JP2013034293A - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
JP2013034293A
JP2013034293A JP2011168543A JP2011168543A JP2013034293A JP 2013034293 A JP2013034293 A JP 2013034293A JP 2011168543 A JP2011168543 A JP 2011168543A JP 2011168543 A JP2011168543 A JP 2011168543A JP 2013034293 A JP2013034293 A JP 2013034293A
Authority
JP
Japan
Prior art keywords
secondary battery
management device
battery
power consumption
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011168543A
Other languages
Japanese (ja)
Inventor
Takashi Akiba
剛史 秋葉
Fumiyuki Yamane
史之 山根
Yuki Kuwano
友樹 桑野
Asami Mizutani
麻美 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011168543A priority Critical patent/JP2013034293A/en
Publication of JP2013034293A publication Critical patent/JP2013034293A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric vehicle achieving low-power consumption.SOLUTION: This electric vehicle comprises: a rechargeable battery device 10; an inverter 50 converting DC power output from the rechargeable battery device 10; a motor 60 driven by the power output from the inverter; wheels WR, WL to which the power rotated by the motor 60 is transmitted; a wheel management device 80 detecting the numbers of revolutions of the wheels WR, WL; a brake management device 40 detecting a depression amount of a brake pedal; and a vehicle management device 20 receiving the depression amount from the brake management device 40, receiving the number of revolutions of the wheel management device 80, transmitting a notification of switching to a low-power consumption mode to the rechargeable battery device 10 when determining that a user depresses the brake pedal on the basis of the depression amount and when the numbers of revolutions are zero, and transmitting notification of returning from the low-power consumption mode to the rechargeable battery device 10 when determining that user releases a foot from the brake pedal on the basis of the depression amount.

Description

本発明の実施形態は、電動車両に関する。   Embodiments described herein relate generally to an electric vehicle.

電気自動車等の電動車両は、二次電池装置と、二次電池装置から給電されるモータと、モータにより駆動される車軸と、を備えている。   An electric vehicle such as an electric vehicle includes a secondary battery device, a motor fed from the secondary battery device, and an axle driven by the motor.

二次電池装置は、複数の二次電池セルを含む組電池と、二次電池セルの電圧、温度、二次電池装置の充電状態(SOC:state of charge)等により二次電池セルを監視する電池監視装置と、電池監視装置(VTM:Voltage Temperature Monitor)から電池状態を受信して二次電池装置の充電および放電を制御する電池管理部(BMU:Battery Management Unit)と、を備える。電池管理部は、電池監視装置から受信した電圧、および温度と、電流計測装置から受けた組電池の放電電流あるいは充電電流を用いて、SOC等の算出を行い、さらに上位制御装置に向けて、CAN(controller area network)バス通信線等の通信手段へ情報を出力する。   The secondary battery device monitors the secondary battery cell based on an assembled battery including a plurality of secondary battery cells, a voltage and temperature of the secondary battery cell, a state of charge (SOC) of the secondary battery device, and the like. A battery monitoring device and a battery management unit (BMU: Battery Management Unit) that receives a battery state from a battery monitoring device (VTM: Voltage Temperature Monitor) and controls charging and discharging of the secondary battery device. The battery management unit uses the voltage and temperature received from the battery monitoring device and the discharge current or charging current of the assembled battery received from the current measuring device to calculate the SOC and the like, and further toward the upper control device. Information is output to a communication means such as a CAN (controller area network) bus communication line.

例えば電気自動車等の車両に上記二次電池装置が搭載されたとき、組電池を満充電したときの航続距離を延ばすために、車両に実装された装置は低消費電力であることが要求される。   For example, when the secondary battery device is mounted on a vehicle such as an electric vehicle, the device mounted on the vehicle is required to have low power consumption in order to extend the cruising distance when the assembled battery is fully charged. .

特開2007−209168号公報JP 2007-209168 A

二次電池装置において電池監視装置は組電池から給電され、さらに、電動車両に搭載される二次電池装置は二次電池セルの数が多いため電池監視装置の数も多くなり、電池監視装置の動作による消費電力を低減することが望まれていた。   In the secondary battery device, the battery monitoring device is supplied with power from the assembled battery. Further, since the secondary battery device mounted on the electric vehicle has a large number of secondary battery cells, the number of battery monitoring devices also increases. It has been desired to reduce power consumption due to operation.

しかしながら、上記二次電池装置において、安全性を担保するために周期的に電圧および温度を取得してSOCを算出すると、常にプロセッサやCANバス通信線が動作することとなり、消費電力を低減させることが困難であった。   However, in the secondary battery device described above, when the voltage and temperature are periodically acquired and the SOC is calculated in order to ensure safety, the processor and the CAN bus communication line always operate, thereby reducing power consumption. It was difficult.

本発明は、上記事情を鑑みて成されたものであって、低消費電力を実現する電動車両を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an electric vehicle that achieves low power consumption.

実施形態によれば、複数の組電池を含む二次電池装置と、前記二次電池装置から出力された直流電力を変換するインバータと、前記インバータから出力された電力により駆動されるモータと、前記モータが回転する動力が伝達される車輪と、前記車輪の回転数を検出する車輪管理装置と、ブレーキペダルの踏み入れ量を検出するブレーキ管理装置と、前記ブレーキ管理装置から前記踏み入れ量を受信し、前記車輪管理装置から前記回転数を受信し、前記踏み入れ量からユーザが前記ブレーキペダルを踏んだと判断し、かつ、前記回転数がゼロである場合に、前記二次電池装置へ低消費電力モードに切替えるよう通知し、前記踏み入れ量からユーザが前記ブレーキペダルから足を離したと判断した場合に、前記二次電池装置へ低消費電力モードから復帰するよう通知する車両管理装置と、を備える電動車両が提供される。   According to the embodiment, a secondary battery device including a plurality of assembled batteries, an inverter that converts DC power output from the secondary battery device, a motor driven by the power output from the inverter, and the A wheel to which power to rotate the motor is transmitted, a wheel management device that detects the number of rotations of the wheel, a brake management device that detects a depression amount of a brake pedal, and the depression amount received from the brake management device; When the rotational speed is received from the wheel management device, it is determined that the user has stepped on the brake pedal from the amount of depression, and the rotational speed is zero, the secondary battery device has a low power consumption mode. In the low power consumption mode when the user determines that the user has released his / her foot from the brake pedal based on the amount of depression. Electric vehicle and a vehicle management device to notify to al return is provided.

実施形態の電動車両の一構成例を概略的に示す図である。1 is a diagram schematically illustrating a configuration example of an electric vehicle according to an embodiment. 実施形態の電動車両の動作の一例を説明するフローチャートである。It is a flowchart explaining an example of operation | movement of the electric vehicle of embodiment. 実施形態の電動車両において二次電池装置を低消費電力モードとする動作の一例を説明するための図である。It is a figure for demonstrating an example of the operation | movement which makes a secondary battery apparatus a low power consumption mode in the electric vehicle of embodiment. 実施形態の電動車両において二次電池装置を低消費電力モードとする動作の他の例を説明するための図である。It is a figure for demonstrating the other example of the operation | movement which makes a secondary battery apparatus a low power consumption mode in the electric vehicle of embodiment. 実施形態の電動車両において二次電池装置がセルバランス処理を実行している際の動作の一例を説明するための図である。It is a figure for demonstrating an example of the operation | movement at the time of the secondary battery apparatus performing the cell balance process in the electric vehicle of embodiment. 実施形態の電動車両において二次電池装置のSOC値と、二次電池セルの電圧の最大値および最小値とが所定範囲に含まれない場合の動作の一例を説明するための図である。It is a figure for demonstrating an example of operation | movement when the SOC value of a secondary battery apparatus and the maximum value and minimum value of the voltage of a secondary battery cell are not contained in a predetermined range in the electric vehicle of embodiment.

以下、実施形態の電動車両について、図面を参照して説明する。   Hereinafter, an electric vehicle according to an embodiment will be described with reference to the drawings.

図1に、一実施形態の電動車両の一構成例を概略的に示す。本実施形態に係る電動車両は、例えば電気自動車あるいはハイブリッド自動車等であって、二次電池装置10が搭載されている。   FIG. 1 schematically shows a configuration example of an electric vehicle according to an embodiment. The electric vehicle according to the present embodiment is, for example, an electric vehicle or a hybrid vehicle, and the secondary battery device 10 is mounted thereon.

本実施形態の電動車両は、二次電池装置10と、車両管理装置20と、ブレーキ管理装置40と、インバータ50と、モータ60と、車軸70と、車輪管理装置80と、を備えている。   The electric vehicle according to the present embodiment includes a secondary battery device 10, a vehicle management device 20, a brake management device 40, an inverter 50, a motor 60, an axle 70, and a wheel management device 80.

二次電池装置10は、複数の二次電池セルを含む組電池BTと、組電池BTの電圧および温度等を測定する電池監視装置14と、電流監視装置18と、電池管理装置16と、電池監視装置14と電池管理装置16との間の通信に用いられるバス通信線BL1と、を備える。   The secondary battery device 10 includes an assembled battery BT including a plurality of secondary battery cells, a battery monitoring device 14 that measures the voltage and temperature of the assembled battery BT, a current monitoring device 18, a battery management device 16, and a battery. A bus communication line BL1 used for communication between the monitoring device 14 and the battery management device 16.

組電池BTは、直列および並列に接続された複数の二次電池セルにより構成されている。二次電池セルは、例えば、リチウムイオン蓄電池である。なお、二次電池セルはリチウムイオン蓄電池に限らず、ニッケル水素蓄電池、鉛蓄電池、ニッケル・カドミウム蓄電池、等のその他の蓄電池セルであってもよい。   The assembled battery BT includes a plurality of secondary battery cells connected in series and in parallel. The secondary battery cell is, for example, a lithium ion storage battery. The secondary battery cell is not limited to a lithium ion storage battery, and may be other storage battery cells such as a nickel hydride storage battery, a lead storage battery, and a nickel / cadmium storage battery.

電池監視装置14は、組電池BTを構成する複数の二次電池セルの電圧および温度を定期的に測定してバス通信線BL1へ出力している。また、電池監視装置14は、測定した電圧および温度の値からノイズを除去するためにフィルタ処理や、複数の二次電池セルの充電量を均等化する均等化処理(セルバランス処理)等の内部処理を行う。なお、電池監視装置14は、組電池BTから給電されている。   The battery monitoring device 14 periodically measures the voltage and temperature of a plurality of secondary battery cells constituting the assembled battery BT and outputs the measured voltage and temperature to the bus communication line BL1. In addition, the battery monitoring device 14 includes an internal filter process for removing noise from the measured voltage and temperature values, an equalization process (cell balance process) for equalizing the charge amounts of a plurality of secondary battery cells, and the like. Process. The battery monitoring device 14 is supplied with power from the assembled battery BT.

電流監視装置18は、複数の組電池BTに流れる電流を検出する検出手段を備えている。電流を検出する検出手段は例えばシャント抵抗である。   The current monitoring device 18 includes detection means for detecting current flowing through the plurality of assembled batteries BT. The detecting means for detecting the current is, for example, a shunt resistor.

電池管理装置16は、組電池BTの電圧値等を監視するとともに充電および放電等を管理する制御回路と、バス通信線BL1、BL2を介して電池監視装置14および車両管理装置20と通信を行なう通信系(図示せず)とを備える。なお、電池管理装置16は、図示しない車載電源(12Vの鉛蓄電池)より給電されている。   The battery management device 16 communicates with the battery monitoring device 14 and the vehicle management device 20 via the bus communication lines BL1 and BL2, and a control circuit that monitors the voltage value and the like of the assembled battery BT and manages charging and discharging. A communication system (not shown). The battery management device 16 is supplied with power from a vehicle power supply (12V lead storage battery) (not shown).

電池管理装置16は、バス通信線BL1を介して、複数の電池監視装置14から各組電池BTを構成する複数の二次電池セルの電圧値、および、組電池BTの温度値を受信して、二次電池セルの状態を監視する。また、電池管理装置16は、後述する低消費電力モード切替の通知、および、低消費電力モードからの復帰の通知を複数の電池監視装置14へ送信する。また、電池管理装置16は、電流監視装置18で測定された電流値を定期的に取得する。   The battery management device 16 receives the voltage values of the plurality of secondary battery cells constituting each assembled battery BT and the temperature values of the assembled battery BT from the plurality of battery monitoring devices 14 via the bus communication line BL1. The state of the secondary battery cell is monitored. Further, the battery management device 16 transmits a low power consumption mode switching notification and a return notification from the low power consumption mode, which will be described later, to the plurality of battery monitoring devices 14. Further, the battery management device 16 periodically acquires the current value measured by the current monitoring device 18.

電池管理装置16は、受信した電圧値、温度値、および電流値から二次電池装置10のSOC値(二次電池装置10、組電池BT、又は二次電池セルのSOC値)を算出し、電圧の最大値および最小値、温度の最大値および最小値、SOC値等のデータや、二次電池セルの異常を通知する信号を車両管理装置20へ送信する。   The battery management device 16 calculates the SOC value of the secondary battery device 10 (the secondary battery device 10, the assembled battery BT, or the SOC value of the secondary battery cell) from the received voltage value, temperature value, and current value, Data such as maximum and minimum values of voltage, maximum and minimum values of temperature, SOC value, and a signal notifying the abnormality of the secondary battery cell are transmitted to the vehicle management device 20.

インバータ50は、車両管理装置20からの制御信号に基づいて、二次電池装置10から供給される電圧を変換するとともに、運転指令を受けて出力電流および電圧のレベル制御及び位相制御などを行う。インバータ50の出力は、モータ60に駆動電力として供給される。   The inverter 50 converts a voltage supplied from the secondary battery device 10 based on a control signal from the vehicle management device 20 and performs an output current and voltage level control and phase control in response to an operation command. The output of the inverter 50 is supplied to the motor 60 as drive power.

モータ60はインバータ50から供給される電力により回転する。モータ60の回転による動力は、例えば差動ギアユニットを介して、車軸70および車輪WR、WLに伝達される。   The motor 60 is rotated by electric power supplied from the inverter 50. The power generated by the rotation of the motor 60 is transmitted to the axle 70 and the wheels WR and WL via, for example, a differential gear unit.

ブレーキ管理装置40は、車輪WR、WLの回転を止める際にユーザが踏む図示しないブレーキペダルセンサによりブレーキペダルの踏み入れ量を検出し、バス通信線BL3を介して、車両管理装置20へブレーキペダルの踏み入れ量を送信する。   The brake management device 40 detects the amount of depression of the brake pedal by a brake pedal sensor (not shown) that the user steps on when stopping the rotation of the wheels WR and WL, and sends the brake pedal to the vehicle management device 20 via the bus communication line BL3. Send the amount of tread.

車輪管理装置80は、車輪WR、WLの回転数を検出し、バス通信線BL4を介して、車両管理装置20へ送信する。   The wheel management device 80 detects the number of rotations of the wheels WR and WL and transmits it to the vehicle management device 20 via the bus communication line BL4.

車両管理装置20は、車両に搭載された様々な機能、例えば、二次電池装置10、変速器(図示せず)、充電器(図示せず)、インバータ50、および、モータ60等を協調して動作させる。車両管理装置20は、バス通信線BL2を介して、電池管理装置16から二次電池装置10のSOC値、電圧の最大値および最小値、温度の最大値および最小値等のデータや、二次電池セルの異常を通知する信号を受信するとともに、電池管理装置16の動作を制御する制御信号、例えば後述する低消費電力モード切替や低消費電力モードからの復帰を送信する。また、車両管理装置20は、バス通信線BL3を介して、ブレーキ管理装置40からブレーキペダルの踏入量を受信する。車両管理装置20は、バス通信線BL4を介して、車輪管理装置80から車輪WL、WRの回転数を受信する。   The vehicle management device 20 coordinates various functions mounted on the vehicle, for example, the secondary battery device 10, a transmission (not shown), a charger (not shown), an inverter 50, a motor 60, and the like. Make it work. The vehicle management device 20 transmits data such as the SOC value, the maximum and minimum values of the voltage, the maximum and minimum values of the temperature, and the secondary value via the bus communication line BL2. While receiving the signal which notifies abnormality of a battery cell, the control signal which controls operation | movement of the battery management apparatus 16, for example, the low power consumption mode switching mentioned later, and the return from a low power consumption mode are transmitted. Moreover, the vehicle management apparatus 20 receives the depression amount of a brake pedal from the brake management apparatus 40 via the bus communication line BL3. The vehicle management device 20 receives the rotation speeds of the wheels WL and WR from the wheel management device 80 via the bus communication line BL4.

バス通信線BL1、BL2、BL3、BL4は、例えばCAN(Control Area Network)規格に基づいて構成されたバス通信線である。複数の電池監視装置14と電池管理装置16とはそれぞれに割り振られた識別符号を用いて、バス通信線BL1を介して相互に通信を行っている。   The bus communication lines BL1, BL2, BL3, and BL4 are bus communication lines configured based on, for example, a CAN (Control Area Network) standard. The plurality of battery monitoring devices 14 and the battery management device 16 communicate with each other via the bus communication line BL1 using an identification code assigned to each of them.

二次電池装置10を搭載した上記電動車両において、電池管理装置16は、周期的に受信される電圧値や電流値を用いて二次電池装置10のSOC値を算出し、上位の制御手段である車両管理装置20へ送信するため、電池監視装置14および車両管理装置20と頻繁に通信を行っている。   In the electric vehicle equipped with the secondary battery device 10, the battery management device 16 calculates the SOC value of the secondary battery device 10 using the periodically received voltage value and current value, and the higher-level control means. In order to transmit to a certain vehicle management device 20, frequent communication is performed with the battery monitoring device 14 and the vehicle management device 20.

一方で、電動車両が走行を停止している間は組電池BTに電流が流れないため、二次電池装置10のSOC値に大きな変化は起こらず、二次電池セルの電圧の大きな変化も起こらない。このことから、本実施形態の電動車両では、電動車両が走行を停止している間は、電池監視装置14と電池管理装置16とを低消費電力モードに遷移させて、電動車両全体としての消費電力を低減させている。   On the other hand, since the current does not flow through the assembled battery BT while the electric vehicle stops traveling, the SOC value of the secondary battery device 10 does not change greatly, and the voltage of the secondary battery cell also changes greatly. Absent. Therefore, in the electric vehicle according to the present embodiment, while the electric vehicle stops traveling, the battery monitoring device 14 and the battery management device 16 are switched to the low power consumption mode, and the electric vehicle as a whole is consumed. Electric power is reduced.

以下、本実施形態の電動車両の動作の一例について、図面を参照して説明する。
図2に、本実施形態の電動車両の動作の一例を説明するためのフローチャートを示す。
図3に、図2のフローチャートに示す電動車両の動作を説明する図を示す。
Hereinafter, an example of operation | movement of the electric vehicle of this embodiment is demonstrated with reference to drawings.
FIG. 2 is a flowchart for explaining an example of the operation of the electric vehicle according to the present embodiment.
FIG. 3 is a diagram for explaining the operation of the electric vehicle shown in the flowchart of FIG.

まず、車両管理装置20は、ブレーキ管理装置40から受信した踏み入れ量が所定量以上となりブレーキペダルが踏まれたか判断するとともに、車輪管理装置80からの通知により車輪WL、WRの回転数がゼロになったか判断する(ステップST1)。ここで車両管理装置20は、ブレーキペダルが踏まれただけでなく、車輪WL、WRの回転数がゼロになることも確認し、電動車両が完全に停止しているか否かを判断する。   First, the vehicle management device 20 determines whether the depression amount received from the brake management device 40 is equal to or greater than a predetermined amount and the brake pedal has been depressed, and the number of rotations of the wheels WL and WR is reduced to zero by a notification from the wheel management device 80. It is determined whether or not (step ST1). Here, the vehicle management device 20 confirms that not only the brake pedal is depressed, but also that the rotation speeds of the wheels WL and WR become zero, and determines whether or not the electric vehicle is completely stopped.

ブレーキペダルが踏まれ、かつ、車輪WL、WRの回転数がゼロになったら、車両管理装置20は、電池管理装置16に対し、二次電池装置10を低消費電力モードに切替えるよう通知する(ステップST2)。   When the brake pedal is depressed and the number of rotations of the wheels WL and WR becomes zero, the vehicle management device 20 notifies the battery management device 16 to switch the secondary battery device 10 to the low power consumption mode ( Step ST2).

電池管理装置16は、車両管理装置20から低消費電力モードに切替えるよう通知を受けると、複数の電池監視装置14に対し、低消費電力モードに切替えるように通知する(ステップST3)。   Upon receiving notification from the vehicle management device 20 to switch to the low power consumption mode, the battery management device 16 notifies the plurality of battery monitoring devices 14 to switch to the low power consumption mode (step ST3).

電池監視装置14は、電池管理装置16から低消費電力モードに切替えるよう通知を受けると、低消費電力モードに切替わり、二次電池セルの電圧測定および組電池BTの温度測定等の内部処理と通信処理とを停止する(ステップST4)。   Upon receiving notification from the battery management device 16 to switch to the low power consumption mode, the battery monitoring device 14 switches to the low power consumption mode, and performs internal processing such as voltage measurement of the secondary battery cell and temperature measurement of the assembled battery BT. Communication processing is stopped (step ST4).

続いて、電池監視装置14が内部処理および通信処理を停止し、低消費電力モードに切替わった後に、電池管理装置16が低消費電力モードに切替わり、SOC値算出等の内部処理と通信処理とを停止する(ステップST5)。   Subsequently, after the battery monitoring device 14 stops internal processing and communication processing and is switched to the low power consumption mode, the battery management device 16 is switched to low power consumption mode, and internal processing and communication processing such as SOC value calculation are performed. Are stopped (step ST5).

車両管理装置20は、ブレーキ管理装置40から受信した踏み入れ量からブレーキペダルから足が離された(踏み入れ量が所定量より小さくなった)か否か判断する(ステップST6)。なお、ここで車輪の回転数がゼロか否か判断していないのは、電動車両が動き出すタイミングにおいて二次電池セルの電圧や温度が急激に変化する可能性があるため、電動車両が動きだすタイミングに先立って電池監視装置14および電池管理装置16を起動して二次電池セルの電圧および温度の監視を開始するためである。   The vehicle management device 20 determines whether or not the foot is released from the brake pedal (the stepping amount becomes smaller than a predetermined amount) from the stepping amount received from the brake management device 40 (step ST6). Note that the reason why the rotational speed of the wheel is not zero here is that the voltage or temperature of the secondary battery cell may change abruptly at the timing when the electric vehicle starts moving. This is because the battery monitoring device 14 and the battery management device 16 are started prior to the monitoring of the voltage and temperature of the secondary battery cell.

ブレーキペダルから足が離されたと判断した場合、車両管理装置20は、電池管理装置16に対し、低消費電力モードからの復帰を通知する(ステップST7)。   When it is determined that the foot has been released from the brake pedal, the vehicle management device 20 notifies the battery management device 16 of the return from the low power consumption mode (step ST7).

電池管理装置16は、車両管理装置20から低消費電力モードからの復帰の通知を受信すると、低消費電力モードから復帰して内部処理と通信処理とを再開し、電池監視装置14に対し、低消費電力モードからの復帰を通知する(ステップST8)。   When the battery management device 16 receives a notification of return from the low power consumption mode from the vehicle management device 20, the battery management device 16 returns from the low power consumption mode and resumes internal processing and communication processing. The return from the power consumption mode is notified (step ST8).

電池監視装置14は、電池管理装置16から低消費電力モードからの復帰の通知を受信すると、低消費電力モードから復帰し、内部処理と通信処理とを再開する(ステップST9)。   When the battery monitoring device 14 receives a notification of return from the low power consumption mode from the battery management device 16, the battery monitoring device 14 returns from the low power consumption mode and resumes internal processing and communication processing (step ST9).

上記のように、電動車両が停止している際に電池監視装置14と電池管理装置16とを低消費電力モードに遷移させると、電動車両全体としての電力消費を低減することができる。   As described above, when the battery monitoring device 14 and the battery management device 16 are shifted to the low power consumption mode when the electric vehicle is stopped, the power consumption of the entire electric vehicle can be reduced.

さらに、電動車両が停止している間は、二次電池セルの電圧や温度の変化が小さいため、電池監視装置14および電池管理装置16が内部処理および通信処理を停止していても電動車両の安全性を担保することが可能である。   Further, while the electric vehicle is stopped, the change in voltage and temperature of the secondary battery cell is small, so even if the battery monitoring device 14 and the battery management device 16 stop the internal processing and communication processing, It is possible to ensure safety.

また、電池管理装置16および電池監視装置14が低消費電力モードに遷移した後、電池管理装置16が所定の通信信号を受信した場合、電池管理装置16および電池監視装置14が低消費電力モードに復帰するようにしてもよい。   In addition, after the battery management device 16 and the battery monitoring device 14 have transitioned to the low power consumption mode, when the battery management device 16 receives a predetermined communication signal, the battery management device 16 and the battery monitoring device 14 enter the low power consumption mode. You may make it return.

図4に、本実施形態の電動車両の動作の他の例を説明する図を示す。この例では、電池管理装置16が低消費電力モードに切替わり、内部処理と通信処理とを停止する(ステップST5)までは、図2および図3に示す電動車両の動作と同様である。   FIG. 4 is a diagram illustrating another example of the operation of the electric vehicle according to the present embodiment. In this example, the operation is the same as that of the electric vehicle shown in FIGS. 2 and 3 until the battery management device 16 switches to the low power consumption mode and stops the internal process and the communication process (step ST5).

電池管理装置16が低消費電力モードに切替わった後、ブレーキペダルから足が離されたと判断する前に、車両管理装置20が電池管理装置16へ所定の通信信号を送信している。   After the battery management device 16 is switched to the low power consumption mode, the vehicle management device 20 transmits a predetermined communication signal to the battery management device 16 before determining that the foot has been released from the brake pedal.

電池管理装置16は、所定の通信信号を受信した場合、低消費電力モードから復帰し、内部処理および通信処理を開始するとともに、電池監視装置14へ低消費電力モードからの復帰を通知する。   When the battery management device 16 receives a predetermined communication signal, the battery management device 16 returns from the low power consumption mode, starts internal processing and communication processing, and notifies the battery monitoring device 14 of the return from the low power consumption mode.

電池監視装置14は、電池管理装置16から低消費電力モードからの復帰を受信すると、内部処理および通信処理を開始する。   When the battery monitoring device 14 receives the return from the low power consumption mode from the battery management device 16, the battery monitoring device 14 starts internal processing and communication processing.

例えば、消費電力を低減するよりも優先すべき処理がある場合には、優先すべき処理に関する所定の通信信号を受信することにより電池管理装置16および電池監視装置14が低消費電力モードから復帰するようにすると、電動車両が停止中であっても、重要な処理を実行するために電池管理装置16および電池監視装置14を動作させることが可能となる。   For example, when there is a process that should be prioritized over reducing power consumption, the battery management device 16 and the battery monitoring device 14 return from the low power consumption mode by receiving a predetermined communication signal related to the process to be prioritized. Thus, even when the electric vehicle is stopped, the battery management device 16 and the battery monitoring device 14 can be operated in order to execute important processing.

さらに、電池監視装置14がセルバランス処理を実行しているときは、電池管理装置16と電池監視装置14とは低消費電力モードに遷移しないようにしてもよい。   Furthermore, when the battery monitoring device 14 is executing the cell balance process, the battery management device 16 and the battery monitoring device 14 may not be switched to the low power consumption mode.

図5に、本実施形態の電動車両において二次電池装置がセルバランス処理を実行している際の動作の一例を説明する図を示す。この例では、電池監視装置14が低消費電力モードに切替わる前に、セルバランス処理を開始している。   FIG. 5 is a diagram illustrating an example of an operation when the secondary battery device is executing the cell balance process in the electric vehicle according to the present embodiment. In this example, the cell balance process is started before the battery monitoring device 14 is switched to the low power consumption mode.

この場合、電池管理装置16は、車両管理装置20から低消費電力モードに切替える通知を受信しても、電池監視装置14へ低消費電力モードに切替えるように通知しない。   In this case, even if the battery management device 16 receives a notification of switching from the vehicle management device 20 to the low power consumption mode, the battery management device 16 does not notify the battery monitoring device 14 to switch to the low power consumption mode.

これは、電池監視装置14がセルバランス処理を実行している間は、二次電池セルの電圧の変化がある可能性があることから、電池監視装置14および電池管理装置16により二次電池セルの電圧および温度を監視し電池保護を継続する必要があることを考慮したものである。 This is because there is a possibility that the voltage of the secondary battery cell may change while the battery monitoring device 14 is performing the cell balance process. It is necessary to monitor the voltage and temperature of the battery and to continue battery protection.

また、複数の二次電池装置10のSOC値が所定の範囲に含まれない場合、又は、二次電池セルの電圧の最大値および最小値が所定の範囲に含まれない場合には、電池管理装置16と電池監視装置14とは低消費電力モードに遷移しないようにしてもよい。   In addition, when the SOC values of the plurality of secondary battery devices 10 are not included in the predetermined range, or when the maximum value and the minimum value of the voltage of the secondary battery cell are not included in the predetermined range, the battery management is performed. The device 16 and the battery monitoring device 14 may not be changed to the low power consumption mode.

図6に、本実施形態の電動車両において二次電池装置10のSOC値と、電圧の最大値および最小値とが所定範囲に含まれない場合の動作の一例を説明する図を示す。この例では、車両管理装置20は、ブレーキペダルが踏まれ、かつ、車輪の回転数がゼロになったと判断した後に、さらに、二次電池装置10のSOC値が所定の範囲に含まれている(第1値≦SOC値、SOC値≦第2値)か否か、又は、二次電池セルの電圧の最大値および最小値が所定の範囲に含まれている(最大値≦第3値、最小値≧第4値、(第4値<第3値))か否かを判断する。   FIG. 6 is a diagram illustrating an example of an operation when the SOC value of the secondary battery device 10 and the maximum and minimum values of the voltage are not included in the predetermined range in the electric vehicle according to the present embodiment. In this example, the vehicle management device 20 further determines that the SOC value of the secondary battery device 10 is within a predetermined range after determining that the brake pedal has been depressed and the number of wheel rotations has become zero. (First value ≦ SOC value, SOC value ≦ second value), or the maximum value and the minimum value of the voltage of the secondary battery cell are included in a predetermined range (maximum value ≦ third value, It is determined whether or not minimum value ≧ fourth value (fourth value <third value)).

車両管理装置20は、二次電池装置10のSOC値が所定の範囲に含まれない場合、あるいは、二次電池セルの電圧の最大値および最小値が所定の範囲に含まれない場合には、電池管理装置16へ低消費電力モードに切替えるように通知しない。   When the SOC value of the secondary battery device 10 is not included in the predetermined range or when the maximum value and the minimum value of the voltage of the secondary battery cell are not included in the predetermined range, the vehicle management device 20 The battery management device 16 is not notified to switch to the low power consumption mode.

これは、二次電池装置10のSOC値が所定の範囲に含まれない場合は、周囲の温度変化によりSOC値自体が変化する可能性があるため、計器に表示しているSOC値が変化する可能性があり、二次電池セルが危険な状態となることを回避するために監視を継続して安全性を担保することが望ましいからである。   This is because, if the SOC value of the secondary battery device 10 is not included in the predetermined range, the SOC value itself may change due to a change in ambient temperature, so the SOC value displayed on the meter changes. This is because there is a possibility that it is desirable to ensure safety by continuing monitoring in order to prevent the secondary battery cell from entering a dangerous state.

また、二次電池セルの電圧値の最大値および最小値が所定の範囲に含まれない場合は、電動車両が再走行開始した瞬間に流れる電流により、電圧が急激に変化する可能性があり、このような電圧の急激な変化により二次電池セルが危険な状態となることを回避するために監視を継続して安全性を担保することが望ましいからである。   In addition, when the maximum value and the minimum value of the voltage value of the secondary battery cell are not included in the predetermined range, the voltage may change suddenly due to the current flowing at the moment when the electric vehicle starts to re-run, This is because it is desirable to ensure safety by continuing monitoring in order to prevent the secondary battery cell from entering a dangerous state due to such a rapid change in voltage.

上記のように、電動車両が停止している間であっても、セルバランス処理中や、二次電池装置10のSOC値と電圧の最大値および最小値とが所定範囲に含まれない場合には、二次電池セルが危険な状態となる可能性が高くなるため、電池監視装置14および電池管理装置16を低消費電力モードに遷移させないことにより、電動車両の安全性を担保することが可能となる。   As described above, even when the electric vehicle is stopped, during the cell balance process, or when the SOC value of the secondary battery device 10 and the maximum and minimum values of the voltage are not included in the predetermined range. Since there is a high possibility that the secondary battery cell will be in a dangerous state, it is possible to ensure the safety of the electric vehicle by not causing the battery monitoring device 14 and the battery management device 16 to transition to the low power consumption mode. It becomes.

すなわち、本実施形態の電動車両によれば、電動車両の安全性を担保し、かつ、低消費電力を実現する電動車両を提供することが可能となる。   That is, according to the electric vehicle of this embodiment, it is possible to provide an electric vehicle that ensures the safety of the electric vehicle and realizes low power consumption.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

BT…組電池、WR、WL…車輪、BL1〜BL4…バス通信線、10…二次電池装置、14…電池監視装置、16…電池管理装置、18…電流監視装置、20…車両管理装置、40…ブレーキ管理装置、50…インバータ、60…モータ、70…車軸、80…車輪管理装置。   BT ... assembled battery, WR, WL ... wheel, BL1-BL4 ... bus communication line, 10 ... secondary battery device, 14 ... battery monitoring device, 16 ... battery management device, 18 ... current monitoring device, 20 ... vehicle management device, 40 ... brake management device, 50 ... inverter, 60 ... motor, 70 ... axle, 80 ... wheel management device.

Claims (5)

二次電池装置と、
前記二次電池装置から出力された直流電力を変換するインバータと、
前記インバータから出力された電力により駆動されるモータと、
前記モータが回転する動力が伝達される車輪と、
前記車輪の回転数を検出する車輪管理装置と、
ブレーキペダルの踏み入れ量を検出するブレーキ管理装置と、
前記ブレーキ管理装置から前記踏み入れ量を受信し、前記車輪管理装置から前記回転数を受信し、前記踏み入れ量からユーザが前記ブレーキペダルを踏んだと判断し、かつ、前記回転数がゼロである場合に、前記二次電池装置へ低消費電力モードに切替える通知を送信し、前記踏み入れ量からユーザが前記ブレーキペダルから足を離したと判断した場合に、前記二次電池装置へ低消費電力モードから復帰する通知を送信する車両管理装置と、を備える電動車両。
A secondary battery device;
An inverter that converts DC power output from the secondary battery device;
A motor driven by the electric power output from the inverter;
A wheel to which power for rotating the motor is transmitted;
A wheel management device for detecting the number of rotations of the wheel;
A brake management device for detecting the depression amount of the brake pedal;
When the stepping amount is received from the brake management device, the rotation number is received from the wheel management device, it is determined that the user has stepped on the brake pedal from the stepping amount, and the rotation number is zero The secondary battery device is notified of switching to the low power consumption mode, and when it is determined that the user has released his foot from the brake pedal based on the stepping amount, the secondary battery device is switched from the low power consumption mode to the secondary battery device. An electric vehicle comprising: a vehicle management device that transmits a notification of returning.
前記二次電池装置は、前記低消費電力モードに切替える通知を受信した後に前記車両管理装置から所定の通信を受信した場合に、低消費電力モードから復帰する請求項1記載の電動車両。   The electric vehicle according to claim 1, wherein the secondary battery device returns from the low power consumption mode when receiving a predetermined communication from the vehicle management device after receiving the notification of switching to the low power consumption mode. 前記二次電池装置は、前記複数の二次電池セルの電圧および温度を定期的に測定して前記電池管理装置へ出力するとともに、複数の二次電池セルの充電量の均等化処理を行う電池監視装置と、前記電圧および温度を受信し前記二次電池装置のSOC値と電圧および温度の最大値および最小値とを演算して定期的に前記車両管理装置へ出力する電池管理装置と、を備え
前記電池管理装置は前記低消費電力モードに切替える通知を受信し、前記電池監視装置が前記均等化処理を行っていない場合には、前記電池監視装置へ低消費電力モードに切替える通知を送信する請求項1記載の電動車両。
The secondary battery device periodically measures and outputs the voltage and temperature of the plurality of secondary battery cells to the battery management device, and performs a process for equalizing the charge amount of the plurality of secondary battery cells. A monitoring device; and a battery management device that receives the voltage and temperature, calculates an SOC value of the secondary battery device and maximum and minimum values of the voltage and temperature, and periodically outputs the calculated values to the vehicle management device. The battery management device receives a notification of switching to the low power consumption mode, and transmits a notification of switching to the low power consumption mode to the battery monitoring device when the battery monitoring device is not performing the equalization process. The electric vehicle according to claim 1.
前記二次電池装置は複数の二次電池セルを含む組電池と、前記複数の二次電池セルの電圧および温度を定期的に測定して前記電池管理装置へ出力する電池監視装置と、前記電圧および温度を受信し前記二次電池装置のSOC値と前記二次電池セルの電圧および温度の最大値および最小値とを演算して定期的に前記車両管理装置へ出力する電池管理装置と、を備え、
前記車両管理装置は、前記踏み入れ量からユーザが前記ブレーキペダルを踏んだと判断し、かつ、前記回転数がゼロである場合に、前記二次電池装置のSOC値が所定範囲内か否か判断し、前記二次電池装置のSOC値が所定範囲内である場合に前記二次電池装置へ前記低消費電力モードに切替える通知を送信する請求項1記載の電動車両。
The secondary battery device includes an assembled battery including a plurality of secondary battery cells, a battery monitoring device that periodically measures and outputs voltages and temperatures of the plurality of secondary battery cells, and the voltage. And a battery management device that receives the SOC value of the secondary battery device and the maximum and minimum values of the voltage and temperature of the secondary battery cell and periodically outputs them to the vehicle management device. Prepared,
The vehicle management device determines whether or not the SOC value of the secondary battery device is within a predetermined range when the user determines that the user has stepped on the brake pedal from the amount of depression, and when the rotation speed is zero. The electric vehicle according to claim 1, wherein when the SOC value of the secondary battery device is within a predetermined range, a notification for switching to the low power consumption mode is transmitted to the secondary battery device.
前記二次電池装置は、前記複数の二次電池セルの電圧および温度を定期的に測定して前記電池管理装置へ出力する電池監視装置と、前記電圧および温度を受信し前記二次電池装置のSOC値と二次電池セルの電圧および温度の最大値および最小値とを演算して定期的に前記車両管理装置へ出力する電池管理装置と、を備え、
前記車両管理装置は、前記踏み入れ量からユーザが前記ブレーキペダルを踏んだと判断し、かつ、前記回転数がゼロである場合に、前記二次電池セルの電圧の最大値および最小値と温度の最大値および最小値とが所定範囲内か否か判断し、前記二次電池セルの電圧の最大値および最小値と温度の最大値および最小値とが所定範囲内である場合に前記二次電池装置へ前記低消費電力モードに切替える通知を送信する請求項1記載の電動車両。
The secondary battery device includes: a battery monitoring device that periodically measures the voltage and temperature of the plurality of secondary battery cells and outputs the voltage and temperature to the battery management device; and the secondary battery device that receives the voltage and temperature and A battery management device that calculates the SOC value and the maximum and minimum values of the voltage and temperature of the secondary battery cell and periodically outputs them to the vehicle management device;
The vehicle management device determines that the user has stepped on the brake pedal from the amount of depression, and when the number of revolutions is zero, the maximum value, the minimum value, and the temperature of the secondary battery cell. It is determined whether the maximum value and the minimum value are within a predetermined range, and when the maximum value and the minimum value of the voltage of the secondary battery cell and the maximum value and the minimum value of the temperature are within the predetermined range, the secondary battery The electric vehicle according to claim 1, wherein a notification for switching to the low power consumption mode is transmitted to an apparatus.
JP2011168543A 2011-08-01 2011-08-01 Electric vehicle Pending JP2013034293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011168543A JP2013034293A (en) 2011-08-01 2011-08-01 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168543A JP2013034293A (en) 2011-08-01 2011-08-01 Electric vehicle

Publications (1)

Publication Number Publication Date
JP2013034293A true JP2013034293A (en) 2013-02-14

Family

ID=47789709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168543A Pending JP2013034293A (en) 2011-08-01 2011-08-01 Electric vehicle

Country Status (1)

Country Link
JP (1) JP2013034293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150118101A (en) * 2013-02-15 2015-10-21 르노 에스.아.에스. Method of regulating the temperature of an accumulator battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163616A (en) * 1995-12-08 1997-06-20 Honda Motor Co Ltd Power supply control equipment of electric motor car
JP2000018377A (en) * 1998-06-30 2000-01-18 Nissan Motor Co Ltd Oil pump control device of automatic transmission
JP2004312961A (en) * 2003-04-10 2004-11-04 Toyota Motor Corp Travel controller for vehicle
JP2006141156A (en) * 2004-11-12 2006-06-01 Mitsubishi Motors Corp Hybrid vehicle
JP2009177887A (en) * 2008-01-22 2009-08-06 Sanyo Electric Co Ltd Power supply for vehicle
JP2010164329A (en) * 2009-01-13 2010-07-29 Hitachi Vehicle Energy Ltd Battery control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163616A (en) * 1995-12-08 1997-06-20 Honda Motor Co Ltd Power supply control equipment of electric motor car
JP2000018377A (en) * 1998-06-30 2000-01-18 Nissan Motor Co Ltd Oil pump control device of automatic transmission
JP2004312961A (en) * 2003-04-10 2004-11-04 Toyota Motor Corp Travel controller for vehicle
JP2006141156A (en) * 2004-11-12 2006-06-01 Mitsubishi Motors Corp Hybrid vehicle
JP2009177887A (en) * 2008-01-22 2009-08-06 Sanyo Electric Co Ltd Power supply for vehicle
JP2010164329A (en) * 2009-01-13 2010-07-29 Hitachi Vehicle Energy Ltd Battery control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150118101A (en) * 2013-02-15 2015-10-21 르노 에스.아.에스. Method of regulating the temperature of an accumulator battery
KR102032246B1 (en) * 2013-02-15 2019-10-15 르노 에스.아.에스. Method of regulating the temperature of an accumulator battery

Similar Documents

Publication Publication Date Title
US10978888B2 (en) Battery system for switching connection states of battery modules
EP2523248B1 (en) Battery control device and method
US7053588B2 (en) Power supply controller, electric vehicle and battery control unit
JP6317031B2 (en) Battery control device and vehicle system
US8655535B2 (en) Electric vehicle and method for controlling same
JP6228666B2 (en) Battery system
EP2721716B1 (en) Module bypass switch for balancing battery pack system modules with bypass current monitoring
US10266066B2 (en) Straddled electric vehicle, and charging system for straddled electric vehicle
JP2007282375A (en) Hybrid vehicle control system and hybrid vehicle control method
JP2014121962A (en) Travel mode switchover control device for hybrid vehicle
EP3093946B1 (en) Electric transfer apparatus and control method thereof
CN106329011B (en) Battery pack and electric vehicle including the same
JP2012120347A (en) Battery control system, battery ecu, charge/discharge control ecu
KR20160092430A (en) Battery pack, method for controlling and driving system of electro-mechanical apparatus having the same
US20230006453A1 (en) Power storage device, vehicle, power storage device control method, and program
JP2011214898A (en) Device and method for protection of supply voltage
JP2013135584A (en) Secondary battery device and vehicle
US20150321562A1 (en) Method of limiting vehicle speed during evacuation running, and vehicle
JP2015061510A (en) Charging station having battery cell balance system
JP5454431B2 (en) Secondary battery control device and control method
GB2545280A (en) Battery management system
US20200122604A1 (en) Display apparatus and vehicle including the same
JP2013034293A (en) Electric vehicle
JP2012112811A (en) Secondary battery device and vehicle
JP2013048512A (en) Secondary battery module, secondary battery device, and vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150428