JP2013030544A - Method of manufacturing semiconductor light-emitting device - Google Patents

Method of manufacturing semiconductor light-emitting device Download PDF

Info

Publication number
JP2013030544A
JP2013030544A JP2011164230A JP2011164230A JP2013030544A JP 2013030544 A JP2013030544 A JP 2013030544A JP 2011164230 A JP2011164230 A JP 2011164230A JP 2011164230 A JP2011164230 A JP 2011164230A JP 2013030544 A JP2013030544 A JP 2013030544A
Authority
JP
Japan
Prior art keywords
phosphor
containing resin
substrate
light emitting
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011164230A
Other languages
Japanese (ja)
Other versions
JP5816479B2 (en
Inventor
Takateru Sakai
酒井隆照
Takeshi Waragaya
藁谷剛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011164230A priority Critical patent/JP5816479B2/en
Publication of JP2013030544A publication Critical patent/JP2013030544A/en
Application granted granted Critical
Publication of JP5816479B2 publication Critical patent/JP5816479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor light-emitting device capable of preventing variation in luminous color among products or that in a light emission plane.SOLUTION: A plurality of light-emitting elements 20 are mounted on an element mounting surface of a substrate 10. A metal mold 120 contains a reference surface which includes a plurality of cavities 122 arranged in association with the array of the plurality of light-emitting elements on the substrate, and a phosphor containing resin 30, which contains phosphor particles 32 having average particle size of 5 μm or larger, is supplied into the metal mold. The phosphor containing resin is compression-molded under such condition as the light-emitting elements are housed in the respective cavities while the element mounting surface a and the reference surface b tightly contact each other with the phosphor containing resin in between. In a step of the compression molding, a thickness L of the phosphor containing resin which is interposed between the element mounting surface and the reference surface is set to be 15 times or more of average particle size of the phosphor particle.

Description

本発明は、LED(発光ダイオード)等の発光素子を含む半導体発光装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor light emitting device including a light emitting element such as an LED (light emitting diode).

LED等の発光素子を含む半導体発光装置として、基板上に搭載されたLEDチップをレンズ形状に成形された封止樹脂で封止したものが知られている(例えば特許文献1)。封止樹脂の成形方式としてコンプレッション成形(圧縮成形)やトランスファー成形が知られている。   2. Description of the Related Art As a semiconductor light emitting device including a light emitting element such as an LED, an LED chip mounted on a substrate is sealed with a sealing resin molded into a lens shape (for example, Patent Document 1). Compression molding (compression molding) and transfer molding are known as molding methods for the sealing resin.

コンプレッション成形では、例えば以下のような手順で樹脂成形が行われる。はじめに、所定の温度に加熱した金型のキャビティに離型性を向上させるためのリリースフィルムを貼り付ける。続いて、金型のキャビティに液状の樹脂材料を塗布する。次に、金型に対向するようにLEDチップが搭載された基板を配置する。次に、基板および金型の周辺を密封空間として、この密閉空間を減圧して樹脂材料に含まれる気泡を除去する(脱泡)。次に所定の成形圧力にて金型を基板に押し付けて、一定時間保持して樹脂材料を仮硬化する。次に、基板に接合された樹脂材料をリリースフィルムとともに金型から剥離する。その後、更なる熱処理によって樹脂材料を本硬化する。   In compression molding, for example, resin molding is performed in the following procedure. First, a release film for improving releasability is attached to a mold cavity heated to a predetermined temperature. Subsequently, a liquid resin material is applied to the cavity of the mold. Next, a substrate on which the LED chip is mounted is disposed so as to face the mold. Next, with the periphery of the substrate and the mold as a sealed space, the sealed space is decompressed to remove bubbles contained in the resin material (defoaming). Next, the mold is pressed against the substrate at a predetermined molding pressure and held for a certain period of time to temporarily cure the resin material. Next, the resin material bonded to the substrate is peeled from the mold together with the release film. Thereafter, the resin material is fully cured by further heat treatment.

特開2011−101066号公報JP 2011-101066 A

上記したようなコンプレッション成形法によれば、金型に複数のキャビティを設けておくことにより、1回の処理で多数のLEDチップの封止が可能となり生産性が向上する。また、基板上に複数のLEDチップを搭載したLEDモジュールの製造も容易となる。   According to the compression molding method as described above, by providing a plurality of cavities in the mold, a large number of LED chips can be sealed in a single process, and productivity is improved. Moreover, it becomes easy to manufacture an LED module in which a plurality of LED chips are mounted on a substrate.

ところで、所望の発光色を得るために、LEDチップから発せられる光の波長を長波長側に変換する蛍光体粒子を含有した樹脂でLEDチップを封止することが行われている。しかしながら、蛍光体含有樹脂をコンプレッション成形すると、以下のような問題が生じる。すなわち、基板上に搭載された複数のLEDチップの各々を封止する蛍光体含有樹脂をコンプレッション成形で成形すると、蛍光体含有樹脂内において蛍光体粒子の密度分布に偏りが生じる。より具体的には、完成した発光装置の発光面の外縁部近傍(すなわち蛍光体含有樹脂の端部)における蛍光体粒子の密度が他の部分よりも高くなる。蛍光体粒子の密度分布の偏りは、単一のLEDチップを搭載した製品においては製品間における発光色のばらつきの原因となり、複数のLEDチップを搭載したモジュール製品においては発光面内における発光色のむら(色温度ばらつき)の原因となる。このような理由から蛍光体含有樹脂のコンプレッション成形は、殆ど実用化されていないのが現状である。   By the way, in order to obtain a desired emission color, the LED chip is sealed with a resin containing phosphor particles that convert the wavelength of light emitted from the LED chip to the long wavelength side. However, when the phosphor-containing resin is compression molded, the following problems occur. That is, when the phosphor-containing resin that seals each of the plurality of LED chips mounted on the substrate is molded by compression molding, the density distribution of the phosphor particles is biased in the phosphor-containing resin. More specifically, the density of the phosphor particles in the vicinity of the outer edge portion of the light emitting surface of the completed light emitting device (that is, the end portion of the phosphor-containing resin) becomes higher than other portions. The uneven density distribution of the phosphor particles causes variations in emission color among products having a single LED chip mounted, and uneven emission colors in the light emitting surface of a module product having a plurality of LED chips mounted thereon. (Color temperature variation). For these reasons, compression molding of a phosphor-containing resin is hardly practically used at present.

本発明は、上記した点に鑑みてなされたものであり、蛍光体含有樹脂をコンプレッション成形する場合において、樹脂材料内部における蛍光体粒子の密度分布の偏りを解消することにより、製品間における発光色のばらつきや発光面内における発光色のむら(色温度差)を防止することができる半導体発光装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and in the case of compression molding a phosphor-containing resin, by eliminating the uneven density distribution of phosphor particles inside the resin material, the emission color between products It is an object of the present invention to provide a method for manufacturing a semiconductor light emitting device capable of preventing variations in color and unevenness in color of emitted light (color temperature difference) in a light emitting surface.

本発明の半導体発光装置は、基板の素子搭載面に複数の発光素子を搭載する工程と、前記基板上における前記複数の発光素子の配列に対応して配列された複数のキャビティを基準面に有する金型に平均粒径が5μm以上の蛍光体粒子を含む蛍光体含有樹脂を供給する工程と、前記発光素子の各々が前記キャビティの各々に収容され且つ前記素子搭載面と前記基準面とが前記蛍光体含有樹脂を間に挟んで密着した状態で前記蛍光体含有樹脂を圧縮成形する工程と、を含み、前記圧縮成形する工程において、前記素子搭載面と前記基準面の間に介在する前記蛍光体含有樹脂の厚さが前記蛍光体粒子の平均粒径の15倍以上に設定されることを特徴としている。   The semiconductor light emitting device of the present invention has a step of mounting a plurality of light emitting elements on an element mounting surface of a substrate, and a plurality of cavities arranged corresponding to the arrangement of the plurality of light emitting elements on the substrate on a reference surface. Supplying a phosphor-containing resin containing phosphor particles having an average particle size of 5 μm or more to a mold, each of the light emitting elements is accommodated in each of the cavities, and the element mounting surface and the reference surface are Compression-molding the phosphor-containing resin with the phosphor-containing resin sandwiched therebetween, and in the compression molding step, the fluorescence interposed between the element mounting surface and the reference surface The thickness of the body-containing resin is set to 15 times or more the average particle diameter of the phosphor particles.

本発明に係る半導体発光装置の製造方法によれば、蛍光体含有樹脂の圧縮成形時において、金型と基板との間に介在する蛍光体含有樹脂の流動性が向上する。これにより、蛍光体粒子は滞留を生じることなく樹脂内を移動することが可能となり、蛍光体粒子の密度分布の偏りが解消される。従って、基板上に複数の発光素子を搭載した半導体発光装置において、発光面内における発光色のむら(色温度差)を低減することが可能となる。また、基板を発光素子毎に分割して製造される発光装置においては、発光装置間の発光色のばらつきを防止することが可能となり、歩留りが向上する。   According to the method for manufacturing a semiconductor light emitting device according to the present invention, the fluidity of the phosphor-containing resin interposed between the mold and the substrate is improved during the compression molding of the phosphor-containing resin. As a result, the phosphor particles can move in the resin without causing stagnation, and the uneven density distribution of the phosphor particles is eliminated. Therefore, in a semiconductor light emitting device in which a plurality of light emitting elements are mounted on a substrate, it is possible to reduce unevenness in color of emitted light (color temperature difference) in the light emitting surface. Further, in a light-emitting device manufactured by dividing a substrate for each light-emitting element, it is possible to prevent variations in emission color between the light-emitting devices, and the yield is improved.

コンプレッション成形時における成形装置の内部の状態を示す部分的な断面図である。It is a fragmentary sectional view which shows the state inside the shaping | molding apparatus at the time of compression molding. 図2(a)は本発明の実施例に係る半導体発光装置の製造方法を示す平面図、図2(b)は図2(a)における2b−2b線に沿った断面図である。FIG. 2A is a plan view showing a method of manufacturing a semiconductor light emitting device according to an embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 図3(a)は本発明の実施例に係る半導体発光装置の製造方法を示す平面図、図3(b)は図3(a)における3b−3b線に沿った断面図、3A is a plan view showing a method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention, FIG. 3B is a cross-sectional view taken along line 3b-3b in FIG. 図4(a)〜図4(c)は蛍光体含有樹脂の塗布位置および塗布形状のバリエーションを示す平面図である。FIG. 4A to FIG. 4C are plan views showing variations in the application position and application shape of the phosphor-containing resin. 図5(a)および図5(b)は本発明の実施例に係る半導体発光装置の製造方法を示す断面図、図5(c)は図5(b)において破線で囲まれた領域の拡大図である。5A and 5B are cross-sectional views showing a method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention, and FIG. 5C is an enlarged view of a region surrounded by a broken line in FIG. 5B. FIG. 図6(a)は本発明の実施例に係る半導体発光装置の構成を示す平面図、図6(b)は図6(a)における6b−6b線に沿った断面図、図6(c)は図6(b)において破線で囲まれた領域の拡大図、図6(d)は比較例に係る半導体発光装置の構成を示す断面図である。6A is a plan view showing the configuration of the semiconductor light emitting device according to the embodiment of the present invention, FIG. 6B is a cross-sectional view taken along line 6b-6b in FIG. 6A, and FIG. FIG. 6B is an enlarged view of a region surrounded by a broken line in FIG. 6B, and FIG. 6D is a cross-sectional view showing a configuration of a semiconductor light emitting device according to a comparative example. サンプル1〜3について発光面内における色温度差を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the color temperature difference in the light emission surface about the samples 1-3. 蛍光体含有樹脂の滞留を防止するべく試行された方策の内容およびその効果を示す表である。It is a table | surface which shows the content of the measure tried in order to prevent the residence of fluorescent substance containing resin, and its effect.

はじめに、蛍光体含有樹脂をコンプレッション成形した場合に蛍光体粒子の密度分布に偏りが生じる推定メカニズムについて図1を参照しつつ説明する。図1は、コンプレッション成形時における成形装置の内部の状態を示す部分的な断面図である。   First, an estimation mechanism in which the density distribution of the phosphor particles is biased when the phosphor-containing resin is compression molded will be described with reference to FIG. FIG. 1 is a partial cross-sectional view showing an internal state of a molding apparatus during compression molding.

成形装置は、真空吸着機構などによって基板10を保持する基板保持部110と、複数のキャビティ122を有する金型120と、ばね機構などにより上方に向けて付勢力が付与され且つ金型120の側面上を摺動し得る摺動部130とを含んでいる。LEDチップ20が搭載された基板10は、基板保持部110の基板保持面に保持されている。キャビティ122内に供給された蛍光体含有樹脂30は、基板10と金型120との間に挟まれた状態で加熱および加圧され、所定の成形時間が経過するまでこの状態が維持される。このとき、基板10の素子搭載面aと金型120の基準面b(キャビティ122の周囲に延在する平坦な面)との間には、微小な隙間100が形成される。隙間100は、コンプレッション成形において特有であり、蛍光体含有樹脂30は、隙間100を通じて金型120の全面に広がる。金型120の全面に広がった蛍光体含有樹脂30は、加熱によって流動し、蛍光体粒子32は隙間100内を移動する。隙間100の端部は摺動部材130によって塞がれており、樹脂の流れが停止または遅くなっている。このため、隙間100の端部に到来した蛍光体粒子は、移動速度が低下または停止し、隙間100の端部に滞留する。隙間100に充填された蛍光体含有樹脂30は、完成品において薄膜の層として残るので、蛍光体含有樹脂30の端部に蛍光体粒子の密度が高い領域が生じる。ゆえに、発光面内における発光色のむら(色温度ばらつき)が生じる結果となる。   The molding apparatus includes a substrate holding unit 110 that holds the substrate 10 by a vacuum suction mechanism or the like, a mold 120 having a plurality of cavities 122, a biasing force applied upward by a spring mechanism or the like, and a side surface of the mold 120. And a sliding portion 130 capable of sliding on the top. The substrate 10 on which the LED chip 20 is mounted is held on the substrate holding surface of the substrate holding unit 110. The phosphor-containing resin 30 supplied into the cavity 122 is heated and pressurized while being sandwiched between the substrate 10 and the mold 120, and this state is maintained until a predetermined molding time elapses. At this time, a minute gap 100 is formed between the element mounting surface a of the substrate 10 and the reference surface b of the mold 120 (a flat surface extending around the cavity 122). The gap 100 is unique in compression molding, and the phosphor-containing resin 30 spreads over the entire surface of the mold 120 through the gap 100. The phosphor-containing resin 30 spreading over the entire surface of the mold 120 flows by heating, and the phosphor particles 32 move in the gap 100. The end of the gap 100 is blocked by the sliding member 130, and the resin flow is stopped or slowed down. For this reason, the phosphor particles that have arrived at the end of the gap 100 decrease or stop moving and stay at the end of the gap 100. Since the phosphor-containing resin 30 filled in the gap 100 remains as a thin film layer in the finished product, an area where the density of the phosphor particles is high occurs at the end of the phosphor-containing resin 30. Therefore, unevenness of emission color (color temperature variation) occurs in the emission surface.

本発明者らは、上記の推定メカニズムに基づいて、蛍光体粒子の滞留を防止する効果が期待できる様々な方策を検討した。その結果、蛍光体含有樹脂をコンプレッション成形する場合において、蛍光体粒子を樹脂内にほぼ均一に分散させ、発光面内における発光色のむらを解消する製造方法を見出した。   Based on the above estimation mechanism, the present inventors have examined various measures that can be expected to prevent phosphor particles from staying. As a result, the present inventors have found a manufacturing method in which phosphor particles are dispersed almost uniformly in a resin when the phosphor-containing resin is compression-molded to eliminate unevenness in emission color in the light emitting surface.

以下に、本発明の実施例に係る半導体発光装置の製造方法について図2〜図5を参照しつつ説明する。   Below, the manufacturing method of the semiconductor light-emitting device which concerns on the Example of this invention is demonstrated, referring FIGS.

はじめに、LEDチップを搭載するための基板10を用意する。基板10は、例えば、厚さ0.7mm、150mm×60mmのガラスエポキシ基板である。基板10の素子搭載面aには例えばCu箔の上にAu/Ni/Cuめっきを施して構成される複数のダイパッドおよびボンディングパッドが形成されている(図示せず)。ダイパッドは、基板10上において例えばグリッド状に配置されている。尚、基板10は、セラミック基板(基材:Al23、AlNなど)、メタルコア基板(基材:Cu、Alなど)であってもよい。 First, a substrate 10 for mounting an LED chip is prepared. The substrate 10 is, for example, a glass epoxy substrate having a thickness of 0.7 mm and 150 mm × 60 mm. On the element mounting surface a of the substrate 10, for example, a plurality of die pads and bonding pads configured by Au / Ni / Cu plating on a Cu foil are formed (not shown). The die pads are arranged on the substrate 10 in a grid shape, for example. The substrate 10 may be a ceramic substrate (base material: Al 2 O 3 , AlN, etc.) or a metal core substrate (base material: Cu, Al, etc.).

次に、印刷またはディスペンスなど方法によりダイパッドの各々にダイアタッチ材を形成した後、LEDチップ20を各ダイパッド上にマウントする。ダイアタッチ材は、例えば白色のシリコーン系接着材を用いることができる。その後、例えば150℃、4時間の熱処理によってダイアタッチ材を硬化させる。本実施例においては、LEDチップ20は、4行×7列の形態で基板10上に配列されるが、これに限定されるものではない。LEDチップ20は例えば、厚さ0.12mm、0.5mm×0.3mmのGaN系半導体膜を含む青色LEDであり、チップ表面にn電極およびp電極を有する。尚、LEDチップのサイズや半導体膜の材料は適宜変更することが可能である。次に、ワイヤボンディングを行って、各LEDチップ20のn電極およびp電極と基板10上に形成されたボンディングパッドとをボンディングワイヤ22を介して電気的に接続する。図2(a)は、複数のLEDチップ20が搭載された基板10の平面図、図2(b)は図2(a)における2b−2b線に沿った断面図である。   Next, after a die attach material is formed on each die pad by a method such as printing or dispensing, the LED chip 20 is mounted on each die pad. For example, a white silicone-based adhesive can be used as the die attach material. Thereafter, the die attach material is cured by, for example, heat treatment at 150 ° C. for 4 hours. In the present embodiment, the LED chips 20 are arranged on the substrate 10 in the form of 4 rows × 7 columns, but the present invention is not limited to this. The LED chip 20 is, for example, a blue LED including a GaN-based semiconductor film having a thickness of 0.12 mm and 0.5 mm × 0.3 mm, and has an n electrode and a p electrode on the chip surface. The size of the LED chip and the material of the semiconductor film can be changed as appropriate. Next, wire bonding is performed to electrically connect the n-electrode and p-electrode of each LED chip 20 and bonding pads formed on the substrate 10 via bonding wires 22. 2A is a plan view of the substrate 10 on which the plurality of LED chips 20 are mounted, and FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG.

基板10上に搭載された2以上のLEDチップ20は、互いに直列または並列に接続されていてもよい。例えば、本実施例において、一列に並ぶ7つのLEDチップが互いに直列に接続されていてもよい。また、LEDチップ20の各々は基板10上において互いに電気的に分離されていてもよい。またLEDチップ20はフリップチップタイプのものであってもよい。この場合、各LEDチップはボンディングワイヤに代えて基板10上に形成された導体配線によって電気的に接続される。   Two or more LED chips 20 mounted on the substrate 10 may be connected to each other in series or in parallel. For example, in this embodiment, seven LED chips arranged in a line may be connected in series with each other. In addition, each of the LED chips 20 may be electrically separated from each other on the substrate 10. The LED chip 20 may be a flip chip type. In this case, each LED chip is electrically connected by a conductor wiring formed on the substrate 10 instead of the bonding wire.

次に、液状の光透過性シリコーン樹脂と蛍光体粒子32とを混合した蛍光体含有樹脂30を用意する。蛍光体は、例えばYAG系蛍光体(黄色発光蛍光体:Y3Al5O12:Ce3+)を用いることができる。混合する蛍光体粒子の濃度は、発光色に応じて設定する。本実施例においては、発光色の色温度を5000K狙いとし、蛍光体粒子32の濃度を11.5重量%とした。また、本実施例において、平均粒径10.7μm±1.2μmの蛍光体粒子を使用した。蛍光体粒子の平均粒径が小さすぎると、所望の発光色を得るために樹脂に混合すべき蛍光体粒子の数が増大する。すると、蛍光体含有樹脂を通過する光の蛍光体粒子による吸収量が増大し、発光効率が低下する。従って、蛍光体粒子の平均粒径は例えば発光波長の約10倍である5μm以上であることが好ましい。また、光透過性樹脂としてエポキシ樹脂、ハイブリッド樹脂(エポキシ樹脂とシリコーン樹脂を混合したもの)、ウレタン樹脂を使用することも可能である。また、加熱した金型に樹脂を塗布した直後から樹脂が硬化してしまうことを防止するために、硬化抑制材を樹脂に混合することとしてもよい。蛍光体粒子は、上記したものの他、緑色発光蛍光体(Y3(Al,Ga)5O12:Ce3+)または赤色発光蛍光体(CaAlSiN3:Eu)などを用いることが可能である。 Next, a phosphor-containing resin 30 in which a liquid light-transmitting silicone resin and phosphor particles 32 are mixed is prepared. As the phosphor, for example, a YAG phosphor (yellow light emitting phosphor: Y 3 Al 5 O 12 : Ce 3+ ) can be used. The concentration of the phosphor particles to be mixed is set according to the emission color. In this embodiment, the color temperature of the emitted color is aimed at 5000K, and the concentration of the phosphor particles 32 is 11.5% by weight. In this example, phosphor particles having an average particle diameter of 10.7 μm ± 1.2 μm were used. If the average particle diameter of the phosphor particles is too small, the number of phosphor particles to be mixed with the resin in order to obtain a desired emission color increases. Then, the amount of absorption of the light passing through the phosphor-containing resin by the phosphor particles increases, and the light emission efficiency decreases. Therefore, the average particle diameter of the phosphor particles is preferably 5 μm or more, which is about 10 times the emission wavelength. Moreover, it is also possible to use an epoxy resin, a hybrid resin (a mixture of an epoxy resin and a silicone resin), and a urethane resin as the light transmissive resin. Moreover, in order to prevent that resin hardens | cures immediately after apply | coating resin to the heated metal mold | die, it is good also as mixing a hardening inhibitor with resin. As the phosphor particles, in addition to the above, a green light-emitting phosphor (Y 3 (Al, Ga) 5 O 12 : Ce 3+ ) or a red light-emitting phosphor (CaAlSiN 3 : Eu) can be used.

次に、成形装置に付随する金型120を所定の成形温度(例えば115℃)に加熱する。金型120は、基板10上に配列されたLEDチップ20の配列形態に対応する4行×7列の形態で配列された半球状のキャビティ122を有する。キャビティ122の形状を半球状とすることにより、成形後の蛍光体含有樹脂30を配光制御用のレンズとして機能させることが可能となる。次に金型120の表面に各キャビティ122の表面形状に沿ってテフロン(登録商標)などからなるリリースフィルムを貼り付ける。次に、金型120の表面に所定量の蛍光体含有樹脂30を塗布(供給)する。図3(a)は、蛍光体含有樹脂30が塗布された金型120の平面図、図3(b)は、図3(a)における3b−3b線に沿った断面図である。蛍光体含有樹脂30は、例えば金型120の表面中央の1箇所に塗布することとしてもよい(一点塗布)。図4(a)〜図4(c)は、蛍光体含有樹脂30の塗布位置および塗布形状のバリエーションを示す平面図である。図4(a)に示すように、蛍光体含有樹脂30を金型120の表面の複数箇所に塗布してもよい(多点塗布)。また、図4(b)に示すように、キャビティ122の配列に沿ってライン状に塗布してもよい。また、図4(c)に示すように、波状に塗布してもよい。   Next, the mold 120 attached to the molding apparatus is heated to a predetermined molding temperature (for example, 115 ° C.). The mold 120 has hemispherical cavities 122 arranged in a form of 4 rows × 7 columns corresponding to the arrangement form of the LED chips 20 arranged on the substrate 10. By making the shape of the cavity 122 hemispherical, the molded phosphor-containing resin 30 can function as a lens for light distribution control. Next, a release film made of Teflon (registered trademark) or the like is attached to the surface of the mold 120 along the surface shape of each cavity 122. Next, a predetermined amount of the phosphor-containing resin 30 is applied (supplied) to the surface of the mold 120. 3A is a plan view of the mold 120 to which the phosphor-containing resin 30 is applied, and FIG. 3B is a cross-sectional view taken along line 3b-3b in FIG. The phosphor-containing resin 30 may be applied, for example, to one place at the center of the surface of the mold 120 (one-point application). FIG. 4A to FIG. 4C are plan views showing variations in the application position and application shape of the phosphor-containing resin 30. As shown in FIG. 4A, the phosphor-containing resin 30 may be applied to a plurality of locations on the surface of the mold 120 (multi-point application). Further, as shown in FIG. 4B, it may be applied in a line along the arrangement of the cavities 122. Moreover, as shown in FIG.4 (c), you may apply | coat to a wave shape.

次に、図5(a)に示すように、成形装置に付随する基板保持部110にLEDチップ20をマウントした基板10をセットして、成形装置の昇降機構(図示せず)によって基板10と金型120とが対向した状態でこれらを近接させる。このとき、基板10および金型120周囲が密閉空間となるように、成形装置は構成されている。続いて、真空ポンプにより上記密閉空間を減圧し、蛍光体含有樹脂30内に含まれる気泡を除去する(脱泡)。   Next, as shown in FIG. 5A, the substrate 10 on which the LED chip 20 is mounted is set on the substrate holding part 110 associated with the molding apparatus, and the substrate 10 and the substrate 10 are lifted by a lifting mechanism (not shown) of the molding apparatus. These are brought close to each other while facing the mold 120. At this time, the molding apparatus is configured so that the periphery of the substrate 10 and the mold 120 is a sealed space. Subsequently, the sealed space is decompressed by a vacuum pump to remove bubbles contained in the phosphor-containing resin 30 (defoaming).

次に、図5(b)に示すように、成形装置の加圧機構(図示せず)によって金型120を上方に押し下げ、金型120を基板10に押し付ける。図5(c)は、図5(b)において破線で囲まれた領域の拡大図である。基板10に搭載されたLEDチップ20の各々は、各キャビティ122内に収容される。蛍光体含有樹脂30は、基板10との接触によって変形し、基板10の素子搭載面aと金型120の基準面b(各キャビティ122の周囲に延在する平坦な面)の間に形成された隙間100内に充填される。すなわち、蛍光体含有樹脂30は、隙間100を通ってキャビティ122の各々に供給され、基板10の素子搭載面上に広がる。換言すれば、基板10の素子搭載面aと金型120の基準面bとの間に隙間100の幅に対応する厚さLの蛍光体含有樹脂の層(以下において薄膜部30aと称する)が形成される。成形装置は、基板10と金型120との間に蛍光体含有樹脂の薄膜部30aを挟んだ状態で、蛍光体含有樹脂30に熱と圧力を加える。尚、基準面bは、金型120の表面にリリースフィルムを貼り付けて成形を行う場合においては、実質的には、金型上に配置されたリリースフィルムの上面となる。   Next, as shown in FIG. 5B, the mold 120 is pressed upward by a pressurizing mechanism (not shown) of the molding apparatus, and the mold 120 is pressed against the substrate 10. FIG.5 (c) is an enlarged view of the area | region enclosed with the broken line in FIG.5 (b). Each of the LED chips 20 mounted on the substrate 10 is accommodated in each cavity 122. The phosphor-containing resin 30 is deformed by contact with the substrate 10 and is formed between the element mounting surface a of the substrate 10 and the reference surface b of the mold 120 (a flat surface extending around each cavity 122). The gap 100 is filled. That is, the phosphor-containing resin 30 is supplied to each of the cavities 122 through the gap 100 and spreads on the element mounting surface of the substrate 10. In other words, a phosphor-containing resin layer (hereinafter referred to as a thin film portion 30 a) having a thickness L corresponding to the width of the gap 100 between the element mounting surface a of the substrate 10 and the reference surface b of the mold 120. It is formed. The molding apparatus applies heat and pressure to the phosphor-containing resin 30 with the phosphor-containing resin thin film portion 30 a sandwiched between the substrate 10 and the mold 120. The reference surface b is substantially the upper surface of the release film disposed on the mold when molding is performed by attaching a release film to the surface of the mold 120.

蛍光体含有樹脂の薄膜部30aの厚さ(すなわち隙間100の幅)Lは、蛍光体含有樹脂30に含まれる蛍光体粒子32の平均粒径の15倍以上であり且つ基板10の素子搭載面aからLEDチップ20の上面までの距離tよりも小さくなるように設定される。蛍光体含有樹脂の薄膜部30aの厚さLは、例えば蛍光体含有樹脂30の塗布量(供給量)によって制御することが可能である。すなわち、蛍光体含有樹脂30の塗布量をより多くすることにより基板10と金型120との間に介在する蛍光体含有樹脂30の体積が増加するため、蛍光体含有樹脂の薄膜部30aの厚さを厚くすることができる。尚、蛍光体含有樹脂30の塗布量は0.01g単位で制御することが可能である。   The thickness L (that is, the width of the gap 100) L of the phosphor-containing resin thin film portion 30a is 15 times or more the average particle diameter of the phosphor particles 32 contained in the phosphor-containing resin 30, and the element mounting surface of the substrate 10 It is set to be smaller than the distance t from a to the upper surface of the LED chip 20. The thickness L of the thin film portion 30a of the phosphor-containing resin can be controlled by, for example, the coating amount (supply amount) of the phosphor-containing resin 30. That is, since the volume of the phosphor-containing resin 30 interposed between the substrate 10 and the mold 120 is increased by increasing the coating amount of the phosphor-containing resin 30, the thickness of the thin film portion 30a of the phosphor-containing resin is increased. The thickness can be increased. The application amount of the phosphor-containing resin 30 can be controlled in units of 0.01 g.

基板10と金型120と間に形成される隙間100は、図5(b)および図5(c)に示す加熱および加圧状態において蛍光体含有樹脂30が流動する流動経路となる。隙間100の幅を大きくすることにより蛍光体含有樹脂30の流動性が向上する。隙間100の幅を蛍光体粒子32の平均粒径の15倍以上に設定することにより、隙間100の端部(すなわち金型120の端部)に到来した蛍光体粒子32は、当該端部で折り返すように移動することが可能となり、金型120の端部における蛍光体粒子32の滞留が解消される。これにより、蛍光体含有樹脂30内における蛍光体粒子32の密度分布の偏りが解消され、樹脂内において蛍光体粒子32を均一に分散させることが可能となる。尚、本コンプレッション成形工程において、成形温度を115℃、成形圧力を30kgf/cm2、成形時間を300秒、真空保持時間を7.0秒、蛍光体含有樹脂の薄膜部30aの厚さ(すなわち、隙間100の厚さ)Lを200μmに設定した。 The gap 100 formed between the substrate 10 and the mold 120 serves as a flow path through which the phosphor-containing resin 30 flows in the heated and pressurized state shown in FIGS. 5 (b) and 5 (c). By increasing the width of the gap 100, the fluidity of the phosphor-containing resin 30 is improved. By setting the width of the gap 100 to 15 times or more the average particle diameter of the phosphor particles 32, the phosphor particles 32 that arrive at the end of the gap 100 (that is, the end of the mold 120) It becomes possible to move so as to be folded, and the retention of the phosphor particles 32 at the end of the mold 120 is eliminated. Thereby, the uneven distribution of the density distribution of the phosphor particles 32 in the phosphor-containing resin 30 is eliminated, and the phosphor particles 32 can be uniformly dispersed in the resin. In this compression molding step, the molding temperature is 115 ° C., the molding pressure is 30 kgf / cm 2 , the molding time is 300 seconds, the vacuum holding time is 7.0 seconds, and the thickness of the phosphor-containing resin thin film portion 30a (that is, The thickness of the gap 100) L was set to 200 μm.

コンプレッション成形が完了した後、加熱および圧力印加を停止させ、成形装置の昇降機構によって基板保持部110を上昇させ、仮硬化した蛍光体含有樹脂30をリリースフィルムとともに金型120から剥離する。その後、蛍光体含有樹脂30が接合された基板10を例えば150℃の恒温槽に搬入し、4時間の熱処理を行って、蛍光体含有樹脂30を本硬化させる。その後、必要に応じて基板10を任意の構成単位毎に分割する。例えば、発光装置は、単一のLEDチップにより構成されていてもよく、ライン状またはグリッド状に並ぶ2以上のLEDチップにより構成されていてもよい。   After the compression molding is completed, heating and pressure application are stopped, the substrate holding unit 110 is raised by the lifting mechanism of the molding device, and the temporarily cured phosphor-containing resin 30 is peeled from the mold 120 together with the release film. Thereafter, the substrate 10 to which the phosphor-containing resin 30 is bonded is carried into, for example, a constant temperature bath at 150 ° C., and heat treatment is performed for 4 hours, so that the phosphor-containing resin 30 is fully cured. Then, the board | substrate 10 is divided | segmented for every arbitrary structural units as needed. For example, the light emitting device may be configured by a single LED chip, or may be configured by two or more LED chips arranged in a line or grid.

図6(a)は、以上の各工程を経て作製された本発明の実施例に係る半導体発光装置1の構成を示す平面図、図6(b)は図6(a)における6b−6b線に沿った断面図、図6(c)は図6(b)において破線で囲まれた部分の拡大図である。半導体発光装置1において、基板10上に搭載された複数のLEDチップ20の各々が半球状に成形された蛍光体含有樹脂30によって封止されている。蛍光体含有樹脂30は、配光制御用のレンズとして機能する。コンプレッション成形時において基板10の素子搭載面aと金型120の基準面bとの間の隙間100に蛍光体含有樹脂が充填されることによって形成された蛍光体含有樹脂の薄膜部30aが基板10上を覆っている。薄膜部30aの厚さLは、基板10の素子搭載面aからLEDチップ200の上面までの距離tよりも小さい(L<t)。すなわち、薄膜部30aの上面は、LEDチップ20の上面よりも投光方向後方に位置している。ここで、図6(d)は、薄膜部30aの上面がLEDチップ20の上面よりも投光方向前方に位置している(すなわちL>t)比較例に係る半導体発光装置の構成を示す断面図である。薄膜部30aの上面がLEDチップ20の上面よりも投光方向前方に位置していると、LEDチップ20から発せられた光は、平坦な薄膜部30aの上面で全反射され、光取り出し効率が低下する。一方、図6(c)に示す本発明の実施例に係る半導体発光装置1によれば、薄膜部30aの上面での全反射を防止することができ、光取り出し効率の低下を防止することができる。図6(b)および図6(c)においてLEDチップ20から発せられた光の進路が破線矢印で示されている。薄膜部30aの厚さは、コンプレッション成形時における隙間100の厚さに対応しており、蛍光体含有樹脂30の塗布量(供給量)で制御することができる。   6A is a plan view showing the configuration of the semiconductor light emitting device 1 according to the embodiment of the present invention manufactured through the above steps, and FIG. 6B is a line 6b-6b in FIG. 6A. FIG. 6C is an enlarged view of a portion surrounded by a broken line in FIG. 6B. In the semiconductor light emitting device 1, each of the plurality of LED chips 20 mounted on the substrate 10 is sealed with a phosphor-containing resin 30 formed in a hemispherical shape. The phosphor-containing resin 30 functions as a light distribution control lens. At the time of compression molding, the phosphor-containing resin thin film portion 30 a formed by filling the gap 100 between the element mounting surface a of the substrate 10 and the reference surface b of the mold 120 with the phosphor-containing resin is the substrate 10. It covers the top. The thickness L of the thin film portion 30a is smaller than the distance t from the element mounting surface a of the substrate 10 to the upper surface of the LED chip 200 (L <t). In other words, the upper surface of the thin film portion 30 a is located behind the LED chip 20 in the light projecting direction. Here, FIG. 6D is a cross-sectional view showing the configuration of the semiconductor light emitting device according to the comparative example in which the upper surface of the thin film portion 30a is located in front of the LED chip 20 in the light projecting direction (that is, L> t). FIG. When the upper surface of the thin film portion 30a is positioned forward of the LED chip 20 in the light projecting direction, the light emitted from the LED chip 20 is totally reflected by the upper surface of the flat thin film portion 30a, and the light extraction efficiency is improved. descend. On the other hand, according to the semiconductor light emitting device 1 according to the embodiment of the present invention shown in FIG. 6C, it is possible to prevent total reflection on the upper surface of the thin film portion 30a, and to prevent a decrease in light extraction efficiency. it can. In FIG. 6B and FIG. 6C, the path of the light emitted from the LED chip 20 is indicated by a broken-line arrow. The thickness of the thin film portion 30a corresponds to the thickness of the gap 100 at the time of compression molding, and can be controlled by the application amount (supply amount) of the phosphor-containing resin 30.

図7は、コンプレッション成形時における基板10の素子搭載面aと金型120の基準面bとの間の隙間100の幅(蛍光体含有樹脂の薄膜部30aの厚さL)の蛍光体粒子32の粒径に対する倍率が互いに異なる3種類のサンプルについて、発光面内における発光色の色温度差を評価した結果である。各サンプルは、基板上に15個のLEDをピッチ0.9mmで一列に搭載し、各LEDチップを封止する蛍光体含有樹脂をコンプレッション成形して作製されたものである。   FIG. 7 shows phosphor particles 32 having a width of the gap 100 (thickness L of the phosphor-containing resin thin film portion 30a) between the element mounting surface a of the substrate 10 and the reference surface b of the mold 120 at the time of compression molding. It is the result of having evaluated the color temperature difference of the luminescent color in the light emission surface about three types of samples from which the magnification with respect to the particle size of each differs. Each sample is manufactured by mounting 15 LEDs in a row at a pitch of 0.9 mm on a substrate and compression-molding a phosphor-containing resin that seals each LED chip.

サンプルAは、基板の素子搭載面aと金型の基準面bとの間の隙間100の幅Lを蛍光体粒子の粒径の3倍に設定してコンプレッション成形したものである。サンプルBは、隙間100の幅Lを蛍光体粒子の粒径の13倍に設定してコンプレッション成形したものである。サンプルCは、隙間100の幅Lを蛍光体粒子の粒径の15倍に設定してコンプレッション成形したものであり、本発明の実施例に係る発光装置に該当する。各サンプルにおいて、複数のLEDチップが並ぶ方向に沿った各位置における色温度を測定し、その結果を図7に示すグラフ上にプロットした。図7において、横軸は各サンプルのLEDチップが並ぶ方向に沿った発光面上の位置を示し、縦軸は当該位置における色温度の発光面中央における色温度との差を示している。サンプルAおいては、発光面の端部の色温度が高く、発光面端部と発光面中央との間の領域で色温度が低くなった。これは、蛍光体含有樹脂内において蛍光体粒子の密度分布に偏りが生じていることを意味している。サンプルBでは、発光面内における色温度差が縮小する傾向が見られるものの、依然として発光色にむらが生じている。サンプルCでは、発光面上の各位置における色温度差がほぼ200K以内に収まっており、実使用において十分に許容できるレベルであることが確認された。すなわち、隙間100の幅Lを蛍光体粒子の粒径の15倍以上とすることにより蛍光体粒子の密度分布の偏りが解消されることが確認された。尚、図7に示す結果は、平均粒径が10.7μmである蛍光体粒子を使用した場合が示されているが、蛍光体粒子の平均粒径が8.0μmである蛍光体粒子を使用した場合においても、隙間100の幅Lを蛍光体粒子の粒径の15倍以上とすることにより発光面上の各位置における色温度差をプラスマイナス200K以内とすることができた。   Sample A is compression molded by setting the width L of the gap 100 between the element mounting surface a of the substrate and the reference surface b of the mold to 3 times the particle size of the phosphor particles. Sample B is compression molded with the width L of the gap 100 set to 13 times the particle size of the phosphor particles. Sample C is compression molded by setting the width L of the gap 100 to 15 times the particle size of the phosphor particles, and corresponds to the light emitting device according to the embodiment of the present invention. In each sample, the color temperature at each position along the direction in which the plurality of LED chips are arranged was measured, and the result was plotted on the graph shown in FIG. In FIG. 7, the horizontal axis indicates the position on the light emitting surface along the direction in which the LED chips of the samples are arranged, and the vertical axis indicates the difference between the color temperature at that position and the color temperature at the center of the light emitting surface. In sample A, the color temperature at the end of the light emitting surface was high, and the color temperature was low in the region between the end of the light emitting surface and the center of the light emitting surface. This means that the density distribution of the phosphor particles is uneven in the phosphor-containing resin. In sample B, although the color temperature difference in the light emitting surface tends to be reduced, the emission color is still uneven. In sample C, the color temperature difference at each position on the light emitting surface was within approximately 200K, and it was confirmed that the level was sufficiently acceptable in actual use. That is, it was confirmed that the uneven density distribution of the phosphor particles was eliminated by setting the width L of the gap 100 to 15 times or more the particle diameter of the phosphor particles. In addition, although the result shown in FIG. 7 shows the case where the phosphor particles having an average particle diameter of 10.7 μm are used, the phosphor particles having the average particle diameter of 8.0 μm are used. Even in this case, by setting the width L of the gap 100 to 15 times or more the particle size of the phosphor particles, the color temperature difference at each position on the light emitting surface could be within ± 200K.

また、本発明者らは、コンプレッション成形において、蛍光体粒子の滞留を防止する手法を探る過程において、蛍光体含有樹脂の流動性をコントロールする様々な方策について検討を行った。図8にその内容と効果を示す。   In addition, the present inventors have examined various measures for controlling the fluidity of the phosphor-containing resin in the process of searching for a technique for preventing the retention of phosphor particles in compression molding. FIG. 8 shows the contents and effects.

方策1は、コンプレッション成形時における成形圧力を既定値である30Kgf/cm2から15kgf/cm2に変更することにより蛍光体含有樹脂の流動性の向上を図るというものである。しかしながら、この方策1において蛍光体粒子の密度分布の偏り、すなわち発光面内における発光色のむら(色温度差)を解消することはできなかった。 Strategy 1 is that to improve the fluidity of the phosphor-containing resin by changing the molding pressure at the time of compression molding from 30 kgf / cm 2, which is the default value to 15 kgf / cm 2. However, in this measure 1, it was not possible to eliminate the uneven density distribution of the phosphor particles, that is, the unevenness of the emitted color (color temperature difference) in the light emitting surface.

方策2は、コンプレッション成形時における真空保持時間を既定値である7秒から3秒に変更することにより蛍光体含有樹脂の流動性の低下を図るというものである。しかしながら、この方策2において蛍光体粒子の密度分布の偏り、すなわち発光面内における発光色のむら(色温度差)を解消することはできなかった。   Measure 2 is to reduce the fluidity of the phosphor-containing resin by changing the vacuum holding time during compression molding from the default value of 7 seconds to 3 seconds. However, in this measure 2, it was not possible to eliminate the uneven density distribution of the phosphor particles, that is, the unevenness of the emitted color (color temperature difference) in the light emitting surface.

方策3は、コンプレッション成形時における金型押し付け速度を既定値である1.0mm/sから0.5mm/sに変更することにより蛍光体含有樹脂の流動性の低下を図るというものである。しかしながら、この方策3において蛍光体粒子の密度分布の偏り、すなわち発光面内における発光色のむら(色温度差)を解消することはできなかった。   Measure 3 is to reduce the fluidity of the phosphor-containing resin by changing the mold pressing speed during compression molding from the default value of 1.0 mm / s to 0.5 mm / s. However, in this measure 3, it was not possible to eliminate the uneven density distribution of the phosphor particles, that is, uneven emission color (color temperature difference) in the light emitting surface.

方策4は、コンプレッション成形時における金型の温度(すなわち成形温度)を規定値である115℃から105℃に変更することにより蛍光体含有樹脂の流動性の向上を図るというものである。しかしながら、この方策4において蛍光体粒子の密度分布の偏り、すなわち発光面内における発光色のむら(色温度差)を解消することはできなかった。   Measure 4 is to improve the fluidity of the phosphor-containing resin by changing the mold temperature (that is, the molding temperature) during compression molding from the prescribed value of 115 ° C. to 105 ° C. However, in this Measure 4, the uneven density distribution of the phosphor particles, that is, the uneven emission color (color temperature difference) in the light emitting surface cannot be eliminated.

方策5は、蛍光体含有樹脂の金型上の塗布位置および塗布形状を図4(a)〜(c)に示すように変化させたものである。すなわち、蛍光体含有樹脂を既定条件である1点塗布から多点塗布、ライン状塗布、波状塗布に変更することにより蛍光体含有樹脂の金型上での広がりの態様を変化させるというものである。塗布位置および塗布形状に応じて蛍光体粒子の密度分布に変化が生じ、発光色のむらが生じる位置に変化が見られたものの、発光色のむら(色温度差)自体を解消することはできなかった。   In Measure 5, the application position and the application shape of the phosphor-containing resin on the mold are changed as shown in FIGS. That is, the mode of spreading of the phosphor-containing resin on the mold is changed by changing the phosphor-containing resin from the predetermined one-point coating to multi-point coating, line coating, and wave coating. . Although the density distribution of the phosphor particles changed depending on the application position and application shape, and there was a change in the position where the uneven emission color occurred, the uneven emission color (color temperature difference) itself could not be resolved. .

方策6は、蛍光体含有樹脂の粘度が既定値の0.1倍〜2倍のものを使用することにより、蛍光体含有樹脂の流動性を変化させるというものである。粘度が低い樹脂を使用した場合において発光面内における色温度差が縮小したものの十分な実使用レベルに至っていない。   Measure 6 is to change the fluidity of the phosphor-containing resin by using the phosphor-containing resin whose viscosity is 0.1 to 2 times the predetermined value. When a resin having a low viscosity is used, the color temperature difference in the light emitting surface is reduced, but the actual practical use level is not reached.

方策7は、コンプレッション成形時における、基板の素子搭載面と金型の基準面との間の隙間の幅Lを増加することにより蛍光体含有樹脂の流動経路の拡大を図るというものである。尚、上記隙間の幅Lは、蛍光体含有樹脂の塗布量で制御した。上記隙間の幅Lを蛍光体粒子の平均粒径の15倍以上とすることにより、蛍光体粒子の密度分布の偏りが解消され、発光面内における色温度差はほぼプラスマイナス200K以内に収まった。   Measure 7 is to increase the flow path of the phosphor-containing resin by increasing the width L of the gap between the element mounting surface of the substrate and the reference surface of the mold during compression molding. The width L of the gap was controlled by the amount of phosphor-containing resin applied. By making the width L of the gap 15 or more times the average particle diameter of the phosphor particles, the uneven density distribution of the phosphor particles is eliminated, and the color temperature difference in the light emitting surface is kept within approximately plus or minus 200K. .

このように、蛍光体含有樹脂の流動性を変化させる様々な方策が試行された。その結果、蛍光体粒子の密度分布の偏りを防止することができる唯一の方策としてコンプレッション成形時において基板と金型との間に介在する蛍光体含有樹脂の層の厚さを蛍光体粒子の粒径に応じて制御するという手法が見出された。かかる手法によれば、方策1〜6において検討された各パラメータ(蛍光体含有樹脂の粘度、成型圧力など)にかかわらず、蛍光体粒子の滞留を防止し、発光面内における色むらを抑制する効果が確認された。   Thus, various measures for changing the fluidity of the phosphor-containing resin have been tried. As a result, the only way to prevent the uneven density distribution of the phosphor particles is to determine the thickness of the phosphor-containing resin layer interposed between the substrate and the mold during compression molding. A method of controlling according to the diameter was found. According to this method, regardless of the parameters (viscosity of phosphor-containing resin, molding pressure, etc.) studied in measures 1 to 6, phosphor particles are prevented from staying and color unevenness in the light emitting surface is suppressed. The effect was confirmed.

以上の説明から明らかなように、本発明の実施例に係る半導体発光装置の製造方法においては、コンプレッション成形時に基板10の素子搭載面と金型120の基準面との間に蛍光体含有樹脂30の流動経路となる幅Lの隙間100が形成される。隙間100の幅Lは蛍光体含有樹脂30内に含まれる蛍光体粒子の平均粒径の15倍以上に設定される。これにより、コンプレッション成形時における金型120と基板10との間に介在する蛍光体含有樹脂30の流動性が向上する。これにより、蛍光体粒子は滞留を生じることなく樹脂内を移動することが可能となり、蛍光体粒子の密度分布の偏りが解消される。従って、基板上に複数のLEDチップを搭載した半導体発光装置1において、発光面内における発光色のむら(色温度差)を低減することが可能となる。また、基板10をLEDチップ毎に分割して製造される発光装置においては、発光装置間の発光色のばらつきを防止することが可能となり、歩留りが向上する。   As is apparent from the above description, in the method for manufacturing a semiconductor light emitting device according to the embodiment of the present invention, the phosphor-containing resin 30 is interposed between the element mounting surface of the substrate 10 and the reference surface of the mold 120 during compression molding. A gap 100 having a width L is formed as a flow path. The width L of the gap 100 is set to 15 times or more the average particle diameter of the phosphor particles contained in the phosphor-containing resin 30. Thereby, the fluidity | liquidity of the fluorescent substance containing resin 30 interposed between the metal mold | die 120 and the board | substrate 10 at the time of compression molding improves. As a result, the phosphor particles can move in the resin without causing stagnation, and the uneven density distribution of the phosphor particles is eliminated. Therefore, in the semiconductor light emitting device 1 in which a plurality of LED chips are mounted on the substrate, it is possible to reduce unevenness of the emitted color (color temperature difference) in the light emitting surface. In addition, in a light emitting device manufactured by dividing the substrate 10 into LED chips, it is possible to prevent variations in emission color among the light emitting devices, and the yield is improved.

10 基板
20 LEDチップ
30 蛍光体含有樹脂
32 蛍光体粒子
100 隙間
120 金型
122 キャビティ
DESCRIPTION OF SYMBOLS 10 Substrate 20 LED chip 30 Phosphor-containing resin 32 Phosphor particle 100 Gap 120 Mold 122 Cavity

Claims (5)

基板の素子搭載面に複数の発光素子を搭載する工程と、
前記基板上における前記複数の発光素子の配列に対応して配列された複数のキャビティを基準面に有する金型に平均粒径が5μm以上の蛍光体粒子を含む蛍光体含有樹脂を供給する工程と、
前記発光素子の各々が前記キャビティの各々に収容され且つ前記素子搭載面と前記基準面とが前記蛍光体含有樹脂を間に挟んで密着した状態で前記蛍光体含有樹脂を圧縮成形する工程と、を含み、
前記圧縮成形する工程において、前記素子搭載面と前記基準面の間に介在する前記蛍光体含有樹脂の厚さは前記蛍光体粒子の平均粒径の15倍以上であることを特徴とする半導体発光装置の製造方法。
Mounting a plurality of light emitting elements on the element mounting surface of the substrate;
Supplying a phosphor-containing resin containing phosphor particles having an average particle diameter of 5 μm or more to a mold having a plurality of cavities arranged corresponding to the arrangement of the plurality of light emitting elements on the substrate on a reference surface; ,
Compression-molding the phosphor-containing resin in a state where each of the light emitting elements is housed in each of the cavities and the element mounting surface and the reference surface are in close contact with the phosphor-containing resin interposed therebetween; Including
In the compression molding step, the thickness of the phosphor-containing resin interposed between the element mounting surface and the reference surface is 15 times or more the average particle diameter of the phosphor particles. Device manufacturing method.
前記圧縮成形する工程において、前記素子搭載面と前記基準面の間に介在する前記蛍光体含有樹脂の厚さは、前記素子搭載面から前記発光素子の上面までの距離よりも小さいことを特徴とする請求項1に記載の製造方法。   In the compression molding step, the thickness of the phosphor-containing resin interposed between the element mounting surface and the reference surface is smaller than the distance from the element mounting surface to the upper surface of the light emitting element. The manufacturing method according to claim 1. 前記圧縮成形する工程において、前記素子搭載面と前記基準面の間に介在する前記蛍光体含有樹脂の厚さは、前記蛍光体含有樹脂の供給量によって制御されることを特徴とする請求項1に記載の製造方法。   2. The thickness of the phosphor-containing resin interposed between the element mounting surface and the reference surface in the compression molding step is controlled by a supply amount of the phosphor-containing resin. The manufacturing method as described in. 前記圧縮成形する工程の後に、前記基板を分割する工程を更に含むことを特徴とする請求項1乃至3のいずれか1つに記載の方法。   The method according to claim 1, further comprising a step of dividing the substrate after the compression molding step. 前記蛍光体含有樹脂は、前記複数のキャビティのうちの一部に供給され、前記圧縮成形工程において前記基板との接触によって前記複数のキャビティの各々に供給され、前記素子搭載面上に広がることを特徴とする請求項1乃至4のいずれか1つに記載の製造方法。   The phosphor-containing resin is supplied to a part of the plurality of cavities, is supplied to each of the plurality of cavities by contact with the substrate in the compression molding step, and spreads on the element mounting surface. The manufacturing method according to any one of claims 1 to 4, wherein the manufacturing method is characterized.
JP2011164230A 2011-07-27 2011-07-27 A method for manufacturing a semiconductor light emitting device. Active JP5816479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164230A JP5816479B2 (en) 2011-07-27 2011-07-27 A method for manufacturing a semiconductor light emitting device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164230A JP5816479B2 (en) 2011-07-27 2011-07-27 A method for manufacturing a semiconductor light emitting device.

Publications (2)

Publication Number Publication Date
JP2013030544A true JP2013030544A (en) 2013-02-07
JP5816479B2 JP5816479B2 (en) 2015-11-18

Family

ID=47787330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164230A Active JP5816479B2 (en) 2011-07-27 2011-07-27 A method for manufacturing a semiconductor light emitting device.

Country Status (1)

Country Link
JP (1) JP5816479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107477A (en) * 2012-11-29 2014-06-09 Panasonic Corp Light emitting module and illumination light source using the light emitting module
WO2024070675A1 (en) * 2022-09-28 2024-04-04 京セラ株式会社 Light-emitting device and method for producing light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107477A (en) * 2012-11-29 2014-06-09 Panasonic Corp Light emitting module and illumination light source using the light emitting module
WO2024070675A1 (en) * 2022-09-28 2024-04-04 京セラ株式会社 Light-emitting device and method for producing light-emitting device

Also Published As

Publication number Publication date
JP5816479B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
KR100665121B1 (en) Method of producing wavelength-converted light emitting diode package
EP2984686B1 (en) Method of fabricating led with high thermal conductivity particles in phosphor conversion layer
CN100592538C (en) Encapsulation method for high-brightness white light LED
JP6237181B2 (en) Method for manufacturing light emitting device
US20100109025A1 (en) Over the mold phosphor lens for an led
KR101173251B1 (en) White led element manufacturing method using preform phorsphor sheets
US20110031516A1 (en) Led with silicone layer and laminated remote phosphor layer
JP5497469B2 (en) Light emitting device and manufacturing method thereof
US8138509B2 (en) Light emitting device having luminescent layer with opening to exposed bond pad on light emitting die for wire bonding pad to substrate
KR20120119350A (en) Light emitting device module and method for manufacturing the same
JP2012094578A (en) Manufacturing method of semiconductor light emitting device
JP5816483B2 (en) Manufacturing method of semiconductor light emitting device
US20150200336A1 (en) Wafer level contact pad standoffs with integrated reflector
JP2012164902A (en) Method of manufacturing semiconductor light-emitting device
KR101867304B1 (en) Method of fabricating light emitting apparatus
JP2012044043A (en) Semiconductor light-emitting device and semiconductor light-emitting device manufacturing method
JP5702481B2 (en) Light emitting device and manufacturing method thereof
JP5816479B2 (en) A method for manufacturing a semiconductor light emitting device.
CN106058021A (en) Chip-scale package luminescence apparatus and manufacturing method thereof
JP6252302B2 (en) Method for manufacturing light emitting device
WO2013168037A1 (en) Remote phosphor and led package
KR101567807B1 (en) Manufacturing method of phosphor sheet and LED package using phosphor sheet
KR101440770B1 (en) Light emitting device package
EP2551926B1 (en) Light emitting diode module and method for manufacturing the same
KR20130021129A (en) Apparatus for manufacturing light emitting diode and manufacturing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5816479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250