JP2013019759A - Method for measuring sample surface shape using scanning white light interferometer - Google Patents

Method for measuring sample surface shape using scanning white light interferometer Download PDF

Info

Publication number
JP2013019759A
JP2013019759A JP2011153264A JP2011153264A JP2013019759A JP 2013019759 A JP2013019759 A JP 2013019759A JP 2011153264 A JP2011153264 A JP 2011153264A JP 2011153264 A JP2011153264 A JP 2011153264A JP 2013019759 A JP2013019759 A JP 2013019759A
Authority
JP
Japan
Prior art keywords
sample
phase
scanning
height
sample surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011153264A
Other languages
Japanese (ja)
Inventor
Naoki Mizutani
直樹 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011153264A priority Critical patent/JP2013019759A/en
Publication of JP2013019759A publication Critical patent/JP2013019759A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring a sample surface shape using a scanning white light interferometer, which greatly improves accuracy in measurement of the sample surface shape.SOLUTION: A method for measuring a sample surface shape uses a scanning white light interferometer which is configured as an interferometer, such as Michelson interferometer, so as to include a beam splitter and a mirror both provided below an objective lens and also include a sample surface, and which performs scanning, with a piezo actuator, to find a distance to a sample or a distance to the mirror, captures, with a CCD camera, an interference waveform generated by the scanning, records it as video file data, and measures a sample surface shape by setting a data collection interval to be larger than Nyquist interval (1/2 of a period of the interference waveform). In this method, Hilbert transform is performed on waveforms collected, so that an envelope curve and a phase are obtained. Using a relation between a scanning position where the phase thus obtained becomes 0 and a sample surface height, a sample surface height is calculated based on the scanning position where the phase becomes 0.

Description

本発明は、走査型白色干渉計による試料の表面形状を精度よく測定するための方法に関するものである。   The present invention relates to a method for accurately measuring the surface shape of a sample by a scanning white interferometer.

本明細書において、用語“試料の表面形状”は試料の表面の段差又は高さ、膜厚、表面粗さの概念を包含して意味するものとする。   In this specification, the term “surface shape of the sample” is meant to include the concept of the step or height of the surface of the sample, the film thickness, and the surface roughness.

知られているように、走査型白色干渉計は、可干渉性の少ない白色光を光源として用い、マイケルソン型や、ミラウ型などの等光路干渉計を利用して試料の表面形状を非接触三次元測定できる装置であり、ウエハなどの表面形状の測定に用いられ得る。走査型白色干渉計の原理を添付図面の図1に示し、1は光源であり、高輝度白色光源から成っている。2は光源1からの白色光に対するフィルターであり、3はビームスプリッター、4はマイケルソン型干渉計である。マイケルソン型干渉計4は対物レンズ4aとビームスプリッター4bとミラー4cを備えている。マイケルソン型干渉計4には、マイケルソン型干渉計4を垂直走査するピエゾアクチュエーター5が設けられている。また図1において6は受光素子を成すCCDカメラ、7は試料8を支持する試料ホルダーである。   As is well known, a scanning white interferometer uses white light with low coherence as a light source, and uses a Michelson-type or Mirau-type iso-optical path interferometer to contact the surface shape of the sample without contact. It is an apparatus capable of three-dimensional measurement, and can be used for measuring the surface shape of a wafer or the like. The principle of the scanning white interferometer is shown in FIG. 1 of the accompanying drawings. Reference numeral 1 denotes a light source, which is a high-intensity white light source. 2 is a filter for white light from the light source 1, 3 is a beam splitter, and 4 is a Michelson interferometer. The Michelson interferometer 4 includes an objective lens 4a, a beam splitter 4b, and a mirror 4c. The Michelson interferometer 4 is provided with a piezo actuator 5 that vertically scans the Michelson interferometer 4. In FIG. 1, reference numeral 6 denotes a CCD camera that forms a light receiving element, and reference numeral 7 denotes a sample holder that supports a sample 8.

光学顕微鏡の対物レンズ4aの下に干渉計が構成され、ピエゾアクチュエーター5を作動して対物レンズ4aを走査することにより干渉波形が得られる。すなわち、ピエゾアクチュエーター5により対物レンズ4aを走査しながら光の強度をCCDカメラ6で動画として撮影することによって、CCDカメラ6の各画素で干渉波形が得られる。干渉波形のピークの位置は試料表面の高さに対応するので、各画素でそのピーク位置を求めれば、撮影した領域で表面高さが得られる。   An interferometer is formed under the objective lens 4a of the optical microscope, and an interference waveform is obtained by operating the piezoelectric actuator 5 to scan the objective lens 4a. That is, by scanning the objective lens 4 a with the piezo actuator 5 and photographing the light intensity as a moving image with the CCD camera 6, an interference waveform is obtained at each pixel of the CCD camera 6. Since the peak position of the interference waveform corresponds to the height of the sample surface, the surface height can be obtained in the photographed area by obtaining the peak position for each pixel.

干渉波形のピーク位置を求める方法としては、例えば干渉周期の1/5以下の間隔で光強度のデータを収集し、その交流成分を2乗し、低域通過フィルターにかけて干渉波形の包絡線を求めて、そのピーク位置を求める方法が提案されている。しかし、かかる方法では、データ収集の間隔が狭いので、データ収集に時間がかかるという問題がある。(特許文献1の背景技術の記述、及び非特許文献1参照)   As a method for obtaining the peak position of the interference waveform, for example, light intensity data is collected at intervals of 1/5 or less of the interference period, the AC component is squared, and the envelope of the interference waveform is obtained by applying a low-pass filter. Thus, a method for obtaining the peak position has been proposed. However, this method has a problem that it takes time to collect data because the interval of data collection is narrow. (See the description of the background art of Patent Document 1 and Non-Patent Document 1)

かかる問題を解決するために、ナイキスト間隔(干渉波形の周期の1/2)よりも広い間隔で収集したデータからでも干渉波形のピーク位置を算出できる方法として、Frequency domain analysis法(FDA法、特許文献1)や波形復元法(非特許文献1)がある。FDA法では、データ収集間隔がナイキスト間隔の2.5倍の場合に、試料の表面高さが数十ナノメートルの範囲内で正確に求められるとしている。   In order to solve this problem, the frequency domain analysis method (FDA method, patent) is a method that can calculate the peak position of the interference waveform even from data collected at an interval wider than the Nyquist interval (1/2 of the interference waveform period). Document 1) and waveform restoration method (Non-Patent Document 1) are available. According to the FDA method, when the data collection interval is 2.5 times the Nyquist interval, the surface height of the sample is accurately determined within a range of several tens of nanometers.

本願の発明者は特願2011−152999号において、収集した波形にヒルベルト変換を施して、その包絡線を求め、求めた包絡線のピーク位置を算出する方法を提案し、その方法により、ナイキスト間隔よりも広い間隔の収集データからでも元の干渉波形の包絡線とそのピーク位置を算出できるようになった。   The inventor of the present application proposes a method in Japanese Patent Application No. 2011-152999 for performing a Hilbert transform on a collected waveform to obtain an envelope thereof, and calculating a peak position of the obtained envelope. The envelope of the original interference waveform and its peak position can be calculated even from data collected at wider intervals.

特許第2679876号Japanese Patent No.2679876

吉澤徹、「最新光三次元計測」、2006年、朝倉書店 第5章2 光干渉法、pp.66〜73Toru Yoshizawa, “Latest optical three-dimensional measurement”, 2006, Asakura Shoten, Chapter 5, 2 Optical Interferometry, pp. 66-73

データ収集時間を短くするために収集間隔を広くして、例えばナイキスト間隔の2.5倍では、前述のように試料表面高さの測定精度は数十ナノメートルと悪くなる。収集間隔がナイキスト間隔の1/4以下では数ナノメートル以下の測定精度が得られる(非特許文献1)のに対して、1桁程度悪いという問題がある。   When the collection interval is widened to shorten the data collection time, for example, 2.5 times the Nyquist interval, the measurement accuracy of the sample surface height becomes as low as several tens of nanometers as described above. When the collection interval is ¼ or less of the Nyquist interval, a measurement accuracy of several nanometers or less can be obtained (Non-Patent Document 1), but there is a problem that it is about one digit worse.

そこで、本発明は、試料の表面形状の測定精度を大幅に向上させることのできる、走査型白色干渉計による試料の表面形状の測定方法を提供することにある。   Therefore, the present invention is to provide a method for measuring the surface shape of a sample using a scanning white interferometer, which can greatly improve the measurement accuracy of the surface shape of the sample.

上記の目的を達成するために、本発明によれば、対物レンズの下にビームスプリッター及びミラーを配し、試料表面を含めて、マイケルソン型などの干渉計を構成し、試料までの距離又はミラーまでの距離をピエゾアクチュエーターで走査し、それによりできる干渉波形をCCDカメラで撮影して動画ファイルデータとして記録し、データ収集間隔をナイキスト間隔(干渉波形の周期の1/2)よりも広く取って試料の表面形状を測定する、走査型白色干渉計による試料の表面形状の測定方法において、
得られた収集波形についてヒルベルト変換を行い、包絡線と位相を得、包絡線がピークの走査位置と位相が0になる走査位置を求め、幾つかの画素でのそれらの値から、それらの間の例えば一次式の関係式を求めて、その関係式を用いて、位相が0になる走査位置から試料表面の高さを全画素について算出すること
を特徴としている。
In order to achieve the above object, according to the present invention, a beam splitter and a mirror are arranged under the objective lens, and a Michelson type interferometer including the sample surface is constructed, and the distance to the sample or The distance to the mirror is scanned with a piezo actuator, the resulting interference waveform is captured with a CCD camera and recorded as video file data, and the data collection interval is set wider than the Nyquist interval (1/2 of the interference waveform period). In the method of measuring the surface shape of the sample using a scanning white light interferometer
Perform Hilbert transform on the acquired waveform, obtain the envelope and phase, find the scan position where the envelope is peak and the scan position where the phase is 0, and from those values at several pixels, For example, a linear relational expression is obtained, and using the relational expression, the height of the sample surface is calculated for all pixels from the scanning position where the phase becomes zero.

本発明の方法においては、ピエゾアクチュエーターで対物レンズを走査して一定の時間間隔でデータを収集する際に、収集時間を短くするためにデータ収集間隔がナイキスト間隔よりも広いので、干渉波形とは異なる形状の波形が得られるが、得られた波形に対してヒルベルト変換を実施し、包絡線と位相を得る。その包絡線は元の干渉波形のそれと1×10−4の精度で一致し、その包絡線のピーク位置は試料表面の高さに一致する。位相が0になる走査位置は表面高さに対して線形の関係で変化する。この関係を利用して、位相が0の走査位置から試料の表面の高さを算出する。位相は走査位置に対して線形の関係があるので、位相が0の走査位置は幅の広い包絡線のピークの位置を探すよりも高精度に算出できる。また、位相が0の走査位置は試料の表面の高さの変化よりも数倍から10倍大きく変化する。このことは、試料の表面の高さに対する感度が増すことを意味している。このように、本発明では、位相が0の走査位置を用いることにより、包絡線のみから求めるよりも、表面高さの測定精度が10倍以上向上することになる。 In the method of the present invention, when the objective lens is scanned with a piezo actuator and data is collected at a constant time interval, the data collection interval is wider than the Nyquist interval in order to shorten the acquisition time. Although waveforms having different shapes are obtained, Hilbert transform is performed on the obtained waveforms to obtain an envelope and a phase. The envelope coincides with that of the original interference waveform with an accuracy of 1 × 10 −4 , and the peak position of the envelope coincides with the height of the sample surface. The scanning position where the phase becomes 0 changes in a linear relationship with the surface height. Using this relationship, the height of the surface of the sample is calculated from the scanning position where the phase is zero. Since the phase has a linear relationship with the scanning position, the scanning position with the phase 0 can be calculated with higher accuracy than searching for the peak position of the wide envelope. Further, the scanning position where the phase is 0 changes by several to 10 times larger than the change in the height of the surface of the sample. This means that the sensitivity to the height of the sample surface is increased. As described above, in the present invention, the measurement accuracy of the surface height is improved by 10 times or more by using the scanning position having a phase of 0 as compared with the case of obtaining only from the envelope.

ところで、ナイキスト間隔よりも広い間隔で収集すると、元の波形の情報の一部が消え、デジタル信号処理分野での標本化定理を満たさない場合に元の波形とは異なる周波数の波形が表れる現象、エイリアシング(aliasing)と同じである。偽信号とも訳されるエイリアスだが、この場合には試料の表面の高さの情報を含んでおり、むしろこれを積極的に活用することで測定精度が向上する。   By the way, when collecting at intervals wider than the Nyquist interval, a part of the original waveform information disappears, and when the sampling theorem in the digital signal processing field is not satisfied, a waveform with a frequency different from the original waveform appears, Same as aliasing. This alias is also translated as a false signal, but in this case, it contains information on the height of the surface of the sample. Rather, the measurement accuracy is improved by actively utilizing this information.

本発明の方法においては、ナイキスト間隔(干渉周期の半分)よりも広い間隔でデータ収集を行う場合に、収集波形からヒルベルト変換を用いて算出した収集波形の位相に関して、「位相が0になる走査位置」は試料表面高さに対して一定の関係で変化し、1次式または3次式で表わされるこの関係の式を予め求めておき、それを用いて位相が0になる走査位置から試料の表面の高さを求めることにより、先に提案した方法で用いる「包絡線が最大になる走査位置」は試料表面高さに対して、同じ量しか変化しないが、「位相が0になる走査位置」は試料表面高さに対して数倍から10倍大きく変化するので、感度が増したのと同じことになり、試料の表面の高さの測定精度がその分、向上することになる。
また、包絡線の幅は広く、その頂点付近は丸みを帯び、実際の測定では雑音もあるので、「包絡線が最大になる走査位置」を高精度に算出することは困難だが、本発明の方法においては、位相は走査位置に対して線形(1次式の関係)に変化するので、「位相が0になる走査位置」を精度よく算出できる。
これにより、先に提案した方法(特願2011−152999)よりも試料の表面の高さの測定精度を1桁以上向上させることができる。
In the method of the present invention, when data is collected at an interval wider than the Nyquist interval (half of the interference period), the phase of the acquired waveform calculated using the Hilbert transform from the acquired waveform is “scanning with zero phase”. “Position” changes with a constant relationship with the sample surface height, and an equation of this relationship represented by a linear equation or a cubic equation is obtained in advance and is used to scan the sample from the scanning position where the phase becomes zero. By obtaining the surface height of the sample, the “scanning position where the envelope is maximized” used in the previously proposed method changes only the same amount with respect to the sample surface height, but “the scan where the phase is zero” Since the “position” changes several times to 10 times larger than the sample surface height, it becomes the same as the sensitivity is increased, and the measurement accuracy of the height of the sample surface is improved accordingly.
In addition, since the envelope is wide, the vicinity of the vertex is rounded, and there is noise in actual measurement, it is difficult to calculate the “scanning position where the envelope is maximum” with high accuracy. In the method, since the phase changes linearly with respect to the scanning position (linear relationship), the “scanning position where the phase becomes 0” can be calculated with high accuracy.
Thereby, the measurement accuracy of the surface height of the sample can be improved by one digit or more than the previously proposed method (Japanese Patent Application No. 2011-152999).

本発明を実施する際に使用され得る走査型白色干渉計の構成例を示す概略図。Schematic which shows the structural example of the scanning-type white interferometer which can be used when implementing this invention. 収集間隔240nmでの収集波形の例を示し、試料の表面の高さを各グラフの右上に示すグラフ。The graph which shows the example of the collection waveform in 240 nm of collection intervals, and shows the height of the surface of a sample on the upper right of each graph. 図2の試料の表面の高さ96nmでの包絡線を示し、収集間隔240nm(■)と収集間隔1nm(点線)の収集波形から算出した包絡線を比較して示すグラフ。FIG. 3 is a graph showing an envelope at a surface height of 96 nm of the sample of FIG. 2 and comparing envelopes calculated from collected waveforms at a collection interval of 240 nm (■) and a collection interval of 1 nm (dotted line). 図3の2つ包絡線の差を示すグラフ。The graph which shows the difference of the two envelopes of FIG. 包絡線のずれを収集間隔に対してプロットした図。The figure which plotted the shift | offset | difference of the envelope with respect to the collection interval. 図2の試料の表面の高さ96nmでの位相(■)と包絡線(+)を示すグラフ。3 is a graph showing a phase (■) and an envelope (+) at a surface height of 96 nm of the sample of FIG. 「位相が0になる走査位置」(○)と「包絡線が最大になる走査位置」(点線)を試料の表面の高さに対してプロットしたグラフ。The graph which plotted "the scanning position where a phase becomes 0" ((circle)) and the "scanning position where an envelope becomes the maximum" (dotted line) with respect to the height of the surface of a sample. 「位相が0になる走査位置」と「包絡線が最大になる走査位置」の関係の測定結果を示すグラフ。The graph which shows the measurement result of the relationship between "the scanning position where a phase becomes 0" and "the scanning position where an envelope becomes the maximum". 図8の元となる測定結果を示し、「位相が0になる走査位置」(◆)と「包絡線が最大になる走査位置」(○)の測定結果をx方向の画素に対してプロットしたグラフ。FIG. 8 shows the original measurement results of FIG. 8, and the measurement results of “scanning position where the phase is 0” (♦) and “scanning position where the envelope is maximum” (◯) are plotted against the pixels in the x direction. Graph. 収集間隔を247.5nmにして本発明の方法で求めた試料の表面の高さを示すグラフ。The graph which shows the height of the surface of the sample calculated | required by the method of this invention by making collection interval 247.5nm. 収集間隔55nmの測定データをヒルベルト変換し位相から求めた試料表面の高さの2回の測定結果(太線と細線)を重ねてプロットして示すグラフ。The graph which superimposes and plots the measurement result (thick line and thin line) of 2 times of the height of the sample surface calculated | required from the phase which carried out the Hilbert transform of the measurement data of 55 nm of collection intervals. 収集間隔は247.5 nmにして従来の方法で求めた試料の表面の高さを示すグラフ。The graph which shows the height of the surface of the sample calculated | required by the conventional method by making collection interval 247.5 nm.

以下、添付図面を参照して本発明の実施の形態について説明する。
図1に示すような落射照明式の正立金属顕微鏡と同様の構成をもつ走査型白色干渉計装置において、対物レンズ4aと試料8の間にマイケルソン型干渉計4を構成する。マイケルソン型干渉計の代わりにミラウ型のものでもよい。干渉計4の光路差をピエゾアクチュエーター5などにより変化させる。この場合、試料8までの距離を変えても、ミラー4cまでの距離を変えてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In a scanning white interferometer apparatus having a configuration similar to that of an episcopic illumination type upright metal microscope as shown in FIG. 1, a Michelson interferometer 4 is configured between an objective lens 4 a and a sample 8. A Mirau type may be used instead of the Michelson type interferometer. The optical path difference of the interferometer 4 is changed by a piezo actuator 5 or the like. In this case, the distance to the sample 8 may be changed or the distance to the mirror 4c may be changed.

試料に焦点が合った状態で、干渉縞の光強度が最大(光路差0)に成るようにミラー4cの位置を決めて固定しておいて、対物レンズ4a、ビームスプリッター4b及びミラー4cを一体として走査するのが、高低差が大きい試料面を測るには良い。その理由は、最大ピークを含む干渉波形のデータが、常に焦点が合った状態で取れるからである。   With the sample in focus, the position of the mirror 4c is fixed and fixed so that the light intensity of the interference fringes becomes maximum (optical path difference 0), and the objective lens 4a, the beam splitter 4b, and the mirror 4c are integrated. Scanning is good for measuring a sample surface with a large height difference. This is because the data of the interference waveform including the maximum peak can be always taken in a focused state.

このようにして走査をしながら、CCDカメラ6で30フレーム/秒程度で光の強度のデータが動画として収集され、保存される。この動画データは図示していないコンピュータ等でデータ解析され、各画素ごとに時間軸方向の配列データとして扱われ、それが干渉波形である。   While scanning in this way, light intensity data is collected and stored as a moving image at about 30 frames / second by the CCD camera 6. This moving image data is analyzed by a computer or the like (not shown), and is treated as array data in the time axis direction for each pixel, which is an interference waveform.

図示装置において、光源1は例えばハロゲンランプから成り、また帯域を制限するフィルター2として中心波長550nm、帯域幅80nmのフィルターを使用し、このフィルター2を通した光での干渉波形を240nmの走査間隔(ナイキスト間隔の1.75倍)でデータ収集した例を図2のa〜kに示す。これらデータは計算で生成した波形である。中心波長が550nmなので、干渉波形の周期は275nmで、ナイキスト間隔は137.5nmである。図2において、横軸が対物レンズの走査位置、縦軸が光の強度、点線が元の干渉波形、■が240nmの走査間隔で得られるデータを示す。試料8の表面の高さを各グラフの右上に示しており、試料8の表面の高さが24nmずつ異なる場合を示している。元の干渉波形(点線)は試料面の高さが増すと、その分、グラフの右方向へ移動しているのが認められる。 In the illustrated apparatus, the light source 1 is composed of, for example, a halogen lamp, and a filter having a center wavelength of 550 nm and a bandwidth of 80 nm is used as a filter 2 for limiting the band. The interference waveform of light passing through the filter 2 is scanned at a scanning interval of 240 nm. Examples of data collection at (1.75 times the Nyquist interval) are shown in FIGS. These data are waveforms generated by calculation. Since the center wavelength is 550 nm, the period of the interference waveform is 275 nm and the Nyquist interval is 137.5 nm. In FIG. 2, the horizontal axis represents the scanning position of the objective lens, the vertical axis represents the light intensity, the dotted line represents the original interference waveform, and ■ represents data obtained at a scanning interval of 240 nm. The height of the surface of the sample 8 is shown in the upper right of each graph, and the case where the height of the surface of the sample 8 is different by 24 nm is shown. When the height of the sample surface increases, the original interference waveform (dotted line) is recognized to move to the right in the graph.

収集されるデータの波形は元の波形とは異なる。試料の表面の高さが増すに従い、収集波形は横軸において左方向へ移動して行き、試料8の表面の高さが240nmになると、図の右側から移動してきた別の山のピーク位置が走査位置240nmになり、結果として「高さ0での波形」が走査位置240nmずれた波形になる。収集波形は試料の表面の高さに対して、このような周期的な動きを繰り返す。この図の例では、干渉波形のピーク位置でデータ収集しているが、任意の位置でデータ収集することができる。   The waveform of the collected data is different from the original waveform. As the surface height of the sample increases, the collected waveform moves to the left on the horizontal axis. When the surface height of the sample 8 reaches 240 nm, the peak position of another mountain that has moved from the right side of the figure is The scanning position is 240 nm, and as a result, the “waveform at zero height” is a waveform shifted by the scanning position 240 nm. The collected waveform repeats such a periodic movement with respect to the height of the surface of the sample. In the example of this figure, data is collected at the peak position of the interference waveform, but data can be collected at an arbitrary position.

このようなナイキスト間隔より広い間隔で収集したデータでも、ヒルベルト変換を用いて算出したその包絡線は、元の干渉波形のそれによく一致することは先の出願において示した。以下に具体的な数値を例示する。   It was shown in the previous application that the envelope calculated using the Hilbert transform well matches that of the original interference waveform even for data collected at intervals wider than the Nyquist interval. Specific numerical values are exemplified below.

図3の■は図2の試料表面高さ96nmでの収集波形にヒルベルト変換を施して求めた包絡線であり、図3の点線は元の波形(図2の点線)から求めた包絡線である。■で示す包絡線と点線で示す包絡線との差を図4に示す。包絡線の高さを1として計算しているが、それに対して差は3×10−4以下と非常に小さい。そして図4に示す差のデータの2乗の平均の平方根は1.19×10−4であり、これを試料8の表面の高さが0〜240nmで求めて平均すると1.05×10−4である。この数値は2つの包絡線の「ずれ」として評価でき、非常に小さく、それら包絡線はよく一致することが分かる。 3 is an envelope obtained by applying the Hilbert transform to the collected waveform at the sample surface height of 96 nm in FIG. 2, and the dotted line in FIG. 3 is an envelope obtained from the original waveform (dotted line in FIG. 2). is there. The difference between the envelope indicated by (1) and the envelope indicated by the dotted line is shown in FIG. The height of the envelope is calculated as 1, but the difference is very small, 3 × 10 −4 or less. The mean square of the square root of the difference data shown in FIG. 4 is a 1.19 × 10 -4, when this height of the surface of the sample 8 is average determined by 240 nm 1.05 × 10 - 4 . This figure can be evaluated as a “deviation” between the two envelopes and is very small and it can be seen that the envelopes are in good agreement.

図5には、この「包絡線のずれ」を、データ収集間隔を変えて算出し、プロットして示し、図2と同じく中心波長550nm、帯域幅80nmのフィルター2に通した光の場合で、干渉周期275nm、ナイキスト間隔137.5nmである。収集間隔がナイキスト間隔のN倍(Nは自然数)の付近を除けば、「包絡線のずれ」は小さいことが分かる。   In FIG. 5, the “deviation of the envelope” is calculated and plotted by changing the data collection interval, and in the case of the light passing through the filter 2 having the center wavelength of 550 nm and the bandwidth of 80 nm as in FIG. The interference period is 275 nm, and the Nyquist interval is 137.5 nm. Except for the vicinity of the collection interval N times the Nyquist interval (N is a natural number), it is understood that the “deviation of the envelope” is small.

図2の収集間隔240nmでの例に戻って更に説明する。
試料8の表面の高さ96nmでの例において、収集波形にヒルベルト変換を行い、その位相を求めてプロットしたものを図6に■で示す。これは収集波形の位相であり、収集波形のピーク位置で位相が0になる。収集波形は□で示し、また、収集波形から求めた包絡線は+で示している。収集波形の位相(■)は、包絡線のピークから離れた領域を除き、走査位置に対して線形(1次式の関係)に変化していることが分かる。このことにより、「位相が0になる走査位置」を離散的な位相データから内掃により求めることができる。
Returning to the example of the collection interval of 240 nm in FIG.
In the example where the surface height of the sample 8 is 96 nm, the Hilbert transform is performed on the collected waveform, and the phase obtained by plotting is shown in FIG. This is the phase of the acquired waveform, and the phase becomes zero at the peak position of the acquired waveform. The collected waveform is indicated by □, and the envelope obtained from the collected waveform is indicated by +. It can be seen that the phase (■) of the acquired waveform changes linearly (in the relationship of the linear expression) with respect to the scanning position, except for the region away from the envelope peak. As a result, the “scanning position where the phase becomes 0” can be obtained from the discrete phase data by internal sweeping.

ところで、「位相が0になる走査位置」は複数あるが、「包絡線が最大になる走査位置」に近い方を選ぶこととし、試料8の表面の高さを変えながら算出してプロットしたものを図7に示す。図7において横軸は試料の表面の高さであり、「位相が0になる走査位置」を○で示し、「包絡線が最大になる走査位置」を点線で示している。図2に示す例においては試料8の表面の高さの0点と走査位置の0点を一致させているので、図7では「包絡線が最大になる走査位置」は試料8の表面の高さに等しい。実際の測定では、走査位置の0点には任意性があり、各画素における「包絡線が最大になる走査位置の差」が「試料の表面の高さの差」に一致し、その差(試料面内の相対的な高さ)が意味を持つ。「位相が0になる走査位置」(○及びそれらを結ぶ実線)は、試料の表面の高さに対して線形に変化することが分かる。これを1次式でフィッティングすると、この例では傾きは−6.93であり、差分(1次式との差)は最大でも約2nmと小さい。この差分は図7での縦方向の差であり、横方向の差は最大でも0.3nm程度とさらに小さい。なお、3次式でフィッティングすると、これらの差はさらに数分の1に小さくなる。   By the way, although there are a plurality of “scanning positions where the phase is 0”, the one closer to the “scanning position where the envelope is maximized” is selected, and the plot is calculated and plotted while changing the height of the surface of the sample 8 Is shown in FIG. In FIG. 7, the horizontal axis is the height of the surface of the sample, “scanning position where the phase is 0” is indicated by ◯, and “scanning position where the envelope is maximum” is indicated by the dotted line. In the example shown in FIG. 2, the zero point of the surface height of the sample 8 and the zero point of the scanning position are made coincident, so in FIG. 7, the “scanning position where the envelope is maximum” is the height of the surface of the sample 8. Equal to In actual measurement, the zero point of the scanning position is arbitrary, and the “difference in scanning position at which the envelope becomes maximum” in each pixel matches the “difference in the height of the surface of the sample”. The relative height in the sample plane is significant. It can be seen that the “scanning position where the phase becomes 0” (◯ and the solid line connecting them) changes linearly with respect to the height of the surface of the sample. When this is fitted with a linear equation, the slope is −6.93 in this example, and the difference (difference from the linear equation) is as small as about 2 nm at the maximum. This difference is the difference in the vertical direction in FIG. 7, and the difference in the horizontal direction is even smaller, at most about 0.3 nm. Note that when fitting with a cubic equation, these differences are further reduced to a fraction.

このように「位相が0になる走査位置」と試料の表面の高さ(或いは「包絡線が最大になる走査位置」)の間には、ある一定の関係があるので、予めその関係を求めておけば、「位相が0になる走査位置」から試料の表面の高さを求めることができる。上記のように、試料の表面の高さの変化に対して、「包絡線が最大になる走査位置」の変化量は等しいが、「位相が0になる走査位置」の変化量は数倍かそれ以上大きい(上の例では6.93倍)。上の例で言うと、これは感度が6.93倍に増したのと同じことであり、試料の表面の高さの測定精度を向上させることができる。   As described above, there is a certain relationship between the “scanning position where the phase is 0” and the height of the surface of the sample (or “the scanning position where the envelope is maximum”). In this case, the height of the surface of the sample can be obtained from the “scanning position where the phase becomes 0”. As described above, the amount of change in the “scanning position where the envelope is maximum” is equal to the change in the height of the sample surface, but the amount of change in the “scanning position where the phase is 0” is several times larger. Larger than that (6.93 times in the above example). In the above example, this is the same as the sensitivity increased 6.93 times, and the measurement accuracy of the surface height of the sample can be improved.

収集した波形データからヒルベルト変換を用いて位相を算出して、それが0になる走査位置を求めておき、上記関係から試料表面高さを求める場合、図7の縦軸の値(位相が0の走査位置)が求まっていて、上記の1次フィット式又は3次フィット式を用いて、その値に対応する横軸の値(試料の表面の高さ)を求めるので、フィット式とのずれは、横方向のずれが問題になる。縦方向のずれが同じなら、上記の傾きが大きいほど、横方向のずれは小さくなり、測定精度は向上する。   When the phase is calculated from the collected waveform data using the Hilbert transform, the scanning position at which it becomes 0 is obtained, and the sample surface height is obtained from the above relationship, the value on the vertical axis in FIG. Since the horizontal axis value (the height of the surface of the sample) corresponding to the value is obtained using the above-mentioned first-order fit equation or third-order fit equation, the deviation from the fit equation In this case, the lateral displacement becomes a problem. If the vertical deviation is the same, the larger the above inclination, the smaller the horizontal deviation, and the measurement accuracy is improved.

実際の測定では、収集データには雑音が乗っており、その場合を考える。
図6から分かるように包絡線の幅は広く、その頂点付近は丸みを帯びており、そのピークの位置を高精度に算出することは難しい。それに対して位相は、走査位置に対して線形に大きく変化するので、「位相が0になる走査位置」の算出は高精度にできる。これは位相を利用することの利点である。図6で走査位置480nm以上での位相に2πを加えると、それ未満での位相と直線的につながる(位相接続の手法)。この直線的につながった位相の3点以上のデータに1次式でフィッティングして、それが0になる走査位置を求めると、位相が0付近の2点のデータからの内掃で求めるよりも高精度で算出できる。その理由は、2点よりも多くのデータを用いるからである。
In actual measurement, there is noise in the collected data, and that case is considered.
As can be seen from FIG. 6, the width of the envelope is wide and the vicinity of the apex is rounded, and it is difficult to calculate the peak position with high accuracy. On the other hand, since the phase greatly changes linearly with respect to the scanning position, the “scanning position where the phase becomes 0” can be calculated with high accuracy. This is an advantage of using phase. In FIG. 6, when 2π is added to the phase at the scanning position of 480 nm or more, it is linearly connected to the phase below it (phase connection method). Fitting this linearly connected data of three or more points with a linear expression to obtain a scanning position where it becomes 0 is more than finding by scanning from two points of data whose phase is near 0. It can be calculated with high accuracy. The reason is that more data than two points are used.

以上、収集間隔が240nm(ナイキスト間隔の1.75倍)の例について説明してきたが、例えば間隔が220nm(ナイキスト間隔の1.6倍)の場合には、1次式でフィッティングすると、傾きは−4.03となり、間隔が240nmである上記の例の場合より若干小さいが、フィット式との差分(図7相当での縦方向の差)は最大でも0.12nm と上の例よりも1桁以上小さくなり、また、収集間隔が250nmでは上記の傾きは−10.0となる。   The example in which the collection interval is 240 nm (1.75 times the Nyquist interval) has been described above. For example, when the interval is 220 nm (1.6 times the Nyquist interval), the fitting is performed using a linear expression, and the slope is −4.03, which is slightly smaller than the above example in which the interval is 240 nm, but the difference from the fit equation (vertical difference corresponding to FIG. 7) is 0.12 nm at most, which is 1 than the above example. When the collection interval is 250 nm, the above inclination becomes −10.0.

以上では、収集間隔がナイキスト間隔の1倍から2倍の間の場合について説明してきたが、間隔がさらに大きくても同様の振舞いが得られる。
収集間隔がナイキスト間隔の2倍から3倍の間の場合では、上記の傾きは正になる。例えば収集間隔が320nm(ナイキスト間隔の2.33倍)では、上記傾きは7.06であり、1次フィット式との差分(図7相当での縦方向の差)は最大でも2nmである。また、収集間隔が360nm(ナイキスト間隔の2.62倍)では、上記傾きは4.21となり、1次フィット式との差分(図7相当での縦方向の差)は最大でも0.15nmである。
次に収集間隔がナイキスト間隔の3倍から4倍の間の領域を考える。
この領域では上記傾きは負になる。これまでは図に示すように「位相が0になる走査位置」の変動の周期は収集間隔に一致していたが、この領域では収集間隔の半分になる。例えば収集間隔が480nm(ナイキスト間隔の3.49倍)では、上記傾きは−6.92となり、1次フィット式との差分(図7相当での縦方向の差)は最大でも1.7nmである。
In the above, the case where the collection interval is between 1 and 2 times the Nyquist interval has been described, but the same behavior can be obtained even if the interval is larger.
When the collection interval is between 2 and 3 times the Nyquist interval, the slope is positive. For example, when the collection interval is 320 nm (2.33 times the Nyquist interval), the slope is 7.06, and the difference from the first-order fit equation (vertical difference corresponding to FIG. 7) is 2 nm at the maximum. When the collection interval is 360 nm (2.62 times the Nyquist interval), the slope is 4.21, and the difference from the first-order fit equation (the vertical difference corresponding to FIG. 7) is 0.15 nm at the maximum. is there.
Next, consider an area where the collection interval is between 3 and 4 times the Nyquist interval.
In this region, the slope is negative. So far, as shown in the figure, the period of fluctuation of the “scan position where the phase becomes 0” coincides with the collection interval, but in this region, it becomes half of the collection interval. For example, when the collection interval is 480 nm (3.49 times the Nyquist interval), the slope is −6.92, and the difference from the primary fit equation (vertical difference corresponding to FIG. 7) is 1.7 nm at the maximum. is there.

データ収集間隔がナイキスト間隔の2.5倍のときに他の方式での測定精度が数10nmであることを考えると、上に示した1次フィット式との差分の例は何れも十分に小さく、1次フィット式でも十分に実用的に使えると考えられる。収集間隔がナイキスト間隔の4倍までを例に挙げたが、それ以上でも同様のことが可能である。   Considering that the measurement accuracy of other methods is several tens of nanometers when the data collection interval is 2.5 times the Nyquist interval, all of the examples of differences from the first-order fit equation shown above are sufficiently small. Even the first-fit type is considered to be practical enough. The collection interval is exemplified up to four times the Nyquist interval, but the same can be achieved with more than that.

以下、実験結果の例を示す。光源1のハロゲンランプの後の光学フィルター2として中心波長550nm、帯域幅80nmを用いて、データ収集間隔247.5nm(ナイキスト間隔の1.8倍)で測定した「包絡線が最大の走査位置」と「位相が0になる走査位置」の関係を図8に示す。データを配列で扱っており、収集データは下記のようにx,yの各画素で走査位置(時間にも対応)について1からnまでの指標で表わされる(収集するフレーム数がn個の場合)。

D(1,x,y), D(2,x,y), … , D(i,x,y), D(i+1,x,y), … D(n,x,y)
Examples of experimental results are shown below. “Scanning position with maximum envelope” measured at a data collection interval of 247.5 nm (1.8 times the Nyquist interval) using a central wavelength of 550 nm and a bandwidth of 80 nm as the optical filter 2 after the halogen lamp of the light source 1 FIG. 8 shows the relationship between “the scanning position where the phase is 0”. Data is handled in an array, and the collected data is represented by an index from 1 to n with respect to the scanning position (corresponding to time) at each pixel of x and y as follows (when the number of frames to be collected is n) ).

D (1, x, y), D (2, x, y), ..., D (i, x, y), D (i + 1, x, y), ... D (n, x, y)

図8の単位はこの配列の走査位置の指標であり、この1の間隔は収集間隔247.5nmに相当する。図8の横軸は「包絡線が最大になる走査位置」だが、試料の表面の高さに相当し、図8は図7に対応する。   The unit of FIG. 8 is an index of the scanning position of this array, and this 1 interval corresponds to the collection interval of 247.5 nm. The horizontal axis of FIG. 8 is “the scanning position where the envelope is maximum”, which corresponds to the height of the surface of the sample, and FIG. 8 corresponds to FIG.

図9には、図8を得るための元の測定データを示す。光強度の収集データからヒルベルト変換を用いて「包絡線が最大の走査位置」(○)と「位相が0になる走査位置」(◆)を全画素で算出しており、その一部として画素の位置y=480で、x=0から200でのそれら値を示した例である。この例では試料の表面の傾きを反映して、x方向に進むに従い「包絡線が最大の走査位置」が増している。上述のように「包絡線が最大の走査位置」(図9の○)を高精度に算出するのは難しく、そのために縦方向のばらつきが大きい。それに対して、「位相が0になる走査位置」(図9の◆)は前述のように精度よく求めやすいので、縦方向のばらつきは小さい。そのばらつきは「包絡線が最大の走査位置」のばらつきに比べて数分の1である。   FIG. 9 shows the original measurement data for obtaining FIG. The “scanning position where the envelope is maximum” (○) and “scanning position where the phase is 0” (◆) are calculated for all pixels from the collected light intensity data using the Hilbert transform, and as part of this, the pixel This is an example showing the values from x = 0 to 200 at the position y = 480. In this example, reflecting the inclination of the surface of the sample, the “scanning position with the maximum envelope” increases in the x direction. As described above, it is difficult to calculate the “scanning position with the maximum envelope” (◯ in FIG. 9) with high accuracy, and for this reason, the vertical variation is large. On the other hand, since the “scanning position where the phase is 0” (♦ in FIG. 9) is easily obtained with high accuracy as described above, the vertical variation is small. The variation is a fraction of that of the “scanning position with the maximum envelope”.

図8に示すデータは、図9のデータを、横軸を「包絡線が最大の走査位置」、縦軸を「位相が0になる走査位置」にしてプロットしたものである。図8でプロットしたデータがばらついているのは、上述のように「包絡線が最大の走査位置」のばらつきを主に反映している。つまり図8において横軸方向に主にばらついていると考えられる。横軸と縦軸の値が等しい線を図8の点線で表わしている。   The data shown in FIG. 8 is obtained by plotting the data of FIG. 9 with the horizontal axis indicating “the scanning position where the envelope is maximum” and the vertical axis indicating “the scanning position where the phase is 0”. The variation in the data plotted in FIG. 8 mainly reflects the variation in the “scanning position with the maximum envelope” as described above. That is, in FIG. 8, it is considered that the variation is mainly in the horizontal axis direction. A line having the same value on the horizontal axis and the vertical axis is represented by a dotted line in FIG.

図8の横軸を試料表面高さと考え、図8に示したような直線(図中の実線)を仮定し、「位相が0になる走査位置」からその直線の関係を用いて、試料の表面の高さを求めればよい。その直線の傾きと定数項(y切片)は図8のデータからフィッティングにより求めてもよい。そのような直線を用いて試料の表面の高さを求めて、それを図9の横軸のようなx方向の画素に対してプロットしてみると、もしその傾きが適切でないと、試料の表面の高さにおいて不連続なとびが起きる。これは図8での例えば横軸が40に対して、縦軸は35と44があるが、傾きが正しくないとここで不連続が起きる。対策としては傾きを調整して、とびが消えればよい。一度傾きを決まれば、その後、変える必要はない。その直線のy切片については値がずれていても、試料の表面の高さはxy面の全体で同じ値ずれるだけなので問題ない。一度決めたら、その後、変えなければそれでよい。   The horizontal axis in FIG. 8 is considered to be the sample surface height, and a straight line as shown in FIG. 8 (solid line in the figure) is assumed. What is necessary is just to obtain | require the height of the surface. The slope of the straight line and the constant term (y-intercept) may be obtained by fitting from the data in FIG. Using such a straight line, the height of the surface of the sample is obtained and plotted against the pixels in the x direction such as the horizontal axis in FIG. 9, and if the inclination is not appropriate, Discontinuous jumps occur at the height of the surface. In FIG. 8, for example, the horizontal axis is 40 and the vertical axis is 35 and 44. However, if the inclination is not correct, discontinuity occurs. As a countermeasure, it is sufficient to adjust the tilt so that the jump disappears. Once the inclination is determined, there is no need to change it. Even if the value of the y-intercept of the straight line is shifted, there is no problem because the height of the surface of the sample is merely shifted by the same value in the entire xy plane. Once you decide, you can do it after that.

この方法で測定した試料の表面の高さの例を図10に示す。データ収集間隔247.5 nm であり、ナイキスト間隔の1.8倍である。y=170の画素の行で、x=0から370までの画素での試料の表面の高さである。この例では1画素が1.4μmに相当し370画素は518μmに相当する。なお、用いたカメラの走査方式がインターレース方式のため、y方向のデータが、1行おきに収集時刻がずれてy方向に不連続なので、最終的な試料の表面の高さの算出データをy方向に2個ずつ移動平均してその不連続を消している。「位相が0になる走査位置」から試料表面高さを算出するための関係式の直線の傾きとして−8.00を使用した。   An example of the height of the surface of the sample measured by this method is shown in FIG. The data collection interval is 247.5 nm, which is 1.8 times the Nyquist interval. This is the height of the surface of the sample in the pixel row where y = 170 and x = 0 to 370 pixels. In this example, one pixel corresponds to 1.4 μm and 370 pixels corresponds to 518 μm. Since the scanning method of the camera used is an interlace method, the data in the y direction is discontinuous in the y direction because the collection time is shifted every other row. A moving average of two pieces in each direction eliminates the discontinuity. −8.00 was used as the slope of the straight line of the relational expression for calculating the sample surface height from the “scanning position where the phase becomes 0”.

データ収集間隔が55nm(光学フィルター2は上記の場合と同じ。ナイキスト間隔の0.4倍。干渉の1周期あたり5個収集)の場合に、「位相が0の走査位置」から試料の表面の高さを算出した例を図11に示す。この狭い収集間隔では「位相が0の走査位置」は、「包絡線が最大の走査位置」に一致する。この場合は収集間隔が狭いので、測定精度は高く、上述の理由によりy方向に2個ずつの移動平均のみで、雑音のピーク-ピークは約1nmであった。図11では、測定値の再現性を調べるために、さらにx方向に3個ずつ、y方向に3個ずつの移動平均を行っている。2回の測定結果(太い線と細い線)を重ねてプロットしてあり、両者は1nmの数分の1の精度で一致することが分かる。そしてx=90, 210, 300付近で高いという試料の表面の形状を表わしている。   When the data collection interval is 55 nm (the optical filter 2 is the same as the above case, 0.4 times the Nyquist interval, and 5 samples are collected per period of interference), the “phase 0 scan position” to the surface of the sample An example of calculating the height is shown in FIG. At this narrow collection interval, the “scan position with phase 0” matches the “scan position with the largest envelope”. In this case, since the collection interval is narrow, the measurement accuracy is high. For the reasons described above, only two moving averages in the y direction are used, and the noise peak-peak is about 1 nm. In FIG. 11, in order to examine the reproducibility of the measured value, three moving averages are further performed in the x direction and three in the y direction. The two measurement results (thick line and thin line) are plotted in an overlapping manner, and it can be seen that both coincide with each other with an accuracy of a fraction of 1 nm. It represents the shape of the surface of the sample that is high in the vicinity of x = 90, 210, 300.

図10は図11と同じ試料のかなり近い場所での測定結果であり、収集間隔がナイキスト間隔の1.8倍の図11でも図10と同様の高さが数nmの表面形状が見えていると考えられる。用いた試料のこのような形状を考慮すると、測定精度として雑音のピーク-ピークを挙げるならそれは5nmより小さいと考えられる。   FIG. 10 shows the measurement results of the same sample as in FIG. 11, and the surface shape with a height of several nanometers similar to that in FIG. 10 is visible in FIG. 11 where the collection interval is 1.8 times the Nyquist interval. it is conceivable that. Considering such a shape of the sample used, if the peak-to-peak of noise is given as measurement accuracy, it is considered to be smaller than 5 nm.

図12には、先に出願した発明による方法、即ち「包絡線が最大の走査位置」から求めた試料の表面の高さである。収集データは図10と同じであり、収集間隔247.5nm、ナイキスト間隔の1.8倍である。雑音のピーク-ピークは60nm程度である。図12に示すグラフと図10に示すグラフとの比較から、本発明の方法により測定精度が10倍以上向上できることが認められた。   FIG. 12 shows the height of the surface of the sample obtained from the method according to the invention filed earlier, that is, the “scanning position having the maximum envelope”. Collected data is the same as in FIG. 10, with a collection interval of 247.5 nm and 1.8 times the Nyquist interval. The peak-peak of noise is about 60 nm. From a comparison between the graph shown in FIG. 12 and the graph shown in FIG. 10, it was recognized that the measurement accuracy can be improved by 10 times or more by the method of the present invention.

1:光源
2:フィルター
3:ビームスプリッター
4:マイケルソン型干渉計
4a:対物レンズ
4b:ビームスプリッター
4c:ミラー
5:ピエゾアクチュエーター
6:CCDカメラ
7:試料ホルダー
8:試料
1: Light source 2: Filter 3: Beam splitter 4: Michelson interferometer 4a: Objective lens 4b: Beam splitter 4c: Mirror 5: Piezo actuator 6: CCD camera 7: Sample holder 8: Sample

Claims (2)

対物レンズの下にビームスプリッター及びミラーを配し、試料表面を含めて、マイケルソン型などの干渉計を構成し、試料までの距離又はミラーまでの距離をピエゾアクチュエーターで走査し、それによりできる干渉波形をCCDカメラで撮影して動画ファイルデータとして記録し、データ収集間隔をナイキスト間隔(干渉波形の周期の1/2)よりも広く試料の表面高さを測定する、走査型白色干渉計による試料の表面形状の測定方法において、
得られた収集波形についてヒルベルト変換を行い、包絡線と位相を得、包絡線がピークの走査位置と位相が0になる走査位置を求め、幾つかの画素でのそれらの値から、それらの間の例えば一次式の関係式を求めて、その関係式を用いて、位相が0になる走査位置から試料表面の高さを全画素について算出すること
を特徴とする走査型白色干渉計による試料の表面形状の測定方法。
A beam splitter and mirror are placed under the objective lens, and a Michelson-type interferometer is constructed including the sample surface. The distance to the sample or the distance to the mirror is scanned with a piezo actuator, resulting in interference. Sample with a scanning white interferometer, which captures the waveform with a CCD camera and records it as video file data, and measures the surface height of the sample wider than the Nyquist interval (1/2 of the interference waveform period). In the method of measuring the surface shape of
Perform Hilbert transform on the acquired waveform, obtain the envelope and phase, find the scan position where the envelope is peak and the scan position where the phase is 0, and from those values at several pixels, For example, a linear relational expression is obtained, and using the relational expression, the height of the sample surface is calculated for all pixels from the scanning position where the phase becomes 0. Surface shape measurement method.
収集波形についてヒルベルト変換を行って得た位相を、位相接続の手法でつなぐことで、位相が直線的に変化する領域を広げて、より多くのデータから位相が0になる走査位置を求めることを特徴とする請求項1記載の走査型白色干渉計による試料の表面形状の測定方法。   The phase obtained by performing the Hilbert transform on the acquired waveform is connected by the phase connection method, thereby expanding the region where the phase changes linearly and obtaining the scanning position where the phase becomes 0 from more data. The method for measuring the surface shape of a sample using the scanning white light interferometer according to claim 1.
JP2011153264A 2011-07-11 2011-07-11 Method for measuring sample surface shape using scanning white light interferometer Pending JP2013019759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153264A JP2013019759A (en) 2011-07-11 2011-07-11 Method for measuring sample surface shape using scanning white light interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153264A JP2013019759A (en) 2011-07-11 2011-07-11 Method for measuring sample surface shape using scanning white light interferometer

Publications (1)

Publication Number Publication Date
JP2013019759A true JP2013019759A (en) 2013-01-31

Family

ID=47691339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153264A Pending JP2013019759A (en) 2011-07-11 2011-07-11 Method for measuring sample surface shape using scanning white light interferometer

Country Status (1)

Country Link
JP (1) JP2013019759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603841A (en) * 2015-12-30 2016-05-25 西南交通大学 Ballastless track settlement monitoring device
EP3180124A4 (en) * 2014-08-12 2017-09-27 Luedemann, Hans-Christian Interferometric measurement of liquid volumes
JP2021060312A (en) * 2019-10-08 2021-04-15 株式会社ミツトヨ Analyzer, method for analysis, interference measurement system, and program
CN113029366A (en) * 2021-03-11 2021-06-25 深圳中科飞测科技股份有限公司 Zero phase difference position finding method, scanning system and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194918A (en) * 1991-05-14 1993-03-16 The Board Of Trustees Of The Leland Stanford Junior University Method of providing images of surfaces with a correlation microscope by transforming interference signals
JP2009047527A (en) * 2007-08-20 2009-03-05 Fujitsu Ltd Measurement method and measuring device for step surface shape
JP2009121828A (en) * 2007-11-12 2009-06-04 Anritsu Corp Three-dimensional shape measuring device
JP2010112865A (en) * 2008-11-07 2010-05-20 Ryoka Systems Inc White interference measuring device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194918A (en) * 1991-05-14 1993-03-16 The Board Of Trustees Of The Leland Stanford Junior University Method of providing images of surfaces with a correlation microscope by transforming interference signals
JP2009047527A (en) * 2007-08-20 2009-03-05 Fujitsu Ltd Measurement method and measuring device for step surface shape
JP2009121828A (en) * 2007-11-12 2009-06-04 Anritsu Corp Three-dimensional shape measuring device
JP2010112865A (en) * 2008-11-07 2010-05-20 Ryoka Systems Inc White interference measuring device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3180124A4 (en) * 2014-08-12 2017-09-27 Luedemann, Hans-Christian Interferometric measurement of liquid volumes
CN105603841A (en) * 2015-12-30 2016-05-25 西南交通大学 Ballastless track settlement monitoring device
JP2021060312A (en) * 2019-10-08 2021-04-15 株式会社ミツトヨ Analyzer, method for analysis, interference measurement system, and program
JP7296844B2 (en) 2019-10-08 2023-06-23 株式会社ミツトヨ Analysis device, analysis method, interference measurement system, and program
CN113029366A (en) * 2021-03-11 2021-06-25 深圳中科飞测科技股份有限公司 Zero phase difference position finding method, scanning system and storage medium
CN113029366B (en) * 2021-03-11 2022-09-23 深圳中科飞测科技股份有限公司 Zero phase difference position finding method, scanning system and storage medium

Similar Documents

Publication Publication Date Title
CN109341574B (en) Micro-nano structure three-dimensional morphology high-speed detection method based on structured light
CN110715616B (en) Structured light micro-nano three-dimensional morphology measurement method based on focusing evaluation algorithm
CN109269438A (en) Structured light illumination microscopic measurement method for detecting multilayer complex micro-nano structure
TWI599758B (en) Method of calibrating a scanning interferometry imaging system, scanning interferometry imaging system, non-transitory computer readable medium, and method of calibrating an scanning interferometry imaging system having a broadband light source
JP2004506894A (en) Optical measuring device
JP7138734B2 (en) Dual interferometric sample thickness gauge
JP3401783B2 (en) Surface profile measuring device
CN106017349A (en) White light interferometry-based test system and test method therefor
US8269980B1 (en) White light scanning interferometer with simultaneous phase-shifting module
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
EP2373952A1 (en) Method for interferometric detection of surfaces
JP2013019759A (en) Method for measuring sample surface shape using scanning white light interferometer
CN108917913B (en) Microstructure modal analysis acoustic excitation frequency domain optical coherence tomography detection device and method
JP2018163092A (en) Surface shape measurement device, and switching measurement method of the same
JP5740230B2 (en) Measuring method of surface shape of sample by scanning white interferometer
JP5281837B2 (en) Method and apparatus for measuring radius of curvature
Tang et al. Comparison of common-path off-axis digital holography and transport of intensity equation in quantitative phase measurement
JP2013019752A (en) Data processing method of scanning white-light interferometer
CN101387555A (en) Wavefront measuring apparatus for optical pickup
KR101079483B1 (en) Apparatus for detecting profile of lens without contacting and method for detecting profile of lens using the same
JP5544679B2 (en) Step surface shape measuring method and measuring device
JP5412959B2 (en) Optical applied measuring equipment
TW201814239A (en) Interferometer and imaging method therefor
JP2005331254A (en) Micro-height measuring device using low coherence interferometry
JP5933273B2 (en) Measuring method of surface shape of sample by scanning white interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150527