JP2013025928A - Gasket for fuel cell - Google Patents

Gasket for fuel cell Download PDF

Info

Publication number
JP2013025928A
JP2013025928A JP2011157730A JP2011157730A JP2013025928A JP 2013025928 A JP2013025928 A JP 2013025928A JP 2011157730 A JP2011157730 A JP 2011157730A JP 2011157730 A JP2011157730 A JP 2011157730A JP 2013025928 A JP2013025928 A JP 2013025928A
Authority
JP
Japan
Prior art keywords
gasket
mea
separator
gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011157730A
Other languages
Japanese (ja)
Other versions
JP5835554B2 (en
Inventor
Takayuki Horimoto
隆之 堀本
Shotaro Koga
正太郎 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2011157730A priority Critical patent/JP5835554B2/en
Priority to PCT/JP2012/068285 priority patent/WO2013012026A1/en
Priority to EP12814585.1A priority patent/EP2736108B1/en
Priority to CN201280035047.0A priority patent/CN103688398B/en
Priority to KR1020137034361A priority patent/KR102017312B1/en
Publication of JP2013025928A publication Critical patent/JP2013025928A/en
Application granted granted Critical
Publication of JP5835554B2 publication Critical patent/JP5835554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To reduce costs for a fuel cell stack.SOLUTION: A gasket 1(2) for a fuel cell is integrally molded by a rubber-like elastic material on an outer periphery of a GDL 3(4) interposed between a separator 6(7) and an MEA 5, and closely contacts the separator 6(7). A gas introduction groove 1b extending so that a manifold hole 1a(2a) opened on the gasket 1(2) and a gas reaction region 10A by the MEA 5 are communicated with each other is formed on a face of the gasket 1(2) opposed to the separator 6(7). The gas introduction groove 1b can be formed at the same time of molding the basket 1(2) by the rubber-like elastic material. There is no need of processing a gas introduction groove on the side of the separator 6(7), and therefore, costs can be reduced.

Description

本発明は、燃料電池の発電要素をなす燃料電池セルに用いられ、GDL(Gas Diffusion Layer:ガス拡散層)に一体的に設けられたガスケットに関するものである。   The present invention relates to a gasket that is used in a fuel cell constituting a power generation element of a fuel cell and is integrally provided in a GDL (Gas Diffusion Layer).

図11〜図13に示すように、燃料電池は、電解質膜及びその両面に設けた不図示の触媒電極層からなるMEA(Membrane Electrode Assembly:膜−電極複合体)101を、厚さ方向両側からGDL102,103を介してセパレータ104,105で挟持することによって、発電の最小単位である燃料電池セル100が構成されている。GDL102,103の外周側には、それぞれゴム状弾性材料(ゴム材料又はゴム状弾性を有する合成樹脂材料)からなるガスケット106,107が、GDL102,103の縁部へゴム状弾性材料の一部が含浸された状態で一体的に成形されている。   As shown in FIGS. 11 to 13, the fuel cell includes an MEA (Membrane Electrode Assembly) 101 composed of an electrolyte membrane and a catalyst electrode layer (not shown) provided on both sides thereof from both sides in the thickness direction. The fuel cell 100 that is the minimum unit of power generation is configured by being sandwiched between the separators 104 and 105 via the GDLs 102 and 103. Gaskets 106 and 107 made of rubber-like elastic material (rubber material or synthetic resin material having rubber-like elasticity) are respectively provided on the outer peripheral sides of the GDLs 102 and 103, and a part of the rubber-like elastic material is placed on the edges of the GDLs 102 and 103. It is integrally molded in an impregnated state.

セパレータ104,105及びガスケット106,107にはそれぞれ複数のマニホールド孔104a,105a,106a,107aが開設されており、図11及び図12に示すように、セパレータ104,105におけるGDL102,103との対向面(図13に示すMEA101によるガス反応領域100A)には燃料ガス反応用溝104b及び酸化剤ガス反応用溝105bが形成され、さらにセパレータ104,105におけるガスケット106,107との対向面にはマニホールド孔104a,105aとガス反応領域100A(燃料ガス反応用溝104b及び酸化剤ガス反応用溝105b)の間を連通するガス導入溝104c及びガス導入溝105cが形成されている。そして図13に示す積層状態では、セパレータ104,105のマニホールド孔104a,105aとガスケット106,107のマニホールド孔106a,107aが互いに重合(連通)されることによって燃料ガス、酸化剤ガスや冷媒の供給通路及び排出通路(マニホールド孔)が形成される。   A plurality of manifold holes 104a, 105a, 106a, 107a are formed in the separators 104, 105 and the gaskets 106, 107, respectively. As shown in FIGS. 11 and 12, the separators 104, 105 are opposed to the GDLs 102, 103. A fuel gas reaction groove 104b and an oxidant gas reaction groove 105b are formed on the surface (the gas reaction region 100A by the MEA 101 shown in FIG. 13), and a manifold 104 is formed on the surface facing the gaskets 106 and 107 in the separators 104 and 105. A gas introduction groove 104c and a gas introduction groove 105c communicating between the holes 104a and 105a and the gas reaction region 100A (the fuel gas reaction groove 104b and the oxidant gas reaction groove 105b) are formed. In the stacked state shown in FIG. 13, the manifold holes 104a and 105a of the separators 104 and 105 and the manifold holes 106a and 107a of the gaskets 106 and 107 are superposed (communicated) with each other, thereby supplying fuel gas, oxidant gas and refrigerant. A passage and a discharge passage (manifold hole) are formed.

すなわちこの種の燃料電池は、各燃料電池セル100において、マニホールド孔を流通する燃料ガス(水素)が、ガス導入溝104c、燃料ガス反応用溝104b及び一方のGDL102を介してMEA101の一方の触媒電極層(アノード)側に供給され、他のマニホールド孔を流通する酸化剤ガス(空気)が、ガス導入溝105c、酸化剤ガス反応用溝105b及び他方のGDL103を介してMEA101の他方の触媒電極層(カソード)側に供給され、水の電気分解の逆反応、すなわち水素と酸素から水を生成する反応によって電力を発生するものである。そして、各燃料電池セル100による起電力は低いものであるが、多数の燃料電池セル100を積層して電気的に直列に接続したスタックとすることにより、必要な起電力が得られるようになっている(例えば特許文献1,2参照)。   That is, in this type of fuel cell, in each fuel cell 100, the fuel gas (hydrogen) flowing through the manifold hole is one catalyst of the MEA 101 via the gas introduction groove 104 c, the fuel gas reaction groove 104 b, and one GDL 102. The oxidant gas (air) that is supplied to the electrode layer (anode) side and circulates through the other manifold holes passes through the gas introduction groove 105 c, the oxidant gas reaction groove 105 b, and the other GDL 103 to the other catalyst electrode of the MEA 101. It is supplied to the layer (cathode) side and generates electric power by the reverse reaction of water electrolysis, that is, the reaction of generating water from hydrogen and oxygen. And although the electromotive force by each fuel cell 100 is low, a required electromotive force can be obtained by stacking a large number of fuel cells 100 and electrically connecting them in series. (For example, refer to Patent Documents 1 and 2).

特開2004−335453号公報JP 2004-335453 A 特開2007−026847号公報JP 2007-026847 A

この種の燃料電池は、スタックのますますの小型化・低コスト化が求められており、上述のように、GDL102,103にガスケット106,107が一体化された構成としたものは、スタック組立等での作業性が向上し、コスト低減に有効である。しかしながら、マニホールド孔とガス反応領域100A(燃料ガス反応用溝104b及び酸化剤ガス反応用溝105b)の間のガス導入溝104c及びガス導入溝105cは、セパレータ104,105の加工により形成しており、加工コストが高いものとなっている。   This type of fuel cell is required to further reduce the size and cost of the stack. As described above, the structure in which the gaskets 106 and 107 are integrated with the GDLs 102 and 103 is the stack assembly. This is effective for reducing costs. However, the gas introduction groove 104c and the gas introduction groove 105c between the manifold hole and the gas reaction region 100A (the fuel gas reaction groove 104b and the oxidant gas reaction groove 105b) are formed by processing the separators 104 and 105. The processing cost is high.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、燃料電池用ガスケットの改良によって、燃料電池スタックの一層の低コスト化を実現することにある。   The present invention has been made in view of the above points, and a technical problem thereof is to realize further cost reduction of the fuel cell stack by improving the fuel cell gasket.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る燃料電池用ガスケットは、セパレータとMEAの間に介在されるGDLの外周にゴム状弾性材料で一体に成形され、前記セパレータと密接されるガスケットにおいて、このガスケットの前記セパレータとの対向面に、このガスケットに開設されたマニホールド孔と前記MEAによるガス反応領域を互いに連通するように延びるガス導入溝が形成されたことを特徴とするものである。   As a means for effectively solving the technical problem described above, the fuel cell gasket according to the invention of claim 1 is integrally formed of a rubber-like elastic material on the outer periphery of the GDL interposed between the separator and the MEA. In the gasket to be in close contact with the separator, a gas introduction groove extending to communicate the manifold hole formed in the gasket and the gas reaction region by the MEA is formed on the surface of the gasket facing the separator. It is characterized by this.

また、請求項2の発明に係る燃料電池用ガスケットは、請求項1に記載された構成において、補強板が一体に設けられたことを特徴とするものである。   According to a second aspect of the present invention, there is provided a fuel cell gasket according to the first aspect, wherein the reinforcing plate is integrally provided.

また、請求項3の発明に係る燃料電池用ガスケットは、請求項2に記載された構成において、ガス導入溝が補強板に形成されたことを特徴とするものである。   According to a third aspect of the present invention, in the fuel cell gasket according to the second aspect, the gas introduction groove is formed in the reinforcing plate.

本発明に係る燃料電池用ガスケットによれば、ガスケットに形成されたガス導入溝によって、マニホールド孔とガス反応領域の間で反応ガス(燃料ガス及び酸化剤ガス)を流通させる流路が形成され、このガス導入溝はゴム状弾性材料によるガスケットの成形と同時に形成可能であり、セパレータ側にガス導入溝を加工する必要がないので、コストを低減することができる。   According to the gasket for a fuel cell according to the present invention, the gas introduction groove formed in the gasket forms a flow path for flowing the reaction gas (fuel gas and oxidant gas) between the manifold hole and the gas reaction region, The gas introduction groove can be formed simultaneously with the molding of the gasket made of a rubber-like elastic material, and it is not necessary to process the gas introduction groove on the separator side, so that the cost can be reduced.

また、ガスケットに一体に設けられた補強板によって、ガス導入溝によるガスケットの機械的強度の低下が防止され、燃料電池スタックの組立を容易にすることができる。   In addition, the reinforcing plate provided integrally with the gasket prevents a reduction in the mechanical strength of the gasket due to the gas introduction groove, thereby facilitating the assembly of the fuel cell stack.

また、ガス導入溝がガスケットに一体に埋設された補強板に形成されることによって、ガスケットの圧縮によるガス導入溝の変形が防止され、しかもガス導入溝の形成部分の機械的強度が補償されるので、燃料電池スタックの組立を容易にすることができる。   Further, since the gas introduction groove is formed on the reinforcing plate embedded in the gasket integrally, the deformation of the gas introduction groove due to the compression of the gasket is prevented, and the mechanical strength of the gas introduction groove formation portion is compensated. Therefore, the assembly of the fuel cell stack can be facilitated.

本発明に係る燃料電池用ガスケットの第一の実施の形態を、MEA及びセパレータと共に積層方向から見た分離状態の平面図である。It is the top view of the separation state which looked at the 1st embodiment of the gasket for fuel cells concerning the present invention from the lamination direction with MEA and a separator. 本発明に係る燃料電池用ガスケットの第一の実施の形態を、MEA及びセパレータと共に図1のI−I線位置で切断して示す分離状態の部分断面図である。It is a fragmentary sectional view of the separation state which cuts and shows the 1st embodiment of the gasket for fuel cells concerning the present invention in the II line position of Drawing 1 with MEA and a separator. 本発明に係る燃料電池用ガスケットの第一の実施の形態を、MEA及びセパレータと共に図1のI−I線位置で切断して示す積層状態の部分断面図である。It is a fragmentary sectional view of the lamination | stacking state which cut | disconnects and shows 1st embodiment of the gasket for fuel cells which concerns on this invention in the II line position of FIG. 1 with MEA and a separator. 燃料電池セルにおける発電のメカニズムを概略的に示す説明図である。It is explanatory drawing which shows roughly the mechanism of the electric power generation in a fuel cell. 本発明に係る燃料電池用ガスケットの第二の実施の形態を、MEA及びセパレータと共に積層方向から見た分離状態の平面図である。It is the top view of the isolation | separation state which looked at 2nd embodiment of the gasket for fuel cells which concerns on this invention from the lamination direction with MEA and the separator. 本発明に係る燃料電池用ガスケットの第二の実施の形態を、MEA及びセパレータと共に図5のV−V線位置で切断して示す分離状態の部分断面図である。FIG. 6 is a partial cross-sectional view in a separated state showing a second embodiment of the gasket for a fuel cell according to the present invention cut along the line V-V in FIG. 5 together with the MEA and the separator. 本発明に係る燃料電池用ガスケットの第二の実施の形態の他の例を、MEA及びセパレータと共に図5のV−V線位置で切断して示す分離状態の部分断面図である。It is a fragmentary sectional view of the isolation | separation state which cuts and shows the other example of 2nd embodiment of the gasket for fuel cells which concerns on this invention in the VV line position of FIG. 5 with MEA and a separator. 本発明に係る燃料電池用ガスケットの第三の実施の形態を、MEA及びセパレータと共に積層方向から見た分離状態の平面図である。It is the top view of the separation state which looked at 3rd embodiment of the gasket for fuel cells which concerns on this invention from the lamination direction with MEA and the separator. 本発明に係る燃料電池用ガスケットの第三の実施の形態を、MEA及びセパレータと共に図8のVIII−VIII線位置で切断して示す分離状態の部分断面図である。It is a fragmentary sectional view of the separation state which cuts and shows a 3rd embodiment of a gasket for fuel cells concerning the present invention in the VIII-VIII line position of Drawing 8 with MEA and a separator. 本発明に係る燃料電池用ガスケットの第三の実施の形態を、MEA及びセパレータと共に図8のVIII−VIII線位置で切断して示す積層状態の部分断面図である。It is a fragmentary sectional view of the lamination | stacking state which shows 3rd embodiment of the gasket for fuel cells based on this invention cut | disconnected by the VIII-VIII line position of FIG. 8 with MEA and a separator. 従来技術に係る燃料電池用ガスケットの一例を、MEA及びセパレータと共に積層方向から見た分離状態の平面図である。It is a top view of the separation state which looked at an example of the gasket for fuel cells concerning a prior art from the lamination direction with MEA and a separator. 従来技術に係る燃料電池用ガスケットの一例を、MEA及びセパレータと共に図11のXI−XI位置で切断して示す分離状態の部分断面図である。It is a fragmentary sectional view of the isolation | separation state which cuts and shows an example of the gasket for fuel cells which concerns on a prior art in the XI-XI position of FIG. 11 with MEA and a separator. 従来技術に係る燃料電池用ガスケットの一例を、MEA及びセパレータと共に図11のXI−XI線位置で切断して示す積層状態の部分断面図である。It is a fragmentary sectional view of the lamination | stacking state which shows an example of the gasket for fuel cells which concerns on a prior art, cut | disconnected and shown by the XI-XI line position of FIG. 11 with MEA and a separator.

以下、本発明に係る燃料電池用ガスケットの好ましい実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, preferred embodiments of a gasket for a fuel cell according to the present invention will be described in detail with reference to the drawings.

まず図1は、本発明に係る燃料電池用ガスケットの第一の実施の形態を、MEA及びセパレータと共に積層方向から見た分離状態の平面図、図2は、図1のI−I線位置で切断して示す分離状態の部分断面図、図3は、図1のI−I線位置で切断して示す積層状態の部分断面図である。   FIG. 1 is a plan view of a fuel cell gasket according to a first embodiment of the present invention in a separated state when viewed from the stacking direction together with an MEA and a separator, and FIG. FIG. 3 is a partial cross-sectional view in a separated state shown by cutting, and FIG. 3 is a partial cross-sectional view in a stacked state shown by cutting along the line II in FIG.

これらの図における参照符号1,2は本発明に係るガスケットであって、ゴム状弾性材料(ゴム材料又はゴム状弾性を有する合成樹脂材料)、好ましくはエチレンプロピレンゴム(EPDM)、シリコーンゴム(VMQ)、フッ素ゴム(FKM)、パーフルオロゴム(FFKM)などから選択された材料で板状又はシート状に成形されている。   Reference numerals 1 and 2 in these drawings are gaskets according to the present invention, and are rubbery elastic materials (rubber materials or synthetic resin materials having rubbery elasticity), preferably ethylene propylene rubber (EPDM), silicone rubber (VMQ). ), Fluoro rubber (FKM), perfluoro rubber (FFKM) and the like.

GDL(Gas Diffusion Layer:ガス拡散層)3,4は、金属製の多孔体やカーボン繊維など、ガスの流通を許容する無数の微細貫通空隙を有する多孔質の導電性材料からなる同形同大の板状又はシート状のものであって、ガスケット1,2は、そのゴム状弾性材料の一部がGDL3,4の端縁部に浸透して硬化することによって、GDL3,4の外周を包囲するように、このGDL3,4に一体に成形されている。   GDL (Gas Diffusion Layer) 3, 4 is the same shape and size made of a porous conductive material with countless fine through-holes that allow gas flow, such as metallic porous bodies and carbon fibers The gaskets 1 and 2 enclose the outer periphery of the GDL 3 and 4 when a part of the rubber-like elastic material penetrates into the edge of the GDL 3 and 4 and hardens. Thus, the GDLs 3 and 4 are integrally formed.

また、参照符号5はMEA(Membrane Electrode Assembly:膜−電極複合体)で、電解質膜及びその両面に設けた不図示の触媒電極層からなり、参照符号6,7は、カーボンあるいは導電性金属からなるセパレータである。   Reference numeral 5 is an MEA (Membrane Electrode Assembly) comprising an electrolyte membrane and catalyst electrode layers (not shown) provided on both sides thereof, and reference numerals 6 and 7 are made of carbon or conductive metal. It is a separator.

そして図3に示す積層状態では、MEA5を、その厚さ方向両側からGDL3,4を介してセパレータ6,7で挟持することによって、発電の最小単位である燃料電池セル10が構成される。このとき、MEA5の外周部は、その両側のガスケット1,2によって密接挟持され、このガスケット1,2におけるMEA5と反対側の面は、セパレータ6,7に密接される。   In the stacked state shown in FIG. 3, the MEA 5 is sandwiched between the separators 6 and 7 via the GDLs 3 and 4 from both sides in the thickness direction, thereby constituting the fuel cell 10 that is the minimum unit of power generation. At this time, the outer peripheral portion of the MEA 5 is tightly held between the gaskets 1 and 2 on both sides thereof, and the surfaces of the gaskets 1 and 2 opposite to the MEA 5 are in close contact with the separators 6 and 7.

ガスケット1,2には、それぞれ複数対のマニホールド孔1a,2aが開設されており、セパレータ6,7にもガスケット1,2のマニホールド孔1a,2aと対応する位置にマニホールド孔6a,7aが開設されている。したがって図3に示す積層状態では、マニホールド孔1a,2aと6a,7aが互いに重合(連通)されることによって燃料ガス、酸化剤ガスや冷媒の供給通路及び排出通路(マニホールド孔)が形成される。   A plurality of pairs of manifold holes 1a and 2a are formed in the gaskets 1 and 2, and manifold holes 6a and 7a are also formed in the separators 6 and 7 at positions corresponding to the manifold holes 1a and 2a of the gaskets 1 and 2. Has been. Therefore, in the stacked state shown in FIG. 3, the manifold holes 1a, 2a and 6a, 7a are superposed (communicated) with each other to form a supply path and a discharge path (manifold hole) for fuel gas, oxidant gas and refrigerant. .

一方のセパレータ6におけるGDL3との対向面には複数の燃料ガス反応用溝6bが形成されており、他方のセパレータ7におけるGDL4との対向面には複数の酸化剤ガス反応用溝7bが形成されており、図3に示す積層状態では、MEA5と、GDL3,4と、燃料ガス反応用溝6b及び酸化剤ガス反応用溝7bが互いに重合した領域がガス反応領域10A、すなわち発電領域となっており、このガス反応領域10Aの周囲がガスケット1,2によってシールされる。   A plurality of fuel gas reaction grooves 6b are formed on the surface of the one separator 6 facing the GDL 3, and a plurality of oxidant gas reaction grooves 7b are formed on the surface of the other separator 7 facing the GDL 4. In the stacked state shown in FIG. 3, the region where the MEA 5, the GDLs 3 and 4, the fuel gas reaction groove 6b and the oxidant gas reaction groove 7b are polymerized is the gas reaction region 10A, that is, the power generation region. The periphery of the gas reaction region 10A is sealed by the gaskets 1 and 2.

ガスケット1におけるセパレータ6との対向面には、マニホールド孔1aとガス反応領域10Aにおける燃料ガス反応用溝6bを互いに連通するように延びるガス導入溝1bが形成されており、同様に、ガスケット2におけるセパレータ7との対向面には、マニホールド孔2aとガス反応領域10Aにおける酸化剤ガス反応用溝7bを互いに連通するように延びるガス導入溝2bが形成されている(図2及び図3にはガス導入溝2bは不図示)。なお、ガスケット1のガス導入溝1bは、図2に符号3aで示すように、GDL3の端部へ達するように延在されており、ガスケット2のガス導入溝2bも同様に、GDL4の端部へ達するように延在されている。   A gas introduction groove 1b extending so as to communicate with the manifold hole 1a and the fuel gas reaction groove 6b in the gas reaction region 10A is formed on the surface of the gasket 1 facing the separator 6. A gas introduction groove 2b extending so as to communicate with the manifold hole 2a and the oxidant gas reaction groove 7b in the gas reaction region 10A is formed on the surface facing the separator 7 (see FIGS. 2 and 3). The introduction groove 2b is not shown). The gas introduction groove 1b of the gasket 1 extends so as to reach the end of the GDL 3 as indicated by reference numeral 3a in FIG. 2, and the gas introduction groove 2b of the gasket 2 is similarly the end of the GDL 4. Has been extended to reach.

上述のように構成された燃料電池セル10は、図4に示すように、水素H2を含む燃料ガスが燃料ガス流路(ガス導入溝1b及び燃料ガス反応用溝6b)及び一方のGDL3を介してMEA5における一方の触媒電極層(アノード)52に供給され、酸素O2を含む酸化剤ガス(空気)が酸化剤ガス流路(ガス導入溝2b及び酸化剤ガス反応用溝7b)及び他方のGDL4を介してMEA5における他方の触媒電極層(カソード)53に供給され、水素H2と酸素O2から水H2Oを生成する電気化学反応によって電力を発生するものである。 In the fuel cell 10 configured as described above, as shown in FIG. 4, the fuel gas containing hydrogen H 2 passes through the fuel gas flow path (the gas introduction groove 1 b and the fuel gas reaction groove 6 b) and one GDL 3. The oxidant gas (air) containing oxygen O 2 is supplied to one catalyst electrode layer (anode) 52 in the MEA 5 through the oxidant gas flow path (gas introduction groove 2b and oxidant gas reaction groove 7b) and the other. This is supplied to the other catalyst electrode layer (cathode) 53 of the MEA 5 through the GDL 4 and generates electric power by an electrochemical reaction that generates water H 2 O from hydrogen H 2 and oxygen O 2 .

すなわち、MEA5におけるアノード52に供給された燃料ガス中の水素H2は、このアノード52の触媒作用によって電子e-と水素イオンH+に分解され、電子e-は、電流として外部負荷Rを通ってMEA5におけるカソード53へ向けて流れる。そして水素H2から電子e-が分離されることによって生じた水素イオンH+は、カソード53の電子e-に引き付けられるので、MEA5における電解質膜51を介してカソード53へ移動する。 That is, hydrogen H 2 in the fuel gas supplied to the anode 52 in the MEA 5 is decomposed into electrons e and hydrogen ions H + by the catalytic action of the anode 52, and the electrons e pass through the external load R as a current. And flows toward the cathode 53 in the MEA 5. The hydrogen ions H + generated by separating the electrons e from the hydrogen H 2 are attracted to the electrons e of the cathode 53, and thus move to the cathode 53 via the electrolyte membrane 51 in the MEA 5.

一方、MEA5におけるカソード53に供給された酸化剤ガス中の酸素O2は、このカソード53の触媒作用により電子e-を受け取って、酸素イオンO-となる。そしてこの酸素イオンO-が、アノード52から電解質膜51を介して移動して来た水素イオンH+と結びつくことによって水H2Oが生成されるのである。 On the other hand, oxygen O 2 in the oxidant gas supplied to the cathode 53 in the MEA 5 receives electrons e due to the catalytic action of the cathode 53 and becomes oxygen ions O . The oxygen ions O are combined with hydrogen ions H + that have moved from the anode 52 through the electrolyte membrane 51, thereby generating water H 2 O.

このとき、図3に示すようにマニホールド孔1a,2aと6a,7aが互いに重合(連通)されることによって形成された流路と、ガス反応領域10Aにおける燃料ガス反応用溝6bや酸化剤ガス反応用溝7bとの間での燃料ガスや酸化剤ガスなどの流通は、ガス導入溝1b又は2bを介して行われる。そしてガス導入溝1b,2bは、GDL3,4の端部へ達するように延在されているため、燃料ガス反応用溝6b及び酸化剤ガス反応用溝7bとの間での流通が円滑に行われる。   At this time, as shown in FIG. 3, the flow path formed by superposing (communicating) the manifold holes 1a, 2a and 6a, 7a, the fuel gas reaction groove 6b and the oxidant gas in the gas reaction region 10A Distribution of fuel gas, oxidant gas, etc. between the reaction grooves 7b is performed via the gas introduction grooves 1b or 2b. Since the gas introduction grooves 1b and 2b extend so as to reach the end portions of the GDLs 3 and 4, the flow between the fuel gas reaction groove 6b and the oxidant gas reaction groove 7b is smoothly performed. Is called.

そして上記構成によれば、ガス導入溝1b,2bはガスケット1,2に形成されたものであるため、金属又はカーボンからなるセパレータ6,7側にガス導入溝を加工する必要がない。しかもこのガス導入溝1b,2bは、GDL3,4へゴム状弾性材料でガスケット1,2を一体成形する際に、成形用金型内で同時に形成されるので、コストを低減することができる。   And according to the said structure, since the gas introduction grooves 1b and 2b are formed in the gaskets 1 and 2, it is not necessary to process a gas introduction groove in the separators 6 and 7 side which consists of metal or carbon. In addition, the gas introduction grooves 1b and 2b are simultaneously formed in the molding die when the gaskets 1 and 2 are integrally molded with the GDLs 3 and 4 with a rubber-like elastic material, so that the cost can be reduced.

また、ガス導入溝1b,2bの設計変更の際には、セパレータ6,7の設計を変更する必要がなく、ガスケット1,2の設計変更で対応することができ、したがってこのような設計変更の際のコスト低減にも寄与することができる。   Further, when the design of the gas introduction grooves 1b and 2b is changed, it is not necessary to change the design of the separators 6 and 7, and it can be dealt with by the design change of the gaskets 1 and 2. Therefore, such a design change is possible. Can also contribute to cost reduction.

次に図5は、本発明に係る燃料電池用ガスケットの第二の実施の形態を、MEA及びセパレータと共に積層方向から見た分離状態の平面図、図6は、図5のV−V線位置で切断して示す分離状態の部分断面図、図7は、第二の実施の形態の他の例を、MEA及びセパレータと共に図5のV−V線位置で切断して示す分離状態の部分断面図である。   Next, FIG. 5 is a plan view of the fuel cell gasket according to the second embodiment of the present invention in a separated state when viewed from the stacking direction together with the MEA and the separator, and FIG. 6 is a position along the line VV in FIG. FIG. 7 is a partial cross-sectional view in a separated state shown by cutting along the line V-V in FIG. 5 together with the MEA and the separator. FIG.

この第二の実施の形態において、上述した第一の実施の形態と異なるところは、ガスケット1,2が、ゴム状弾性材料からなるガスケット本体11,21と、このガスケット本体11,21に一体に設けられ、前記ゴム状弾性材料よりも剛性の高い材料、例えば合成樹脂又は金属等からなる補強板12,22からなることにある。補強板12,22の平面投影形状は、ガスケット本体11,21の平面投影形状と略相似となっている。その他の部分の構成は、基本的に第一の実施の形態と同様である。   The second embodiment is different from the first embodiment described above in that the gaskets 1 and 2 are integrally formed with the gasket bodies 11 and 21 made of a rubber-like elastic material and the gasket bodies 11 and 21, respectively. The reinforcing plate 12 is made of a material having higher rigidity than the rubber-like elastic material, for example, a synthetic resin or a metal. The planar projection shapes of the reinforcing plates 12 and 22 are substantially similar to the planar projection shapes of the gasket bodies 11 and 21. The configuration of other parts is basically the same as that of the first embodiment.

このうち図6に示す例は、補強板12,22の材質が、燃料ガスや酸化剤ガスに対する化学的安定性が不足するような場合に、補強板12,22をガスケット本体11,21に埋設状態で一体成形することによって、補強板12,22が燃料ガスや酸化剤ガスに接触しないようにしたものである。また、図7に示す例は、補強板12,22の材質が、燃料ガスや酸化剤ガスに対する化学的安定性に問題のない場合に、補強板12,22を半埋設状態、すなわちガスケット本体11,21から一部露出した埋設状態で一体成形したものである。なお、MEA5の外周部は、ガスケット本体11,21の密接によって密封されるようになっている。   In the example shown in FIG. 6, the reinforcing plates 12 and 22 are embedded in the gasket bodies 11 and 21 when the material of the reinforcing plates 12 and 22 is insufficient in chemical stability against fuel gas or oxidant gas. By integrally molding in the state, the reinforcing plates 12 and 22 are prevented from coming into contact with the fuel gas or the oxidant gas. Further, in the example shown in FIG. 7, the reinforcing plates 12 and 22 are semi-embedded, that is, the gasket main body 11 when the material of the reinforcing plates 12 and 22 has no problem in chemical stability against the fuel gas or the oxidant gas. , 21 in a partly exposed embedded state. The outer peripheral portion of the MEA 5 is sealed by the close contact of the gasket bodies 11 and 21.

第二の実施の形態によれば、ガスケット本体11,21の全域に一体に設けられた補強板12,22によってガスケット1,2の機械的強度が補償され、すなわちガス導入溝1b,2bの形成によるガスケット1,2の強度低下が防止されるので、セル(スタック)の組立を容易にすることができる。   According to the second embodiment, the mechanical strength of the gaskets 1 and 2 is compensated by the reinforcing plates 12 and 22 integrally provided in the entire area of the gasket bodies 11 and 21, that is, the formation of the gas introduction grooves 1b and 2b. As a result, the strength of the gaskets 1 and 2 can be prevented from being lowered, so that the assembly of the cell (stack) can be facilitated.

次に図8は、本発明に係る燃料電池用ガスケットの第三の実施の形態を、MEA及びセパレータと共に積層方向から見た分離状態の平面図、図9は、図8のVIII−VIII線位置で切断して示す分離状態の部分断面図、図10は、図8のVIII−VIII線位置で切断して示す積層状態の部分断面図である。   Next, FIG. 8 is a plan view of the fuel cell gasket according to the third embodiment of the present invention in a separated state when viewed from the stacking direction together with the MEA and the separator, and FIG. 9 is a position taken along line VIII-VIII in FIG. FIG. 10 is a partial cross-sectional view in a separated state shown by cutting along the line VIII-VIII in FIG. 8.

この第三の実施の形態は、ガスケット1,2が、ゴム状弾性材料からなるガスケット本体11,21と、このガスケット本体11,21におけるマニホールド孔1a,2aとGDL3,4の間、すなわちガス導入溝1b,2bの形成領域に位置して一体に設けられた補強板13,23からなるものであって、補強板13,23は前記ゴム状弾性材料よりも剛性の高い材料、例えば燃料ガスや酸化剤ガスに対する化学的安定性に問題のない合成樹脂又は金属等からなり、ガスケット1,2のガス導入溝1b,2bが、補強板13,23に形成されている点にある。なお、MEA5の外周部は、ガスケット本体11,21の密接によって密封されるようになっている。その他の構成は、基本的に第一の形態と同様である。   In this third embodiment, the gaskets 1 and 2 are made of a rubber-like elastic material, and the gasket main bodies 11 and 21 and between the manifold holes 1a and 2a and the GDLs 3 and 4 in the gasket main bodies 11 and 21, that is, gas introduction. The reinforcing plates 13 and 23 are integrally provided in the regions where the grooves 1b and 2b are formed. The reinforcing plates 13 and 23 are made of a material having higher rigidity than the rubber-like elastic material, for example, fuel gas, It is made of a synthetic resin or metal having no problem in chemical stability against the oxidant gas, and the gas introduction grooves 1b and 2b of the gaskets 1 and 2 are formed in the reinforcing plates 13 and 23. The outer peripheral portion of the MEA 5 is sealed by the close contact of the gasket bodies 11 and 21. Other configurations are basically the same as those in the first embodiment.

この第三の実施の形態によれば、ガスケット1,2におけるガス導入溝1b,2bの形成部分の機械的強度が補償されるので、セル(スタック)の組立を容易にすることができるのに加え、図10に示す積層状態でのガスケット本体11,21の圧縮によるガス導入溝1b,2bの流路断面の縮小が防止される。   According to the third embodiment, since the mechanical strength of the portions where the gas introduction grooves 1b and 2b are formed in the gaskets 1 and 2 is compensated, the assembly of the cell (stack) can be facilitated. In addition, it is possible to prevent a reduction in the cross section of the gas introduction grooves 1b and 2b due to compression of the gasket bodies 11 and 21 in the stacked state shown in FIG.

またガスケット1,2は、ガス導入溝1b,2bが予め補強板13,23に形成され、この補強板13,23にガスケット本体11,21が一体成形されることによって得られたものであるため、ガス導入溝1b,2bの設計変更の際、この補強板13,23のみの設計変更で対応することができ、したがってこのような設計変更の際のコスト低減にも寄与することができる。   The gaskets 1 and 2 are obtained by forming the gas introduction grooves 1b and 2b in the reinforcing plates 13 and 23 in advance and integrally molding the gasket bodies 11 and 21 on the reinforcing plates 13 and 23. When changing the design of the gas introduction grooves 1b and 2b, it is possible to cope with the design change of only the reinforcing plates 13 and 23. Therefore, it is possible to contribute to the cost reduction at the time of such design change.

1,2 ガスケット
11,21 ガスケット本体
12,13,22,23 補強板
1a,2a,6a,7a マニホールド孔
1b,2b ガス導入溝
3,4 GDL
5 MEA
6,7 セパレータ
6b 燃料ガス反応用溝
7b 酸化剤ガス反応用溝
10A ガス反応領域
1, 2 Gasket 11, 21 Gasket body 12, 13, 22, 23 Reinforcing plate 1a, 2a, 6a, 7a Manifold hole 1b, 2b Gas introduction groove 3, 4 GDL
5 MEA
6, 7 Separator 6b Fuel gas reaction groove 7b Oxidant gas reaction groove 10A Gas reaction region

Claims (3)

セパレータとMEAの間に介在されるGDLの外周にゴム状弾性材料で一体に成形され、前記セパレータと密接されるガスケットにおいて、このガスケットの前記セパレータとの対向面に、このガスケットに開設されたマニホールド孔と前記MEAによるガス反応領域を互いに連通するように延びるガス導入溝が形成されたことを特徴とする燃料電池用ガスケット。   A gasket formed integrally with a rubber-like elastic material on the outer periphery of the GDL interposed between the separator and the MEA and in close contact with the separator. A fuel cell gasket characterized in that a gas introduction groove extending so as to communicate a hole and a gas reaction region by the MEA is formed. 補強板が一体に設けられたことを特徴とする請求項1に記載の燃料電池用ガスケット。   2. The fuel cell gasket according to claim 1, wherein the reinforcing plate is provided integrally. ガス導入溝が補強板に形成されたことを特徴とする請求項2に記載の燃料電池用ガスケット。   The fuel cell gasket according to claim 2, wherein the gas introduction groove is formed in the reinforcing plate.
JP2011157730A 2011-07-19 2011-07-19 Gasket for fuel cell Active JP5835554B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011157730A JP5835554B2 (en) 2011-07-19 2011-07-19 Gasket for fuel cell
PCT/JP2012/068285 WO2013012026A1 (en) 2011-07-19 2012-07-19 Gasket for fuel cell
EP12814585.1A EP2736108B1 (en) 2011-07-19 2012-07-19 Gasket for fuel cell
CN201280035047.0A CN103688398B (en) 2011-07-19 2012-07-19 gasket for fuel cell
KR1020137034361A KR102017312B1 (en) 2011-07-19 2012-07-19 Gasket for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157730A JP5835554B2 (en) 2011-07-19 2011-07-19 Gasket for fuel cell

Publications (2)

Publication Number Publication Date
JP2013025928A true JP2013025928A (en) 2013-02-04
JP5835554B2 JP5835554B2 (en) 2015-12-24

Family

ID=47558201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157730A Active JP5835554B2 (en) 2011-07-19 2011-07-19 Gasket for fuel cell

Country Status (5)

Country Link
EP (1) EP2736108B1 (en)
JP (1) JP5835554B2 (en)
KR (1) KR102017312B1 (en)
CN (1) CN103688398B (en)
WO (1) WO2013012026A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10602122B2 (en) 2015-12-24 2020-03-24 Yeon Systems Co., Ltd. Monocular stereoscopic camera
US10886550B2 (en) 2018-09-04 2021-01-05 Hyundai Motor Company Membrane electrode assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714295B1 (en) * 2016-01-06 2017-03-09 현대자동차주식회사 Fuel cell
DE102021114842A1 (en) 2021-06-09 2022-12-15 MTU Aero Engines AG fuel cell assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012053A (en) * 1998-06-25 2000-01-14 Aisin Seiki Co Ltd Solid high-polymer electrolyte-type fuel cell
WO2001059864A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2008053105A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Fuel battery cell and fuel battery equipped with it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514027B2 (en) 2003-04-14 2010-07-28 パナソニック株式会社 Fuel cell and fuel cell
JP5062389B2 (en) 2005-07-15 2012-10-31 Nok株式会社 Fuel cell and manufacturing method thereof
JP5164348B2 (en) * 2006-08-03 2013-03-21 日本ゴア株式会社 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012053A (en) * 1998-06-25 2000-01-14 Aisin Seiki Co Ltd Solid high-polymer electrolyte-type fuel cell
WO2001059864A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2008053105A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Fuel battery cell and fuel battery equipped with it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10602122B2 (en) 2015-12-24 2020-03-24 Yeon Systems Co., Ltd. Monocular stereoscopic camera
US10886550B2 (en) 2018-09-04 2021-01-05 Hyundai Motor Company Membrane electrode assembly

Also Published As

Publication number Publication date
EP2736108B1 (en) 2017-04-19
EP2736108A4 (en) 2015-01-07
KR20140048148A (en) 2014-04-23
JP5835554B2 (en) 2015-12-24
WO2013012026A1 (en) 2013-01-24
EP2736108A1 (en) 2014-05-28
KR102017312B1 (en) 2019-09-02
CN103688398A (en) 2014-03-26
CN103688398B (en) 2017-02-15

Similar Documents

Publication Publication Date Title
US7531265B2 (en) Fuel cell
KR101752206B1 (en) Fuel cell sealing structure
US7759014B2 (en) Fuel cell having a seal member
US9490497B2 (en) Solid polymer electrolyte type fuel cell, and electrolyte membrane-electrode-frame assembly
CA2519825C (en) Fuel cell with separators having seal members
US20110014541A1 (en) Fuel Cell Gas Diffusion Layer Integrated Gasket
JP5835554B2 (en) Gasket for fuel cell
JP6059615B2 (en) Fuel cell stack
US7824817B2 (en) Fuel cell
JP2012195128A (en) Gasket for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2010165577A (en) Seal structure of fuel battery cell
JP6702585B2 (en) Flat electrochemical cell stack
JP2006190626A (en) Separator
JP6549864B2 (en) Fuel cell stack
US9595722B2 (en) Fuel cell plate and fuel cell
US9178236B2 (en) Polymer electrolyte fuel cell
US9350034B2 (en) Fuel cell gas diffusion layer integrated gasket
JP7122548B1 (en) compressor
WO2023120042A1 (en) Compression device
JP2011228187A (en) Fuel cell
JP2007042471A (en) Fuel cell stack
JP6290603B2 (en) Gasket for fuel cell
JP2004311155A (en) Fuel cell stack
JP2005174642A (en) Separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5835554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250