JP2013019710A - Coated cable surface dirt detection device - Google Patents

Coated cable surface dirt detection device Download PDF

Info

Publication number
JP2013019710A
JP2013019710A JP2011151440A JP2011151440A JP2013019710A JP 2013019710 A JP2013019710 A JP 2013019710A JP 2011151440 A JP2011151440 A JP 2011151440A JP 2011151440 A JP2011151440 A JP 2011151440A JP 2013019710 A JP2013019710 A JP 2013019710A
Authority
JP
Japan
Prior art keywords
voltage
detection
current
electric wire
covered electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011151440A
Other languages
Japanese (ja)
Other versions
JP5693404B2 (en
Inventor
Koichi Yanagisawa
浩一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2011151440A priority Critical patent/JP5693404B2/en
Publication of JP2013019710A publication Critical patent/JP2013019710A/en
Application granted granted Critical
Publication of JP5693404B2 publication Critical patent/JP5693404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a downsized and low-cost device without requiring a power source generating a large current.SOLUTION: A coated cable surface dirt detection device comprises: an injection electrode 2 that is capacitively coupled with a central conductor 12a of a coated cable 12; a detection electrode 3 that is capacitively coupled with the central conductor 12a; an AC voltage generation part 4 that generates test AC voltage V2, and injects the test AC voltage V2 into the central conductor 12a through the injection electrode 2 in a non-contact manner; a current detection part 5 that inputs a portion of current Id2, which is generated in the coated cable 12 by the injection of the test AC voltage V2, through the detection electrode 3, converts the current Id2 into detection voltage Vd and outputs the detection voltage Vd; and a processing part 7 that calculates a ratio k of a voltage value of the detection voltage Vd to a voltage value of the test AC voltage V2, and determines that a surface of the coated cable 12 is dirty when the calculated ratio k is equal to or greater than a predetermined reference ratio kref.

Description

本発明は、被覆電線の表面に生じた汚れ(塵や埃の付着に起因した汚れ)を検出する被覆電線の表面汚れ検出装置に関するものである。   The present invention relates to a surface contamination detection device for a covered electric wire that detects contamination (dirt caused by dust or dust adhesion) generated on the surface of the covered electric wire.

本願発明者は、検出対象体に生じている交流電圧を非接触で検出する各種の電圧検出装置を既に提案している(下記の特許文献1など)。これらの電圧検出装置では、検出対象体に対して検出電極を対向配置することによって、検出対象体と検出電極とを容量結合(静電容量を介して結合)させ、この静電容量を介して検出対象体と検出電極との間に流れる電流に基づいて、検出対象体の交流電圧を検出する。また、特許文献1にも開示されているように、この電圧検出装置は、電路を検査対象体として、電路についての電圧(線間電圧など)も検出することが可能である。   The inventor of the present application has already proposed various voltage detection devices that detect the AC voltage generated in the detection object in a non-contact manner (Patent Document 1 below). In these voltage detection devices, a detection electrode and a detection electrode are disposed opposite to a detection target body to capacitively couple the detection target body and the detection electrode (coupled via a capacitance). Based on the current flowing between the detection object and the detection electrode, the AC voltage of the detection object is detected. In addition, as disclosed in Patent Document 1, this voltage detection apparatus can also detect a voltage (such as a line voltage) for an electric circuit using the electric circuit as an inspection object.

しかしながら、電路(通常は、被覆電線で構成される)の表面に塵や埃が付着して汚れの層が形成され、この汚れの層が水分を含んで導電性を帯びる状態に至ることがある。この状態では、電路の芯線(中心導体)と電圧検出装置の検出電極との間に、導電性を有する汚れの層が介在することになるため、結合容量を介して電路の芯線と電圧検出装置の検出電極との間に流れる電流の一部が、この汚れの層を介して漏れ出る結果、検出対象体としての電路の芯線に生じる交流電圧の測定精度が低下するという改善すべき課題が存在している。   However, dust or dirt adheres to the surface of an electric circuit (usually composed of a covered electric wire) to form a dirt layer, and this dirt layer may contain water and become conductive. . In this state, since a conductive dirt layer is interposed between the core wire (center conductor) of the electric circuit and the detection electrode of the voltage detection device, the core wire of the electric circuit and the voltage detection device are connected via a coupling capacitor. As a result, a part of the current flowing between the detection electrode and the detection electrode leaks through this dirt layer, and as a result, there is a problem to be solved that the measurement accuracy of the AC voltage generated on the core of the electric circuit as the detection target is lowered. doing.

この課題を改善するため、電圧検出に先立ち、例えば下記の特許文献2に開示されている非接触式表面抵抗測定装置を使用して、検出対象体の表面に汚れの層が形成されているか否かを検出する構成を採用することもできる。   In order to improve this problem, prior to voltage detection, for example, using a non-contact type surface resistance measuring device disclosed in Patent Document 2 below, whether or not a dirt layer is formed on the surface of the detection object. It is also possible to adopt a configuration for detecting this.

特開2011−53201号公報(第14−15頁、第1図)Japanese Patent Laying-Open No. 2011-53201 (pages 14-15, FIG. 1) 特開2003−84020号公報(第4頁、第1図)JP 2003-84020 A (page 4, FIG. 1)

しかしながら、この非接触式表面抵抗測定装置を使用する構成には、以下のような解決すべき課題が存在している。すなわち、この非接触式表面抵抗測定装置では、フェライトコイルなどのコイルで渦電流発生部を構成し、このコイルに交流波電圧を印加し、コイルを導電膜(表面抵抗を測定するもの)に近づけることで、導電膜に高周波誘導結合による渦電流を流している。しかしながら、高周波誘導結合によって渦電流を流し得るようにするためには、一般的に、コイルに大きな電流を流す必要が生じる。このため、この非接触式表面抵抗測定装置には、大きな電流を発生させる電源が必要になり、装置が大型化すると共に装置コストが上昇するという解決すべき課題が存在していいる。   However, the configuration using this non-contact type surface resistance measuring device has the following problems to be solved. That is, in this non-contact type surface resistance measuring device, a coil such as a ferrite coil constitutes an eddy current generator, an AC wave voltage is applied to this coil, and the coil is brought close to a conductive film (for measuring surface resistance). Thus, an eddy current due to high frequency inductive coupling is passed through the conductive film. However, in order to allow an eddy current to flow by high-frequency inductive coupling, it is generally necessary to flow a large current through the coil. For this reason, this non-contact type surface resistance measuring apparatus requires a power source that generates a large current, and there is a problem to be solved that the apparatus becomes larger and the apparatus cost increases.

本発明は、かかる課題を解決すべくなされたものであり、大きな電流を発生させる電源を不要として、装置の小型化および低コスト化を図り得る被覆電線の表面汚れ検出装置を提供することを主目的とする。   SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and it is an object of the present invention to provide a coated wire surface contamination detection device that can reduce the size and cost of the device without requiring a power source that generates a large current. Objective.

上記目的を達成すべく請求項1記載の被覆電線の表面汚れ検出装置は、被覆電線の中心導体と容量結合する注入電極と、前記中心導体と容量結合する検出電極と、検査交流電圧を生成すると共に当該検査交流電圧を前記注入電極を介して前記中心導体に非接触で注入する交流電圧生成部と、前記検査交流電圧の注入に起因して前記被覆電線に発生する電流の一部を前記検出電極を介して入力すると共に検出電圧に変換して出力する電流検出部と、前記検査交流電圧の電圧値に対する前記検出電圧の電圧値の比率を算出すると共に当該算出した比率が予め決められた基準比率以上のときに、前記被覆電線の表面が汚れていると判別する処理部とを備えている。   In order to achieve the above object, a device for detecting surface contamination of a covered electric wire according to claim 1 generates an inspection AC voltage, an injection electrode capacitively coupled to a central conductor of the covered electric wire, a detection electrode capacitively coupled to the central conductor. And an AC voltage generator for injecting the inspection AC voltage to the central conductor through the injection electrode in a non-contact manner, and detecting a part of the current generated in the covered electric wire due to the injection of the inspection AC voltage. A current detection unit that inputs through the electrodes and converts the detection voltage to output, and calculates a ratio of the voltage value of the detection voltage to the voltage value of the inspection AC voltage, and the calculated ratio is a predetermined reference And a processing unit that determines that the surface of the covered electric wire is dirty when the ratio is equal to or greater than the ratio.

また、請求項2記載の被覆電線の表面汚れ検出装置は、請求項1記載の被覆電線の表面汚れ検出装置ポンプ回路において、前記被覆電線の表面が汚れていると前記処理部によって判別されたときにその旨を出力する出力部を備えている。   Further, the coated wire surface contamination detection device according to claim 2 is a pump circuit of the coated wire surface contamination detection device according to claim 1, wherein the processing unit determines that the surface of the coated wire is dirty. Is provided with an output section for outputting the fact.

請求項1記載の被覆電線の表面汚れ検出装置によれば、生成した検査交流電圧を注入電極を介して被覆電線の中心導体に非接触で注入する交流電圧生成部と、検査交流電圧の注入に起因して被覆電線の表面の汚れの層を介して流れる電流の一部を検出電極を介して入力する電流検出部とを備えて、被覆電線の表面の汚れを検出するため、渦電流発生用の大きな電流を発生させる電源を不要にすることができる結果、装置の小型化および低コスト化を図ることができる。   According to the apparatus for detecting surface contamination of a covered electric wire according to claim 1, an AC voltage generating unit that injects the generated inspection AC voltage into the central conductor of the covered electric wire through an injection electrode in a non-contact manner, and injection of the inspection AC voltage For detecting eddy currents on the surface of the covered wire, the current detection unit inputs a part of the current that flows through the dirty layer on the surface of the covered wire through the detection electrode. As a result, it is possible to reduce the size and cost of the apparatus.

請求項2記載の被覆電線の表面汚れ検出装置によれば、被覆電線の表面が汚れているときに、出力部がその旨を出力するため、被覆電線の表面が汚れていることを確実に把握することができる。   According to the surface dirt detection device for a covered electric wire according to claim 2, when the surface of the covered electric wire is dirty, the output unit outputs that fact, so that the surface of the covered electric wire is reliably grasped. can do.

検出装置1の構成図である。1 is a configuration diagram of a detection device 1. FIG. 被覆電線12の表面に汚れの層13が形成されていない状態での検出装置1の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the detection apparatus 1 in the state in which the dirt layer 13 is not formed in the surface of the covered electric wire 12. FIG. 被覆電線12の表面に汚れの層13が形成されている状態での検出装置1の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the detection apparatus 1 in the state in which the layer 13 of dirt is formed in the surface of the covered electric wire 12. FIG.

以下、被覆電線の表面汚れ検出装置の実施の形態について、添付図面を参照して説明する。   Hereinafter, an embodiment of a device for detecting surface contamination of a covered electric wire will be described with reference to the accompanying drawings.

最初に、被覆電線の表面汚れ検出装置1(以下、「検出装置1」ともいう)の構成について、図面を参照して説明する。   First, the structure of the surface dirt detection device 1 (hereinafter also referred to as “detection device 1”) of the covered electric wire will be described with reference to the drawings.

検出装置1は、図1に示すように、注入電極2、検出電極3、交流電圧生成部4、電流検出部5、A/D変換部6、処理部7および出力部8を備え、商用電源11から出力された商用電圧Vacを伝送するための被覆電線12の表面が汚れているか否かを非接触で検出する。被覆電線12は、一例として、商用電圧Vacを伝送する中心導体12a、および絶縁被覆12bを備えている。   As shown in FIG. 1, the detection device 1 includes an injection electrode 2, a detection electrode 3, an AC voltage generation unit 4, a current detection unit 5, an A / D conversion unit 6, a processing unit 7, and an output unit 8. Whether or not the surface of the covered electric wire 12 for transmitting the commercial voltage Vac output from 11 is dirty is detected without contact. As an example, the covered electric wire 12 includes a central conductor 12a that transmits the commercial voltage Vac and an insulating coating 12b.

注入電極2および検出電極3は、被覆電線12に対向して非接触の状態で配設されて、中心導体12aとそれぞれ容量結合する。   The injection electrode 2 and the detection electrode 3 are disposed in a non-contact state facing the covered electric wire 12 and are capacitively coupled to the center conductor 12a.

交流電圧生成部4は、電圧生成回路4aおよび電圧増幅回路4bを備えている。電圧生成回路4aは、予め規定された電圧値(振幅)であって、商用電圧Vacの周波数(商用周波数)とは異なる周波数(例えば商用周波数を超える周波数)の交流電圧V1を生成する。電圧増幅回路4bは、交流電圧V1を所定の増幅率で増幅して検査交流電圧V2として注入電極2に出力する。この構成により、交流電圧生成部4は、生成した既知の電圧値(振幅)の検査交流電圧V2を注入電極2を介して被覆電線12の中心導体12aに非接触で注入する。   The AC voltage generation unit 4 includes a voltage generation circuit 4a and a voltage amplification circuit 4b. The voltage generation circuit 4a generates an AC voltage V1 having a voltage value (amplitude) defined in advance and having a frequency (for example, a frequency exceeding the commercial frequency) different from the frequency (commercial frequency) of the commercial voltage Vac. The voltage amplification circuit 4b amplifies the AC voltage V1 with a predetermined amplification factor and outputs the amplified voltage to the injection electrode 2 as the inspection AC voltage V2. With this configuration, the AC voltage generator 4 injects the generated test AC voltage V2 having a known voltage value (amplitude) into the central conductor 12a of the covered wire 12 through the injection electrode 2 in a non-contact manner.

電流検出部5は、信号増幅回路5aおよび検波回路5bを備えている。信号増幅回路5aは、一例として電流電圧変換回路で構成されて、種々の要因で被覆電線12に発生する電流Iのうちの検出電極3を介して入力する電流Idを検出電圧Viに変換して出力する。この場合、この電流Idは、例えば、中心導体12aで伝送される商用電圧Vac、および外来ノイズによって中心導体12aに誘起されるノイズ電圧に起因して生じる電流Id1と、交流電圧生成部4から出力される検査交流電圧V2のうちの中心導体12aに注入される検査交流電圧V2および被覆電線12の表面(絶縁被覆12bの表面)に汚れの層13(図3参照)が存在しているときにはこの層13に注入される検査交流電圧V2に起因して生じる電流Id2との合成電流となる。   The current detection unit 5 includes a signal amplification circuit 5a and a detection circuit 5b. The signal amplifying circuit 5a is configured by a current-voltage conversion circuit as an example, and converts the current Id input through the detection electrode 3 out of the current I generated in the covered wire 12 due to various factors into the detection voltage Vi. Output. In this case, the current Id is output from, for example, the commercial voltage Vac transmitted through the center conductor 12a, the current Id1 caused by the noise voltage induced in the center conductor 12a due to external noise, and the AC voltage generator 4. The inspection AC voltage V2 injected into the central conductor 12a of the inspection AC voltage V2 and the surface of the covered electric wire 12 (surface of the insulation coating 12b) are present when the dirt layer 13 (see FIG. 3) is present. This is a combined current with the current Id2 generated due to the inspection AC voltage V2 injected into the layer 13.

検波回路5bは、同期検波回路として構成されて、検出電圧Viを交流電圧V1に同期して検波することにより、検出電圧Viに含まれている電圧のうちから、ノイズや商用電圧Vacに起因して発生する電流Id1に基づく電圧Vi1を除去すると共に、交流電圧生成部4による検査交流電圧V2の中心導体12aや汚れの層13への注入に起因して発生する電流Id2に基づく電圧Vi2のみを検出して、この電圧Vi2の振幅(電圧値)に応じて電圧値が変化する直流電圧としての検出電圧Vdを出力する。   The detection circuit 5b is configured as a synchronous detection circuit, and detects the detection voltage Vi in synchronization with the AC voltage V1, thereby causing noise or the commercial voltage Vac from among the voltages included in the detection voltage Vi. The voltage Vi1 based on the generated current Id1 is removed, and only the voltage Vi2 based on the current Id2 generated due to the AC voltage generation unit 4 injecting the inspection AC voltage V2 into the central conductor 12a and the dirt layer 13 is obtained. The detection voltage Vd as a DC voltage whose voltage value changes according to the amplitude (voltage value) of the voltage Vi2 is detected.

A/D変換部6は、検出電圧Vdを予め決められた周期でサンプリングすることにより、検出電圧Vdの電圧値を示す電圧データDdを出力する。本例では、検出電圧Vdの電圧値は、上記したように電圧Vi2の振幅(電圧値)に応じて変化するものであるため、電圧データDdは、電流Id2の電流値を示すデータでもある。   The A / D conversion unit 6 outputs the voltage data Dd indicating the voltage value of the detection voltage Vd by sampling the detection voltage Vd at a predetermined cycle. In this example, since the voltage value of the detection voltage Vd changes according to the amplitude (voltage value) of the voltage Vi2 as described above, the voltage data Dd is also data indicating the current value of the current Id2.

処理部7は、一例として、CPUおよびメモリ(いずれも図示せず)を備えて構成されている。また、処理部7は、検査交流電圧V2の電圧値に対する電圧データDdで示される電圧値の比率k(=Vd/V2)に基づいて、被覆電線12の表面に汚れの層13が存在するか否か(つまり、被覆電線12の表面が汚れているか否か)を判別する判別処理を実行する。処理部7のメモリには、既知である検査交流電圧V2の電圧値(振幅)と、比率kについての基準比率krefとが予め記憶されている。この場合、基準比率krefとは、被覆電線12の表面の汚れが許容できる状態のときの最大の比率kであり、実験などで予め算出された値である。出力部8は、一例として、液晶ディスプレイなどの表示装置で構成されて、判別処理の結果を画面に文字やマークなどで表示する。   For example, the processing unit 7 includes a CPU and a memory (both not shown). In addition, the processing unit 7 determines whether the dirt layer 13 exists on the surface of the covered electric wire 12 based on the ratio k (= Vd / V2) of the voltage value indicated by the voltage data Dd with respect to the voltage value of the inspection AC voltage V2. A determination process is performed to determine whether or not (that is, whether or not the surface of the covered electric wire 12 is dirty). The memory of the processing unit 7 stores in advance a known voltage value (amplitude) of the test AC voltage V2 and a reference ratio kref for the ratio k. In this case, the reference ratio kref is the maximum ratio k when the surface of the covered electric wire 12 is allowed to be contaminated, and is a value calculated in advance through experiments or the like. For example, the output unit 8 is configured by a display device such as a liquid crystal display, and displays the result of the discrimination process on the screen with characters, marks, and the like.

次いで、検出装置1の動作について、図面を参照して説明する。   Next, the operation of the detection device 1 will be described with reference to the drawings.

まず、図2に示すように、被覆電線12の表面に汚れの層13が存在していないときの動作について説明する。   First, as shown in FIG. 2, the operation when the dirt layer 13 is not present on the surface of the covered electric wire 12 will be described.

この場合、注入電極2は、被覆電線12の中心導体12aと静電容量C1を介して容量結合している。また、検出電極3は、被覆電線12の中心導体12aと静電容量C2を介して容量結合している。この場合、各静電容量C1,C2は、数pF〜100pF程度であるため、交流電圧V1の周波数を例えば100kHzとしても、各電極2,3と中心導体12aとの間のインピーダンスは10数キロΩ以上の高い値となる。一方、中心導体12aは、商用電源11の内部抵抗Rを介してグランドに接地されるが、この内部抵抗Rの抵抗値は通常高くても数Ω程度であることから、中心導体12aとグランドとのインピーダンスも高くても数Ω程度である。   In this case, the injection electrode 2 is capacitively coupled to the central conductor 12a of the covered electric wire 12 via the capacitance C1. Further, the detection electrode 3 is capacitively coupled to the central conductor 12a of the covered electric wire 12 via the electrostatic capacitance C2. In this case, since the electrostatic capacitances C1 and C2 are about several pF to 100 pF, even if the frequency of the AC voltage V1 is set to 100 kHz, for example, the impedance between the electrodes 2 and 3 and the central conductor 12a is several tens of kilometers. High value of Ω or higher. On the other hand, the center conductor 12a is grounded via the internal resistance R of the commercial power supply 11, and since the resistance value of the internal resistance R is usually about several ohms at most, the center conductor 12a and the ground Even if the impedance is high, it is about several ohms.

このため、この状態(汚れの層13が存在しない状態)では、交流電圧生成部4から注入電極2を介して中心導体12aに注入された検査交流電圧V2に起因して中心導体12aに発生する電流Id2(交流電圧生成部4から被覆電線12に流れ込む電流)は、その殆どが電流Id1と共に、インピーダンスの低い商用電源11を介してグランドに流れる。したがって、インピーダンスの高い静電容量C2を介して中心導体12aに接続された電流検出部5への電流Id2の入力(破線で示す経路に沿った電流Id2の入力)は殆ど発生しない。これにより、電流検出部5から出力される検出電圧Vdの電圧値は極めて低いものとなる。   For this reason, in this state (the state in which the dirt layer 13 is not present), it is generated in the center conductor 12a due to the inspection AC voltage V2 injected into the center conductor 12a from the AC voltage generator 4 through the injection electrode 2. Most of the current Id2 (current flowing into the covered electric wire 12 from the AC voltage generator 4) flows to the ground together with the current Id1 through the commercial power supply 11 having a low impedance. Therefore, the input of the current Id2 (the input of the current Id2 along the path indicated by the broken line) to the current detection unit 5 connected to the center conductor 12a via the high-capacitance capacitance C2 hardly occurs. Thereby, the voltage value of the detection voltage Vd output from the current detection unit 5 is extremely low.

処理部7は、判別処理において、電圧データDdで示されるこの検出電圧Vdの電圧値についての検査交流電圧V2の電圧値に対する比率kを算出し、さらに、算出した比率kと基準比率krefとを比較する。この場合、上記したように検出電圧Vdの電圧値が極めて低いため、算出される比率kも極めて低い値となり、基準比率kref以下となる。したがって、処理部7は、算出した比率kと基準比率krefとの比較の結果、算出した比率kが基準比率krefを下回るため、被覆電線12の表面の汚れは許容範囲内であると判別する。また、処理部7は、この判別結果を表示装置で構成された出力部8の画面に表示させる。   In the determination process, the processing unit 7 calculates a ratio k of the voltage value of the detection voltage Vd indicated by the voltage data Dd to the voltage value of the test AC voltage V2, and further calculates the calculated ratio k and the reference ratio kref. Compare. In this case, since the voltage value of the detection voltage Vd is extremely low as described above, the calculated ratio k is also extremely low, which is equal to or less than the reference ratio kref. Therefore, as a result of the comparison between the calculated ratio k and the reference ratio kref, the processing unit 7 determines that the dirt on the surface of the covered electric wire 12 is within the allowable range because the calculated ratio k is lower than the reference ratio kref. Further, the processing unit 7 displays the determination result on the screen of the output unit 8 configured by a display device.

次いで、図3に示すように、被覆電線12の表面に汚れの層13が存在しているときの動作について説明する。一般的に、汚れの層13は、大気中の塵や埃が絶縁被覆12bの表面に付着して形成されると共に、大気中の水分(湿気)を含んだ状態となっている。このため、汚れの層13は、絶縁被覆12bの抵抗値よりも低い抵抗値を示す導体層として機能する。   Next, as shown in FIG. 3, the operation when the dirt layer 13 is present on the surface of the covered electric wire 12 will be described. In general, the dirt layer 13 is formed by adhering dust and dirt in the atmosphere to the surface of the insulating coating 12b and containing moisture (humidity) in the atmosphere. For this reason, the dirt layer 13 functions as a conductor layer having a resistance value lower than that of the insulating coating 12b.

これにより、注入電極2は、汚れの層13と静電容量C1aを介して容量結合し、検出電極3は、汚れの層13と静電容量C2aを介して容量結合する。また、汚れの層13は、被覆電線12の中心導体12aとの間に形成される分布容量C3を介して中心導体12aと容量結合している。この場合においても、各静電容量C1a,C2aは、数pF〜100pF程度であるため、交流電圧V1の上記の周波数に対して、そのインピーダンスは10数キロΩ以上の高い値となる。   As a result, the injection electrode 2 is capacitively coupled to the dirt layer 13 via the capacitance C1a, and the detection electrode 3 is capacitively coupled to the dirt layer 13 via the capacitance C2a. Further, the dirt layer 13 is capacitively coupled to the central conductor 12a via a distributed capacitance C3 formed between the coated conductor 12 and the central conductor 12a. Also in this case, since the electrostatic capacitances C1a and C2a are about several pF to 100 pF, the impedance becomes a high value of 10 or more kilo ohms or more with respect to the frequency of the AC voltage V1.

しかしながら、汚れの層13の方が中心導体12aよりも各電極2,3に近い位置に存在しているため、交流電圧生成部4から注入電極2を介しての被覆電線12への検査交流電圧V2の注入に起因して静電容量C1aに流れる電流Id2は、図3に示すように、その一部の電流Id2aが、汚れの層13および静電容量C2aを介して検出電極3から電流検出部5に入力され、他の一部の電流Id2bが、静電容量C1a、汚れの層13、分布容量C3、中心導体12aおよび商用電源11を介して、電流Id1と共にグランドに流れる。   However, since the dirt layer 13 exists closer to the electrodes 2 and 3 than the central conductor 12a, the inspection AC voltage from the AC voltage generator 4 to the covered wire 12 through the injection electrode 2 As shown in FIG. 3, a part of the current Id2 flowing through the capacitance C1a due to the injection of V2 is detected from the detection electrode 3 via the dirt layer 13 and the capacitance C2a. The other part of the current Id2b that is input to the unit 5 flows to the ground together with the current Id1 via the electrostatic capacitance C1a, the dirt layer 13, the distributed capacitance C3, the central conductor 12a, and the commercial power supply 11.

また、汚れの層13の抵抗値が低いほど(被覆電線12の表面の汚れが酷くなるほど)、注入電極2から静電容量C1aを介して汚れの層13に注入される電流Id2aは増加し、その結果、検出電極3から電流検出部5に入力される電流Id2aの電流値も増加する。なお、分布容量C3は、各静電容量C1a,C2aとほぼ同じ数pF〜100pF程度であるため、交流電圧V1の上記の周波数に対して、そのインピーダンスは10数キロΩ以上の高い値となる。このため、分布容量C3を介して中心導体12aに一旦注入された電流Id2bのうち、再度、分布容量C3を介して汚れの層13に伝達され、さらに検出電極3を介して電流検出部5に入力される電流は極めて少ない。したがって、電流検出部5から出力される検出電圧Vdの電圧値は、被覆電線12の表面の汚れが少なくなれば小さくなり、汚れが多くなれば大きくなる(汚れの程度に応じて変化する)。   Further, as the resistance value of the dirt layer 13 is lower (as the dirt on the surface of the covered wire 12 becomes more severe), the current Id2a injected from the injection electrode 2 into the dirt layer 13 via the capacitance C1a increases. As a result, the current value of the current Id2a input from the detection electrode 3 to the current detection unit 5 also increases. Since the distributed capacitance C3 is about the same number pF to 100 pF as the electrostatic capacitances C1a and C2a, the impedance becomes a high value of 10 or more kilo ohms or more with respect to the above frequency of the AC voltage V1. . Therefore, the current Id2b once injected into the central conductor 12a via the distributed capacitor C3 is transmitted again to the dirt layer 13 via the distributed capacitor C3, and further to the current detector 5 via the detection electrode 3. Very little current is input. Therefore, the voltage value of the detection voltage Vd output from the current detection unit 5 decreases as the surface of the covered wire 12 becomes less dirty, and increases as the contamination increases (changes depending on the degree of contamination).

このため、被覆電線12の表面の汚れが許容範囲内のときには、算出される比率kは基準比率kref以下となることから、処理部7は、判別処理において、算出した比率kが基準比率kref以下であるという結果に基づき、被覆電線12の表面の汚れは許容範囲内であると判別する。一方、被覆電線12における表面の汚れが許容範囲を超えるときには、算出される比率kは基準比率krefを上回る状態となることから、処理部7は、判別処理において、算出した比率kが基準比率krefを上回るという結果に基づき、被覆電線12の表面の汚れは許容範囲外である(被覆電線12の表面が汚れている)と判別する。また、処理部7は、この判別結果を表示装置で構成された出力部8の画面に表示させる。   For this reason, when the surface dirt of the covered wire 12 is within the allowable range, the calculated ratio k is equal to or less than the reference ratio kref. Therefore, in the determination process, the processing unit 7 determines that the calculated ratio k is equal to or less than the reference ratio kref. Based on the result, it is determined that the surface of the covered electric wire 12 is within the allowable range. On the other hand, when the surface contamination of the covered wire 12 exceeds the allowable range, the calculated ratio k exceeds the reference ratio kref. Therefore, the processing unit 7 determines that the calculated ratio k is the reference ratio kref in the discrimination process. Based on the result of exceeding the above, it is determined that the surface of the covered electric wire 12 is out of the allowable range (the surface of the covered electric wire 12 is dirty). Further, the processing unit 7 displays the determination result on the screen of the output unit 8 configured by a display device.

このように、この検出装置1では、交流電圧生成部4が被覆電線12の中心導体12aと容量結合する注入電極2を介して検査交流電圧V2を中心導体12aに非接触で注入している状態において、被覆電線12の表面に汚れの層13が存在しているときには、電流検出部5が、この汚れの層13に流れる電流Id2aを被覆電線12の中心導体12aと容量結合する検出電極3を介して入力して検出電圧Vdに変換して出力し、処理部7が、この検出電圧Vdを示す電圧データDdに基づいて被覆電線12の表面が汚れているか否かを判別する。   Thus, in this detection device 1, the AC voltage generator 4 injects the inspection AC voltage V2 into the center conductor 12a in a non-contact manner via the injection electrode 2 that is capacitively coupled to the center conductor 12a of the covered electric wire 12. When the dirt layer 13 is present on the surface of the covered wire 12, the current detection unit 5 causes the detection electrode 3 that capacitively couples the current Id <b> 2 a flowing through the dirt layer 13 to the center conductor 12 a of the covered wire 12. The processing unit 7 determines whether or not the surface of the covered electric wire 12 is dirty based on the voltage data Dd indicating the detection voltage Vd.

したがって、この検出装置1によれば、上記の交流電圧生成部4および電流検出部5を備えた構成によって、被覆電線12の表面の汚れを検出することができるため、渦電流発生用の大きな電流を発生させる電源を不要にすることができる結果、検出装置1の小型化および低コスト化を図ることができる。   Therefore, according to this detection apparatus 1, since the structure including the AC voltage generation unit 4 and the current detection unit 5 described above can detect dirt on the surface of the covered electric wire 12, a large current for generating eddy currents can be detected. As a result, it is possible to reduce the size and cost of the detection apparatus 1.

また、この検出装置1によれば、被覆電線12の表面が汚れていると処理部7によって判別されたときにその旨を出力する出力部8を備えたことにより、出力部8からの出力に基づいて、被覆電線12の表面が汚れていることを確実に把握することができる。特に本例では、出力部8を表示装置で構成して、判別結果を画面に表示するようにしたことにより、被覆電線12の表面が汚れているとの判別結果を目視にて確実に把握することができる。   In addition, according to the detection device 1, when the processing unit 7 determines that the surface of the covered electric wire 12 is dirty, the output unit 8 outputs a message to that effect. Based on this, it is possible to reliably grasp that the surface of the covered electric wire 12 is dirty. In particular, in this example, the output unit 8 is configured by a display device, and the determination result is displayed on the screen, so that the determination result that the surface of the covered wire 12 is dirty can be surely grasped visually. be able to.

なお、上記の検出装置1では、処理部7による判別の結果(汚れの層13の有無)を出力部8としての液晶ディスプレイなどの表示装置に表示させる構成を採用しているが、出力部8をインジケータやスピーカ(またはブザー)で構成して、光や音で判別結果を出力する構成を採用することもできる。この構成を採用して、被覆電線12の表面が汚れているときに、インジケータを点灯させたり、スピーカなどを鳴動させることにより、被覆電線12の表面が汚れていることをオペレータに確実に認識させることができる。また、出力部8を伝送装置で構成して、判別結果を他の装置に伝送する構成を採用することもできる。   The detection device 1 employs a configuration in which the result of determination by the processing unit 7 (presence / absence of the dirt layer 13) is displayed on a display device such as a liquid crystal display as the output unit 8. It is also possible to adopt a configuration in which an indicator or speaker (or buzzer) is used to output a discrimination result with light or sound. By adopting this configuration, when the surface of the covered electric wire 12 is dirty, the operator can reliably recognize that the surface of the covered electric wire 12 is dirty by turning on an indicator or ringing a speaker or the like. be able to. In addition, a configuration in which the output unit 8 is configured by a transmission device and the determination result is transmitted to another device may be employed.

1 検出装置
2 注入電極
3 検出電極
4 交流電圧生成部
5 電流検出部
7 処理部
12 被覆電線
12a 中心導体
k 比率
kref 基準比率
V2 検査交流電圧
Vd 検出電圧
DESCRIPTION OF SYMBOLS 1 Detection apparatus 2 Injection electrode 3 Detection electrode 4 AC voltage generation part 5 Current detection part 7 Processing part 12 Covered electric wire 12a Center conductor k Ratio kref Reference ratio V2 Inspection AC voltage Vd Detection voltage

Claims (2)

被覆電線の中心導体と容量結合する注入電極と、
前記中心導体と容量結合する検出電極と、
検査交流電圧を生成すると共に当該検査交流電圧を前記注入電極を介して前記中心導体に非接触で注入する交流電圧生成部と、
前記検査交流電圧の注入に起因して前記被覆電線に発生する電流の一部を前記検出電極を介して入力すると共に検出電圧に変換して出力する電流検出部と、
前記検査交流電圧の電圧値に対する前記検出電圧の電圧値の比率を算出すると共に当該算出した比率が予め決められた基準比率以上のときに、前記被覆電線の表面が汚れていると判別する処理部とを備えている被覆電線の表面汚れ検出装置。
An injection electrode capacitively coupled to the central conductor of the covered wire;
A sensing electrode capacitively coupled to the central conductor;
An AC voltage generator for generating an inspection AC voltage and injecting the inspection AC voltage to the central conductor through the injection electrode in a non-contact manner;
A current detection unit that inputs a part of the current generated in the covered electric wire due to the injection of the inspection AC voltage through the detection electrode and converts the detection voltage into a detection voltage, and
A processing unit that calculates the ratio of the voltage value of the detection voltage to the voltage value of the inspection AC voltage and determines that the surface of the covered electric wire is dirty when the calculated ratio is equal to or greater than a predetermined reference ratio. A device for detecting surface contamination of a covered electric wire.
前記被覆電線の表面が汚れていると前記処理部によって判別されたときにその旨を出力する出力部を備えている請求項1記載の被覆電線の表面汚れ検出装置。   The device for detecting surface contamination of a covered electric wire according to claim 1, further comprising an output unit that outputs that when the surface of the covered electric wire is dirty by the processing unit.
JP2011151440A 2011-07-08 2011-07-08 Covered wire surface contamination detector Expired - Fee Related JP5693404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151440A JP5693404B2 (en) 2011-07-08 2011-07-08 Covered wire surface contamination detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151440A JP5693404B2 (en) 2011-07-08 2011-07-08 Covered wire surface contamination detector

Publications (2)

Publication Number Publication Date
JP2013019710A true JP2013019710A (en) 2013-01-31
JP5693404B2 JP5693404B2 (en) 2015-04-01

Family

ID=47691297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151440A Expired - Fee Related JP5693404B2 (en) 2011-07-08 2011-07-08 Covered wire surface contamination detector

Country Status (1)

Country Link
JP (1) JP5693404B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150048842A1 (en) * 2013-08-19 2015-02-19 Oes, Inc. Conductor monitor device and method
US9945892B2 (en) 2013-08-19 2018-04-17 Oes, Inc. Wire processing machine including a conductor monitor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239191A (en) * 1975-09-23 1977-03-26 Fujikura Ltd Detecting method of water tree in cable
JPS6466555A (en) * 1987-09-07 1989-03-13 Tatsuta Densen Kk Insulation flaw detector
JPH01137481U (en) * 1988-03-16 1989-09-20
JPH01280245A (en) * 1988-04-30 1989-11-10 Hitachi Cable Ltd Method and device for detecting icing snow on electric wire
JPH02269945A (en) * 1988-12-29 1990-11-05 Atlantic Richfield Co <Arco> Method for detecting unevenness in conductive wall of container equipment
JPH08211115A (en) * 1995-02-06 1996-08-20 Toshiba Corp Deterioration diagnostic apparatus for insulation coating of coated wire
JPH08223727A (en) * 1995-02-16 1996-08-30 Fujikura Ltd Surface inspection apparatus for cable insulator
JP3158063B2 (en) * 1997-01-21 2001-04-23 北斗電子工業株式会社 Non-contact voltage measurement method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239191A (en) * 1975-09-23 1977-03-26 Fujikura Ltd Detecting method of water tree in cable
JPS6466555A (en) * 1987-09-07 1989-03-13 Tatsuta Densen Kk Insulation flaw detector
JPH01137481U (en) * 1988-03-16 1989-09-20
JPH01280245A (en) * 1988-04-30 1989-11-10 Hitachi Cable Ltd Method and device for detecting icing snow on electric wire
JPH02269945A (en) * 1988-12-29 1990-11-05 Atlantic Richfield Co <Arco> Method for detecting unevenness in conductive wall of container equipment
JPH08211115A (en) * 1995-02-06 1996-08-20 Toshiba Corp Deterioration diagnostic apparatus for insulation coating of coated wire
JPH08223727A (en) * 1995-02-16 1996-08-30 Fujikura Ltd Surface inspection apparatus for cable insulator
JP3158063B2 (en) * 1997-01-21 2001-04-23 北斗電子工業株式会社 Non-contact voltage measurement method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150048842A1 (en) * 2013-08-19 2015-02-19 Oes, Inc. Conductor monitor device and method
US9880213B2 (en) * 2013-08-19 2018-01-30 Oes, Inc. Conductor monitor device and method
US9945892B2 (en) 2013-08-19 2018-04-17 Oes, Inc. Wire processing machine including a conductor monitor device

Also Published As

Publication number Publication date
JP5693404B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
CN101387613B (en) Capacity coupling non-contact conductance measuring device based on series resonance and method
JP2006242855A (en) Noncontact-type voltage detection method and noncontact-type voltage detection device
US8408070B2 (en) Electromagnetic flowmeter and method incorporating the same
CN103499022B (en) A kind of sensor distinguishing pipeline surfaces externally and internally corrosion default
JP2007248259A (en) Electromagnetic flowmeter
CN104142431B (en) Eddy current conductivity measuring sensor
KR20130047441A (en) Partial discharge diagnostic system of power apparatus using contactless phase measurement sensor
JP2012164308A (en) Minute impedance variation detection device
CN105223413B (en) A kind of marine ship seawater pipeline stray current detecting device
CN103925474A (en) Leakage on-line detection method for weld joint of petroleum and natural gas pipeline
CN112858838A (en) Cable fault positioning system and method
JP2010025918A (en) Voltage detection device and line voltage detection device
JP5693404B2 (en) Covered wire surface contamination detector
EP2781894B1 (en) Signal amplifying circuit for electromagnetic flow meter
CN103207031B (en) Non-contact temperature measurement device and temperature measurement method thereof
JP2014044102A (en) Four-terminal resistance measuring device, inspection device, four-terminal resistance measuring method and inspection method
CN105181750B (en) Tubing internal coating device for detecting leak point
JP3858084B2 (en) Liquid contact timing detection device for test probe
JP2012189513A (en) Partial discharge detection sensor, partial discharge detection device and partial discharge detection method
JP2004184307A (en) Capacitance detection circuit and capacitance detection method
JP2009103608A (en) Noncontact-type voltage and current probe device
JP5247562B2 (en) Humidity measuring device
JP2000193708A (en) Method and apparatus for monitoring of insulation of floating electric circuit
JP2010261722A (en) Voltage detecting apparatus and line voltage detecting apparatus
JP2007085959A (en) Capacitive displacement sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees