイ状に多数配置して物体からの熱雑音を2次元で受信して2次元のミリ波画像を得るか、あるいはアンテナ部1を動かして物体を走査することにより2次元のミリ波画像を得る必要がある。   Note that the configuration shown in FIG. 4 corresponds to one pixel of a two-dimensional millimeter-wave image. Therefore, a large number of sensor units shown in FIG. 4 are arranged in a two-dimensional array to receive thermal noise from the object in two dimensions to obtain a two-dimensional millimeter-wave image, or the antenna unit 1 is moved to move the object. It is necessary to obtain a two-dimensional millimeter wave image by scanning.

以上説明したように、本実施の形態では、従来と比べて低雑音アンプに要求される利得を減少させることができるので、低雑音アンプの安定性を向上させることができると共に、低雑音アンプの消費電力を減少させることができ、より小型で低コストなミリ波パッシブイメージング装置を実現することができる。   As described above, in this embodiment, the gain required for the low noise amplifier can be reduced as compared with the conventional case, so that the stability of the low noise amplifier can be improved and the low noise amplifier can be improved. The power consumption can be reduced, and a more compact and low-cost millimeter-wave passive imaging apparatus can be realized.

本発明は、物体から放射されるミリ波を受信して増幅し画像を得る技術に適用することができる。   The present invention can be applied to a technique for receiving and amplifying a millimeter wave radiated from an object to obtain an image.

1…アンテナ部、2a…増幅部、5…パルス計数部、6…パルス生成部、7…パルス数電圧変換部。   DESCRIPTION OF SYMBOLS 1 ... Antenna part, 2a ... Amplifying part, 5 ... Pulse counting part, 6 ... Pulse generation part, 7 ... Pulse number voltage conversion part.

Claims (2)

物体から放射されるミリ波帯の熱雑音を受信するアンテナと、
このアンテナが受信した熱雑音を増幅する増幅手段と、
この増幅手段によって増幅された熱雑音に含まれる、所定の閾値電圧以上の瞬時電圧を検出する度にパルスを出力するパルス生成手段と、
このパルス生成手段から出力されるパルスの単位時間あたりの数を電圧信号に変換して、電圧信号を輝度信号として出力するパルス数電圧変換手段とを備えることを特徴とするミリ波パッシブイメージング装置。
An antenna for receiving millimeter-wave thermal noise radiated from an object;
Amplifying means for amplifying the thermal noise received by the antenna;
A pulse generating means for outputting a pulse each time an instantaneous voltage equal to or higher than a predetermined threshold voltage included in the thermal noise amplified by the amplifying means is detected;
A millimeter-wave passive imaging apparatus comprising: a pulse number voltage conversion unit that converts the number of pulses output from the pulse generation unit per unit time into a voltage signal and outputs the voltage signal as a luminance signal.
請求項1記載のミリ波パッシブイメージング装置において、
前記閾値電圧は、前記増幅手段から出力される熱雑音の予想される平均電圧よりも高い値に設定されることを特徴とするミリ波パッシブイメージング装置。
The millimeter-wave passive imaging apparatus according to claim 1,
The millimeter-wave passive imaging apparatus, wherein the threshold voltage is set to a value higher than an expected average voltage of thermal noise output from the amplification means.
JP2011173586A 2011-08-09 2011-08-09 Millimeter wave passive imaging device Pending JP2013036867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011173586A JP2013036867A (en) 2011-08-09 2011-08-09 Millimeter wave passive imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173586A JP2013036867A (en) 2011-08-09 2011-08-09 Millimeter wave passive imaging device

Publications (1)

Publication Number Publication Date
JP2013036867A true JP2013036867A (en) 2013-02-21

Family

ID=47886607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173586A Pending JP2013036867A (en) 2011-08-09 2011-08-09 Millimeter wave passive imaging device

Country Status (1)

Country Link
JP (1) JP2013036867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629229A (en) * 2015-12-28 2016-06-01 深圳市太赫兹科技创新研究院 Airplane nondestructive testing system and airplane nondestructive testing method
CN105699493A (en) * 2015-12-28 2016-06-22 深圳市太赫兹科技创新研究院 High-speed rail nondestructive testing system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519278A (en) * 2004-11-05 2008-06-05 コミサリア、ア、レネルジ、アトミク Particle detection circuit with basic circuit for forming sub-pixels
JP2008241352A (en) * 2007-03-26 2008-10-09 Maspro Denkoh Corp Millimeter-wave imaging device and picked-up image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519278A (en) * 2004-11-05 2008-06-05 コミサリア、ア、レネルジ、アトミク Particle detection circuit with basic circuit for forming sub-pixels
JP2008241352A (en) * 2007-03-26 2008-10-09 Maspro Denkoh Corp Millimeter-wave imaging device and picked-up image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629229A (en) * 2015-12-28 2016-06-01 深圳市太赫兹科技创新研究院 Airplane nondestructive testing system and airplane nondestructive testing method
CN105699493A (en) * 2015-12-28 2016-06-22 深圳市太赫兹科技创新研究院 High-speed rail nondestructive testing system and method

Similar Documents

Publication Publication Date Title
US11828833B2 (en) Systems and methods for object detection by radio frequency systems
US20210055386A1 (en) Wireless communication with enhanced maximum permissible exposure (mpe) compliance based on vital signs detection
JP6060149B2 (en) Analog baseband circuit for terahertz phased array system
Aniktar et al. Getting the bugs out: A portable harmonic radar system for electronic countersurveillance applications
US20150015432A1 (en) Sub-carrier successive approximation millimeter wave radar for high-accuracy 3d imaging
US8525113B2 (en) Portable radiometric imaging device and a corresponding imaging method
CN101625262A (en) Non-air conduction voice detector based on millimeter-wave radar
JP2010204003A5 (en) Multifunctional radar device and method for measuring a plurality of physical quantities in multifunctional radar device
Gallagher et al. Linearization of a harmonic radar transmitter by feed-forward filter reflection
JP2013036867A (en) Millimeter wave passive imaging device
KR101848729B1 (en) Fmcw radar with multi-frequency bandwidth and controlling method therefor
US20210239790A1 (en) Pulse radar apparatus and operating method thereof
KR102193234B1 (en) Device for increasing the detection distance of ultrasonic sensors of vehicle and method thereof
CN207074086U (en) Millimeter wave radiometer receiver
WO2023004610A1 (en) Laser radar ranging system
CN114063010A (en) Detection chip, detection device and detection method based on SOC technology
KR20150093488A (en) System for cancelling radar reflection signal and method thereof
TW202316142A (en) Doppler radar apparatus and power saving method thereof
Kim et al. Signal-to-noise ratio and bandwidth for pseudo-random codes in an ultrasonic imaging system
US9213092B2 (en) Systems and methods for detecting a change in position of an object
JP2011242224A (en) Wide band radar device, and method for controlling wide band radar device
KR102158834B1 (en) Method and apparatus of counting people
KR20210068727A (en) Radar signal processing method and apparatus
US10381980B2 (en) High frequency signal generation apparatus
JP4061237B2 (en) RADIO TRANSMITTER, RADAR SYSTEM AND RADIO COMMUNICATION SYSTEM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203