JP2013036618A - Bearing device for supporting crank shaft of internal combustion engine - Google Patents

Bearing device for supporting crank shaft of internal combustion engine Download PDF

Info

Publication number
JP2013036618A
JP2013036618A JP2012221862A JP2012221862A JP2013036618A JP 2013036618 A JP2013036618 A JP 2013036618A JP 2012221862 A JP2012221862 A JP 2012221862A JP 2012221862 A JP2012221862 A JP 2012221862A JP 2013036618 A JP2013036618 A JP 2013036618A
Authority
JP
Japan
Prior art keywords
bearing
groove
oil groove
semi
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012221862A
Other languages
Japanese (ja)
Other versions
JP5317376B2 (en
Inventor
Tomohiro Ukai
知広 鵜飼
Osamu Ishigo
修 石吾
Koji Saito
康志 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2012221862A priority Critical patent/JP5317376B2/en
Publication of JP2013036618A publication Critical patent/JP2013036618A/en
Application granted granted Critical
Publication of JP5317376B2 publication Critical patent/JP5317376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing device for supporting a crank shaft of an internal combustion engine which is excellent in foreign matter discharging performance, and in which an influence of foreign matter is reduced with respect to a resin-made sliding layer forming an inner circumferential surface of a sliding bearing having the resin-made sliding layer.SOLUTION: At least a sliding bearing 30A for a journal part has on its inner circumferential surface the resin-made sliding layer, an oil groove 36 is formed which extends circumferentially on an inner circumferential surface of at least one semicylindrically-shaped bearing 30A of a pair of semicylindrically-shaped bearings constituting the bearing for the journal part, and the resin-made sliding layer is formed on inner surface of the oil groove. The oil groove 36 includes a center part of circumferential length of the semicylindrically-shaped bearing 30A, and groove bottom surface thereof is formed as an uneven surface without a flat part, composed of a plurality peaks 36A and a plurality of troughs 36B which are undulating continuously.

Description

本発明は、内部給油路構造を有するクランク軸のジャーナル部およびクランクピン部が、それぞれ、一対の金属製半円筒形状軸受を組み合わせた円筒形状体であるすべり軸受で支承される、内燃機関のクランク軸を支承する軸受装置に関するものである。   The present invention relates to a crank for an internal combustion engine in which a journal portion and a crank pin portion of a crankshaft having an internal oil supply passage structure are each supported by a slide bearing which is a cylindrical body combining a pair of metal semi-cylindrical bearings. The present invention relates to a bearing device for supporting a shaft.

従来のクランク軸用すべり軸受は、2つの半円筒形状軸受を組み合わせて円筒形にしたものを使用している。ジャーナル部用の一対の半円筒形状軸受のうちの少なくとも一方の軸受内周面に、円周方向油溝が形成され、円周方向油溝を経てクランクピン外周面に対する給油が行なわれる。この円周方向油溝は、一定深さにするのが一般的である(特許文献1参照)。しかるに、近年になって、潤滑油供給用オイルポンプの小型化に対応して、軸受端部からの潤滑油の漏れ量を減少させるべく、軸受中央部から軸受の端部に向かって油溝断面積を減少させる絞り部を形成し、あるいはまた、潤滑油供給の油穴から周方向端部の間の溝底面に突起による絞り部を形成し、もって供給潤滑油圧力を低減化可能なジャーナル部用のすべり軸受が用いられるようになってきた(特許文献2〜4参照)。   A conventional plain bearing for a crankshaft uses a cylindrical shape obtained by combining two semi-cylindrical bearings. A circumferential oil groove is formed on at least one of the pair of semi-cylindrical bearings for the journal portion, and oil is supplied to the outer circumferential surface of the crank pin through the circumferential oil groove. Generally, this circumferential oil groove has a constant depth (see Patent Document 1). However, in recent years, in order to reduce the amount of lubricating oil leakage from the bearing end in response to the downsizing of the oil pump for supplying lubricating oil, the oil groove is cut from the bearing center to the bearing end. A journal part that can reduce the supply lubricating oil pressure by forming a throttle part that reduces the area, or by forming a throttle part by a protrusion on the groove bottom surface between the oil supply oil hole and the circumferential end. Sliding bearings have been used (see Patent Documents 2 to 4).

一方、内燃機関のクランク軸のジャーナル部やクランクピン部を支承するすべり軸受として、一般に、鋼製裏金の一方の表面にアルミニウム軸受合金層または銅軸受合金層を形成した積層構造体が用いられている。このアルミニウム軸受合金層または銅軸受合金層の上に、樹脂製摺動層を重ねて、なじみ性、耐疲労性または耐荷重性を向上させたすべり軸受が提案されている(特許文献5参照)。この樹脂製摺動層に用いる材料としては、例えば、高強度で耐熱性の良好なポリアミドイミド等の耐熱性樹脂にポリアミド等をポリマーアロイ化して得た樹脂に固体潤滑剤を添加したものがある(特許文献6参照)。   On the other hand, a laminated structure in which an aluminum bearing alloy layer or a copper bearing alloy layer is formed on one surface of a steel back metal is generally used as a slide bearing for supporting a journal part and a crankpin part of a crankshaft of an internal combustion engine. Yes. A sliding bearing has been proposed in which a resin sliding layer is superimposed on the aluminum bearing alloy layer or the copper bearing alloy layer to improve the conformability, fatigue resistance or load resistance (see Patent Document 5). . Examples of the material used for the resin sliding layer include a material obtained by adding a solid lubricant to a resin obtained by polymerizing polyamide or the like into a heat resistant resin such as polyamideimide having high strength and good heat resistance. (See Patent Document 6).

しかしながら、樹脂製摺動層は塑性変形し難く、すべり軸受とクランク軸との間に進入した異物が樹脂製摺動層に接触すると、樹脂製摺動層の破壊や剥離が生じやすい(特許文献7の段落0005参照)。このため、樹脂製摺動層を付与したすべり軸受の内周面に基材である軸受合金が露出するように凹部を形成し、前記異物を軸受合金中に埋収させるすべり軸受が提案されている(特許文献7参照)。   However, the plastic sliding layer is difficult to be plastically deformed, and when a foreign substance that has entered between the slide bearing and the crankshaft comes into contact with the plastic sliding layer, the resin sliding layer is likely to be broken or peeled off (Patent Literature). 7 paragraph 0005). For this reason, a slide bearing has been proposed in which a recess is formed on the inner peripheral surface of a slide bearing provided with a resin sliding layer so that the bearing alloy as a base material is exposed, and the foreign matter is embedded in the bearing alloy. (See Patent Document 7).

特開平8−277831号公報JP-A-8-277831 特開平4−219521号公報JP-A-4-219521 特開2005−76755号公報JP-A-2005-76755 特開2006−144913号公報JP 2006-144913 A 特開平9−79264JP-A-9-79264 特開平2008−308595JP 2008-308595 A 特開平2008−14454JP 2008-14454

内燃機関用すべり軸受に対する潤滑油の供給は、まず、クランク軸のジャーナル部を支持するすべり軸受の外部から該すべり軸受の内面に形成された円周方向油溝内に供給され、その潤滑油がジャーナル部用すべり軸受の摺動面に供給されるとともに、クランク軸の内部潤滑油路を経て、クランクピン部用すべり軸受の摺動面に供給される。
内燃機関の最初の運転時には、ジャーナル部用すべり軸受の円周方向溝に供給される潤滑油中に、潤滑油路内に残留した異物が混入しがちである。異物とは、油路を切削加工した時の金属加工屑や鋳造時の鋳砂等を意味する。この異物は、クランク軸の回転によって潤滑油の流れに付随し、従来の内燃機関用すべり軸受では、軸受円周方向端部に形成されるクラッシュリリーフや面取等の隙間部を通じて潤滑油と共に排出される。しかしながら、近年の内燃機関は、クランク軸の高回転化により、潤滑油よりも比重の大きな異物に作用する慣性力(異物が円周方向に沿って前進しようとする慣性力)が大きくなって、すべり軸受の組み合わせ端面(一対の半円筒形状軸受の組み合わせ端面)における隙間部分から異物が排出されずに、油溝を有しない側のすべり軸受(他方の半円筒形状軸受)の摺動面部分に進入し、異物による軸受摺動面の損傷が発生しやすくなっている。
Lubricating oil is supplied to the sliding bearing for the internal combustion engine from the outside of the sliding bearing that supports the journal portion of the crankshaft, into the circumferential oil groove formed on the inner surface of the sliding bearing. In addition to being supplied to the sliding surface of the journal portion sliding bearing, it is supplied to the sliding surface of the crank pin portion sliding bearing through the internal lubricating oil passage of the crankshaft.
During the initial operation of the internal combustion engine, foreign matter remaining in the lubricating oil passage tends to be mixed in the lubricating oil supplied to the circumferential groove of the journal bearing. The foreign material means metal scraps when the oil passage is cut, casting sand at the time of casting, or the like. This foreign matter accompanies the flow of the lubricating oil due to the rotation of the crankshaft, and in conventional sliding bearings for internal combustion engines, it is discharged together with the lubricating oil through gaps such as crush reliefs and chamfers formed at the circumferential end of the bearing. Is done. However, recent internal combustion engines have increased inertial force (inertia force that foreign matter tries to advance in the circumferential direction) acting on foreign matter having a specific gravity greater than that of lubricating oil due to higher rotation of the crankshaft. Foreign matter is not discharged from the gap on the combination bearing end face of the slide bearing (combination end face of the pair of semi-cylindrical bearings), and the sliding face portion of the slide bearing on the side without the oil groove (the other semi-cylindrical bearing) As a result, the bearing sliding surface is easily damaged by foreign matter.

一方、軸受円周方向端部からの潤滑油の漏れ量を減少させるために、半円筒形状軸受の円周方向端部における油溝内に絞り部を形成したジャーナル部用すべり軸受が提案されている(特許文献2〜4参照)。これらのすべり軸受を、前記異物の観点で検討すると、潤滑油の流れ方向に対する絞り部の下流側で潤滑油の流速が増大し、それに応じて潤滑油に付随する異物に作用する前記慣性力が更に大きくなり、軸受摺動面部分への異物進入の機会が更に増すという問題がある。   On the other hand, in order to reduce the amount of lubricating oil leakage from the bearing circumferential end, a journal sliding bearing has been proposed in which a constricted portion is formed in the oil groove at the circumferential end of the semi-cylindrical bearing. (See Patent Documents 2 to 4). When these sliding bearings are examined from the viewpoint of the foreign matter, the flow velocity of the lubricating oil increases on the downstream side of the throttle portion with respect to the flow direction of the lubricating oil, and the inertial force acting on the foreign matter accompanying the lubricating oil is accordingly increased. There is a problem that the chance of foreign matter entering the bearing sliding surface portion further increases.

また、軸受合金層上に樹脂製摺動層を設けたジャーナル部用およびクランクピン部用すべり軸受の場合、潤滑油に付随して軸受摺動面部分に進入した異物との接触によって、塑性変形し難い樹脂摺動層が破壊して、下地である軸受合金層から剥離し、軸受摺動性能が低下するという問題がある。この問題を解決するために、下地である軸受合金層が露出するように凹部を形成し、異物を軸受合金層中に埋収させるすべり軸受が特許文献7で提案されたことは既に説明したとおりである。しかしながら、このすべり軸受の場合、軸受合金層中に異物を十分に埋収させるためには、軸受合金の露出面積率を高める必要があり、樹脂製摺動層の面積率低下による軸受摺動性能の低下に帰着する。
かくして、本発明の目的は、異物排出性に優れ、樹脂製摺動層を有するすべり軸受の内周面を形成する樹脂製摺動層に対する異物の影響を低減化した、内燃機関のクランク軸を支承する軸受装置を提供することである。
Also, in the case of journal bearings and crankpin slide bearings with a resin sliding layer on the bearing alloy layer, plastic deformation occurs due to contact with foreign matter that has entered the bearing sliding surface part accompanying the lubricating oil. There is a problem that the resin sliding layer that is difficult to break breaks down and peels off from the bearing alloy layer as a base, and the bearing sliding performance is lowered. In order to solve this problem, as described above, a slide bearing in which a concave portion is formed so that a bearing alloy layer as a base is exposed and foreign matters are embedded in the bearing alloy layer is proposed in Patent Document 7. It is. However, in the case of this plain bearing, in order to sufficiently embed foreign matter in the bearing alloy layer, it is necessary to increase the exposed area ratio of the bearing alloy, and the bearing sliding performance due to the decrease in the area ratio of the resin sliding layer. Results in a decline.
Thus, an object of the present invention is to provide a crankshaft of an internal combustion engine that has excellent foreign matter discharge properties and reduces the influence of foreign matters on the resin sliding layer that forms the inner peripheral surface of the slide bearing having the resin sliding layer. It is to provide a bearing device to be supported.

前記目的に照らし、本発明により、以下の軸受装置が提供される。
内部給油路構造を有するクランク軸のジャーナル部およびクランクピン部が、それぞれ、一対の金属製半円筒形状軸受を組み合わせた円筒形状体であるすべり軸受で支承される、内燃機関のクランク軸を支承する軸受装置であり、
前記ジャーナル部用すべり軸受および前記クランクピン部用すべり軸受のうち、少なくとも一方のすべり軸受について、該すべり軸受を構成する前記一対の半円筒形状軸受のうち、少なくとも一方の半円筒形状軸受が、その内周面に樹脂製摺動層を有し、
また、前記ジャーナル部用すべり軸受を構成する前記一対の半円筒形状軸受のうち、少なくとも一方の半円筒形状軸受の内周面に円周方向に延在する油溝が形成されている、前記軸受装置において、
前記油溝は、前記少なくとも一方の半円筒形状軸受の円周方向長さの中央部を含み、
前記油溝の溝底面が、平坦部なしに連続的に起伏する複数の山と複数の谷から成る凹凸面になされており、
前記軸受内周面すなわち軸受摺動面と前記谷の深さとで規定される溝深さをH、前記凹凸面の高低差すなわち前記山の高さをhとしたとき、前記複数の山のうちの任意の山と、これに隣接する位置にある前記谷との寸法関係が、関係式h<0.15Hによって規定されることを特徴とする内燃機関のクランク軸を支承する軸受装置。
In light of the above object, the present invention provides the following bearing device.
The journal portion and the crank pin portion of the crankshaft having the internal oil supply passage structure each support a crankshaft of an internal combustion engine that is supported by a slide bearing that is a cylindrical body combining a pair of metal semi-cylindrical bearings. A bearing device,
Among at least one of the journal part slide bearing and the crankpin part slide bearing, at least one of the semicylindrical bearings of the pair of semicylindrical bearings constituting the slide bearing includes: It has a resin sliding layer on the inner surface,
In addition, an oil groove extending in a circumferential direction is formed on an inner peripheral surface of at least one of the semi-cylindrical bearings of the pair of semi-cylindrical bearings constituting the journal part slide bearing. In the device
The oil groove includes a central portion of a circumferential length of the at least one semi-cylindrical bearing,
The groove bottom surface of the oil groove is an uneven surface composed of a plurality of peaks and valleys that continuously undulate without a flat portion,
When the groove depth defined by the inner peripheral surface of the bearing, that is, the bearing sliding surface, and the depth of the valley is H, and the height difference of the uneven surface, that is, the height of the peak is h, A bearing device for supporting a crankshaft of an internal combustion engine, characterized in that a dimensional relationship between an arbitrary peak and a valley adjacent to the peak is defined by a relational expression h <0.15H.

樹脂製摺動層は、樹脂バインダと、固体潤滑剤とで形成される。樹脂バインダとしては、公知樹脂を用いることができるが、耐熱性の高いポリアミドイミド、ポリイミド、ポリベンゾイミダゾールの等を用いることがこのましい。また、ポリアミドイミド、ポリイミド、ポリベンゾイミダゾール等の耐熱性の高い樹脂とポリアミド、エポキシ、ポリエーテルサルフォン等の樹脂とを混合した樹脂組成物やポリマーアロイ化した樹脂組成物を樹脂バインダとしてもよい。固体潤滑剤としては、二硫化モリブデン、二硫化タングステン、黒鉛、ポリテトラフルオロエチレン、窒化ホウ素等を用いることができる。樹脂バインダに対する固体潤滑剤の添加割合は、好適には、20〜80体積%である。また、樹脂製摺動層の耐摩耗性を高めるために、樹脂製摺動層にセラミックスや金属間化合物等の硬質粒子を含有させてもよい。   The resin sliding layer is formed of a resin binder and a solid lubricant. A known resin can be used as the resin binder, but it is preferable to use polyamideimide, polyimide, polybenzimidazole, or the like having high heat resistance. Further, a resin composition obtained by mixing a resin having high heat resistance such as polyamide imide, polyimide, or polybenzimidazole and a resin such as polyamide, epoxy, or polyether sulfone, or a resin composition obtained by polymer alloy may be used as the resin binder. . As the solid lubricant, molybdenum disulfide, tungsten disulfide, graphite, polytetrafluoroethylene, boron nitride, or the like can be used. The addition ratio of the solid lubricant to the resin binder is preferably 20 to 80% by volume. Further, in order to improve the wear resistance of the resin sliding layer, the resin sliding layer may contain hard particles such as ceramics or an intermetallic compound.

半円筒形状軸受の内周面に樹脂製摺動層を形成するためには、有機溶剤で希釈した樹脂製摺動層の組成物を、半円筒形状軸受の金属基材の内周面に、スプレー法により塗布し、加熱して有機溶剤を乾燥させ、その後、樹脂組成物を加熱焼成する。なお、樹脂製摺動層の形成方法は、スプレー法に限定されず、ロールコート法、印刷法等、その他の一般的な方法によってもよい。
クランク軸のジャーナル部に用いる一対の半円筒形状軸受のうち、内周面に円周方向油溝を形成する半円筒形状軸受については、内周面(軸受摺動面)のみでなく、油溝の内表面にも樹脂製摺動層を付与することも許容される。
In order to form the resin sliding layer on the inner peripheral surface of the semi-cylindrical bearing, the composition of the resin sliding layer diluted with an organic solvent is applied to the inner peripheral surface of the metal base of the semi-cylindrical bearing. It is applied by spraying, heated to dry the organic solvent, and then the resin composition is heated and fired. The method for forming the resin sliding layer is not limited to the spray method, but may be other general methods such as a roll coating method and a printing method.
Of the pair of semi-cylindrical bearings used for the journal part of the crankshaft, not only the inner peripheral surface (bearing sliding surface) but also the oil groove for the semi-cylindrical bearing that forms a circumferential oil groove on the inner peripheral surface It is also permissible to provide a resin sliding layer on the inner surface.

本発明の第一の実施形態では、前記山の高さhが10μm以上である。
本発明の第二の実施形態では、前記油溝が、前記半円筒形状軸受の円周方向全長に亘って軸受内周面に形成される。
本発明の第三の実施形態では、前記油溝の円周方向長さが、半円筒形状軸受の円周方向全長よりも短く、該油溝の円周方向両端部の少なくとも一方が、半円筒形状軸受の円周方向端面に達しない。
本発明の第四の実施形態では、前記軸受内周面すなわち軸受摺動面と前記溝底面の谷部とで規定される溝深さについて、半円筒形状軸受の円周方向長さの中央部における溝深さ(半円筒形状軸受の円周方向端面位置を円周方向角度0°とした時、円周方向角度90°位置に最も近く形成される谷部の深さを意味する)をd、円周方向の油溝両端部における溝深さ(円周方向の油溝両端部に最も近く形成される谷部の深さを意味する)をdとしたとき、前記油溝が、関係式d≦dを満たす。
本発明の第五の実施形態では、前記樹脂製摺動層の厚さが0.5〜3μmである。
In 1st embodiment of this invention, the height h of the said peak is 10 micrometers or more.
In the second embodiment of the present invention, the oil groove is formed on the inner peripheral surface of the bearing over the entire circumferential length of the semi-cylindrical bearing.
In a third embodiment of the present invention, the circumferential length of the oil groove is shorter than the entire circumferential length of the semi-cylindrical bearing, and at least one of the circumferential ends of the oil groove is a semi-cylinder. It does not reach the circumferential end face of the shape bearing.
In the fourth embodiment of the present invention, with respect to the groove depth defined by the bearing inner peripheral surface, that is, the bearing sliding surface and the trough of the groove bottom surface, the central portion of the circumferential length of the semi-cylindrical bearing Groove depth (meaning the depth of the valley formed closest to the position of 90 ° in the circumferential direction when the circumferential end face position of the semi-cylindrical bearing is 0 ° in the circumferential direction). 0, when the groove depth of the oil groove at both ends in the circumferential direction (which means the depth of the valley which is closest formed on the oil groove at both ends in the circumferential direction) was set to d 1, wherein the oil groove, The relational expression d 1 ≦ d 0 is satisfied.
In a fifth embodiment of the present invention, the resin sliding layer has a thickness of 0.5 to 3 μm.

発明の作用、効果
(1)クランク軸用すべり軸受は、通常、鋼製裏金の一方の表面にアルミニウム軸受合金層または銅軸受合金層を形成した積層構造体として提供されるが、すべり軸受を構成する一対の半円筒形状軸受の内周面に樹脂製摺動層を形成することによって、アルミニウム軸受合金層または銅軸受合金層を保護し、すべり軸受のなじみ性、耐疲労性または耐荷重性を向上させることができる。
Action and Effect of Invention (1) A crankshaft slide bearing is usually provided as a laminated structure in which an aluminum bearing alloy layer or a copper bearing alloy layer is formed on one surface of a steel back metal. By forming a resin sliding layer on the inner peripheral surface of a pair of semi-cylindrical bearings, the aluminum bearing alloy layer or the copper bearing alloy layer is protected, and the conformability, fatigue resistance or load resistance of the slide bearing is improved. Can be improved.

樹脂製摺動層の厚さは、0.5〜30μmにすることが好ましく、0.5〜3μmにすることがより好ましい。樹脂製摺動層の厚さは、薄いほど樹脂摺動層の内部応力が低くなるので耐久性が高くなる。本発明軸受装置では、樹脂製摺動層の表面領域に異物が進入し難いため、樹脂製摺動層がすべり軸受の摺動面から消失し難い。このため樹脂製摺動層の厚さを0.5〜3μmとして樹脂製摺動層の耐久性をさらに高めることができる。   The thickness of the resin sliding layer is preferably 0.5 to 30 μm, and more preferably 0.5 to 3 μm. The thinner the resin sliding layer, the lower the internal stress of the resin sliding layer, and the higher the durability. In the bearing device of the present invention, since the foreign matter does not easily enter the surface region of the resin sliding layer, the resin sliding layer hardly disappears from the sliding surface of the slide bearing. For this reason, the durability of the resin sliding layer can be further enhanced by setting the thickness of the resin sliding layer to 0.5 to 3 μm.

(2)潤滑油に付随する異物が、クランク軸のジャーナル部またはクランクピン部と、これを支えるすべり軸受の樹脂製摺動層との間に進入すると、塑性変形し難い樹脂製摺動層が破損して、下地である軸受合金層が露出して、樹脂製摺動層によるすべり軸受の特性改善効果が失われる惧れがある。しかしながら、本発明では、ジャーナル部用の一対の半円筒形状軸受のうち、少なくとも一方の半円筒形状軸受の内周面に円周方向に延在する特別な溝底形状を有する油溝が形成されており、潤滑油に付随して円周方向油溝内に進入した異物が、円周方向油溝内で移動する過程で円周方向油溝から逸脱して、ジャーナル部用のすべり軸受の軸受摺動面である樹脂製摺動層の表面と、クランク軸のジャーナル部との間に進入し、さらには、クランク軸の内部潤滑油路を経て、クランクピン部用の軸受摺動面である樹脂製摺動層の表面と、クランクピン部との間に進入する可能性が低減化される。すなわち、円周方向油溝の溝底面が、平坦部なしに円周方向に連続する凹凸面で形成されていることにより、潤滑油に混入した異物の円周方向への移動速度を低下させて、軸受円周方向端部から潤滑油と共に異物を排出させることができる。潤滑油中に混入する異物は主に金属または鋳砂であり、潤滑油よりも比重が大きいので、クランク軸の回転による遠心力で油溝内の溝底面に沿って転動しながら移動する。本発明のように溝底面を平坦部なしに連続的に起伏する複数の山と複数の谷から成る凹凸面で形成すると、溝底面の谷部分、および、山部分と、異物との接触関係により、異物の移動速度を低下させることができる。特に、軸受損傷の原因となる大きなサイズの異物の場合、サイズが大きくなればなるほど、異物が遠心力により溝底面に沿って転動し易くなるので、溝底面を凹凸面で形成することによって移動速度を低下させる効果が大きくなる。この結果、軸受円周方向端部に到達した異物の移動速度が低くなり、円周方向に直進しようとする慣性力が小さく、軸受円周方向端部の間隙を通じて軸受の幅方向端部から排出させることができる。   (2) When foreign matter accompanying the lubricating oil enters between the journal portion or the crankpin portion of the crankshaft and the resin sliding layer of the slide bearing that supports the crankshaft, a resin sliding layer that is difficult to plastically deform is formed. There is a possibility that the bearing alloy layer as a base is exposed due to breakage, and the effect of improving the characteristics of the sliding bearing by the resin sliding layer may be lost. However, in the present invention, an oil groove having a special groove bottom shape extending in the circumferential direction is formed on the inner peripheral surface of at least one of the semi-cylindrical bearings of the pair of semi-cylindrical bearings for the journal portion. The foreign matter that entered the circumferential oil groove accompanying the lubricating oil deviates from the circumferential oil groove in the process of moving in the circumferential oil groove, and is a bearing for the slide bearing for the journal section. It is a bearing sliding surface for the crankpin portion that enters between the surface of the resin sliding layer that is the sliding surface and the journal portion of the crankshaft, and further through the internal lubricating oil passage of the crankshaft. The possibility of entering between the surface of the resin sliding layer and the crankpin portion is reduced. That is, the groove bottom surface of the circumferential oil groove is formed with an uneven surface that is continuous in the circumferential direction without a flat portion, thereby reducing the moving speed of foreign matter mixed in the lubricating oil in the circumferential direction. The foreign matter can be discharged together with the lubricating oil from the bearing circumferential direction end. The foreign matter mixed in the lubricating oil is mainly metal or casting sand and has a specific gravity greater than that of the lubricating oil, and therefore moves while rolling along the groove bottom surface in the oil groove by the centrifugal force generated by the rotation of the crankshaft. When the groove bottom surface is formed with an uneven surface consisting of a plurality of peaks and valleys that undulate continuously without a flat portion as in the present invention, the groove bottom portion of the groove bottom surface, and the peak portion, due to the contact relationship between the foreign matter The moving speed of the foreign matter can be reduced. In particular, in the case of a large size foreign matter that causes bearing damage, the larger the size, the easier it is for the foreign matter to roll along the groove bottom surface due to centrifugal force. The effect of reducing the speed is increased. As a result, the moving speed of the foreign matter reaching the bearing circumferential end becomes low, the inertial force trying to go straight in the circumferential direction is small, and it is discharged from the bearing widthwise end through the gap in the bearing circumferential end. Can be made.

溝底面に沿って転動する異物に対して十分な接触抵抗を与えるため、溝底凹凸面の高低差(すなわち山の高さh)を10μm以上にすることが好ましい。
また、凹凸面の高低差hを溝深さHの15%未満とし、谷部と山部に沿って流れる時の潤滑油の圧力変化を最小限とし、さらに、溝底面を連続した凹凸面で形成して潤滑油の圧力を穏やかに変化するようにしたので、潤滑油は油溝内を円滑に流れる。
溝底面の凹凸の高低差hが溝深さHの15%以上であると、溝底面付近の潤滑油の流れが乱れて溝内を円滑に流れなくなり、内燃機関に圧力損失が発生し、また、油溝内で異物を浮上させようとする力が働くので、異物が軸受摺動面領域に進入してしまう場合がある。
さらに、溝深さHを一定にしたすべり軸受でも、軸受円周方向中央部から端部に向かって溝深さHを小さくし、軸受円周方向端部における軸受幅方向端部からの潤滑油の漏れ量を減少させるすべり軸受でも、溝底面凹凸の高低差hを溝深さHの15%未満にすることにより、潤滑油の流れに影響を与えることなく、油溝底面を転動する異物の移動速度を低下させて、軸受円周方向端部における軸受幅端部から異物を排出させることができる。
(3)以上に述べたとおり、異物排出性に優れ、すべり軸受の内周面を形成する樹脂製摺動層に対する異物の影響を低減化した、内燃機関のクランク軸を支承する軸受装置を提供することができる。
以下、添付図面を見ながら本発明の実施例および比較例について説明する。
In order to give sufficient contact resistance to the foreign matter rolling along the groove bottom surface, it is preferable that the height difference (that is, the height h of the mountain) of the groove bottom uneven surface is 10 μm or more.
In addition, the height difference h of the uneven surface is less than 15% of the groove depth H, the pressure change of the lubricating oil when flowing along the valley and the ridge is minimized, and the groove bottom surface is a continuous uneven surface. Since it was formed to gently change the pressure of the lubricating oil, the lubricating oil flows smoothly in the oil groove.
If the height difference h of the unevenness on the groove bottom surface is 15% or more of the groove depth H, the flow of lubricating oil near the groove bottom surface is disturbed and the groove does not flow smoothly, and pressure loss occurs in the internal combustion engine. Since the force to float the foreign matter in the oil groove works, the foreign matter may enter the bearing sliding surface region.
Further, even in a slide bearing with a constant groove depth H, the groove depth H is decreased from the center portion in the circumferential direction of the bearing toward the end portion, and lubricating oil from the end portion in the bearing width direction at the end portion in the circumferential direction of the bearing. Even in plain bearings that reduce the amount of leakage, the height difference h of the groove bottom surface unevenness is less than 15% of the groove depth H, so that the foreign matter that rolls on the oil groove bottom surface without affecting the flow of the lubricating oil. Thus, the foreign matter can be discharged from the bearing width end portion at the bearing circumferential end portion.
(3) As described above, a bearing device for supporting a crankshaft of an internal combustion engine is provided that has excellent foreign matter discharge performance and reduces the influence of foreign matter on the resin sliding layer forming the inner peripheral surface of the slide bearing. can do.
Hereinafter, examples and comparative examples of the present invention will be described with reference to the accompanying drawings.

内燃機関のクランク軸を、ジャーナル部およびクランクピン部でそれぞれ截断した模式図。The schematic diagram which cut | disconnected the crankshaft of the internal combustion engine in the journal part and the crankpin part, respectively. 本発明の実施例1に係わる半円筒形状すべり軸受の内周面を見た図。The figure which looked at the internal peripheral surface of the semi-cylindrical slide bearing concerning Example 1 of this invention. 図2におけるIII−III線に沿う断面図。Sectional drawing which follows the III-III line in FIG. 図2におけるIV−IV線に沿う断面図。Sectional drawing which follows the IV-IV line in FIG. 本発明の実施例2に係わる半円筒形状すべり軸受の内周面を見た図。The figure which looked at the internal peripheral surface of the semi-cylindrical slide bearing concerning Example 2 of this invention. 図5におけるVI−VI線に沿う断面図。Sectional drawing which follows the VI-VI line in FIG. 本発明の実施例3に係わる半円筒形状すべり軸受の内周面を見た図。The figure which looked at the internal peripheral surface of the semi-cylindrical slide bearing concerning Example 3 of this invention. 図7におけるVIII−VIII線に沿う断面図。Sectional drawing which follows the VIII-VIII line in FIG. 比較例1に係わる公知の半円筒形状すべり軸受の内周面を見た図。The figure which looked at the internal peripheral surface of the well-known semi-cylindrical slide bearing concerning the comparative example 1. FIG. 図9におけるX−X線に沿う断面図。Sectional drawing which follows the XX line in FIG. 比較例2に係わる半円筒形状すべり軸受の内周面を見た図。The figure which looked at the internal peripheral surface of the semi-cylindrical slide bearing concerning the comparative example 2. FIG. 図11におけるXII−XII線に沿う断面図。Sectional drawing which follows the XII-XII line | wire in FIG.

図1は、内燃機関のクランク軸を、ジャーナル部およびクランクピン部でそれぞれ截断した模式図であり、ジャーナル10、クランクピン12およびコンロッド14を示す。これら三部材の紙面奥行き方向での位置関係は、ジャーナル10が紙面の最も奥側にあり、手前側にクランクピン12があって、クランクピン12が、他端にピストンを担持するコンロッド14の大端部ハウジング16で包囲されている。
ジャーナル10は、一対の半円筒形軸受30A、30Bを介して、内燃機関のシリンダブロック下部に支持されている。図面で上側に位置する半円筒形軸受30Aは、その内周面全長に亘って潤滑油溝(円周方向油溝)36が形成されている。
また、ジャーナル10は、その直径方向貫通孔10aを有し、ジャーナル10が矢印X方向に回転すると、貫通孔10aの両端開口が交互に油溝36に連通する。
さらに、ジャーナル10、図示されないクランクアーム、および、クランクピン12を貫通して潤滑油路20が、クランク軸内部に形成されている。
FIG. 1 is a schematic diagram in which a crankshaft of an internal combustion engine is cut at a journal portion and a crankpin portion, respectively, and shows a journal 10, a crankpin 12 and a connecting rod 14. The positional relationship of these three members in the depth direction of the paper surface is that the journal 10 is at the farthest side of the paper surface, the crank pin 12 is on the front side, and the crank pin 12 is large on the other end of the connecting rod 14 that carries the piston. Surrounded by an end housing 16.
The journal 10 is supported by the lower part of the cylinder block of the internal combustion engine via a pair of semi-cylindrical bearings 30A and 30B. The semi-cylindrical bearing 30A located on the upper side in the drawing has a lubricating oil groove (circumferential oil groove) 36 formed over the entire inner circumferential surface thereof.
Moreover, the journal 10 has the diameter direction through-hole 10a, and when the journal 10 rotates to the arrow X direction, the both-ends opening of the through-hole 10a will communicate with the oil groove 36 alternately.
Further, a lubricating oil passage 20 is formed in the crankshaft through the journal 10, a crank arm (not shown), and the crankpin 12.

クランクピン12は、一対の半円筒形軸受24、26を介して、コンロッド14の大端部ハウジング16(これは、コンロッド側大端部ハウジング16Aとキャップ側大端部ハウジング16Bから成る)に保持されている。半円筒形軸受24、26は、それらの突き合せ端面を互いに突き合わせて組立てて円筒形のコンロッド軸受22になされている。   The crankpin 12 is held by a large end housing 16 of the connecting rod 14 via a pair of semi-cylindrical bearings 24 and 26 (this is composed of a connecting rod side large end housing 16A and a cap side large end housing 16B). Has been. The semi-cylindrical bearings 24 and 26 are assembled into a cylindrical connecting rod bearing 22 by assembling them with their butted end faces abutting each other.

ここで、内部潤滑油路を有する前記クランク軸の機関作動中における潤滑油の流れについて説明する。
シリンダブロックに設けたオイルギャラリーから、ジャーナル10を支承する主軸受を構成する一対の半円筒形状のすべり軸受30A、30Bのうち、内周面に油溝36が形成された半円筒形状のすべり軸受30Aの壁を貫通して形成された開口を通じて、潤滑油溝36内に潤滑油が供給される。回転するジャーナル10に形成された直径方向貫通孔10aの両端開口が潤滑油溝36と間欠的に連通するが、その連通時に貫通孔10a内に潤滑油圧が作用し、更には貫通孔10aに連通する潤滑油路20にも潤滑油供給圧力が作用し、クランクピン12の外周面に存在する潤滑油路20の出口(開口)から、クランクピン12とコンロッド軸受22の間の摺動面部に潤滑油が供給される。
Here, the flow of lubricating oil during engine operation of the crankshaft having the internal lubricating oil passage will be described.
Of the pair of semi-cylindrical slide bearings 30A and 30B constituting the main bearing for supporting the journal 10 from the oil gallery provided in the cylinder block, the semi-cylindrical slide bearing in which the oil groove 36 is formed on the inner peripheral surface. Lubricating oil is supplied into the lubricating oil groove 36 through an opening formed through the wall of 30A. Openings at both ends of the diametrical through hole 10a formed in the rotating journal 10 are intermittently communicated with the lubricating oil groove 36. At the time of the communication, lubricating hydraulic pressure acts in the through hole 10a and further communicates with the through hole 10a. Lubricating oil supply pressure also acts on the lubricating oil path 20, and lubricates the sliding surface portion between the crankpin 12 and the connecting rod bearing 22 from the outlet (opening) of the lubricating oil path 20 existing on the outer peripheral surface of the crankpin 12. Oil is supplied.

図2、図3は、本発明の実施例1に係わる半円筒形状のすべり軸受30Aを示す。図2は、すべり軸受30Aの内周面を見た図、図3は、図2におけるIII−III線に沿う断面図、図4は、図2におけるIV−IV線に沿う断面図である。   2 and 3 show a semi-cylindrical plain bearing 30A according to Embodiment 1 of the present invention. 2 is a view of the inner peripheral surface of the plain bearing 30A, FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2, and FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.

先ず、図4に示されているすべり軸受30Aの積層構造について説明する。すべり軸受30Aは、補剛材である鋼製裏金30aと、鋼製裏金30aに対して接合されたアルミニウム系軸受合金または銅系軸受合金から成る軸受合金層30bと、軸受合金層30b上に被着した樹脂製摺動層30cとから成る半円筒形積層構造体である。樹脂製摺動層30cは、すべり軸受30Aの内周面(軸受摺動面)32を覆っている。
樹脂製摺動層30cの厚さは、好適には0.5〜30μm、更に好適には0.5〜3μmである。
First, the laminated structure of the slide bearing 30A shown in FIG. 4 will be described. The plain bearing 30A includes a steel back metal 30a that is a stiffener, a bearing alloy layer 30b made of an aluminum bearing alloy or a copper bearing alloy joined to the steel back metal 30a, and a bearing alloy layer 30b. This is a semi-cylindrical laminated structure including a resin sliding layer 30c that is attached. The resin sliding layer 30c covers the inner peripheral surface (bearing sliding surface) 32 of the slide bearing 30A.
The thickness of the resin sliding layer 30c is preferably 0.5 to 30 μm, and more preferably 0.5 to 3 μm.

すべり軸受30Aは、その円周方向両端面34を、同じく半円筒形状のすべり軸受30B(図1)の円周方向両端面と突き合わせ、円筒形状体を構成して使用される。
すべり軸受30Aは、その内周面(軸受摺動面)32の幅方向中央部に、円周方向に延在する潤滑油用油溝36を有する。油溝36は、内周面の全長に亘って形成され、両端面34で溝端が開放されている。また、油溝36は、その溝底面が、平坦部なしに連続的に起伏する複数の山36Aと複数の谷36Bから成る凹凸面になされている。本実施例では、複数の谷36Bの最深部が、軸受中心(軸線)に対する半径rの円弧(38)上にある。
ここで、内周面(軸受摺動面)32を基準面とする油溝36の深さをH(これは、内周面32から谷36Bの最深部までの深さに等しい)とし、凹凸面の高低差すなわち山の高さをh(本実施例では一定)としたとき、Hとhは、以下の関係式(1)を満たすようになされている。好適には、山の高さhは10μm以上になされる。
The sliding bearing 30A is used by constituting a cylindrical body by abutting the circumferential end faces 34 with the circumferential end faces of the semicylindrical sliding bearing 30B (FIG. 1).
The slide bearing 30A has a lubricating oil groove 36 extending in the circumferential direction at the center in the width direction of the inner peripheral surface (bearing sliding surface) 32 thereof. The oil groove 36 is formed over the entire length of the inner peripheral surface, and the groove ends are opened at both end faces 34. Further, the bottom surface of the oil groove 36 is an uneven surface composed of a plurality of peaks 36A and a plurality of valleys 36B that continuously undulate without a flat portion. In the present embodiment, the deepest portions of the plurality of valleys 36B are on an arc (38) having a radius r with respect to the bearing center (axis).
Here, the depth of the oil groove 36 with the inner peripheral surface (bearing sliding surface) 32 as a reference surface is H (this is equal to the depth from the inner peripheral surface 32 to the deepest part of the valley 36B), When the height difference of the surface, that is, the height of the mountain is h (constant in the present embodiment), H and h satisfy the following relational expression (1). Preferably, the peak height h is 10 μm or more.

h<0.15H ……(1)         h <0.15H (1)

すべり軸受30Aは以上のように形成されており、軸受壁を貫通して形成された図示されない油穴を通じて、油溝36内に潤滑油が供給され、軸受端面34側に向かって油溝36内を円周方向に流れる。油溝36の底面の凹凸高低差(山の高さh)が、好適には10μm以上の凹凸面になされており、この凹凸面が、潤滑油と共に油溝内に混入して油溝の底面に沿って転動する異物の抵抗になり、異物の移動速度を低下させる。軸受円周方向端部領域に到達した異物は移動速度が遅く、円周方向に直進しようとする慣性力が小さいので、軸受幅方向端部から軸受外部に向かって、潤滑油と共に首尾よく排出することができる。
また、凹凸面の高低差を、h<0.15Hの関係式を満たすように形成したことにより、凹凸面の谷部分および山部分に沿って流れる時の潤滑油の圧力変化を最小限にし、さらに溝底面を連続した凹凸面で形成して圧力を緩やかに変化するようにしたことにより、潤滑油が油溝内を円滑に流れる。好適には、異物の転動速度を低下させるために円周方向油溝の溝底面が、連続する6つ以上の凹凸(山と谷)で形成される。
*具体的数値の一例: 軸受内径寸法45mm、溝深さHが0.8mmの溝を形成したすべり軸受の場合には凹凸の高低差すなわち山の高さhは10μm以上0.12mm未満にすることが好ましい。連続する谷36Bまたは山36Aのピッチは、円周方向油溝の溝底面を連続する6つ以上の凹凸(山と谷)で形成するように円周角度36°以下となるピッチにすることが好ましい。
The slide bearing 30A is formed as described above. Lubricating oil is supplied into the oil groove 36 through an oil hole (not shown) formed through the bearing wall, and the oil groove 36 is moved toward the bearing end surface 34. Flows in the circumferential direction. The unevenness height difference (mountain height h) of the bottom surface of the oil groove 36 is preferably 10 μm or more, and this uneven surface is mixed with the lubricating oil in the oil groove so that the bottom surface of the oil groove. The resistance of the foreign material rolling along the, and the moving speed of the foreign material is reduced. Foreign matter that has reached the bearing circumferential end region has a slow moving speed and has a small inertial force to move straight in the circumferential direction, so it is successfully discharged from the bearing width direction end with the lubricating oil toward the outside of the bearing. be able to.
Further, by forming the height difference of the concavo-convex surface so as to satisfy the relational expression of h <0.15H, the pressure change of the lubricating oil when flowing along the valley portion and the peak portion of the concavo-convex surface is minimized, Furthermore, since the groove bottom surface is formed of a continuous uneven surface so that the pressure changes gently, the lubricating oil flows smoothly in the oil groove. Preferably, the bottom surface of the circumferential oil groove is formed of six or more continuous irregularities (mountains and valleys) in order to reduce the rolling speed of the foreign matter.
* Example of specific numerical values: In the case of a slide bearing formed with a groove having a bearing inner diameter of 45 mm and a groove depth H of 0.8 mm, the height difference of the unevenness, that is, the height h of the ridge is set to 10 μm or more and less than 0.12 mm. It is preferable. The pitch of the continuous valleys 36B or the peaks 36A is set to a pitch with a circumferential angle of 36 ° or less so that the groove bottom surface of the circumferential oil groove is formed by six or more continuous irregularities (peaks and valleys). preferable.

溝底に連続凹凸面を有する油溝36の加工は、切削加工やプレス加工等の一般的な方法で行なうことができる。切削加工の場合には、切削カッターの回転軸中心を溝底凹凸に相当する軌跡を描くように変動させて形成することができる。溝深さH、および、溝幅寸法は、従来のすべり軸受と同様に内燃機関の軸受部分の仕様により決まるものであり、特に制約はない。また、従来のすべり軸受と同様に油溝の側面に面取部分を形成することもできる。   Processing of the oil groove 36 having a continuous uneven surface at the groove bottom can be performed by a general method such as cutting or pressing. In the case of cutting, the center of rotation of the cutting cutter can be varied so as to draw a locus corresponding to the groove bottom irregularities. The groove depth H and the groove width dimension are determined by the specifications of the bearing portion of the internal combustion engine as in the case of the conventional slide bearing, and are not particularly limited. In addition, a chamfered portion can be formed on the side surface of the oil groove as in the case of a conventional plain bearing.

図5、図6は、本発明の実施例2に係わる半円筒形状のすべり軸受40を示す。図5は、すべり軸受40の内周面を見た図であり、図6は、図5におけるVI−VI線に沿う断面図である。
すべり軸受30Aと同様に、すべり軸受40は、その内周面(軸受摺動面)42に、樹脂製摺動層が形成されている。
また、すべり軸受30Aと同様に、すべり軸受40は、その内周面(軸受摺動面)42の幅方向中央部に、円周方向に延在する油溝46を有する。油溝46は、油溝36と違って、内周面の全長に亘って形成されておらず、溝端が軸受両端面44で開放されていない。このように、両端面44で溝端を開放させない構成を採用すると、溝端からの潤滑油漏れ量が減少し、潤滑油に付随する異物の移動速度が低下する。軸受円周方向端部領域に到達した異物は移動速度が遅く、直進しようとする慣性力が小さいので、軸受幅方向端部から潤滑油と共に排出することができる。
5 and 6 show a semi-cylindrical plain bearing 40 according to Embodiment 2 of the present invention. 5 is a view of the inner peripheral surface of the slide bearing 40, and FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
Similar to the sliding bearing 30A, the sliding bearing 40 has a resin sliding layer formed on the inner peripheral surface (bearing sliding surface) 42 thereof.
Similarly to the slide bearing 30A, the slide bearing 40 has an oil groove 46 extending in the circumferential direction at the center in the width direction of the inner peripheral surface (bearing sliding surface) 42 thereof. Unlike the oil groove 36, the oil groove 46 is not formed over the entire length of the inner peripheral surface, and the groove end is not opened at the bearing end surfaces 44. Thus, if the structure which does not open a groove end by the both end surfaces 44 is adopted, the amount of lubricating oil leakage from the groove end is reduced, and the moving speed of foreign matters accompanying the lubricating oil is reduced. The foreign matter that has reached the end portion in the bearing circumferential direction has a low moving speed and a small inertial force to go straight, so that it can be discharged together with the lubricating oil from the end portion in the bearing width direction.

本実施例における溝底の連続凹凸面も、基本的には、油溝36の構造と同じであるが、油溝46が内周面の全長に亘って形成されていない点、および、内周面(軸受摺動面)42を基準面とする油溝46の深さHが、すべり軸受40の円周方向長さの中央部で最大になされ、両溝端に向かって次第に小さくなされている点で、油溝36の構造と異なる。この場合、溝深さHと、山の高さhとの関係は、軸受円周方向における任意の山の高さhと、この山に隣接する谷部における溝深さHとが前記数式1を満たすようになされる。   The continuous uneven surface of the groove bottom in this embodiment is basically the same as the structure of the oil groove 36, but the oil groove 46 is not formed over the entire length of the inner peripheral surface, and the inner periphery. The depth H of the oil groove 46 with the surface (bearing sliding surface) 42 as a reference surface is maximized at the center of the circumferential length of the slide bearing 40 and gradually becomes smaller toward both groove ends. Thus, the structure of the oil groove 36 is different. In this case, the relationship between the groove depth H and the height h of the mountain is that the height h of an arbitrary mountain in the circumferential direction of the bearing and the groove depth H in a valley portion adjacent to this mountain are expressed by the above formula 1. It is made to satisfy.

図7、図8は、本発明の実施例3に係わる半円筒形状のすべり軸受50を示す。図7は、すべり軸受50の内周面を見た図であり、図8は、図7におけるVIII−VIII線に沿う断面図である。
すべり軸受50は、その内周面(軸受摺動面)52に、すべり軸受30Aと同様に樹脂製摺動層が形成されている。
すべり軸受50は、油溝56の溝端が軸受両端面54で開放されている点を除き、すべり軸受40とほぼ同様な油溝構造を有する。
油溝56の溝深さHが、すべり軸受50の円周方向長さの中央部で最大になされ、両溝端に向かって次第に小さくなされていることにより、溝端からの潤滑油漏れ量が減少し、潤滑油に付随する異物の移動速度が低下する。軸受周方向端部に到達した異物は移動速度が遅く、直進しようとする慣性力が小さいので、軸受幅方向端部から潤滑油と共に排出することができる。
7 and 8 show a semi-cylindrical plain bearing 50 according to Embodiment 3 of the present invention. 7 is a view of the inner peripheral surface of the slide bearing 50, and FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
The sliding bearing 50 has a resin sliding layer formed on its inner peripheral surface (bearing sliding surface) 52 as in the case of the sliding bearing 30A.
The slide bearing 50 has an oil groove structure substantially similar to that of the slide bearing 40 except that the groove ends of the oil grooves 56 are open at both end faces 54 of the bearing.
The groove depth H of the oil groove 56 is maximized at the center portion of the circumferential length of the slide bearing 50 and gradually decreased toward both groove ends, thereby reducing the amount of lubricating oil leakage from the groove ends. The moving speed of the foreign matter accompanying the lubricating oil decreases. The foreign matter that has reached the end portion in the circumferential direction of the bearing has a low moving speed and has a small inertial force to move straight, so that it can be discharged together with the lubricating oil from the end portion in the bearing width direction.

以上、本発明の3つの実施例について説明したが、油溝深さHを軸受の円周方向中央部から端部に向かって小さくなるように油溝を形成するすべり軸受において、円周方向油溝の端部近傍の溝深さHが非常に小さくなるために、溝底面凹凸の高低差を溝深さHに対し15%未満にすることが、加工機械の精度との関係によって困難である場合には、油溝円周方向端部近傍範囲においては、溝深さHに対する凹凸高低差hが15%以上である溝底凹凸面で形成し、あるいはまた、平坦な溝底面を形成することを許容できる。ただし、この範囲は、円周方向溝の端部から円周方向角度15°以内にすることが好ましい。
また、図示例に限定されず、円周方向油溝の端部が軸受の片側端面でのみ開放される場合も可能であり、油溝底面の円周方向に沿う断面形状は、実施例に示すような単一円弧に沿う形状に限らず、曲率の異なる複数の円弧に沿う形状であってもよい。
なお、本願のすべり軸受には従来のすべり軸受と同じく、すべり軸受の厚さを軸受円周方向の中央部から端部に向かって薄くなるように偏肉させてもよく、また、軸受円周方向端部の軸受内周面側にクラッシュリリーフや面取りを形成してもよい。
In the above, three embodiments of the present invention have been described. However, in the slide bearing in which the oil groove is formed so that the oil groove depth H decreases from the circumferential center portion to the end portion of the bearing, the circumferential oil Since the groove depth H in the vicinity of the end of the groove becomes very small, it is difficult to make the height difference of the groove bottom surface unevenness less than 15% with respect to the groove depth H due to the accuracy of the processing machine. In this case, in the vicinity of the end portion in the circumferential direction of the oil groove, a groove bottom uneven surface having an uneven height difference h with respect to the groove depth H of 15% or more, or a flat groove bottom surface is formed. Is acceptable. However, this range is preferably within 15 ° in the circumferential direction from the end of the circumferential groove.
Further, the present invention is not limited to the illustrated example, and the end portion of the circumferential oil groove may be opened only on one end surface of the bearing, and the cross-sectional shape along the circumferential direction of the bottom surface of the oil groove is shown in the embodiment. Not only the shape along such a single arc, but also a shape along a plurality of arcs with different curvatures may be used.
Note that the sliding bearing of the present application may be unevenly thickened so that the thickness of the sliding bearing becomes thinner from the center to the end in the circumferential direction of the bearing, as in the conventional sliding bearing. A crush relief or a chamfer may be formed on the bearing inner peripheral surface side of the direction end.

以下で説明する比較例1、2のいずれも、実施例1〜3と同様に、軸受内周面(軸受摺動面)に、同様な樹脂製摺動層が形成されている。
[比較例1]
図9、図10は、比較例1に係わる公知の半円筒形状すべり軸受60を示す。図7は、すべり軸受60の内周面を見た図であり、図10は、図9におけるX−X線に沿う断面図である。すべり軸受60は、その内周面(軸受摺動面)62の幅方向中央部に、円周方向に延在する油溝66を有する。油溝66は、内周面の全長に亘って形成され、軸受両端面64で溝端が開放されている。油溝66の溝底面は、起伏のない平坦面である。
In both Comparative Examples 1 and 2 described below, the same resin sliding layer is formed on the bearing inner peripheral surface (bearing sliding surface) as in Examples 1-3.
[Comparative Example 1]
9 and 10 show a known semi-cylindrical plain bearing 60 according to the first comparative example. 7 is a view of the inner peripheral surface of the slide bearing 60, and FIG. 10 is a cross-sectional view taken along line XX in FIG. The slide bearing 60 has an oil groove 66 extending in the circumferential direction at the center in the width direction of the inner peripheral surface (bearing sliding surface) 62 thereof. The oil groove 66 is formed over the entire length of the inner peripheral surface, and the groove ends are opened at both bearing end faces 64. The bottom surface of the oil groove 66 is a flat surface having no undulations.

[比較例2]
図11、図12は、比較例2に係わる半円筒形状すべり軸受70を示す。図11は、すべり軸受70の内周面を見た図であり、図12は、図11におけるXII−XII線に沿う断面図である。すべり軸受70は、その内周面(軸受摺動面)72の幅方向中央部に、円周方向に延在する油溝76を有する。油溝76は、内周面の全長に亘って形成され、軸受両端面74で溝端が開口されている。油溝76の底面は、溝両端部分を除く、中央領域の大部分が比較例1の油溝66と同様に起伏のない平坦面である。溝両端部分における油溝76の底面には、溝深さHの50%である高さhを有する各複数の***部78が形成され、他の箇所に比して溝横断面面積が小さくなっている。
[Comparative Example 2]
11 and 12 show a semi-cylindrical plain bearing 70 according to the second comparative example. 11 is a view of the inner peripheral surface of the slide bearing 70, and FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. The slide bearing 70 has an oil groove 76 extending in the circumferential direction at the center in the width direction of the inner peripheral surface (bearing sliding surface) 72 thereof. The oil groove 76 is formed over the entire length of the inner peripheral surface, and the groove ends are opened at both bearing end faces 74. The bottom surface of the oil groove 76 is a flat surface having no undulations, as in the oil groove 66 of Comparative Example 1, except for the both ends of the groove. A plurality of raised portions 78 having a height h, which is 50% of the groove depth H, are formed on the bottom surface of the oil groove 76 at both ends of the groove, and the groove cross-sectional area is smaller than other portions. ing.

実施例1〜3と比較例1,2の比較
実施例では、軸受の壁に設けた油穴(図示せず)を通じて円周方向油溝内に供給された潤滑油が油溝内を円周方向に流れる。油溝の溝底面を、好適には10μm以上の高低差の凹凸面により形成したことにより、凹凸面は、潤滑油と共に油溝内に進入して油溝底面に沿って転動する異物の抵抗になり、異物の移動速度を低下させる。軸受円周方向端部に到達した異物は移動速度が遅く、円周方向に直進しようとする慣性力が小さいので軸受幅方向端部より排出される潤滑油と共に排出することができる。凹凸面の高低差hを油溝深さHの15%未満とし、谷部および山部に沿って流れる時の潤滑油の圧力変化を最小限になし、さらに、溝底面を連続した凹凸面で形成して潤滑油圧力が穏やかに変化するように構成したので、潤滑油は油溝内を円滑に流れる。
比較例1の場合、油溝内に潤滑油と共に進入した異物は、油溝底面に沿って転動するが、溝底面が平坦であるため抵抗が少なく、異物の移動速度を低下させる効果はない。このため、異物の円周方向に直進しようとする慣性力が大きく、軸受の円周方向端面に到達した異物が軸受幅方向に排出されることなく、対をなす相手側半割形状軸受(図示せず)の軸受摺動面領域に進入しやすい。
比較例2の場合、油溝内を円周方向に流れる潤滑油は軸受の円周方向端部付近の油溝底面に断続的に形成された***部付近で局部的で急激な潤滑油の圧力変動が生じるため、油溝内を潤滑油が円滑に流れず圧力損失が生じる。また、潤滑油流れ方向に対する***部の下流側では、絞り効果によって潤滑油の流速が大きくなるため、異物の移動速度も速くなる。このため、異物の円周方向に直進しようとする慣性力が大きく、軸受の円周方向端面に到達した異物が、軸受幅方向に排出されることなく、対となる相手側半割形状軸受(図示せず)の軸受摺動面領域に進入しやすい。また、***部による円周方向溝内の潤滑油の急激な圧力変動により異物が潤滑油中で浮上し、***部を有する軸受自体の軸受摺動面領域への進入も生じやすくなるという新たな問題も発生する。
Comparison between Examples 1 to 3 and Comparative Examples 1 and 2 In the example, the lubricating oil supplied into the circumferential oil groove through an oil hole (not shown) provided in the wall of the bearing is circumferential in the oil groove. Flow in the direction. By forming the bottom surface of the oil groove with an uneven surface with a height difference of preferably 10 μm or more, the uneven surface enters the oil groove together with the lubricating oil, and resists foreign matter that rolls along the oil groove bottom surface. This reduces the moving speed of the foreign matter. The foreign matter that has reached the end portion in the circumferential direction of the bearing has a low moving speed and has a small inertial force to move straight in the circumferential direction, so that it can be discharged together with the lubricating oil discharged from the end portion in the bearing width direction. The height difference h of the concavo-convex surface is less than 15% of the oil groove depth H, the pressure change of the lubricating oil when flowing along the valleys and ridges is minimized, and the groove bottom surface is a continuous concavo-convex surface. Since it is formed and the lubricating oil pressure changes gently, the lubricating oil flows smoothly in the oil groove.
In the case of Comparative Example 1, the foreign matter that has entered the oil groove together with the lubricating oil rolls along the bottom surface of the oil groove, but since the bottom surface of the groove is flat, there is little resistance and there is no effect of reducing the movement speed of the foreign matter. . For this reason, the inertial force that tries to go straight in the circumferential direction of the foreign material is large, and the foreign material that has reached the circumferential end surface of the bearing is not discharged in the bearing width direction. It is easy to enter the bearing sliding surface area.
In the case of Comparative Example 2, the lubricating oil flowing in the circumferential direction in the oil groove is localized and suddenly pressurized in the vicinity of the raised portion formed on the bottom surface of the oil groove near the circumferential end of the bearing. Since fluctuation occurs, the lubricating oil does not flow smoothly in the oil groove, resulting in pressure loss. In addition, on the downstream side of the raised portion with respect to the lubricating oil flow direction, the flow rate of the lubricating oil increases due to the throttling effect, so the moving speed of the foreign matter also increases. For this reason, the inertial force that tries to go straight in the circumferential direction of the foreign matter is large, and the foreign matter that has reached the circumferential end surface of the bearing is not discharged in the bearing width direction, and the counterpart half-shaped bearing ( It is easy to enter the bearing sliding surface region (not shown). In addition, a sudden pressure fluctuation of the lubricating oil in the circumferential groove due to the raised portion causes foreign matter to rise in the lubricating oil, and the bearing itself having the raised portion is more likely to enter the bearing sliding surface region. Problems also arise.

以上、実施例1〜3では、軸受外部への異物排出性が良好であるため、ジャーナル部用すべり軸受の油溝を経て、潤滑油と共にクランクピン部用すべり軸受へ送られる異物の量を極力抑えることができ、ジャーナル部用およびクランクピン部用すべり軸受の内周面領域に異物が進入し難く、異物による樹脂製摺動層の損傷の機会が少ない。
これに対して、比較例1,2では、前記のとおり、軸受外部へ異物が排出され難い。ジャーナル部用すべり軸受の外部に排出されない異物は、ジャーナル部用すべり軸受の内周面領域に進入するだけでなく、潤滑油とともにクランクピン部のすべり軸受の内周面領域にも進入しやすい。すべり軸受の摺動面領域に異物が進入すると、すべり軸受の内周面に付与した樹脂製摺動層の破損や剥離が発生して、樹脂製摺動層の消失が生じる結果になる。
As described above, in Examples 1 to 3, since the foreign matter discharge performance to the outside of the bearing is good, the amount of foreign matter sent to the crank pin slide bearing together with the lubricating oil through the oil groove of the journal slide bearing is reduced as much as possible. It is possible to suppress the foreign matter from entering the inner peripheral surface area of the journal bearing and the crank pin slide bearing, and there is little chance of damage to the resin sliding layer by the foreign matter.
On the other hand, in Comparative Examples 1 and 2, as described above, it is difficult for foreign matter to be discharged outside the bearing. Foreign matter that is not discharged to the outside of the journal slide bearing not only enters the inner peripheral surface area of the journal slide bearing but also easily enters the inner peripheral surface area of the crank pin slide bearing together with the lubricating oil. When foreign matter enters the sliding surface area of the sliding bearing, the resin sliding layer applied to the inner peripheral surface of the sliding bearing is damaged or peeled off, resulting in the loss of the resin sliding layer.

実施例では、クランク軸のジャーナル部に適用するすべり軸受の内周面に樹脂製摺動層を形成した構造の説明を行なったが、クランクピン部に適用するすべり軸受の内周面にのみ樹脂製摺動層を形成してもよく、最も好ましくは、ジャーナル部およびクランクピン部用の両すべり軸受の内周面に樹脂製摺動層を形成する。   In the embodiment, the structure in which the resin sliding layer is formed on the inner peripheral surface of the slide bearing applied to the journal portion of the crankshaft has been described. However, the resin is applied only to the inner peripheral surface of the slide bearing applied to the crankpin portion. A sliding layer made of resin may be formed, and most preferably, a sliding layer made of resin is formed on the inner peripheral surface of both slide bearings for the journal portion and the crankpin portion.

10 クランク軸のジャーナル
10a 貫通孔
12 クランクピン
14 コンロッド
16 大端部ハウジング
16A コンロッド側大端部ハウジング
16B キャップ側大端部ハウジング
20 潤滑油路
24 半円筒形軸受
26 半円筒形軸受
30A すべり軸受
30B すべり軸受
30a 鋼製裏金
30b 軸受合金層
30c 樹脂製摺動層
32 内周面(軸受摺動面)
34 端面
36 油溝
36A 山
36B 谷
38 円弧
40 すべり軸受
42 内周面(軸受摺動面)
44 端面
46 油溝
50 すべり軸受
52 内周面(軸受摺動面)
54 端面
56 油溝
60 すべり軸受
62 内周面(軸受摺動面)
64 端面
66 油溝
70 すべり軸受
72 内周面(軸受摺動面)
74 端面
76 油溝
78 ***部
H 油溝の深さ
h 山の高さ
DESCRIPTION OF SYMBOLS 10 Crankshaft journal 10a Through-hole 12 Crankpin 14 Connecting rod 16 Large end housing 16A Connecting rod side large end housing 16B Cap side large end housing 20 Lubricating oil passage 24 Semi-cylindrical bearing 26 Semi-cylindrical bearing 30A Slide bearing 30B Plain bearing
30a Steel back metal 30b Bearing alloy layer 30c Sliding layer made of resin 32 Inner peripheral surface (bearing sliding surface)
34 End face 36 Oil groove 36A Crest 36B Valley 38 Arc 40 Slide bearing 42 Inner peripheral surface (bearing sliding surface)
44 End face 46 Oil groove 50 Slide bearing 52 Inner peripheral surface (bearing sliding surface)
54 End face 56 Oil groove 60 Slide bearing 62 Inner peripheral surface (bearing sliding surface)
64 End face 66 Oil groove 70 Slide bearing 72 Inner peripheral surface (bearing sliding surface)
74 End face 76 Oil groove 78 Raised part H Oil groove depth h Mountain height

Claims (6)

内部給油路構造を有するクランク軸のジャーナル部およびクランクピン部が、それぞれ、一対の金属製半円筒形状軸受を組み合わせた円筒形状体であるすべり軸受で支承される、内燃機関のクランク軸を支承する軸受装置であり、
前記ジャーナル部用すべり軸受および前記クランクピン部用すべり軸受のうち、少なくとも前記ジャーナル部用すべり軸受、または両方のすべり軸受について、該すべり軸受を構成する前記一対の半円筒形状軸受が、その内周面に樹脂製摺動層を有し、
また、前記ジャーナル部用すべり軸受を構成する前記一対の半円筒形状軸受のうち、少なくとも一方の半円筒形状軸受の内周面に円周方向に延在する油溝が形成され、該油溝の内表面には前記樹脂摺動層が形成されている、前記軸受装置において、
前記油溝は、前記少なくとも一方の半円筒形状軸受の円周方向長さの中央部を含み、
前記油溝の溝底面が、平坦部なしに連続的に起伏する複数の山と複数の谷から成る凹凸面になされており、
前記軸受内周面すなわち軸受摺動面と前記谷の深さとで規定される溝深さをH、前記凹凸面の高低差すなわち前記山の高さをhとしたとき、前記複数の山のうちの任意の山と、これに隣接する位置にある前記谷との寸法関係が、関係式h<0.15Hによって規定されることを特徴とする内燃機関のクランク軸を支承する軸受装置。
The journal portion and the crank pin portion of the crankshaft having the internal oil supply passage structure each support a crankshaft of an internal combustion engine that is supported by a slide bearing that is a cylindrical body combining a pair of metal semi-cylindrical bearings. A bearing device,
Of the slide bearing for the journal part and the slide bearing for the crankpin part, at least the slide bearing for the journal part, or both of the slide bearings, the pair of semi-cylindrical bearings constituting the slide bearing has an inner circumference thereof. Has a resin sliding layer on the surface,
An oil groove extending in a circumferential direction is formed on an inner peripheral surface of at least one of the semi-cylindrical bearings of the pair of semi-cylindrical bearings constituting the journal part slide bearing, In the bearing device, the resin sliding layer is formed on the inner surface,
The oil groove includes a central portion of a circumferential length of the at least one semi-cylindrical bearing,
The groove bottom surface of the oil groove is an uneven surface composed of a plurality of peaks and valleys that continuously undulate without a flat portion,
When the groove depth defined by the inner peripheral surface of the bearing, that is, the bearing sliding surface, and the depth of the valley is H, and the height difference of the uneven surface, that is, the height of the peak is h, A bearing device for supporting a crankshaft of an internal combustion engine, characterized in that a dimensional relationship between an arbitrary peak and a valley adjacent to the peak is defined by a relational expression h <0.15H.
前記山の高さhが10μm以上であることを特徴とする請求項1に記載された内燃機関のクランク軸を支承する軸受装置。   2. A bearing device for supporting a crankshaft of an internal combustion engine according to claim 1, wherein a height h of the mountain is 10 [mu] m or more. 前記油溝が、前記半円筒形状軸受の円周方向全長に亘って軸受内周面に形成されていることを特徴とする請求項1または請求項2に記載された内燃機関のクランク軸を支承する軸受装置。   3. The crankshaft of an internal combustion engine according to claim 1, wherein the oil groove is formed on a bearing inner circumferential surface over the entire circumferential length of the semi-cylindrical bearing. Bearing device. 前記油溝の円周方向長さが、半円筒形状軸受の円周方向全長よりも短く、該油溝の円周方向両端部の少なくとも一方が、半円筒形状軸受の円周方向端面に達していないことを特徴とする請求項1または請求項2に記載された内燃機関のクランク軸を支承する軸受装置。   The circumferential length of the oil groove is shorter than the entire circumferential length of the semi-cylindrical bearing, and at least one of the circumferential ends of the oil groove reaches the circumferential end surface of the semi-cylindrical bearing. 3. A bearing device for supporting a crankshaft of an internal combustion engine according to claim 1 or 2, wherein the bearing device supports the crankshaft. 前記軸受内周面すなわち軸受摺動面と前記溝底面の谷部とで規定される溝深さについて、前記半円筒形状軸受の円周方向長さの中央部における溝深さをd、円周方向の油溝両端部における溝深さをdとしたとき、前記油溝が、関係式d≦dを満たすことを特徴とする請求項1から請求項4までのいずれか1項に記載された内燃機関のクランク軸を支承する軸受装置。 Regarding the groove depth defined by the inner peripheral surface of the bearing, that is, the bearing sliding surface and the valley portion of the groove bottom surface, the groove depth at the central portion of the circumferential length of the semi-cylindrical bearing is d 0 , 5. The oil groove according to claim 1, wherein the oil groove satisfies a relational expression d 1 ≦ d 0 , where d 1 is a groove depth at both ends of the oil groove in the circumferential direction. The bearing device which supports the crankshaft of the internal combustion engine described in 1. 前記樹脂製摺動層の厚さが0.5〜3μmである請求項1から請求項5までのいずれか1項に記載された内燃機関のクランク軸を支承する軸受装置。   The bearing device for supporting a crankshaft of an internal combustion engine according to any one of claims 1 to 5, wherein the resin sliding layer has a thickness of 0.5 to 3 µm.
JP2012221862A 2012-10-04 2012-10-04 Bearing device for supporting a crankshaft of an internal combustion engine Active JP5317376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012221862A JP5317376B2 (en) 2012-10-04 2012-10-04 Bearing device for supporting a crankshaft of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221862A JP5317376B2 (en) 2012-10-04 2012-10-04 Bearing device for supporting a crankshaft of an internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009157839A Division JP5107972B2 (en) 2009-07-02 2009-07-02 Bearing device for supporting a crankshaft of an internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013036618A true JP2013036618A (en) 2013-02-21
JP5317376B2 JP5317376B2 (en) 2013-10-16

Family

ID=47886395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221862A Active JP5317376B2 (en) 2012-10-04 2012-10-04 Bearing device for supporting a crankshaft of an internal combustion engine

Country Status (1)

Country Link
JP (1) JP5317376B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170742A1 (en) * 2015-04-24 2016-10-27 オイレス工業株式会社 Multilayer sliding member and car rack-and-pinion-type steering device using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603017B2 (en) 2005-03-07 2013-12-10 American Medical Innovations, L.L.C. Vibrational therapy assembly for treating and preventing the onset of deep venous thrombosis
US8795210B2 (en) 2006-07-11 2014-08-05 American Medical Innovations, L.L.C. System and method for a low profile vibrating plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845817A (en) * 1988-06-29 1989-07-11 J. P. Industries, Inc. Method of forming a half-round bearing
JPH029326U (en) * 1988-06-30 1990-01-22
JPH0391515U (en) * 1989-12-29 1991-09-18
JPH05202936A (en) * 1992-01-24 1993-08-10 Toyota Motor Corp Slide bearing
US20050135716A1 (en) * 2003-11-13 2005-06-23 Welch Sean M. Thrust washer and method of manufacture
JP2006283905A (en) * 2005-04-01 2006-10-19 Taiho Kogyo Co Ltd Slide bearing
JP2007225079A (en) * 2006-02-27 2007-09-06 Daido Metal Co Ltd Sliding bearing for diagonal split type connecting rod
WO2008047701A1 (en) * 2006-10-12 2008-04-24 Toyota Jidosha Kabushiki Kaisha Slide bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845817A (en) * 1988-06-29 1989-07-11 J. P. Industries, Inc. Method of forming a half-round bearing
JPH029326U (en) * 1988-06-30 1990-01-22
JPH0391515U (en) * 1989-12-29 1991-09-18
JPH05202936A (en) * 1992-01-24 1993-08-10 Toyota Motor Corp Slide bearing
US20050135716A1 (en) * 2003-11-13 2005-06-23 Welch Sean M. Thrust washer and method of manufacture
JP2006283905A (en) * 2005-04-01 2006-10-19 Taiho Kogyo Co Ltd Slide bearing
JP2007225079A (en) * 2006-02-27 2007-09-06 Daido Metal Co Ltd Sliding bearing for diagonal split type connecting rod
WO2008047701A1 (en) * 2006-10-12 2008-04-24 Toyota Jidosha Kabushiki Kaisha Slide bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170742A1 (en) * 2015-04-24 2016-10-27 オイレス工業株式会社 Multilayer sliding member and car rack-and-pinion-type steering device using same
JP2016205561A (en) * 2015-04-24 2016-12-08 オイレス工業株式会社 Multi-layered slide member and rack-and-pinion type steering device of automobile using the same
US10640142B2 (en) 2015-04-24 2020-05-05 Oiles Corporation Multilayered sliding member and rack-and-pinion type steering apparatus for automobile using the same

Also Published As

Publication number Publication date
JP5317376B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP4865019B2 (en) Connecting rod bearing for internal combustion engine
KR101152855B1 (en) Sliding bearing for internal combustion engine
JP5524249B2 (en) Main bearing for crankshaft of internal combustion engine
EP2521865B1 (en) Profiled connecting rod bore with micro-dimples
JP5096992B2 (en) Slide bearing for internal combustion engine
JP6185702B2 (en) Slide bearing and bearing device
JP6193316B2 (en) Thrust bearing and bearing device for crankshaft of internal combustion engine
CN112576612B (en) Half-split bearing and sliding bearing
CN110529491B (en) Half-split bearing and sliding bearing
JP5317376B2 (en) Bearing device for supporting a crankshaft of an internal combustion engine
US10641317B2 (en) Half thrust bearing
JP2017044258A (en) Bearing device for crank shaft of internal combustion engine
JP6923465B2 (en) Main bearing for crankshaft of internal combustion engine
JP4994294B2 (en) Slide bearing for internal combustion engine
EP3534021B1 (en) Half thrust bearing
KR20120004933A (en) Slide bearing for crankshaft of internal combustion engine
JP5107972B2 (en) Bearing device for supporting a crankshaft of an internal combustion engine
CN109983241B (en) Half bearing
KR102449029B1 (en) Half bearing and sliding bearing
CN110700980A (en) Injection pump guide piston assembly
EP2547921B1 (en) Half bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5317376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250