JP2013030665A - Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device - Google Patents

Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device Download PDF

Info

Publication number
JP2013030665A
JP2013030665A JP2011166647A JP2011166647A JP2013030665A JP 2013030665 A JP2013030665 A JP 2013030665A JP 2011166647 A JP2011166647 A JP 2011166647A JP 2011166647 A JP2011166647 A JP 2011166647A JP 2013030665 A JP2013030665 A JP 2013030665A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion device
receiving surface
interconnector
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011166647A
Other languages
Japanese (ja)
Inventor
Yukiyo Ooka
幸代 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011166647A priority Critical patent/JP2013030665A/en
Priority to PCT/JP2012/067814 priority patent/WO2013018521A1/en
Publication of JP2013030665A publication Critical patent/JP2013030665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a photoelectric conversion device module capable of easily being manufactured without bending an interconnector when manufacturing the photoelectric conversion device module.SOLUTION: The photoelectric conversion device module 91 includes a plurality of photoelectric conversion devices 40 and interconnectors 53 for connecting between the photoelectric conversion devices, where a metal foil 48 used as a back electrode is formed on a rear face of the photoelectric conversion device, the metal foil has a protruding portion, and the interconnector contacts a light-receiving surface electrode formed on a receiving surface of one photoelectric conversion device and a light-receiving surface side of the protruding portion of the other photoelectric conversion device.

Description

本発明は、光電変換装置モジュール、光電変換装置モジュールの製造方法、及び光電変換装置、特に、光電変換装置モジュール内の光電変換装置同士の接続の構造に関する。   The present invention relates to a photoelectric conversion device module, a method for manufacturing a photoelectric conversion device module, and a photoelectric conversion device, and more particularly to a connection structure between photoelectric conversion devices in a photoelectric conversion device module.

太陽電池である光電変換装置は化合物半導体または有機材料など様々な種類があるが、主流となっているのは、シリコン結晶を用いたものである。近年では、光電変換装置の低コスト化から、シリコン基板が薄板化してきている。また、現在、量産されている光電変換装置の中では、入射光側の面である受光面に櫛型の集電極を有し、受光面と反対側の面である裏面に電極を形成した両面電極型の光電変換装置が多数を占める。ここで、受光面に形成された電極を受光面電極、裏面に形成された電極を裏面電極とする。両面電極型の光電変換装置の中でも、高い光電変換効率を実現するための構造として、シリコン基板と裏面電極との接合部において局所的にp層を設けたことを特徴とする光電変換装置が非特許文献1に、PERL(Passivated Emitter, Rear Locally−diffused)構造として開示されている。 There are various types of photoelectric conversion devices that are solar cells, such as compound semiconductors or organic materials, but the mainstream is the one using silicon crystals. In recent years, silicon substrates have been made thinner due to cost reduction of photoelectric conversion devices. Further, in currently mass-produced photoelectric conversion devices, both sides have a comb-shaped collector electrode on the light receiving surface that is the incident light side surface, and electrodes are formed on the back surface that is the surface opposite to the light receiving surface. Electrode-type photoelectric conversion devices occupy many. Here, the electrode formed on the light receiving surface is the light receiving surface electrode, and the electrode formed on the back surface is the back electrode. Among the double-sided electrode type photoelectric conversion devices, there is a photoelectric conversion device characterized in that, as a structure for realizing high photoelectric conversion efficiency, a p + layer is locally provided at the junction between the silicon substrate and the back electrode. Non-Patent Document 1 discloses a PERL (Passivated Emitter, Rear Locally-diffused) structure.

図9は、非特許文献1に開示されている光電変換装置120の一般的な例であり、断面を表す模式図である。   FIG. 9 is a general example of the photoelectric conversion device 120 disclosed in Non-Patent Document 1, and is a schematic diagram illustrating a cross section.

p型シリコン基板121の入射光側の面である受光面(以下「p型シリコン基板の受光面」という。)に、n型半導体層122が形成され、n型半導体層122は受光面反射防止膜123によって覆われている。受光面電極124は、受光面反射防止膜123を貫通して、n型半導体層122に接続している。   An n-type semiconductor layer 122 is formed on a light-receiving surface (hereinafter referred to as “light-receiving surface of a p-type silicon substrate”) that is a surface on the incident light side of the p-type silicon substrate 121, and the n-type semiconductor layer 122 has an anti-reflection on the light receiving surface. Covered by a film 123. The light receiving surface electrode 124 passes through the light receiving surface antireflection film 123 and is connected to the n-type semiconductor layer 122.

また、p型シリコン基板121の受光面の反対側の面である裏面(以下「p型シリコン基板の裏面」という。)には、裏面パッシベーション膜126がパターニングされて形成され、そのパターニングに対応したp型シリコン基板121の裏面には、裏面電界層125が形成されている。127は裏面電極、128はアルミニウム電極である。   Further, a back surface passivation film 126 is formed on the back surface (hereinafter referred to as “the back surface of the p-type silicon substrate”) opposite to the light receiving surface of the p-type silicon substrate 121 by patterning. A back surface electric field layer 125 is formed on the back surface of the p-type silicon substrate 121. 127 is a back electrode, and 128 is an aluminum electrode.

図10は、図9の光電変換装置の製造方法の一例を示す製造フロー図である。   FIG. 10 is a manufacturing flow diagram illustrating an example of a method for manufacturing the photoelectric conversion device in FIG. 9.

まず、テクスチャリング工程(S101。「S」はステップを表す。以下同様。)において、テクスチャ構造である凹凸構造を形成する。   First, in the texturing process (S101. “S” represents a step. The same applies hereinafter), a textured structure is formed.

次に、pn接合形成工程(S102)において、p型シリコン基板121の受光面に、例えばリンを熱処理により拡散させることによって、n型半導体層122を形成する。   Next, in the pn junction formation step (S102), the n-type semiconductor layer 122 is formed on the light-receiving surface of the p-type silicon substrate 121 by, for example, diffusing phosphorus by heat treatment.

次に、反射防止膜形成工程(S103)において、n型半導体層122の上に受光面反射防止膜123を形成する。   Next, in the antireflection film forming step (S 103), the light receiving surface antireflection film 123 is formed on the n-type semiconductor layer 122.

次に、パッシベーション膜形成工程(S104)において、p型シリコン基板121の裏面に、例えば、酸化シリコン膜等の裏面パッシベーション膜126を形成する。   Next, in a passivation film formation step (S104), a back surface passivation film 126 such as a silicon oxide film is formed on the back surface of the p-type silicon substrate 121.

次に、パッシベーション膜パターニング工程(S105)において、裏面パッシベーション膜126をパターニングによって部分的に除去してコンタクトボールを形成し、コンタクトホールにp型不純物であるアルミニウムを充填する。   Next, in the passivation film patterning step (S105), the back surface passivation film 126 is partially removed by patterning to form a contact ball, and the contact hole is filled with aluminum which is a p-type impurity.

次に、裏面電界層形成工程(S106)において、熱処理によりパターニングに対応した裏面電界層125を、p型シリコン基板121の裏面に形成し、取り出し電極としてアルミニウム電極128を形成する。   Next, in the back surface field layer forming step (S106), a back surface field layer 125 corresponding to patterning is formed on the back surface of the p-type silicon substrate 121 by heat treatment, and an aluminum electrode 128 is formed as a take-out electrode.

次に、裏面電極形成工程(S107)において、裏面パッシベーション膜126、アルミニウム電極128を覆うようにして、アルミニウムを蒸着し裏面電極127を形成する。   Next, in the back electrode forming step (S107), aluminum is vapor-deposited so as to cover the back surface passivation film 126 and the aluminum electrode 128, and the back electrode 127 is formed.

次に、受光面電極形成工程(S108)において、受光面反射防止膜123をパターニングして受光面電極124を形成する。   Next, in the light-receiving surface electrode formation step (S108), the light-receiving surface antireflection film 123 is patterned to form the light-receiving surface electrode 124.

非特許文献1に記載の光電変換装置は、局所的に設けた裏面電界層125によりLBSF(Local Back Surface Field)効果を得ながら、同時に裏面パッシベーション膜126によりp型シリコン基板121の裏面表層部シリコン原子の未結合手を終端させ、表面再結合速度を低減することができる。光電変換効率と表面再結合速度は密接に結びついており、上述のように表面再結合速度を低減することにより、光電変換効率を高くすることができる。   The photoelectric conversion device described in Non-Patent Document 1 obtains an LBSF (Local Back Surface Field) effect by a locally provided back surface field layer 125, and at the same time, backside surface layer silicon of the p-type silicon substrate 121 by a back surface passivation film 126. The dangling bonds of atoms can be terminated, and the surface recombination rate can be reduced. The photoelectric conversion efficiency and the surface recombination rate are closely related, and the photoelectric conversion efficiency can be increased by reducing the surface recombination rate as described above.

光電変換装置を複数用いて、光電変換装置モジュールを作製する。具体的には、複数の光電変換装置をインターコネクタ等で電気的に接続して光電変換装置ストリングにし、その光電変換装置ストリングを樹脂等で封止して作製する。インターコネクタは、その表面全体に半田を被覆した銅箔を所定の長さに切断したものである。   A photoelectric conversion device module is manufactured using a plurality of photoelectric conversion devices. Specifically, a plurality of photoelectric conversion devices are electrically connected with an interconnector or the like to form a photoelectric conversion device string, and the photoelectric conversion device string is sealed with a resin or the like. The interconnector is obtained by cutting a copper foil whose surface is covered with solder into a predetermined length.

Jianhoa Zhao, Aihua Wang and Martin A. Green, "24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates", Progress in photovoltaics: Research and Applications, 7, pp.471-474. (1999)Jianhoa Zhao, Aihua Wang and Martin A. Green, "24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates", Progress in photovoltaics: Research and Applications, 7, pp.471-474. (1999 )

図11は、図9に示す光電変換装置を使用した場合の光電変換装置モジュールの一例であり、断面を表す模式図である。複数の光電変換装置120をインターコネクタ153で接続し基材である透明基板のガラス172とバックシート174の間に挟み、封止材であるEVA(エチレンビニルアセテート)173で封止している。なお、図11では、両サイドのインターコネクタを省略している。光電変換装置120の裏面電極127はアルミニウムであるので、インターコネクタ153の半田がつかないことから、EVA173によってインターコネクタ153を裏面電極127に接触させている。   FIG. 11 is an example of a photoelectric conversion device module when the photoelectric conversion device illustrated in FIG. 9 is used, and is a schematic diagram illustrating a cross section. A plurality of photoelectric conversion devices 120 are connected by an interconnector 153 and sandwiched between a transparent substrate glass 172 and a back sheet 174 as a base material, and sealed with EVA (ethylene vinyl acetate) 173 as a sealing material. In FIG. 11, the interconnectors on both sides are omitted. Since the back electrode 127 of the photoelectric conversion device 120 is made of aluminum, the interconnector 153 cannot be soldered. Therefore, the interconnector 153 is brought into contact with the back electrode 127 by the EVA 173.

図12は、図11に示す光電変換装置モジュールの製造方法の一例である。図12に示すように模式的断面図を参照して説明する。なお、図12では、両サイドのインターコネクタを省略している。   FIG. 12 is an example of a manufacturing method of the photoelectric conversion device module shown in FIG. This will be described with reference to a schematic sectional view as shown in FIG. In FIG. 12, the interconnectors on both sides are omitted.

まず、図12(a)に示すように、光電変換装置120の受光面電極に、インターコネクタ153を接続する。   First, as shown in FIG. 12A, the interconnector 153 is connected to the light receiving surface electrode of the photoelectric conversion device 120.

次に、図12(b)を用いて次工程を説明する。図12(b)は、受光面側が下となっている。図12(b)に示すように、ガラス172上に封止材フィルムであるEVAフィルム181を配置し、その上にインターコネクタ153を受光面の電極に接続した複数の光電変換装置120を、受光面側がEVAフィルム181に接するように配置する。この際、インターコネクタ153を曲げて、隣りの光電変換装置120の裏面電極127上に配置する。   Next, the next step will be described with reference to FIG. In FIG. 12B, the light receiving surface side is on the bottom. As shown in FIG. 12B, a plurality of photoelectric conversion devices 120 in which an EVA film 181 as a sealing material film is disposed on a glass 172 and an interconnector 153 is connected to an electrode on a light receiving surface are received. It arrange | positions so that a surface side may contact the EVA film 181. FIG. At this time, the interconnector 153 is bent and disposed on the back electrode 127 of the adjacent photoelectric conversion device 120.

次に、図12(c)に示すように、光電変換装置120及びインターコネクタ153上にEVAフィルム182を載せ、その上にフレキシブル性を有するバックシート174を載せる。   Next, as shown in FIG. 12C, an EVA film 182 is placed on the photoelectric conversion device 120 and the interconnector 153, and a flexible back sheet 174 is placed thereon.

次に、図12(d)に示すように、ガラス172とバックシート174間を真空引きすることで、ラミネートする。この際、インターコネクタ153は裏面電極127に接して重なる。その後、加熱することで、EVAフィルムが硬化し、光電変換装置モジュール191が作製される。   Next, as shown in FIG. 12D, the glass 172 and the back sheet 174 are laminated by vacuuming. At this time, the interconnector 153 is in contact with and overlaps the back electrode 127. Thereafter, the EVA film is cured by heating, and the photoelectric conversion device module 191 is manufactured.

しかしながら、図12(b)で説明したように、インターコネクタ153を接続した光電変換装置120を、EVAフィルム181に配置する際、光電変換装置120の裏面電極127上にインターコネクタを配置させるため、インターコネクタ153を曲げる必要があった。インターコネクタ153は、光電変換装置120の受光面電極に接続しているため、インターコネクタを曲げる際に、受光面電極との接続箇所を基点として、光電変換装置が割れたり、欠けたりして、歩留り低下の要因になる可能性があった。   However, as described with reference to FIG. 12B, when the photoelectric conversion device 120 to which the interconnector 153 is connected is disposed on the EVA film 181, the interconnector is disposed on the back electrode 127 of the photoelectric conversion device 120. The interconnector 153 had to be bent. Since the interconnector 153 is connected to the light receiving surface electrode of the photoelectric conversion device 120, when the interconnector is bent, the photoelectric conversion device is cracked or chipped from the connection point with the light receiving surface electrode, There was a possibility that it might be a factor of yield reduction.

本発明は、上記の問題に鑑みてなされたものであり、その目的は、インターコネクタを曲げることなく、容易に製造することが可能な光電変換装置モジュールの構造を提供することにある。   This invention is made | formed in view of said problem, The objective is to provide the structure of the photoelectric conversion apparatus module which can be manufactured easily, without bending an interconnector.

本発明の光電変換装置モジュールは、複数の光電変換装置と、複数の光電変換装置間を接続するインターコネクタとを有し、光電変換装置の裏面には、裏面電極である金属箔が形成され、金属箔は、突出部を有し、インターコネクタは、1つの光電変換装置の受光面に形成された受光面電極と、他の前記光電変換装置の突出部の受光面側に接している。   The photoelectric conversion device module of the present invention has a plurality of photoelectric conversion devices and an interconnector connecting the plurality of photoelectric conversion devices, and a metal foil as a back electrode is formed on the back surface of the photoelectric conversion device, The metal foil has a protruding portion, and the interconnector is in contact with the light receiving surface electrode formed on the light receiving surface of one photoelectric conversion device and the light receiving surface side of the protruding portion of the other photoelectric conversion device.

ここで、本発明の光電変換装置モジュールは、金属箔は、銅箔であってもよい。   Here, in the photoelectric conversion device module of the present invention, the metal foil may be a copper foil.

また、本発明の光電変換装置モジュールは、複数の光電変換装置の受光面側には、透明基板を配置し、複数の光電変換装置の裏面側には、バックシートを配置して、透明基板とバックフィルムの間で、複数の光電変換装置、及び前記インターコネクタを封止材で固定してもよい。   In the photoelectric conversion device module of the present invention, a transparent substrate is disposed on the light receiving surface side of the plurality of photoelectric conversion devices, and a back sheet is disposed on the back surface side of the plurality of photoelectric conversion devices. A plurality of photoelectric conversion devices and the interconnector may be fixed with a sealing material between the back films.

本発明の光電変換装置モジュールの製造方法は、光電変換装置本体の受光面電極にインターコネクタを接続する第1工程と、透明基板上に第1封止材フィルムを配置し、第1封止材EVAフィルム上にインターコネクタを接続した複数の光電変換装置本体を、光電変換装置の受光面側が第1封止材フィルムに接するように配置する第2工程と、光電変換装置本体間のインターコネクタが突出した側に、金属箔を突出させて光電変換装置本体の各々の上に配置する第3工程と、金属箔上に第2封止材フィルムを配置し、第2封止材フィルム上にバックシートを配置する第4工程と、透明基板とバックフィルム間をラミネートした後、加熱する第5工程とを備える。   The method for manufacturing a photoelectric conversion device module according to the present invention includes a first step of connecting an interconnector to a light receiving surface electrode of a photoelectric conversion device main body, a first sealing material film disposed on a transparent substrate, and a first sealing material. A second step of arranging a plurality of photoelectric conversion device bodies having interconnectors connected on an EVA film so that the light receiving surface side of the photoelectric conversion device is in contact with the first sealing material film, and an interconnector between the photoelectric conversion device bodies A third step of projecting the metal foil on the projecting side and placing it on each of the photoelectric conversion device main bodies, a second sealing material film on the metal foil, and a back on the second sealing material film A fourth step of arranging the sheet and a fifth step of heating after laminating the transparent substrate and the back film are provided.

本発明の光電変換装置は、第1導電型のシリコン基板と、シリコン基板の受光面に形成された第2導電型の半導体層と、半導体層上に形成された受光面電極と、シリコン基板の裏面に形成された複数のコンタクトホールを有する裏面パッシベーション膜と、コンタクトホールの、シリコン基板の裏面に接して形成されたアルミニウム電極と、アルミニウム電極に接する金属箔とを有する。   The photoelectric conversion device of the present invention includes a first conductive type silicon substrate, a second conductive type semiconductor layer formed on the light receiving surface of the silicon substrate, a light receiving surface electrode formed on the semiconductor layer, and a silicon substrate. A back surface passivation film having a plurality of contact holes formed on the back surface; an aluminum electrode formed in contact with the back surface of the silicon substrate in the contact hole; and a metal foil in contact with the aluminum electrode.

ここで、本発明の光電変換装置は、第1導電型は、p型であってもよい。   Here, in the photoelectric conversion device of the present invention, the first conductivity type may be p-type.

また、本発明の光電変換装置は、金属箔は、銅箔であってもよい。   In the photoelectric conversion device of the present invention, the metal foil may be a copper foil.

また、本発明の光電変換装置は、金属箔は、すべてのアルミニウム電極を覆ってもよい。   In the photoelectric conversion device of the present invention, the metal foil may cover all the aluminum electrodes.

また、本発明の光電変換装置は、金属箔は、突出部を有し、突出部にはインターコネクタを接続してもよい。   In the photoelectric conversion device of the present invention, the metal foil may have a protrusion, and an interconnector may be connected to the protrusion.

本発明によれば、光電変換装置の裏面電極である金属箔の突出部に、インターコネクタを接続させるので、インターコネクタを曲げることなく、容易に製造することが可能な光電変換装置モジュールの構造を提供することができる。   According to the present invention, since the interconnector is connected to the protruding portion of the metal foil that is the back electrode of the photoelectric conversion device, the structure of the photoelectric conversion device module that can be easily manufactured without bending the interconnector is provided. Can be provided.

本発明の光電変換装置の一例の模式的な図である。It is a typical figure of an example of the photoelectric conversion apparatus of this invention. 図1のA−A′線における断面を示す模式的な図である。It is a schematic diagram which shows the cross section in the AA 'line of FIG. 本発明の光電変換装置の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置モジュールの一例を示す模式的な図である。It is a schematic diagram which shows an example of the photoelectric conversion apparatus module of this invention. 図4に示す光電変換装置の接続を受光面側から見た模式的な図である。It is the schematic diagram which looked at the connection of the photoelectric conversion apparatus shown in FIG. 4 from the light-receiving surface side. 本発明の光電変換装置モジュールの一例を示す模式的な図である。It is a schematic diagram which shows an example of the photoelectric conversion apparatus module of this invention. 実施例のインターコネクタと銅箔の接続前の、接続箇所を拡大した模式図である。It is the schematic diagram which expanded the connection location before the connection of the interconnector and copper foil of an Example. 裏面に形成した各膜に対する分光反射率の測定結果である。It is a measurement result of the spectral reflectance with respect to each film | membrane formed in the back surface. 従来技術の光電変換装置の一例の模式的な断面構成図である。It is a typical section lineblock diagram of an example of a conventional photoelectric conversion device. 従来技術の光電変換装置の製造方法の一例である製造フロー図である。It is a manufacturing flowchart which is an example of the manufacturing method of the photoelectric conversion apparatus of a prior art. 図9の光電変換装置を用いて形成した光電変換装置モジュールの一例の模式的な図である。It is a schematic diagram of an example of the photoelectric conversion apparatus module formed using the photoelectric conversion apparatus of FIG. 図11の光電変換装置モジュールの一例を示す模式的な図である。It is a schematic diagram which shows an example of the photoelectric conversion apparatus module of FIG.

図1は、本発明の光電変換装置の一例を表す模式的な図であり、光電変換装置の入射光側の面である受光面の図である。   FIG. 1 is a schematic diagram illustrating an example of the photoelectric conversion device of the present invention, and is a view of a light receiving surface which is a surface on the incident light side of the photoelectric conversion device.

図1に示すように、光電変換装置40は、光電変換装置本体50と裏面電極である金属箔48からなる。光電変換装置本体50の受光面には、反射防止膜43、受光面電極51が形成され、受光面電極51は、メイン電極52とサブ電極44からなる。サブ電極44は、キャリアを収集する電極であり、離間して複数形成されている。また、メイン電極52は、光電変換装置同士を接続する際に用いるインターコネクタを接続するための電極である。   As shown in FIG. 1, the photoelectric conversion device 40 includes a photoelectric conversion device body 50 and a metal foil 48 that is a back electrode. An antireflection film 43 and a light receiving surface electrode 51 are formed on the light receiving surface of the photoelectric conversion device main body 50, and the light receiving surface electrode 51 includes a main electrode 52 and a sub electrode 44. The sub-electrode 44 is an electrode for collecting carriers, and a plurality of sub-electrodes 44 are formed apart from each other. The main electrode 52 is an electrode for connecting an interconnector used when connecting photoelectric conversion devices.

図2は、図1で示したA−A′の断面を示す模式的な図である。   FIG. 2 is a schematic diagram showing a cross section taken along line AA ′ shown in FIG. 1.

光電変換装置本体50は、金属箔48上に配置されている。厚みが100μm程度の第1導電型であるp型のシリコン基板41の入射光側の面である受光面(以下「p型シリコン基板の受光面」という。)に第2導電型であるn型半導体層42が形成され、受光面表面はテクスチャ構造である凹凸構造となっている。その上には反射防止膜43が形成されている。p型シリコン基板41の受光面には受光面電極が形成され、反射防止膜43を貫通して受光面電極がn型半導体層42と接している。n型半導体層42とは、少なくともサブ電極44が接していればよい。図2に現れているのは、サブ電極44である。なお、図2では、受光面表面の凹凸構造を省略している。   The photoelectric conversion device main body 50 is disposed on the metal foil 48. A light-receiving surface (hereinafter referred to as “light-receiving surface of a p-type silicon substrate”) that is a surface on the incident light side of a p-type silicon substrate 41 that is a first conductivity type having a thickness of about 100 μm is an n-type that is a second conductivity type. The semiconductor layer 42 is formed, and the light receiving surface has an uneven structure that is a texture structure. An antireflection film 43 is formed thereon. A light-receiving surface electrode is formed on the light-receiving surface of the p-type silicon substrate 41, and the light-receiving surface electrode is in contact with the n-type semiconductor layer 42 through the antireflection film 43. It is sufficient that at least the sub-electrode 44 is in contact with the n-type semiconductor layer 42. Appearing in FIG. 2 is a sub-electrode 44. In FIG. 2, the uneven structure on the surface of the light receiving surface is omitted.

また、p型シリコン基板41の受光面の反対側の面である裏面(以下「p型シリコン基板の裏面」という。)には、裏面パッシベーション膜47がパターニングされて形成され、パターニングに対応した裏面電界層46が複数形成されている。裏面電界層46は、任意の箇所に形成されていてもよい。裏面電界層46は、BSF(Back Surface Field)効果を有する。そして、各々の裏面電界層46には、取り出し電極としてアルミニウム電極45が接している。   Further, a back surface passivation film 47 is formed by patterning on the back surface (hereinafter referred to as “back surface of the p-type silicon substrate”) opposite to the light receiving surface of the p-type silicon substrate 41, and the back surface corresponding to the patterning. A plurality of electric field layers 46 are formed. The back surface electric field layer 46 may be formed at an arbitrary location. The back surface electric field layer 46 has a BSF (Back Surface Field) effect. Each back surface electric field layer 46 is in contact with an aluminum electrode 45 as an extraction electrode.

裏面電極である金属箔48は、少なくともすべてのアルミニウム電極45を覆う大きさが必要である。また、インターコネクタを接続する領域が設けられてもよい。図1、図2では、光電変換装置40の右側にインターコネクタを接続するための領域である突出部を設けている。   The metal foil 48 that is the back electrode needs to be large enough to cover at least all the aluminum electrodes 45. Moreover, the area | region which connects an interconnector may be provided. In FIG. 1 and FIG. 2, the protrusion part which is an area | region for connecting an interconnector is provided in the right side of the photoelectric conversion apparatus 40. FIG.

以下に、本発明の光電変換装置の製造方法の一例を示す。図3は、本発明の光電変換装置の製造フロー図である。   Below, an example of the manufacturing method of the photoelectric conversion apparatus of this invention is shown. FIG. 3 is a manufacturing flow diagram of the photoelectric conversion device of the present invention.

まず、テクスチャリング工程(S1。「S」はステップを表す。以下同様。)において、p型シリコン基板41の表面の全面に、アルカリ液を用いたテクスチャエッチングにより、テクスチャ構造である凹凸構造を形成する。   First, in the texturing process (S1. “S” represents a step. The same applies hereinafter), a concavo-convex structure, which is a texture structure, is formed on the entire surface of the p-type silicon substrate 41 by texture etching using an alkaline solution. To do.

次に、pn接合形成工程(S2)において、拡散材料としてPOClを用いチューブ炉にて800℃以上の温度で、p型シリコン基板41を熱処理してp型シリコン基板41の表面の全面にリンを気相拡散して、n型半導体層42を形成する。ここで、n型半導体層42の形成は、気相拡散ではなくn型不純物のリンを含む塗布液をp型シリコン基板41の受光面となる面に塗布して熱処理を行う塗布拡散法を用いても構わない。 Next, in the pn junction formation step (S2), the p-type silicon substrate 41 is heat-treated at a temperature of 800 ° C. or higher in a tube furnace using POCl 3 as a diffusion material, and phosphorous is formed on the entire surface of the p-type silicon substrate 41. Is vapor-phase diffused to form an n-type semiconductor layer 42. Here, the n-type semiconductor layer 42 is formed not by vapor phase diffusion but by a coating diffusion method in which a coating liquid containing phosphorus of an n-type impurity is applied to the surface to be a light-receiving surface of the p-type silicon substrate 41 and heat treatment is performed. It doesn't matter.

次に、反射防止膜形成工程(S3)において、n型半導体層42上に、ガス種としてシラン及びアンモニアを用いたプラズマCVD法により、膜厚70nm程度の窒化シリコン膜を反射防止膜43として形成する。   Next, in the antireflection film forming step (S3), a silicon nitride film having a thickness of about 70 nm is formed as the antireflection film 43 on the n-type semiconductor layer 42 by plasma CVD using silane and ammonia as gas species. To do.

次に、裏面エッチング工程(S4)において、p型シリコン基板41の受光面にエッチング防止のための耐酸性を有する保護テープを貼り、p型シリコン基板41の裏面をフッ酸と硝酸の混合液を使用してウエットエッチングすることで、p型シリコン基板41の裏面に形成されたn型半導体層を除去するとともに、p型シリコン基板41の裏面を平坦化する。この際、p型シリコン基板41の端面に形成された凹凸構造及びn型半導体層も除去される。   Next, in the back surface etching step (S4), a protective tape having acid resistance for preventing etching is applied to the light receiving surface of the p-type silicon substrate 41, and a mixed solution of hydrofluoric acid and nitric acid is applied to the back surface of the p-type silicon substrate 41. By using the wet etching, the n-type semiconductor layer formed on the back surface of the p-type silicon substrate 41 is removed, and the back surface of the p-type silicon substrate 41 is flattened. At this time, the concavo-convex structure and the n-type semiconductor layer formed on the end face of the p-type silicon substrate 41 are also removed.

次に、裏面パッシベーション膜形成工程(S5)において、平坦化されたp型シリコン基板41の裏面に、プラズマCVD法によって窒化シリコン膜を、裏面パッシベーション膜47として形成する。   Next, in the back surface passivation film forming step (S5), a silicon nitride film is formed as a back surface passivation film 47 on the back surface of the planarized p-type silicon substrate 41 by plasma CVD.

次に、裏面パッシベーション膜パターニング工程(S6)において、フォトリソグラフィ法により、裏面パッシベーション膜47を所定の裏面電界層パターンにエッチングし、裏面パッシベーション膜47を貫通するコンタクトホールを形成する。   Next, in the back surface passivation film patterning step (S6), the back surface passivation film 47 is etched into a predetermined back surface electric field layer pattern by photolithography to form a contact hole penetrating the back surface passivation film 47.

次に、裏面電界層形成工程(S7)において、コンタクトホール部分に、スクリーン印刷法によって、アルミニウム粉末、ガラスフリット、樹脂、有機溶媒等からなるアルミニウムペーストを印刷、乾燥し、700℃以上にて焼成することにより、コンタクトホールに対応した箇所のp型シリコン基板41の裏面にアルミニウムを拡散させて拡散層である裏面電界層46を形成する。アルミニウムは、シリコンに対してp型不純物になるので、アルミニウム拡散層である裏面電界層46はp型半導体層となる。裏面電界層46のp型不純物濃度は、p型シリコン基板41のp型不純物濃度よりも高い。また、上記焼成で、コンタクトホールには、アルミニウム電極45が形成される。   Next, in the back surface field layer forming step (S7), an aluminum paste made of aluminum powder, glass frit, resin, organic solvent, etc. is printed on the contact hole portion by screen printing, dried, and fired at 700 ° C. or higher. By doing so, aluminum is diffused on the back surface of the p-type silicon substrate 41 corresponding to the contact hole to form the back surface electric field layer 46 which is a diffusion layer. Since aluminum becomes a p-type impurity with respect to silicon, the back surface electric field layer 46 which is an aluminum diffusion layer becomes a p-type semiconductor layer. The p-type impurity concentration of the back surface field layer 46 is higher than the p-type impurity concentration of the p-type silicon substrate 41. Moreover, the aluminum electrode 45 is formed in a contact hole by the said baking.

次に、受光面電極形成工程(S8)において、スクリーン印刷法を用いて、銀粉末、ガラスフリット、樹脂、有機溶媒等からなる銀ペーストを印刷、乾燥し、500℃以上で焼成して銀からなる受光面電極51を形成する。尚、受光面電極51は、焼成時に反射防止膜43をファイヤースルーし、すなわち、貫通して形成するため、n型半導体層42と電気的に接続する。受光面電極51を形成する際、メイン電極52、サブ電極44を、それぞれ異なる銀ペーストを使用して形成した場合、焼成後、少なくともサブ電極44がn型半導体層42と接して形成されていればよい。このようにして、光電変換装置本体50を作製する。   Next, in the light-receiving surface electrode forming step (S8), using a screen printing method, a silver paste made of silver powder, glass frit, resin, organic solvent, etc. is printed, dried, and baked at 500 ° C. or higher. A light-receiving surface electrode 51 is formed. The light-receiving surface electrode 51 is electrically connected to the n-type semiconductor layer 42 in order to fire through the antireflection film 43 at the time of firing, that is, to penetrate therethrough. When the light receiving surface electrode 51 is formed, if the main electrode 52 and the sub electrode 44 are formed using different silver pastes, at least the sub electrode 44 is formed in contact with the n-type semiconductor layer 42 after firing. That's fine. In this way, the photoelectric conversion device main body 50 is manufactured.

次に、裏面電極形成工程(S9)において、光電変換装置本体50を裏面電極である金属箔48上に配置する。金属箔48は、少なくともすべてのアルミニウム電極45を覆うように配置する。よって、アルミニウム電極45の形状、個数を変更しても問題ない。さらに、インターコネクタを接続する領域を設けて配置すれば、後の光電変換装置モジュールの作製工程で、受光面電極に接続したインターコネクタを隣の光電変換装置の裏面に回しこむ必要はないので、インターコネクタの接続が容易になる。なお、金属箔48は薄いので、図2では、光電変換装置本体50と金属箔48の間に空間があるかのように示しているが、実際は、裏面の形状に沿って配置され、ほとんどの領域で、金属箔48と裏面パッシベーション膜47は接している。このようにして、光電変換装置を作製する。   Next, in the back electrode forming step (S9), the photoelectric conversion device main body 50 is disposed on the metal foil 48 that is the back electrode. The metal foil 48 is disposed so as to cover at least all the aluminum electrodes 45. Therefore, there is no problem even if the shape and number of aluminum electrodes 45 are changed. Furthermore, if a region for connecting the interconnector is provided and arranged, it is not necessary to wrap the interconnector connected to the light receiving surface electrode to the back surface of the adjacent photoelectric conversion device in the subsequent photoelectric conversion device module manufacturing process. Interconnector connection becomes easy. In addition, since the metal foil 48 is thin, in FIG. 2, it is shown as if there is a space between the photoelectric conversion device main body 50 and the metal foil 48. In the region, the metal foil 48 and the back surface passivation film 47 are in contact with each other. In this way, a photoelectric conversion device is manufactured.

図4は、本発明の光電変換装置モジュールの一例を示す模式図である。図4(a)は、断面を表す模式図であり、図4(b)は、図4(a)の円で囲んだ範囲の拡大図である。光電変換装置40同士をインターコネクタ53で接続し、透明基板であるガラス72とバックシート74の間に挟み、封止材であるEVA73で封止している。インターコネクタ53は、光電変換装置40の受光面に形成された受光面電極と、光電変換装置の金属箔48を接続しており、金属箔48側の接続箇所では、金属箔48の突出部の受光面側で接している。50は光電変換装置本体である。なお、図4では、両サイドのインターコネクタを省略している。   FIG. 4 is a schematic view showing an example of the photoelectric conversion device module of the present invention. Fig.4 (a) is a schematic diagram showing a cross section, and FIG.4 (b) is an enlarged view of the range enclosed by the circle | round | yen of Fig.4 (a). The photoelectric conversion devices 40 are connected by an interconnector 53, sandwiched between a glass 72 that is a transparent substrate and a back sheet 74, and sealed by EVA 73 that is a sealing material. The interconnector 53 connects the light receiving surface electrode formed on the light receiving surface of the photoelectric conversion device 40 and the metal foil 48 of the photoelectric conversion device, and the protruding portion of the metal foil 48 is connected at the connection point on the metal foil 48 side. It is in contact with the light receiving surface. Reference numeral 50 denotes a photoelectric conversion device main body. In FIG. 4, the interconnectors on both sides are omitted.

図5は、図4の光電変換装置モジュールの光電変換装置の接続を受光面側から見た図である。図5では、2枚の光電変換装置の接続を示す。2枚の光電変換装置40A、40Bは、メイン電極52と金属箔48をインターコネクタ53で接続している。   FIG. 5 is a view of the connection of the photoelectric conversion device of the photoelectric conversion device module of FIG. 4 as viewed from the light receiving surface side. FIG. 5 illustrates connection of two photoelectric conversion devices. In the two photoelectric conversion devices 40 </ b> A and 40 </ b> B, the main electrode 52 and the metal foil 48 are connected by the interconnector 53.

図6は、図4に示す本発明の光電変換装置モジュールの製造方法の一例である。図6に示すように模式的断面図を参照して説明する。なお、図6では、両サイドのインターコネクタを省略している。   FIG. 6 is an example of a method for manufacturing the photoelectric conversion device module of the present invention shown in FIG. This will be described with reference to a schematic sectional view as shown in FIG. In FIG. 6, the interconnectors on both sides are omitted.

まず、図6(a)に示すように、光電変換装置本体50の受光面電極にインターコネクタを接続する。その後、ガラス72上に封止材フィルムである第1EVAフィルム81を配置し、その上にインターコネクタ53が接続された複数の光電変換装置本体50を、受光面側が第1EVAフィルムに接するように配置する。   First, as shown in FIG. 6A, an interconnector is connected to the light receiving surface electrode of the photoelectric conversion device main body 50. Then, the 1st EVA film 81 which is a sealing material film is arrange | positioned on the glass 72, and the several photoelectric conversion apparatus main body 50 to which the interconnector 53 was connected on it is arrange | positioned so that the light-receiving surface side may contact | connect a 1st EVA film To do.

次に、図6(b)に示すように、光電変換装置本体50間のインターコネクタ53が突出した側に、金属箔48を突出させて光電変換装置本体50の各々の上に配置する。   Next, as shown in FIG. 6B, the metal foil 48 is protruded on the side where the interconnector 53 between the photoelectric conversion device main bodies 50 protrudes and is disposed on each of the photoelectric conversion device main bodies 50.

次に、図6(c)に示すように、金属箔48上に、第2EVAフィルム82を載せ、その上にフレキシブル性を有するバックシート74を載せる。   Next, as shown in FIG.6 (c), the 2nd EVA film 82 is mounted on the metal foil 48, and the back sheet 74 which has flexibility is mounted on it.

次に、図6(d)に示すように、ガラス72とバックシート74間を真空引きすることで、ラミネートする。この際、まっすぐに配置したインターコネクタ53と金属箔48は、ラミネートのためにかけた力によって曲がり、一部が重なって接する。予め、導電性接着剤、導電性ペースト、半田等を用いて、インターコネクタ53と金属箔48を接続しておいてもよい。次に、加熱することで、EVAフィルムが硬化し、インターコネクタ53が金属箔48と接し光電変換装置モジュール91が作製される。   Next, as shown in FIG. 6D, the glass 72 and the back sheet 74 are laminated by evacuation. At this time, the interconnector 53 and the metal foil 48 that are arranged straight are bent by the force applied for the lamination, and a part of the interconnector 53 overlaps and comes into contact. The interconnector 53 and the metal foil 48 may be connected in advance using a conductive adhesive, a conductive paste, solder, or the like. Next, by heating, the EVA film is cured, the interconnector 53 is in contact with the metal foil 48, and the photoelectric conversion device module 91 is manufactured.

したがって、上記のように、光電変換装置の裏面電極である金属箔の突出部に、インターコネクタを接続させるので、インターコネクタを受光面から隣の光電変換装置の裏面に達するように曲げることなく、容易に光電変換装置モジュールを製造することができる。また、インターコネクタを曲げる際の光電変換装置の割れ、欠け等の発生の可能性も抑制することができる。   Therefore, as described above, since the interconnector is connected to the protruding portion of the metal foil that is the back electrode of the photoelectric conversion device, the interconnector is not bent so as to reach the back surface of the adjacent photoelectric conversion device from the light receiving surface. A photoelectric conversion device module can be easily manufactured. In addition, it is possible to suppress the possibility of occurrence of cracks, chips or the like of the photoelectric conversion device when the interconnector is bent.

スライスされた外形156mm×156mm、厚さ150μmのp型シリコン基板41を用いて光電変換装置本体50を作製した。その後、金属箔48として銅箔を用いて光電変換装置本体50を銅箔に配置して光電変換装置40を作製し、光電変換装置40を用いて光電変換モジュールを作製した。銅箔の厚みは50μmである。   A photoelectric conversion device main body 50 was fabricated using a p-type silicon substrate 41 having a sliced outer shape of 156 mm × 156 mm and a thickness of 150 μm. Then, the photoelectric conversion apparatus main body 50 was arrange | positioned on copper foil using copper foil as the metal foil 48, the photoelectric conversion apparatus 40 was produced, and the photoelectric conversion module was produced using the photoelectric conversion apparatus 40. FIG. The thickness of the copper foil is 50 μm.

図7は、実施例のインターコネクタと銅箔の接続前の、接続箇所を拡大した模式図である。光電変換装置本体50の端からインターコネクタ53が突出した突出部L1の長さを5mm、光電変換装置本体50の端から金属箔48が突出した突出部L2の長さを5mmとした。   FIG. 7 is an enlarged schematic view of a connection location before connection between the interconnector of the embodiment and the copper foil. The length of the protrusion L1 from which the interconnector 53 protrudes from the end of the photoelectric conversion device main body 50 is 5 mm, and the length of the protrusion L2 from which the metal foil 48 protrudes from the end of the photoelectric conversion device main body 50 is 5 mm.

また、比較例として、図11に示す光電変換装置モジュール191の構造としたものを作製した。なお、光電変換装置120の受光面電極及び裏面電界層は、実施例の光電変換装置40と同様に形成した。また、使用したp型シリコン基板も、実施例と同じ大きさのものを用いた。   As a comparative example, a photoelectric conversion device module 191 structure shown in FIG. 11 was produced. The light-receiving surface electrode and the back surface electric field layer of the photoelectric conversion device 120 were formed in the same manner as the photoelectric conversion device 40 of the example. The p-type silicon substrate used was also the same size as in the example.

表1に、実施例、比較例の光電変換装置モジュールの特性結果を示す。表のJscは短絡電流密度、Vocは開放電圧、FFは曲線因子、Effは光電変換効率である。表1の値は、それぞれ、5サンプルについて測定を行い、その平均値とした。また、比較例をリファレンスとして、比較例の各特性値を1.000とした場合の値としている。   Table 1 shows the characteristic results of the photoelectric conversion device modules of the examples and comparative examples. In the table, Jsc is a short-circuit current density, Voc is an open circuit voltage, FF is a fill factor, and Eff is a photoelectric conversion efficiency. The values in Table 1 were measured for 5 samples, and the average value was used. In addition, the comparative example is used as a reference, and values are set when each characteristic value of the comparative example is 1.000.

表1の結果から、実施例は、各特性値とも比較例に対し高い値を得ることができた。特に、実施例では、比較例に対しJscが高い結果が得られた。また、裏面構造が銅箔かアルミニウム蒸着膜かの比較となるので、アルミニウムと銅の反射率の差が表れたものと見られ、銅箔にしたとしても接触抵抗の影響は見られなかった。これはFFの結果からも明らかである。   From the results of Table 1, in the example, each characteristic value was higher than that of the comparative example. In particular, in the examples, the result that Jsc was higher than that of the comparative example was obtained. In addition, since the back surface structure is a comparison between copper foil and aluminum vapor deposition film, it is considered that the difference in reflectance between aluminum and copper appears, and even if copper foil is used, the influence of contact resistance is not observed. This is also clear from the FF results.

光電変換装置において、厚みが100μm程度の薄いシリコン基板を用いた場合、光電変換効率をより高くするには、光電変換装置を透過した光である850nm以上の長波長域の光を反射させて再度光電変換装置内部に入射させる光閉じ込め技術が必要になる。この透過光を再度光電変換装置内部に入射させる効果をBSR(Back Surface Reflector)効果という。   In the photoelectric conversion device, when a thin silicon substrate having a thickness of about 100 μm is used, in order to further increase the photoelectric conversion efficiency, light having a long wavelength region of 850 nm or more, which is light transmitted through the photoelectric conversion device, is reflected again. An optical confinement technique for entering the photoelectric conversion device is required. The effect of allowing the transmitted light to enter the photoelectric conversion device again is called a BSR (Back Surface Reflector) effect.

実施例に用いた光電変換装置では、裏面電極である銅箔が裏面反射膜の役目も果たし、比較例に用いた光電変換装置では、裏面電極127であるアルミニウム蒸着膜が裏面反射膜の役目も果たす。   In the photoelectric conversion device used in the example, the copper foil as the back electrode also serves as the back reflection film, and in the photoelectric conversion device used in the comparative example, the aluminum vapor deposition film as the back electrode 127 also serves as the back reflection film. Fulfill.

図8は、裏面に形成した実施例、比較例の各膜に対する分光反射率の測定結果である。図8から、長波長域で銅箔はアルミニウム蒸着膜よりも高い分光反射率を示すことが確認できた。   FIG. 8 shows the measurement results of the spectral reflectance for the films of the example and comparative example formed on the back surface. From FIG. 8, it has confirmed that copper foil showed a higher spectral reflectance than an aluminum vapor deposition film | membrane in a long wavelength range.

したがって、表1の結果から、実施例の光電変換装置モジュールは、各光電変換装置の裏面電極に銅箔を用いているので、BSR効果を有効にして、光電変換効率特性に優れた光電変換装置モジュールを提供することができた。さらに、銅箔を用いることで、銀、金等の貴金属を用いるのに対しコストを抑えることが可能である。   Therefore, from the result of Table 1, since the photoelectric conversion apparatus module of an Example uses the copper foil for the back electrode of each photoelectric conversion apparatus, the photoelectric conversion apparatus which made the BSR effect effective and was excellent in the photoelectric conversion efficiency characteristic Module could be provided. Furthermore, by using a copper foil, it is possible to reduce costs compared to using noble metals such as silver and gold.

また、光電変換装置の裏面電極である銅箔に、インターコネクタを接続させるので、インターコネクタを受光面から隣の光電変換装置の裏面に達するように曲げることなく、容易に光電変換装置モジュールを製造することができた。   In addition, since the interconnector is connected to the copper foil that is the back electrode of the photoelectric conversion device, the photoelectric conversion device module can be easily manufactured without bending the interconnector from the light receiving surface to the back surface of the adjacent photoelectric conversion device. We were able to.

今回、p型シリコン基板について記載したが、n型シリコン基板でも同様の結果が得られた。   Although a p-type silicon substrate has been described this time, similar results were obtained with an n-type silicon substrate.

40 光電変換装置、41 p型シリコン基板、42 n型半導体層、43 反射防止膜、44 サブ電極、45 アルミニウム電極、46 裏面電界層、47 裏面パッベーション膜、48 金属箔、49 光電変換装置、50 光電変換装置本体、51 受光面電極、52 メイン電極、53 インターコネクタ、72 ガラス、73 EVA、74 バックシート、81 第1EVAフィルム、82 第2EVAフィルム、91 光電変換装置モジュール。   40 photoelectric conversion device, 41 p-type silicon substrate, 42 n-type semiconductor layer, 43 antireflection film, 44 sub-electrode, 45 aluminum electrode, 46 back surface electric field layer, 47 back surface passivation film, 48 metal foil, 49 photoelectric conversion device, 50 photoelectric conversion device main body, 51 light-receiving surface electrode, 52 main electrode, 53 interconnector, 72 glass, 73 EVA, 74 backsheet, 81 first EVA film, 82 second EVA film, 91 photoelectric conversion device module.

Claims (9)

複数の光電変換装置と、
複数の前記光電変換装置間を接続するインターコネクタとを有し、
前記光電変換装置の裏面には、裏面電極である金属箔が形成され、
前記金属箔は、突出部を有し、
前記インターコネクタは、1つの前記光電変換装置の受光面に形成された受光面電極と、他の前記光電変換装置の前記突出部の受光面側に接している光電変換装置モジュール。
A plurality of photoelectric conversion devices;
An interconnector for connecting a plurality of the photoelectric conversion devices;
On the back surface of the photoelectric conversion device, a metal foil as a back electrode is formed,
The metal foil has a protrusion,
The interconnector is a photoelectric conversion device module in contact with a light receiving surface electrode formed on a light receiving surface of one of the photoelectric conversion devices and a light receiving surface side of the protruding portion of the other photoelectric conversion device.
前記金属箔は、銅箔である請求項1に記載の光電変換装置モジュール。   The photoelectric conversion device module according to claim 1, wherein the metal foil is a copper foil. 複数の前記光電変換装置の受光面側には、透明基板を配置し、
複数の前記光電変換装置の裏面側には、バックシートを配置して、
前記透明基板と前記バックフィルムの間で、複数の前記光電変換装置、及び前記インターコネクタを封止材で固定する請求項1または2に記載の光電変換装置モジュール。
A transparent substrate is disposed on the light receiving surface side of the plurality of photoelectric conversion devices,
On the back side of the plurality of photoelectric conversion devices, a back sheet is arranged,
The photoelectric conversion device module according to claim 1 or 2, wherein a plurality of the photoelectric conversion devices and the interconnector are fixed with a sealing material between the transparent substrate and the back film.
光電変換装置本体の受光面電極にインターコネクタを接続する第1工程と、
透明基板上に第1封止材フィルムを配置し、前記第1封止材フィルム上に前記インターコネクタを接続した複数の前記光電変換装置本体を、前記光電変換装置の受光面側が前記第1封止材フィルムに接するように配置する第2工程と、
前記光電変換装置本体間の前記インターコネクタが突出した側に、金属箔を突出させて前記光電変換装置本体の各々の上に配置する第3工程と、
前記金属箔上に第2封止材フィルムを配置し、前記第2封止材フィルム上にバックシートを配置する第4工程と、
前記透明基板と前記バックフィルム間をラミネートした後、加熱する第5工程とを備えた光電変換装置モジュールの製造方法。
A first step of connecting an interconnector to the light receiving surface electrode of the photoelectric conversion device body;
A plurality of the photoelectric conversion device main bodies in which a first sealing material film is arranged on a transparent substrate and the interconnector is connected on the first sealing material film, the light receiving surface side of the photoelectric conversion device is the first sealing. A second step of arranging to be in contact with the stopping material film;
A third step of disposing a metal foil on each side of the photoelectric conversion device main body on the side where the interconnector between the photoelectric conversion device main bodies protrudes; and
A fourth step of disposing a second sealing material film on the metal foil and disposing a back sheet on the second sealing material film;
A method for producing a photoelectric conversion device module, comprising: a fifth step of heating after laminating between the transparent substrate and the back film.
第1導電型のシリコン基板と、
前記シリコン基板の受光面に形成された第2導電型の半導体層と、
前記半導体層上に形成された受光面電極と、
前記シリコン基板の裏面に形成された複数のコンタクトホールを有する裏面パッシベーション膜と、
前記コンタクトホールの、前記シリコン基板の裏面に接して形成されたアルミニウム電極と、
前記アルミニウム電極に接する金属箔とを有する光電変換装置。
A first conductivity type silicon substrate;
A second conductive type semiconductor layer formed on the light receiving surface of the silicon substrate;
A light-receiving surface electrode formed on the semiconductor layer;
A back surface passivation film having a plurality of contact holes formed on the back surface of the silicon substrate;
An aluminum electrode formed in contact with the back surface of the silicon substrate of the contact hole;
A photoelectric conversion device having a metal foil in contact with the aluminum electrode.
前記第1導電型は、p型である請求項5に記載の光電変換装置。   The photoelectric conversion device according to claim 5, wherein the first conductivity type is a p-type. 前記金属箔は、銅箔である請求項5または6に記載の光電変換装置。   The photoelectric conversion device according to claim 5, wherein the metal foil is a copper foil. 前記金属箔は、すべての前記アルミニウム電極を覆う請求項5〜7のいずれかに記載の光電変換装置。   The photoelectric conversion device according to claim 5, wherein the metal foil covers all the aluminum electrodes. 前記金属箔は、突出部を有し、前記突出部にはインターコネクタを接続する請求項5〜8のいずれかに記載の光電変換装置。   The photoelectric conversion device according to claim 5, wherein the metal foil has a protruding portion, and an interconnector is connected to the protruding portion.
JP2011166647A 2011-07-29 2011-07-29 Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device Pending JP2013030665A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011166647A JP2013030665A (en) 2011-07-29 2011-07-29 Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device
PCT/JP2012/067814 WO2013018521A1 (en) 2011-07-29 2012-07-12 Photoelectric conversion device module, method for producing photoelectric conversion device module, and photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166647A JP2013030665A (en) 2011-07-29 2011-07-29 Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2013030665A true JP2013030665A (en) 2013-02-07

Family

ID=47629052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166647A Pending JP2013030665A (en) 2011-07-29 2011-07-29 Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP2013030665A (en)
WO (1) WO2013018521A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184971A1 (en) * 2013-05-14 2014-11-20 三菱電機株式会社 Foreign object removal device and method for producing solar cell using same
WO2016152649A1 (en) * 2015-03-25 2016-09-29 ナミックス株式会社 Solar cell module and method for manufacturing same
WO2017056483A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Solar battery module
JP2018093228A (en) * 2018-03-05 2018-06-14 パナソニックIpマネジメント株式会社 Method for manufacturing solar battery module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262229A (en) * 1985-09-13 1987-03-18 Minolta Camera Co Ltd Camera with multi-split photometer
CN103489934B (en) * 2013-09-25 2016-03-02 晶澳(扬州)太阳能科技有限公司 Local aluminum back surface field solar cell of a kind of transparent two sides and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243224A (en) * 1997-12-26 1999-09-07 Canon Inc Photovoltaic element module, manufacture thereof and non-contact treatment
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2006073617A (en) * 2004-08-31 2006-03-16 Sharp Corp Solar cell and manufacturing method thereof
JP2007201331A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
WO2009157079A1 (en) * 2008-06-26 2009-12-30 三菱電機株式会社 Solar battery cell and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243224A (en) * 1997-12-26 1999-09-07 Canon Inc Photovoltaic element module, manufacture thereof and non-contact treatment
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2006073617A (en) * 2004-08-31 2006-03-16 Sharp Corp Solar cell and manufacturing method thereof
JP2007201331A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
WO2009157079A1 (en) * 2008-06-26 2009-12-30 三菱電機株式会社 Solar battery cell and process for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184971A1 (en) * 2013-05-14 2014-11-20 三菱電機株式会社 Foreign object removal device and method for producing solar cell using same
WO2014184876A1 (en) * 2013-05-14 2014-11-20 三菱電機株式会社 Foreign object removal device and method for producing solar cell using same
JPWO2014184971A1 (en) * 2013-05-14 2017-02-23 三菱電機株式会社 Foreign matter removing apparatus and method for manufacturing solar cell using the same
WO2016152649A1 (en) * 2015-03-25 2016-09-29 ナミックス株式会社 Solar cell module and method for manufacturing same
CN107534069A (en) * 2015-03-25 2018-01-02 纳美仕有限公司 Solar module and its manufacture method
US10672942B2 (en) 2015-03-25 2020-06-02 Namics Corporation Solar cell module and method for producing same
WO2017056483A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Solar battery module
JP2018093228A (en) * 2018-03-05 2018-06-14 パナソニックIpマネジメント株式会社 Method for manufacturing solar battery module

Also Published As

Publication number Publication date
WO2013018521A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
TWI422047B (en) Solar cell and solar cell manufacturing method
JP5025184B2 (en) Solar cell element, solar cell module using the same, and manufacturing method thereof
US9608140B2 (en) Solar cell and solar cell module
JP5570654B2 (en) Solar cell element and solar cell module
JP5490231B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JP6495649B2 (en) Solar cell element and solar cell module
JP4578123B2 (en) Solar cell module
JP2013030665A (en) Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device
JP2016122749A (en) Solar battery element and solar battery module
WO2011074280A1 (en) Photovoltaic device and method for preparation thereof
JP2014011246A (en) Solar cell element and solar cell module
JP5323827B2 (en) Photovoltaic device and manufacturing method thereof
WO2012053079A1 (en) Photovoltaic device and method for manufacturing same
JP4185332B2 (en) Solar cell and solar cell module using the same
JP2005353851A (en) Solar cell module
JP2011243806A (en) Solar cell
WO2014054605A1 (en) Photoelectric conversion device, method for manufacturing photoelectric conversion device, and photoelectric conversion module
WO2010150358A1 (en) Photoelectromotive device, and method for manufacturing the same
JP5744202B2 (en) Method for forming alumina film
CN109041583B (en) Solar cell element and solar cell module
JP2015106585A (en) Method for manufacturing solar cell element and solar cell module
JP2005353836A (en) Solar cell element and solar cell module using the same
JP5452755B2 (en) Method for manufacturing photovoltaic device
JP2016178280A (en) Solar cell element and solar cell module using the same
JP2016189439A (en) Solar cell element and manufacturing method of the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331