JP2013032894A - Heat treatment furnace - Google Patents

Heat treatment furnace Download PDF

Info

Publication number
JP2013032894A
JP2013032894A JP2011169858A JP2011169858A JP2013032894A JP 2013032894 A JP2013032894 A JP 2013032894A JP 2011169858 A JP2011169858 A JP 2011169858A JP 2011169858 A JP2011169858 A JP 2011169858A JP 2013032894 A JP2013032894 A JP 2013032894A
Authority
JP
Japan
Prior art keywords
furnace
heating chamber
heat treatment
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011169858A
Other languages
Japanese (ja)
Inventor
Kazuya Masunaga
和也 益永
Takahiro Sugauchi
崇博 須河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Manufacturing Co Ltd
Original Assignee
Showa Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Manufacturing Co Ltd filed Critical Showa Manufacturing Co Ltd
Priority to JP2011169858A priority Critical patent/JP2013032894A/en
Publication of JP2013032894A publication Critical patent/JP2013032894A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment furnace capable of heating clean intake air with a configuration as inexpensive as possible and with high heat efficiency.SOLUTION: The heat treatment furnace supplies clean air, while exhausting air of a heating chamber 3 disposed in the furnace to the outside of the furnace, to the heating chamber to ventilate the inside of the heating chamber. In the heat treatment furnace, a flow path 5 to discharge air from the heating chamber is formed in a furnace wall facing the heating chamber and the clean air heated by heat exhausting with exhaust air passed through the flow path is supplied to the heating chamber. A heat exchanger 25 for exchanging heat between the exhaust air and the clean air is disposed in the furnace, at least a part of a pipe 26 for guiding the clean air to the heat exchanger is disposed in the furnace, a plurality of stages of heating furnaces are arranged in the furnace, and exhaust air from the heating chambers is collected on the flow path.

Description

本発明は、熱処理炉に関するものである。   The present invention relates to a heat treatment furnace.

従来、フラットパネルディスプレイ用(LCD、PDP、有機EL用等)のガラス基板などの焼成や乾燥を行うために、熱処理炉が用いられている。   Conventionally, a heat treatment furnace has been used for baking and drying glass substrates for flat panel displays (LCD, PDP, organic EL, etc.).

このような熱処理炉の内部には、加熱用のヒータが配設された加熱室が形成されており、ヒータから放射される熱により、ガラス基板を加熱するよう構成している。   In such a heat treatment furnace, a heating chamber in which a heater for heating is disposed is formed, and the glass substrate is heated by heat radiated from the heater.

このとき、加熱室内には、加熱されたガラス基板から発生する塗膜昇華物や水分などの夾雑物が漂う。   At this time, impurities such as a coating film sublimate and moisture generated from the heated glass substrate drift in the heating chamber.

そこで、これら夾雑物がガラス基板に再付着するのを防止するために、加熱室内の空気を炉外へ排気しつつ、フィルター等を介して得られる清浄な空気を加熱室内に供給して換気するよう構成している。(例えば、特許文献1を参照。)。   Therefore, in order to prevent these contaminants from re-adhering to the glass substrate, clean air obtained through a filter or the like is supplied into the heating chamber for ventilation while exhausting the air in the heating chamber to the outside of the furnace. It is configured as follows. (For example, see Patent Document 1).

特開2004−144338号公報JP 2004-144338 A

しかしながら、上記従来の熱処理炉は、室温状態の清浄な空気をヒータによって所定の温度(例えば、230℃)にまで昇温する必要があり、加熱室内の換気に伴って清浄な空気を加熱する為の大きなエネルギーが必要となっていた。   However, in the conventional heat treatment furnace, it is necessary to raise clean air in a room temperature state to a predetermined temperature (for example, 230 ° C.) with a heater, and the clean air is heated with ventilation in the heating chamber. A large amount of energy was needed.

本発明は、斯かる事情に鑑みてなされたものであって、可及的安価な構成で、且つ、加熱室内に供給する清浄な空気を熱効率良く加温することのできる熱処理炉を提供する。   The present invention has been made in view of such circumstances, and provides a heat treatment furnace that can heat clean air supplied into a heating chamber with high thermal efficiency with a low-cost configuration.

上記従来の課題を解決するために、請求項1に記載の熱処理炉では、炉内に設けた加熱室の空気を炉外へ排気しつつ、清浄な空気を前記加熱室に供給して同加熱室内を換気する熱処理炉において、前記加熱室に面する炉壁内に前記加熱室の空気を排気するための流路を形成し、同流路を経た排気との熱交換によって加温した前記清浄な空気を前記加熱室に供給することとした。   In order to solve the above-mentioned conventional problems, in the heat treatment furnace according to claim 1, clean air is supplied to the heating chamber while exhausting the air in the heating chamber provided in the furnace to the outside of the furnace. In the heat treatment furnace for ventilating the room, the flow path for exhausting the air in the heating chamber is formed in the furnace wall facing the heating chamber, and the heating is performed by heat exchange with the exhaust gas through the flow path Fresh air was supplied to the heating chamber.

また、請求項2に記載の熱処理炉では、請求項1に記載の熱処理炉において、前記排気と前記清浄な空気との熱交換を行う熱交換器を前記炉内に設けたことに特徴を有する。   The heat treatment furnace according to claim 2 is characterized in that, in the heat treatment furnace according to claim 1, a heat exchanger for exchanging heat between the exhaust and the clean air is provided in the furnace. .

また、請求項3に記載の熱処理炉では、請求項2に記載の熱処理炉において、前記清浄な空気を前記熱交換器に導く配管の少なくとも一部を前記炉内に配設したことを特徴とする。   Further, in the heat treatment furnace according to claim 3, in the heat treatment furnace according to claim 2, at least a part of a pipe for guiding the clean air to the heat exchanger is disposed in the furnace. To do.

また、請求項4に記載の熱処理炉では、請求項1〜3いずれか1項に記載の熱処理炉において、前記炉内に前記加熱室を多段状に複数設け、各加熱室からの排気を前記流路に集合させたことに特徴を有する。   Moreover, in the heat treatment furnace according to claim 4, in the heat treatment furnace according to any one of claims 1 to 3, the heating chamber is provided in a plurality of stages in the furnace, and the exhaust from each heating chamber is exhausted. It is characterized by being assembled in a flow path.

請求項1に記載の熱処理炉では、炉内に設けた加熱室の空気を炉外へ排気しつつ、清浄な空気を前記加熱室に供給して同加熱室内を換気する熱処理炉において、前記加熱室に面する炉壁内に前記加熱室の空気を排気するための流路を形成し、同流路を経た排気との熱交換によって加温した前記清浄な空気を前記加熱室に供給することとしたため、可及的安価な構成で、しかも吸気した清浄な空気を熱効率よく加温することのできる熱処理炉を提供することができる。   In the heat treatment furnace according to claim 1, in the heat treatment furnace in which the air in the heating chamber provided in the furnace is exhausted to the outside of the furnace, clean air is supplied to the heating chamber and the heating chamber is ventilated. A flow path for exhausting the air in the heating chamber is formed in the furnace wall facing the chamber, and the clean air heated by heat exchange with the exhaust through the flow path is supplied to the heating chamber. Therefore, it is possible to provide a heat treatment furnace that can heat clean air that has been sucked in with a configuration that is as inexpensive as possible and that can efficiently heat the air that has been taken in.

また、請求項2に記載の熱処理炉では、前記排気と前記清浄な空気との熱交換を行う熱交換器を前記炉内に設けたため、排気が熱交換器に至るまでの熱ロスを可及的に防止して、吸気した清浄な空気をさらに熱効率良く加温することができる。   In the heat treatment furnace according to claim 2, since a heat exchanger for exchanging heat between the exhaust and the clean air is provided in the furnace, heat loss until the exhaust reaches the heat exchanger is minimized. Therefore, the clean air that has been sucked in can be heated more efficiently.

また、請求項3に記載の熱処理炉では、前記清浄な空気を前記熱交換器に導く配管の少なくとも一部を前記炉内に配設したため、清浄な空気が熱交換器に至るまでの間にも加温を行うことができ、吸気した清浄な空気をさらに熱効率良く加温することができる。   Further, in the heat treatment furnace according to claim 3, since at least a part of the pipe for guiding the clean air to the heat exchanger is disposed in the furnace, Can also be heated, and the clean air that has been taken in can be heated more efficiently.

また、請求項4に記載の熱処理炉では、前記炉内に前記加熱室を多段状に複数設け、各加熱室からの排気を前記流路に集合させたため、各加熱室からの排気の熱を、同加熱室に給気するための清浄な空気の加温に可及的に効率良く用いることができる。   Further, in the heat treatment furnace according to claim 4, since the heating chamber is provided in a plurality of stages in the furnace, and the exhaust from each heating chamber is gathered in the flow path, the heat of the exhaust from each heating chamber is generated. It can be used as efficiently as possible for heating clean air for supplying air to the heating chamber.

本実施形態に係る熱処理炉の側断面を示した模式図である。It is the schematic diagram which showed the side cross section of the heat processing furnace which concerns on this embodiment. 図1におけるX−X断面を示した模式図である。It is the schematic diagram which showed the XX cross section in FIG. 加熱室の構造を上方からの視点で示した説明図である。It is explanatory drawing which showed the structure of the heating chamber from the viewpoint from upper direction. 加熱室の基板出入口近傍を示した説明図である。It is explanatory drawing which showed the board | substrate entrance and exit vicinity of the heating chamber. 排気吸引管、排気主管及び熱交換器の連結構造を示した説明図である。It is explanatory drawing which showed the connection structure of an exhaust suction pipe, an exhaust main pipe, and a heat exchanger. 変形例に係る熱処理炉の構成を示した模式図である。It is the schematic diagram which showed the structure of the heat processing furnace which concerns on a modification. 変形例に係る熱処理炉の排気吸引管、排気主管及び熱交換器の連結構造を示した説明図である。It is explanatory drawing which showed the connection structure of the exhaust suction pipe, the exhaust main pipe, and the heat exchanger of the heat processing furnace which concerns on a modification.

本実施形態に係る熱処理炉は、炉内に設けた加熱室の空気を炉外へ排気しつつ、清浄な空気(以下、「浄化エア」ともいう。)を前記加熱室に供給して同加熱室内を換気する熱処理炉において、加熱室に面する炉壁内に加熱室の空気を排気するための流路を形成し、同流路を経た排気との熱交換によって加温した浄化エアを加熱室に供給することを特徴とするものである。   The heat treatment furnace according to this embodiment supplies clean air (hereinafter also referred to as “purified air”) to the heating chamber while exhausting the air in the heating chamber provided in the furnace to the outside of the furnace. In a heat treatment furnace that ventilates the room, a flow path for exhausting the air in the heating chamber is formed in the furnace wall facing the heating chamber, and heated purified air is heated by heat exchange with the exhaust through the flow path. It is characterized by supplying to the chamber.

上記構成の熱処理炉は、夾雑物の付着が品質に多大な影響を及ぼすフラットパネルディスプレイなどに用いられるガラス基板の熱処理炉として好適であり、本明細書では、以下、ガラス基板を被加熱物の一例として説明する。   The heat treatment furnace having the above configuration is suitable as a heat treatment furnace for a glass substrate used for a flat panel display or the like in which the adhesion of impurities greatly affects the quality. This will be described as an example.

本実施形態に係る熱処理炉によれば、比較的高温の排気と、加熱室に給気する浄化エアとを熱交換することにより浄化エアを加温することとしているため、排気が有する熱エネルギーを無駄にすることなく、熱効率良く浄化エアを加温することができる。   According to the heat treatment furnace according to the present embodiment, since the purified air is heated by exchanging heat between the relatively high temperature exhaust and the purified air supplied to the heating chamber, the thermal energy of the exhaust is reduced. The purified air can be heated efficiently without wasting it.

しかも、加熱室に面する炉壁内に形成した流路を通気させた排気によって熱交換を行うため、排気が有する熱エネルギーを熱交換前に炉外雰囲気中へ拡散させてしまうことを防止することができ、熱ロスを飛躍的に低減させることができる。   Moreover, since heat exchange is performed by exhaust vented through the flow path formed in the furnace wall facing the heating chamber, the thermal energy of the exhaust is prevented from diffusing into the atmosphere outside the furnace before heat exchange. And heat loss can be drastically reduced.

また、排気と浄化エアとの熱交換を行う熱交換器は、炉内に設けるようにしても良い。   Further, a heat exchanger that performs heat exchange between the exhaust gas and the purified air may be provided in the furnace.

このような構成とすることにより、排気が熱交換器に至るまでの熱ロスを可及的に防止して、浄化エアをさらに熱効率良く加温することが可能となる。   By adopting such a configuration, it is possible to prevent the heat loss until the exhaust reaches the heat exchanger as much as possible, and to heat the purified air more efficiently.

またこの際、浄化エアを前記熱交換器に導く配管の少なくとも一部を炉内に配設することにより、浄化エアを熱交換器に至らせる過程において、炉内の熱で予備的に加熱を行うことができ、加熱室に給気する浄化エアをさらに熱効率良く加温することができる。   At this time, at least a part of the pipe that guides the purified air to the heat exchanger is disposed in the furnace, so that the heating in the furnace is preliminarily heated in the process of bringing the purified air to the heat exchanger. The purified air supplied to the heating chamber can be heated more efficiently.

ところで、熱処理炉内に形成される加熱室は、多段状に複数設けるようにしても良い。このとき、各加熱室からの排気を、炉壁内に形成した流路に集合させて熱交換器へ送ることにより、複数枚のガラス基板(被加熱物)に対して熱処理を行いつつ、加熱室に給気する浄化エアを熱効率良く加温することができる。   By the way, a plurality of heating chambers formed in the heat treatment furnace may be provided in multiple stages. At this time, the exhaust from each heating chamber is gathered in the flow path formed in the furnace wall and sent to the heat exchanger to heat the plurality of glass substrates (objects to be heated) while performing heat treatment. The purified air supplied to the chamber can be heated efficiently.

以下、本実施形態に係る熱処理炉について、図面を参照しながら説明する。   Hereinafter, the heat treatment furnace according to the present embodiment will be described with reference to the drawings.

図1は本実施形態に係る熱処理炉Aの側断面を示した模式図であり、図2は図1におけるX−X断面を示した模式図である。   FIG. 1 is a schematic diagram showing a side cross section of a heat treatment furnace A according to the present embodiment, and FIG. 2 is a schematic diagram showing a cross section taken along line XX in FIG.

図1および図2に示すように、本実施形態に係る熱処理炉Aは、炉壁1で囲われた炉体2の内部に、ガラス基板Gを加熱するための加熱室3を上下方向に複数段備えている。   As shown in FIGS. 1 and 2, the heat treatment furnace A according to the present embodiment includes a plurality of heating chambers 3 for heating the glass substrate G in the vertical direction inside the furnace body 2 surrounded by the furnace wall 1. There are steps.

また、熱処理炉Aには、図2に示すように、浄化エア供給流路4と、排気流路5とが備えられており、加熱室3の内部を換気可能に構成している。   Further, as shown in FIG. 2, the heat treatment furnace A is provided with a purified air supply flow path 4 and an exhaust flow path 5 so that the inside of the heating chamber 3 can be ventilated.

浄化エア供給流路4は、図示しないフィルタ等によって浄化された清浄な圧搾空気を昇温させて各加熱室3内に導入する流路であり、後にそれぞれ説明するが、浄化エア導入管26と、熱交換器25内に形成された浄化エア用の流路の一部(図示せず)と、浄化エア連結管28と、エア昇温ヒータ30内に形成された流路の一部(図示せず)と、浄化エア供給主管31と浄化エア供給管12とで構成している。   The purified air supply flow path 4 is a flow path that raises the temperature of clean compressed air purified by a filter (not shown) and introduces the compressed compressed air into each heating chamber 3. A part of the flow path for purified air (not shown) formed in the heat exchanger 25, a part of the flow path formed in the purified air connection pipe 28 and the air temperature raising heater 30 (see FIG. And a purified air supply main pipe 31 and a purified air supply pipe 12.

また、排気流路5は、ガラス基板Gの加熱によって発生した塗膜昇華物や水分などの夾雑物を含む加熱室3内の空気を排気するための流路であり、排気吸引管13と、排気主管40と、排気回収管42と第1排気接続管43と、熱交換器25内に形成された排気用の流路の一部(図示せず)と、第2排気接続管44と、昇華物回収配管8と排気ファン6とで構成している。   The exhaust flow path 5 is a flow path for exhausting air in the heating chamber 3 containing contaminants such as a coating film sublimate and moisture generated by heating the glass substrate G, and an exhaust suction pipe 13; An exhaust main pipe 40, an exhaust recovery pipe 42, a first exhaust connection pipe 43, a part of an exhaust passage formed in the heat exchanger 25 (not shown), a second exhaust connection pipe 44, The sublimate collection pipe 8 and the exhaust fan 6 are used.

排気ファン6は排気流路5の下流終端に設けられており、加熱室3内の空気を排気として強制的に排出するよう構成している。   The exhaust fan 6 is provided at the downstream end of the exhaust passage 5 and is configured to forcibly exhaust the air in the heating chamber 3 as exhaust.

排気ファン6の上流部位には、昇華物回収装置7が設けられている。この昇華物回収装置7は、昇華物回収配管8の周囲に巻回した冷却配管9に通水することで、昇華物回収配管8の内壁面に夾雑物を固着させ、排気中に含まれる夾雑物を回収するための装置である。   A sublimate collection device 7 is provided upstream of the exhaust fan 6. The sublimate collection device 7 allows impurities to adhere to the inner wall surface of the sublimate collection pipe 8 by passing water through a cooling pipe 9 wound around the sublimate collection pipe 8, and is contained in the exhaust. It is a device for collecting things.

加熱室3は、図1にも示すように、上下に配置された面ヒータ10と、ガラス基板Gを載置するための載置部11と、浄化エア供給管12(図2参照)とが備えられている。換言すれば、炉体2内部において面ヒータ10に上下を挟まれた空間に載置部11を形成し、浄化エア供給管12を配設することで加熱室3を構成している。   As shown in FIG. 1, the heating chamber 3 includes a surface heater 10 disposed above and below, a placement portion 11 for placing a glass substrate G, and a purified air supply pipe 12 (see FIG. 2). Is provided. In other words, the mounting chamber 11 is formed in a space sandwiched between the upper and lower surfaces of the surface heater 10 inside the furnace body 2, and the purified air supply pipe 12 is provided to constitute the heating chamber 3.

面ヒータ10は、ステンレス製の薄膜をエッチングして形成した直線状や波状の配線パターンを熱硬化性樹脂でサンドイッチ状に挟んで面状に形成したものであり、図示しない配線により、同面ヒータ10の所定位置に形成された端子に通電することで発熱し、加熱室3内を加熱するよう構成している。 Planar heater 10 is obtained by forming a planar straight or wavy wiring pattern formed by etching a stainless steel thin film sandwiched sandwich with a thermosetting resin, by wiring (not shown), the planar heater 10 is configured to generate heat by energizing the terminals formed at predetermined positions and to heat the inside of the heating chamber 3.

載置部11は、図1および図2に示すように、炉体2の左右方向に伸延する断面視矩形状の梁体17を奥行き方向に所定間隔をあけながら複数配置するとともに、各梁体17上に所定間隔をあけてガラス基板Gを支持するための支持体14を配置して構成している。   As shown in FIG. 1 and FIG. 2, the mounting unit 11 arranges a plurality of rectangular beam members 17 that are rectangular in cross-sectional view extending in the left-right direction of the furnace body 2 while leaving a predetermined interval in the depth direction. A support 14 for supporting the glass substrate G with a predetermined interval is disposed on 17.

また、各加熱室3内の前面部18側及び後面部19側には排気吸引管13が配設されており、その中空内部を加熱室3内より吸引した空気を流通させる吸引路15としている。   Further, exhaust suction pipes 13 are disposed on the front surface 18 side and the rear surface 19 side in each heating chamber 3, and the hollow interior serves as a suction path 15 through which air sucked from the heating chamber 3 circulates. .

具体的には、図3及び図4に示すように、排気吸引管13の上面には、吸引路15に連通する吸引口16が穿設されており、この吸引口16より吸引された加熱室3内の空気は、吸引路15を経て排気されることとなる。   Specifically, as shown in FIG. 3 and FIG. 4, a suction port 16 communicating with the suction path 15 is formed in the upper surface of the exhaust suction pipe 13, and the heating chamber sucked from the suction port 16. The air in 3 is exhausted through the suction path 15.

支持体14は、図1及び図2に示すように、外観視略円錐形に形成されており、梁体17上にその伸延方向に沿って所定間隔をあけて配置されている。ガラス基板Gは、各梁体17上に複数配置された支持体14の先端部上に載置されることとなる。ガラス基板Gをこのように支持体14の先端で点で支えることにより、面ヒータ10から発せられる輻射熱が当たらない領域を可及的に減らすことができ、ガラス基板Gを満遍なく加熱することができる。   As shown in FIGS. 1 and 2, the support body 14 is formed in a substantially conical shape in appearance and is disposed on the beam body 17 at a predetermined interval along the extending direction thereof. The glass substrate G is placed on the tip of the support 14 arranged on each beam body 17. By supporting the glass substrate G with a point at the tip of the support body 14 in this way, it is possible to reduce as much as possible the area where the radiant heat emitted from the surface heater 10 does not hit, and to heat the glass substrate G evenly. .

また、各加熱室3には、図1及び図4に示すように、炉体2の前面部18側に向けて開口させて形成した基板出入口20が設けられている。   Further, as shown in FIGS. 1 and 4, each heating chamber 3 is provided with a substrate inlet / outlet 20 formed to open toward the front surface 18 side of the furnace body 2.

このそれぞれの基板出入口20には、炉体2の左右方向に軸線を向けた支軸22が前面部18に配置されている。   At each substrate entrance 20, a support shaft 22 having an axis line in the left-right direction of the furnace body 2 is disposed on the front surface portion 18.

そして、この支軸22には、各基板出入口20を閉塞可能な板体23がそれぞれ軸支されており、同板体23を支軸22の軸線周りに揺動させることによって基板出入口20を開閉可能としている。   A plate body 23 capable of closing each substrate entrance / exit 20 is supported on the support shaft 22, and the substrate entrance / exit 20 is opened / closed by swinging the plate body 23 around the axis of the support shaft 22. It is possible.

また、図1に示すように、炉体2内部の最も下に配設した面ヒータ10(以下、最下段面ヒータ10aという。)の更に下方には、最下段面ヒータ10aにて発せられた熱が炉体2の底壁1aへ伝導するのを緩和するための下部離隔スペース24が設けられており、同様に、炉体2内部の最も上に配設した面ヒータ10(以下、最上段面ヒータ10bという。)の更に上方には、最上段面ヒータ10bにて発せられた熱が炉体2の天井壁1bへ伝導するのを緩和するための上部離隔スペース27が設けられている。   Further, as shown in FIG. 1, the lowermost surface heater 10a emits further below the surface heater 10 (hereinafter referred to as the lowermost surface heater 10a) disposed at the lowest inside the furnace body 2. A lower separation space 24 is provided for alleviating the conduction of heat to the bottom wall 1a of the furnace body 2, and similarly, the surface heater 10 (hereinafter referred to as the uppermost stage) disposed at the top inside the furnace body 2 is provided. Further above the surface heater 10b), an upper separation space 27 is provided for alleviating heat generated by the uppermost surface heater 10b from being conducted to the ceiling wall 1b of the furnace body 2.

これらの離隔スペースのうち、下部離隔スペース24内には、清浄な空気と排気とを熱交換する熱交換器25が設けられている。   Among these separated spaces, a heat exchanger 25 that exchanges heat between clean air and exhaust is provided in the lower separated space 24.

熱交換器25には、一端を図示しないエアフィルタ及びエアコンプレッサに接続した浄化エア導入管26が配設されており、清浄な圧搾空気(浄化エア)を熱交換器25内に導入可能としている。特に、この浄化エア導入管26は、浄化エアを熱交換器25に導く配管として機能するものであり、本実施形態では熱交換器25との接続部近傍を炉内に配置した炉内配設部26aとしている。浄化エア導入管26は金属など熱伝導性の良好な素材にて構成しており、炉内配設部26aは、浄化エア導入管26の周囲に断熱材等を巻回することなく、内部を流通する浄化エアに下部離隔スペース24の熱が伝わりやすいよう構成している。   The heat exchanger 25 is provided with a purified air introduction pipe 26 having one end connected to an air filter and an air compressor (not shown) so that clean compressed air (purified air) can be introduced into the heat exchanger 25. . In particular, the purified air introduction pipe 26 functions as a pipe that guides purified air to the heat exchanger 25. In this embodiment, the vicinity of the connection portion with the heat exchanger 25 is disposed in the furnace. The portion 26a is used. The purified air introduction pipe 26 is made of a material having good thermal conductivity such as metal, and the in-furnace arrangement portion 26 a is formed without winding a heat insulating material around the purified air introduction pipe 26. It is configured so that the heat of the lower separation space 24 is easily transmitted to the circulating purified air.

また、熱交換器25は、排気流路5の中途に介設された状態としており、この排気の熱で浄化エア導入管26より供給される浄化エアを熱交換により予備加熱するよう構成している。   The heat exchanger 25 is interposed in the middle of the exhaust passage 5 and is configured to preheat the purified air supplied from the purified air introduction pipe 26 with heat of the exhaust by heat exchange. Yes.

熱交換器25により予備加熱された浄化エアは、次に、浄化エア連結管28を介してエア昇温ヒータ30に至る。このエア昇温ヒータ30の内部には、通電により発熱する発熱体(図示せず)が内蔵されており、同発熱体により浄化エアを所定の目標温度まで加熱可能に構成している。   The purified air preheated by the heat exchanger 25 then reaches the air heating heater 30 via the purified air connection pipe 28. A heating element (not shown) that generates heat when energized is built in the air temperature raising heater 30, and the purified air can be heated to a predetermined target temperature by the heating element.

このエア昇温ヒータ30の出口には、各加熱室3内に配置された浄化エア供給管12に連通する浄化エア供給主管31が連結されており、エア昇温ヒータ30にて昇温された浄化エアは、この浄化エア供給主管31を介して各浄化エア供給管12に至る。   A purified air supply main pipe 31 communicating with a purified air supply pipe 12 disposed in each heating chamber 3 is connected to the outlet of the air temperature raising heater 30, and the temperature is raised by the air temperature raising heater 30. The purified air reaches each purified air supply pipe 12 via the purified air supply main pipe 31.

各浄化エア供給管12には、図3に示すように複数の吹出口32が形成されている。そして、浄化エア供給管12に至った浄化エアは、加熱室3内に吹き出されることとなる。   Each purified air supply pipe 12 is formed with a plurality of air outlets 32 as shown in FIG. Then, the purified air that reaches the purified air supply pipe 12 is blown into the heating chamber 3.

このようにして、加熱室3に昇温された浄化エアが供給される。   In this way, the heated purified air is supplied to the heating chamber 3.

また、各加熱室3の前面部18側及び後面部19側に配設された排気吸引管13は、図3に示すように、排気流路5の一部を構成する排気主管40に接続されている。   Further, the exhaust suction pipes 13 disposed on the front face 18 side and the rear face 19 side of each heating chamber 3 are connected to an exhaust main pipe 40 that constitutes a part of the exhaust flow path 5 as shown in FIG. ing.

したがって、排気流路5の端部に設けられた排気ファン6の駆動により、加熱室内の空気が吸引口16を介して吸引路15に吸い込まれることとなる。   Therefore, the air in the heating chamber is sucked into the suction path 15 through the suction port 16 by driving the exhaust fan 6 provided at the end of the exhaust flow path 5.

吸引路15に吸い込まれた空気は、図5において破線矢印で示すように、排気吸引管13の左右端部に接続された上下方向に伸延する排気主管40に至る。すなわち、各加熱室3に設けられた排気吸引管13は、いずれの端部も排気主管40に連通する状態で同様に接続されており、吸い込まれた空気は、それぞれ排気主管40に集合することとなる。なお、図5は、排気流路5の構成を示した説明図であり、浄化エア供給流路4や加熱室3など、その他の構成については理解を容易とするために省略している。   The air sucked into the suction passage 15 reaches the exhaust main pipe 40 extending in the vertical direction connected to the left and right ends of the exhaust suction pipe 13 as shown by broken line arrows in FIG. That is, the exhaust suction pipes 13 provided in the respective heating chambers 3 are similarly connected in a state where both ends thereof communicate with the exhaust main pipe 40, and the sucked air gathers in the exhaust main pipe 40. It becomes. FIG. 5 is an explanatory diagram showing the configuration of the exhaust flow path 5, and other configurations such as the purified air supply flow path 4 and the heating chamber 3 are omitted for easy understanding.

ここで、本熱処理炉Aに特徴的には、排気主管40は、図3に示すように、加熱室3に面する炉壁1内、本実施形態では側壁41内に形成している。この側壁41は、加熱室3の熱によって高温となっており、この排気主管40を流れる排気は高温を保持したまま流れることとなる。   Here, as characteristic of the present heat treatment furnace A, the exhaust main pipe 40 is formed in the furnace wall 1 facing the heating chamber 3, or in the side wall 41 in this embodiment, as shown in FIG. The side wall 41 is heated by the heat of the heating chamber 3, and the exhaust gas flowing through the exhaust main pipe 40 flows while maintaining the high temperature.

これは、排気主管40を炉外に設けた場合に比して、排気温度の低下を防止することができる。   This can prevent the exhaust temperature from being lowered as compared with the case where the exhaust main pipe 40 is provided outside the furnace.

排気主管40の下端部には、図5に示すように、水平方向(前後方向)に伸延する排気回収管42が接続されており、この排気回収管42に至った排気は、第1排気接続管43を経て熱交換器25に至る。   As shown in FIG. 5, an exhaust recovery pipe 42 extending in the horizontal direction (front-rear direction) is connected to the lower end of the exhaust main pipe 40, and the exhaust that reaches the exhaust recovery pipe 42 is connected to the first exhaust connection. It reaches the heat exchanger 25 through the pipe 43.

熱交換器25の内部では、排気流路5により送気されてきた排気と、浄化エア供給流路4により供給される清浄な空気との間で熱交換が行われる。このとき、排気は先に述べたように、側壁41内に配設した排気主管40を通じて高温を保つようにしているため、熱交換器25に比較的高温の排気を導入させることができ、できるだけ多い熱エネルギーを浄化エアに付与して、効率良く熱交換を行わせることができる。   Inside the heat exchanger 25, heat exchange is performed between the exhaust gas supplied through the exhaust passage 5 and the clean air supplied through the purified air supply passage 4. At this time, since the exhaust gas is maintained at a high temperature through the exhaust main pipe 40 disposed in the side wall 41 as described above, it is possible to introduce a relatively high temperature exhaust gas into the heat exchanger 25. A large amount of heat energy can be imparted to the purified air to efficiently perform heat exchange.

また、熱交換器25は炉内に設けているため、熱交換器25全体が加熱されており、熱交換器25を炉外に設けた場合に比して効率良く浄化エアの加熱を行うことができる。   Further, since the heat exchanger 25 is provided in the furnace, the entire heat exchanger 25 is heated, and the purified air can be heated more efficiently than when the heat exchanger 25 is provided outside the furnace. Can do.

特に、熱交換器25は、熱処理炉Aの構造上必要な下部離隔スペース24内に設けているため(図1及び図2参照)、下部離隔スペース24本来の目的を保ちつつ、浄化エアを熱効率良く加温させることができる。   In particular, since the heat exchanger 25 is provided in the lower separation space 24 necessary for the structure of the heat treatment furnace A (see FIGS. 1 and 2), the purified air is thermally efficient while maintaining the original purpose of the lower separation space 24. Can be warmed well.

また、浄化エア導入管26は、図2に示したように、その一部を炉内に配置して構成した炉内配設部26aを備えている。したがって、浄化エアは、炉内の熱交換器25に至るまでの部分においても、加熱された浄化エア導入管26によって予備的に加温されることとなり、熱交換器25での目標温度やヒータでの目標温度とするのに要するエネルギーを少なくすることができ、安価な構成でしかも効率的に浄化エアを加温することができる。   Further, as shown in FIG. 2, the purified air introduction pipe 26 includes an in-furnace arrangement portion 26 a configured by arranging a part thereof in the furnace. Accordingly, the purified air is preliminarily heated by the heated purified air introduction pipe 26 even in the portion up to the heat exchanger 25 in the furnace, and the target temperature and the heater in the heat exchanger 25 are heated. Therefore, the energy required to obtain the target temperature can be reduced, and the purified air can be efficiently heated with an inexpensive configuration.

次に、変形例に係る熱処理炉Bについて図6及び図7を参照しながら説明する。本変形例に係る熱処理炉Bは、より多くのガラス基板Gを熱処理するために、前述の熱処理炉Aと略同様の構成とした上下2台の熱処理炉(下側熱処理炉B1及び上側熱処理炉B2)を連結した構成としている。なお、以下の変形例の説明では、前述の熱処理炉Aと同様の構成については同じ符号を付して説明を省略する。また、紙面の関係上、下側熱処理炉B1で4枚、上側熱処理炉B2で4枚の計8枚のガラス基板Gを処理するよう構成しているが、より多くのガラス基板G(例えば、上下熱処理炉のそれぞれで10枚ずつ、計20枚)を処理可能に構成しても良い。   Next, a heat treatment furnace B according to a modification will be described with reference to FIGS. The heat treatment furnace B according to the present modification has two upper and lower heat treatment furnaces (a lower heat treatment furnace B1 and an upper heat treatment furnace) having substantially the same configuration as the heat treatment furnace A described above in order to heat more glass substrates G. B2) is connected. In the following description of the modification, the same components as those of the heat treatment furnace A described above are denoted by the same reference numerals and description thereof is omitted. In addition, due to the space on the paper surface, a total of eight glass substrates G, four in the lower heat treatment furnace B1 and four in the upper heat treatment furnace B2, are processed, but more glass substrates G (for example, A total of 20 sheets may be processed in each of the upper and lower heat treatment furnaces.

図6に示すように、熱処理炉Bにおいて下側熱処理炉B1は、前述の熱処理炉Aと略同様の構成としている。また、上側熱処理炉B2は、下側熱処理炉B1の上部に載置している。   As shown in FIG. 6, in the heat treatment furnace B, the lower heat treatment furnace B1 has substantially the same configuration as the heat treatment furnace A described above. Further, the upper heat treatment furnace B2 is placed on top of the lower heat treatment furnace B1.

ここで、下側熱処理炉B1の上部壁51bと、上側熱処理炉B2の下部壁51aは、相互の熱伝導の効率化や軽量化の理由から、他の炉壁1に比して薄手に形成しており、また、下側熱処理炉B1の上部離隔スペース27及び上側熱処理炉B2の下部離隔スペース24の高さも小さくしている。   Here, the upper wall 51b of the lower heat treatment furnace B1 and the lower wall 51a of the upper heat treatment furnace B2 are formed thinner than other furnace walls 1 for the purpose of improving the efficiency of heat conduction and reducing the weight. In addition, the heights of the upper separation space 27 of the lower heat treatment furnace B1 and the lower separation space 24 of the upper heat treatment furnace B2 are also reduced.

このように、上下2段とした熱処理炉Bでは、上側熱処理炉B2の下部離隔スペース24が狭隘であるため、熱交換器25を配置することが困難であり、また、上下熱処理炉B1及びB2間の熱伝導の観点からも良好とは言い難い。   Thus, in the heat treatment furnace B having two upper and lower stages, it is difficult to arrange the heat exchanger 25 because the lower separation space 24 of the upper heat treatment furnace B2 is narrow, and the upper and lower heat treatment furnaces B1 and B2 are difficult to arrange. It is difficult to say that it is good from the viewpoint of heat conduction.

そこで、熱処理炉Bでは、図6及び図7に示すように、上側熱処理炉B2の熱交換器25を、同上側熱処理炉B2の最上段面ヒータ10b上方に形成した上部離隔スペース50に配置している。   Therefore, in the heat treatment furnace B, as shown in FIGS. 6 and 7, the heat exchanger 25 of the upper heat treatment furnace B2 is disposed in the upper separation space 50 formed above the uppermost surface heater 10b of the upper heat treatment furnace B2. ing.

この上部離隔スペース50は、前述の熱処理炉Aの下部離隔スペース24と同様、最上段面ヒータ10bにて発せられた熱が炉体2の天井壁1bへ伝導するのを防止するためのスペースである。   The upper separation space 50 is a space for preventing the heat generated by the uppermost heater 10b from being conducted to the ceiling wall 1b of the furnace body 2 in the same manner as the lower separation space 24 of the heat treatment furnace A described above. is there.

このような構成を有する熱処理炉Bによれば、ガラス基板Gの枚数が増えて、換気量が増えた場合であっても、上下熱処理炉B1及びB2の相互の熱伝導の効率化や軽量化を図りながらも、可及的安価な構成で、加熱室3に供給する浄化エアを熱効率良く加温することができる。   According to the heat treatment furnace B having such a configuration, even if the number of glass substrates G is increased and the ventilation amount is increased, the heat conduction efficiency between the upper and lower heat treatment furnaces B1 and B2 is improved and the weight is reduced. However, the purified air supplied to the heating chamber 3 can be heated with high thermal efficiency with a configuration that is as inexpensive as possible.

上述してきたように、本実施形態に係る熱処理炉A及びBによれば、炉内に設けた加熱室3の空気を炉外へ排気しつつ、清浄な空気を前記加熱室3に供給して同加熱室3内を換気する熱処理炉において、前記加熱室3に面する炉壁1(例えば、側壁41)内に前記加熱室3の空気を排気するための流路5(例えば、排気主管40)を形成し、同流路を経た排気との熱交換によって加温した前記清浄な空気を前記加熱室3に供給することとしたため、可及的安価な構成で、吸気した清浄な空気を熱効率良く加温することができる。   As described above, according to the heat treatment furnaces A and B according to the present embodiment, clean air is supplied to the heating chamber 3 while exhausting the air in the heating chamber 3 provided in the furnace to the outside of the furnace. In a heat treatment furnace for ventilating the heating chamber 3, a flow path 5 (for example, an exhaust main pipe 40) for exhausting the air in the heating chamber 3 into a furnace wall 1 (for example, a side wall 41) facing the heating chamber 3. ), And the clean air heated by heat exchange with the exhaust gas passing through the same flow path is supplied to the heating chamber 3, so that the clean air that has been sucked in has a thermal efficiency as low as possible. Can warm well.

また、前記排気と前記清浄な空気との熱交換を行う熱交換器(例えば、熱交換器25)を前記炉内(例えば、下部離隔スペース24や上部離隔スペース50)に設けたため、排気が熱交換器に至るまでの熱ロスを可及的に防止して、吸気した清浄な空気をさらに熱効率良く加温することができる。   Further, since a heat exchanger (for example, the heat exchanger 25) that performs heat exchange between the exhaust and the clean air is provided in the furnace (for example, the lower separation space 24 and the upper separation space 50), the exhaust is heated. Heat loss up to the exchanger can be prevented as much as possible, and the sucked clean air can be heated more efficiently.

また、前記清浄な空気を前記熱交換器に導く配管の少なくとも一部を前記炉内に配設(例えば、浄化エア導入管26の炉内配設部26a)したため、清浄な空気が熱交換器に至るまでの間にも加温を行うことができ、吸気した清浄な空気をさらに熱効率良く加温することができる。   Further, since at least a part of the pipe for guiding the clean air to the heat exchanger is disposed in the furnace (for example, the in-furnace disposed portion 26a of the purified air introduction pipe 26), the clean air is converted into the heat exchanger. It is possible to heat up to the point of time, and it is possible to heat the clean air taken in more efficiently.

また、前記炉内に前記加熱室を多段状に複数設け、各加熱室からの排気を前記流路に集合させた(例えば、各加熱室3の吸引路15及び排気主管40)こととしたため、各加熱室からの排気の熱を可及的に効率よく吸気した清浄な空気の加温に用いることができる。   Also, since the heating chambers are provided in a plurality of stages in the furnace, and the exhaust from each heating chamber is collected in the flow path (for example, the suction path 15 and the exhaust main pipe 40 of each heating chamber 3), The heat of the exhaust from each heating chamber can be used for heating clean air that has been taken in as efficiently as possible.

最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。   Finally, the description of each embodiment described above is an example of the present invention, and the present invention is not limited to the above-described embodiment. For this reason, it is a matter of course that various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea according to the present invention other than the embodiments described above.

1 炉壁
2 炉体
3 加熱室
4 清浄な空気供給流路
5 排気流路
10 面ヒータ
12 加熱清浄な空気供給管
24 下部離隔スペース
25 熱交換器
26a 炉内配設部
40 排気主管
41 側壁
50 上部離隔スペース
A 熱処理炉
B 熱処理炉
G ガラス基板
DESCRIPTION OF SYMBOLS 1 Furnace wall 2 Furnace body 3 Heating chamber 4 Clean air supply flow path 5 Exhaust flow path 10 Surface heater 12 Heated clean air supply pipe 24 Lower separation space 25 Heat exchanger 26a Furnace installation part 40 Exhaust main pipe 41 Side wall 50 Upper separation space A Heat treatment furnace B Heat treatment furnace G Glass substrate

Claims (4)

炉内に設けた加熱室の空気を炉外へ排気しつつ、清浄な空気を前記加熱室に供給して同加熱室内を換気する熱処理炉において、
前記加熱室に面する炉壁内に前記加熱室の空気を排気するための流路を形成し、同流路を経た排気との熱交換によって加温した前記清浄な空気を前記加熱室に供給することを特徴とする熱処理炉。
In a heat treatment furnace that ventilates the heating chamber by supplying clean air to the heating chamber while exhausting the air in the heating chamber provided in the furnace to the outside of the furnace,
A flow passage for exhausting the air in the heating chamber is formed in the furnace wall facing the heating chamber, and the clean air heated by heat exchange with the exhaust through the flow passage is supplied to the heating chamber. A heat treatment furnace characterized by:
前記排気と前記清浄な空気との熱交換を行う熱交換器を前記炉内に設けたことを特徴とする請求項1に記載の熱処理炉。   The heat treatment furnace according to claim 1, wherein a heat exchanger that performs heat exchange between the exhaust and the clean air is provided in the furnace. 前記清浄な空気を前記熱交換器に導く配管の少なくとも一部を前記炉内に配設したことを特徴とする請求項2に記載の熱処理炉。   The heat treatment furnace according to claim 2, wherein at least a part of a pipe for guiding the clean air to the heat exchanger is disposed in the furnace. 前記炉内に前記加熱室を多段状に複数設け、各加熱室からの排気を前記流路に集合させたことを特徴とする請求項1〜3いずれか1項に記載の熱処理炉。   The heat treatment furnace according to any one of claims 1 to 3, wherein a plurality of the heating chambers are provided in a multistage shape in the furnace, and exhaust gas from each heating chamber is collected in the flow path.
JP2011169858A 2011-08-03 2011-08-03 Heat treatment furnace Pending JP2013032894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011169858A JP2013032894A (en) 2011-08-03 2011-08-03 Heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169858A JP2013032894A (en) 2011-08-03 2011-08-03 Heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2013032894A true JP2013032894A (en) 2013-02-14

Family

ID=47788903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011169858A Pending JP2013032894A (en) 2011-08-03 2011-08-03 Heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2013032894A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361730A (en) * 2001-06-12 2002-12-18 Mitsubishi Heavy Ind Ltd Apparatus for treating film, tenter oven, and hot-air dryer
JP2004144338A (en) * 2002-10-22 2004-05-20 Showa Mfg Co Ltd Heat treatment device for glass substrate
JP2008039376A (en) * 2006-07-13 2008-02-21 Espec Corp Heat treating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361730A (en) * 2001-06-12 2002-12-18 Mitsubishi Heavy Ind Ltd Apparatus for treating film, tenter oven, and hot-air dryer
JP2004144338A (en) * 2002-10-22 2004-05-20 Showa Mfg Co Ltd Heat treatment device for glass substrate
JP2008039376A (en) * 2006-07-13 2008-02-21 Espec Corp Heat treating device

Similar Documents

Publication Publication Date Title
JP3833439B2 (en) Multistage heating furnace for large substrates, double-sided heating type far-infrared panel heater, and air supply / exhaust method in the heating furnace
JP2018117141A (en) Heating/cooling device and manufacturing method for semiconductor device
US9625162B2 (en) Heating cooker
EP1748254B1 (en) Gas fireplace
CN103037665B (en) A kind of electronic device cooling system with radiator cooler
CN101637063B (en) Induction heating cooker
US20140193762A1 (en) Heat treatment furnace
WO2007139328A1 (en) Fan heater using plane heater
CN107084423A (en) Blast type energy-saving electric heating
CN106102189A (en) Unit heater and annealing device
KR101358285B1 (en) Continuous firing furnace
CN109717761B (en) Oven with a baking oven
CN107559963A (en) Vertical air-conditioner indoor unit
JP2002243368A (en) Continuous kiln for flat sheet glass
JP2013032894A (en) Heat treatment furnace
KR101328160B1 (en) Heating apparatus
JP2020067256A (en) Drying air supply device
JP2008249217A (en) Heating device
TW202244448A (en) Sintering furnace
JP4544515B2 (en) Plate processing product cooling device.
JP2005114284A (en) Kiln
JP5469913B2 (en) Thermal insulation structure and storage device having the thermal insulation structure
JP7079043B2 (en) Heating device and heating method
JP2004125345A (en) Continuous kiln
TWI787835B (en) Heat treatment oven exhaust duct integrated heater unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006