JP2013019640A - Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel - Google Patents

Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel Download PDF

Info

Publication number
JP2013019640A
JP2013019640A JP2011154914A JP2011154914A JP2013019640A JP 2013019640 A JP2013019640 A JP 2013019640A JP 2011154914 A JP2011154914 A JP 2011154914A JP 2011154914 A JP2011154914 A JP 2011154914A JP 2013019640 A JP2013019640 A JP 2013019640A
Authority
JP
Japan
Prior art keywords
reflector
wind
panel
trough
dish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011154914A
Other languages
Japanese (ja)
Inventor
Tomonobu Sato
友宣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOMONORI SATO
Original Assignee
TOMONORI SATO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOMONORI SATO filed Critical TOMONORI SATO
Priority to JP2011154914A priority Critical patent/JP2013019640A/en
Publication of JP2013019640A publication Critical patent/JP2013019640A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/13Profile arrangements, e.g. trusses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/80Accommodating differential expansion of solar collector elements
    • F24S40/85Arrangements for protecting solar collectors against adverse weather conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/874Reflectors formed by assemblies of adjacent similar reflective facets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/14Movement guiding means
    • F24S2030/145Tracks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflection panel in which an inexpensive plane mirror is made by product recycling, and to provide a reflection mirror inspection device therefor.SOLUTION: Plane reflection mirrors 19 or curved reflection mirrors 19 divided by a width of several centimeters to several tens centimeters are arranged at any angles on an airy structure to let out wind to gaps. Thus, the angled reflection mirrors 19 produce small turbulence to ward off the wind. Because the warded off wind may run through the gap for ventilation, a structure strong against wind can be achieved. The reflection mirrors can be inspected by a robot using a laser. Because the reflection panel cannot be used for the existing trough or dish, a polygonal trough or pyramid dish may be prepared. In a solar trucking device, a circular rail 16 is used to fix a heat collection pipe 17, and a cleaning device is completed by attaching a sponge to the heat collection pipe 17 and turning the solar trucking device.

Description

この発明はトラフ式及びディッシュ式太陽熱発電に関する。具体的には、反射鏡の幅を数mmから数十cmに細かく分割し耐風性能を高めた反射パネルを用いたトラフ及びディッシュに関する。さらに、反射鏡の焦点がずれた場合直ちにそれを見つける事が出来る自動検査ロボットに関する。 The present invention relates to trough type and dish type solar power generation. Specifically, the present invention relates to a trough and a dish using a reflective panel in which the width of the reflector is finely divided into several millimeters to several tens of centimeters to improve wind resistance. Further, the present invention relates to an automatic inspection robot that can immediately find out when a reflector is out of focus.

2011年7月現在日本は、2011年3月11日に発生した東日本大震災により原子力発電所が爆発し電力危機の状況である。その中で自然エネルギーが世間の注目を浴びている。中でもメガソーラーなどの太陽光発電の注目度は高い。しかし、太陽光発電は大規模にやるとなるとセルが高価な為非常にコストが掛かる。さらに、太陽光発電だけでは電力危機に対応できるほどの出力を持つ発電所を短期間に作るのは難しく雨天、曇り、夜間に発電が出来ない問題がある。 As of July 2011, Japan is in a power crisis due to the explosion of a nuclear power plant caused by the Great East Japan Earthquake that occurred on March 11, 2011. Among them, renewable energy is attracting public attention. Among them, the attention of solar power generation such as mega solar is high. However, when solar power generation is performed on a large scale, the cost is very high because the cell is expensive. In addition, it is difficult to create a power plant with enough power to respond to a power crisis with solar power alone, and there are problems that it is rainy, cloudy, and cannot generate electricity at night.

そこで太陽熱発電の出番である。太陽熱発電は1980年代に日本のサンシャイン計画により香川県仁尾町で生まれた。しかし、現在世界では大きく注目され技術開発されているが、日本では十分な土地が無く殆ど技術開発されていない。日本で生まれた技術だが完全に太陽熱発電後進国となってしまった状況にある。太陽熱発電はコストが安い上、大規模にやればやるほどさらにコスト低下が可能となる。さらに発電には太陽熱で生み出された蒸気を使いタービンを回すのでそのタービンを使用し雨天、曇り、夜は火力発電といった方法も考えられる。またどうしても出力が足りない時は燃料を用いて出力を上げる事ができるので、電力危機を解決するのに役に立つ自然エネルギー発電方法である。 This is where solar power generation comes into play. Solar power generation was born in Nio-cho, Kagawa Prefecture in the 1980s under the Japanese Sunshine Project. However, while much attention has been paid to technology development in the world, there is not enough land in Japan and almost no technology has been developed. Although it was a technology born in Japan, it has completely become a solar power generation backward country. The cost of solar power generation is low, and the larger the scale, the lower the cost. Furthermore, steam generated by solar heat is used for power generation, and the turbine is rotated, so that it is possible to use the turbine in rainy weather, cloudy weather, and thermal power generation at night. In addition, it is a natural energy power generation method that is useful for solving power crises because it is possible to increase the output using fuel when the output is absolutely insufficient.

太陽熱発電としてはアメリカ合衆国カリフォルニア州モハベ砂漠にあるSolar Energy Generating Systems(SEGS)が有名である。トラフ及びディッシュは巨大化すればするほど熱量を集める事ができる。しかし、トラフ及びディッシュは強風に弱く風で破損し易い。そのため巨大化すればするほど堅牢な支持材が必要となり高価格となりまた重量も大きくなる。又、環境の影響で焦点がずれた反射板の焦点を合わし直すのは大変である。 Solar energy generation is famous for Solar Energy Generating Systems (SEGS) in the Mojave Desert, California, USA. Troughs and dishes can collect more heat as they grow larger. However, troughs and dishes are weak against strong winds and easily damaged by wind. For this reason, the larger the size, the more rigid the support material is required, the higher the price and the greater the weight. Also, it is difficult to refocus the reflector that is out of focus due to environmental influences.

トラフ、ディッシュの反射鏡に強力な耐風形状を作る事で支持材を軽量化し巨大化、低価格化できるようにする。またトラフの熱媒体を高温・高圧にする為、集熱パイプを固定する方法を提供する。さらに自動で焦点が合っていない反射板を見つけ出すロボットも提供する。 By creating a strong wind-resistant shape on the trough and dish reflectors, the support material can be made lighter, larger, and less expensive. We also provide a method for fixing the heat collecting pipe to make the trough heat medium high temperature and high pressure. It also provides a robot that automatically finds out-of-focus reflectors.

トラフ及びディッシュを風に強くする為、図4のように反射鏡の幅を数mmから数十cmに分割する。トラフ及びディッシュは反射板から集熱パイプまでの距離が短い為、太陽の視直径32分などによる反射光の広がりの影響が少ない。その為、トラフに関しては曲面反射板で反射光を絞らず完全な平面の反射鏡を用いる事ができる。ディッシュに関しては四角形の反射鏡を長辺方向に凹ませカーブさせた物を使用できる、同様の反射鏡をトラフに用いて太陽から完全な垂直光をトラフに当てるようにすると、ディッシュのように一点集中集光ができる。平面の反射鏡は市場で大量生産し易く低コスト化につながり、平面の反射鏡を単純に凹ませカーブさせた物も作るのはさほど難しくない。ただし、トラフ及びディッシュをを巨大にする場合は僅かに短辺方向に凹面となった反射板を用いた方が良い。それらを風通しの良い金網のような構造に反射鏡取付板で取り付け角度調節板にて集熱器に焦点が合うよう角度を調節し一枚の反射パネルとする。トラフの場合反射板の長辺が集熱パイプの方向と一致するように反射パネルを取り付ける。四角錐のディッシュの場合は各開口部を構成する金属棒と接触している面はその金属の方向に反射鏡の長辺を取り付ける。完全に平面の反射鏡を用いる場合は反射鏡取付板及び角度調節板も完全な平面で良いが、凹んだ反射鏡を用いる場合はそれにあわせる。反射パネルは基本四角形で良いが、ディッシュ式の場合四角形だけだと隙間がうまれるので三角形のパネルも用意する。このような構造を取る事で角度を付けた反射鏡が風を乱し小さな渦を作る。その渦は風を受け流し風が反射パネルを通り抜けるよう働く。これが第一次風防御システムになる。 In order to make the trough and dish strong against the wind, the width of the reflector is divided into several mm to several tens of cm as shown in FIG. Since troughs and dishes have a short distance from the reflector to the heat collecting pipe, the influence of the spread of reflected light due to the solar visual diameter of 32 minutes is small. Therefore, as for the trough, it is possible to use a completely flat reflecting mirror without restricting the reflected light with the curved reflector. As for the dish, it is possible to use a curved object with a rectangular reflector recessed in the long side direction. If a similar reflector is used for the trough, and a perfect vertical light from the sun is applied to the trough, one point like a dish. Concentrated light can be collected. Planar reflectors are easy to mass-produce in the market, leading to lower costs, and it is not so difficult to make curved reflectors that are simply recessed. However, when making the trough and the dish huge, it is better to use a reflector that is slightly concave in the short side direction. Install them in a structure like a well-ventilated wire mesh with a reflector mounting plate and adjust the angle so that the collector is in focus with the angle adjustment plate to make a single reflective panel. In the case of a trough, attach the reflective panel so that the long side of the reflective plate matches the direction of the heat collecting pipe. In the case of a quadrangular pyramid dish, the long side of the reflecting mirror is attached to the surface in contact with the metal rod constituting each opening in the direction of the metal. When a completely flat reflecting mirror is used, the reflecting mirror mounting plate and the angle adjusting plate may be perfectly flat, but when a concave reflecting mirror is used, it is adjusted accordingly. The reflection panel may be a basic rectangle, but in the case of the dish type, a triangle panel is also prepared because a gap is formed if only the rectangle is used. By taking such a structure, the angled reflector disturbs the wind and creates a small vortex. The vortex takes the wind and works as the wind passes through the reflector panel. This is the primary wind defense system.

第一次風防御システムで風を受け流せない程の強風が吹いた場合、支持材全体の構造を守る為、図5の反射鏡取付板と角度調節板の接合部が強風の力によって外れ、反射鏡が反射鏡取付板のみでパネルと接続されるようになり、半回転運動ができるようになる。予め反射鏡取付板と角度調節板の接合部は反射板取付板とパネルの接合部よりも外れ易くして置く。こうすることで反射鏡が動くようなるので強風に対応した隙間が自動で作られ、さらに風に強くなる。これが第二次風防御システムになる。 When strong winds blown by the primary wind protection system blow off the wind, the joint between the reflector mounting plate and the angle adjustment plate in FIG. The reflecting mirror is connected to the panel only by the reflecting mirror mounting plate, so that the half-rotating motion can be performed. The joint between the reflector mounting plate and the angle adjusting plate is placed in advance so as to be more easily removed than the joint between the reflector mounting plate and the panel. By doing so, the reflector moves, so a gap corresponding to the strong wind is automatically created, and it becomes stronger against the wind. This becomes the secondary wind defense system.

第二次風防御システムで受け流せないほど強風が吹いた場合、トラフ全体の構造を守る為、反射板とパネルをつないでいる反射板取付板が強風の力によって外れることで反射板が外れる。反射板が外れれば外れるほど金網構造に近づくので当然風通しが良くなり、より風に強い構造となる。これが第三次風防御システムになる。これが風防御システムの最終形態で第四次風防御システムは存在しない。これ以上強い風が来た場合は諦める。 When a strong wind blows that cannot be received by the secondary wind protection system, the reflector is removed by the strong wind force separating the reflector mounting plate connecting the reflector and the panel in order to protect the entire trough structure. The more the reflector is removed, the closer it is to the wire mesh structure, so that the ventilation is naturally improved and the structure is more resistant to wind. This becomes the third wind defense system. This is the final form of the wind protection system and there is no fourth wind protection system. If there is a stronger wind, give up.

第一次から第三次風防御システムを取る事で風に対して堅牢となりトラフ及びディッシュを支持する構造及び反射板自体を軽量化できるのでその分材料費を減らせ低価格に製造できる。さらに容易に巨大化もでき、より熱量を集めれる。 By taking the first to third wind protection systems, the structure is robust against the wind and the structure supporting the trough and dish and the reflector itself can be reduced in weight. Furthermore, it can be enlarged easily and more heat can be collected.

一枚の大きな面積を持つ通常のトラフと異なり、分割された複数の反射板の構成を取ることで一枚一枚を集熱パイプの最下部に集中して光を当て易くなる。全体の吸熱量はトラフの開口部(アパチャ)が同じであれば通常のトラフと同じだが、集熱パイプ最下部付近を確実に狙うことで最下部付近の集光度が上がり高温を生み出せ、系が乱雑でなくよりエントロピーが低い集熱方法となる。ただし、最下部付近以外の集光度は通常のトラフより下がる。 Unlike a normal trough having a large area, it is easy to shine light by concentrating each piece on the bottom of the heat collecting pipe by adopting a structure of a plurality of divided reflectors. If the trough opening (aperture) is the same, the total heat absorption is the same as a normal trough. However, by focusing on the bottom of the heat collecting pipe, the concentration of light near the bottom increases, creating a high temperature. It is a heat collection method that is not messy and has lower entropy. However, the degree of light collection other than near the bottom is lower than the normal trough.

トラフで高温を生み出せるようになると、現状の熱媒体と高圧にできない集熱パイプでは対応できなくなる恐れがあるので、図1のように集熱パイプ17とトラフを独立に構成させる。図1は二等辺直角三角形の構造を持つトラフを長辺の中点が円型レール16の中心となるように設置した構造で、回転装置の動力が金属棒10を回す事で動力が金属棒11を介してローラー14に伝わり円型レール16とトラフを接続するローラー13,14,15が円型レール16を走り円の中心とトラフ長辺の中点を一致させながら、トラフを半回転できる。集熱パイプ17を円の中心に設置すれば半回転するトラフと完全に独立となり、地面に固定することができるので高圧を掛けれるようになる。トラフは金属棒11が集熱パイプ17に引っ掛かるので一回転は出来ない。ただし、半回転はできるので太陽追尾をする上で支障は無い。なお、この回転装置を緯度による傾斜を調節した構造体に設置する事で多角形ディッシュにも使用できる。その場合ディッシュの多角錐底辺の金属棒にローラー13,15を取り付け、その金属棒の中点に新たな金属棒を取り付けその先にローラー14と金属棒11を取り付ける。なお、ローラー14に接続する金属棒は太陽光追尾の際、集熱パイプの影響で常に影となる。これを利用してそこに光感知器を置き影となっているかどうかを調べ、太陽を正確に追尾できてるか確認する方法が考えられる。 If the trough can generate high temperature, the current heat medium and the heat collecting pipe that cannot be made high pressure may not be able to handle, so the heat collecting pipe 17 and the trough are configured independently as shown in FIG. Fig. 1 shows a structure in which troughs with an isosceles right triangle structure are installed so that the midpoint of the long side is the center of the circular rail 16, and the power of the rotating device is rotated by rotating the metal rod 10. Rollers 13, 14, and 15 that connect the circular rail 16 and the trough through the roller 14 through 11 can run the circular rail 16 and make the trough half-turn while aligning the center of the circle with the midpoint of the trough long side. . If the heat collecting pipe 17 is installed at the center of the circle, it becomes completely independent from the half-rotating trough and can be fixed to the ground, so that high pressure can be applied. The trough cannot rotate once because the metal rod 11 is caught by the heat collecting pipe 17. However, since half rotation is possible, there is no problem in tracking the sun. In addition, it can be used also for a polygonal dish by installing this rotation apparatus in the structure which adjusted the inclination by the latitude. In that case, rollers 13 and 15 are attached to the metal rods at the bottom of the polygonal pyramid of the dish, a new metal rod is attached to the midpoint of the metal rod, and the roller 14 and the metal rod 11 are attached to the tip. Note that the metal rod connected to the roller 14 always becomes a shadow due to the influence of the heat collecting pipe during the tracking of sunlight. Using this, a method can be considered in which a light detector is placed there to check whether it is in the shadow and whether the sun can be tracked accurately.

現状のトラフの太陽追尾装置にも対応できるようにしたのが、図2である。集熱パイプとトラフは回転軸を中心として一体となって回転する。そのため集熱パイプが可変となってしまうので高圧は掛けにくい。なお、ディッシュ式ではこの回転方法は使用できない。 Figure 2 shows the compatibility with the current trough solar tracking system. The heat collecting pipe and trough rotate together around the rotation axis. Therefore, it is difficult to apply high pressure because the heat collecting pipe becomes variable. Note that this rotating method cannot be used in the dish type.

この発明のトラフは反射鏡の数が膨大になるので図7のような反射鏡検査ロボットが必要不可欠である。このロボットは人力でトラフ末端の支持材と集熱パイプにセットされ、動力を用いてパイプに沿って自動で移動できる。さらにトラフ末端から集熱パイプ方向に金属棒に沿って自動で移動できるレーザー発生装置が接続されている。なお、このレーザー発生装置は金属棒に対して垂直にレーザーを発射する事ができる。それを集熱パイプ真下にある光感知器にて記録する。この装置をディッシュ式に使いたい場合は集熱器真下に独立で光感知器をセットしディッシュの多角形の底辺一本とその対辺に光感知器が付いてない反射鏡検査ロボットを取り付ける。
このロボットのプログラムはトラフ末端から集熱パイプに向けてレーザー発生装置が移動することから始まる。移動間隔は自由に決められるが数mmが望ましい。プログラムはレーザー光が現在レーザーが当たっている反射鏡から次の反射鏡に到達すると感知器の光検出位置が大きくずれるのを利用して反射鏡が変わった事を理解する。ただし、反射鏡が風で飛ばされている可能性も有るので反射鏡のおおよその間隔はセットしてあり状況によって使い分ける。トラフの末端から集熱パイプまでレーザー発生装置が到達したら、レーザー発生装置はトラフの末端へ戻り、集熱パイプに沿って予め決めておいた距離を移動しまた検査を開始する。これを繰り返す事でトラフ半分の反射鏡を検査できる。もう半分は人力でこのロボットをもう片側にセットし直し同様にプログラムにそって動かす。もしくは図7と別の構造でトラフの両端の金属棒にロボットを引っ掛けれるようにした物を作りトラフ全体を検査できるようにするのも良い。その場合光感知器とレーザー発生装置が重なってしまう現象が起きるので集熱パイプの方向に多少レーザー光線を傾けてやり光感知器の場所を集熱パイプ方向に多少ずらすことで解決する。
Since the trough of the present invention has a large number of reflectors, a reflector inspection robot as shown in FIG. 7 is indispensable. This robot is manually set on the trough end support and heat collecting pipe, and can move automatically along the pipe using power. Furthermore, a laser generator that can automatically move along the metal rod in the direction of the heat collecting pipe from the trough end is connected. The laser generator can emit a laser perpendicular to the metal rod. This is recorded with a light sensor directly under the heat collecting pipe. If you want to use this device in a dish style, set a light detector underneath the heat collector and attach a bottom of the polygon of the dish and a reflector inspection robot that does not have a light sensor on the opposite side.
The robot program begins with the laser generator moving from the trough end towards the heat collecting pipe. Although the movement interval can be freely determined, several mm is desirable. The program understands that the reflector has changed using the fact that when the laser beam reaches the next reflector from the reflector where the laser hits, the light detection position of the sensor is greatly shifted. However, since there is a possibility that the reflector is blown by the wind, the approximate distance between the reflectors is set and used depending on the situation. When the laser generator reaches the heat collecting pipe from the end of the trough, the laser generator returns to the end of the trough, moves a predetermined distance along the heat collecting pipe, and starts an inspection. By repeating this, it is possible to inspect the half of the reflector. The other half is set manually on the other side and moved according to the program. Alternatively, it may be possible to inspect the entire trough by making an object with a structure different from that shown in FIG. 7 so that the robot can be hooked on the metal rods at both ends of the trough. In this case, a phenomenon occurs in which the light detector and the laser generator overlap with each other. Therefore, the laser beam is slightly tilted in the direction of the heat collecting pipe and the place of the light detector is shifted slightly in the direction of the heat collecting pipe.

具体的な反射鏡検査ロボットのプログラムの原理を図6を用いながら以下で説明する。
光感知器の光検出位置によってレーザー光が集熱パイプに当たっているかどうかを調べる。
集熱パイプ中心から感知器に垂直に降ろした点を原点とした感知器上に検索ロボットの金属棒が接続されているトラフ末端を正方向としたx軸を置き、
L=集熱パイプ中心からロボットが接触しているトラフ末端の金属棒の中心の距離
l=集熱パイプ中心からレーザー発生装置の距離
θ=直角二等辺三角形トラフの鋭角
Xo=新たな反射鏡にレーザー光が当たった瞬間のx軸原点から検出地点の距離
α=レーザー光と光検出器のなす角度
h=x軸とレーザーの軌跡がなす三角形のレーザー発生装置から反射鏡上の辺
i=x軸とレーザーの軌跡がなす三角形のレーザー発生装置からx軸上の辺
g=光感知器と反射鏡の距離
r=集熱パイプ集熱部分の半径
R=真空ガラス管を含む集熱パイプの半径
d=集熱パイプの一点から光検出器までの最短距離
まず、hとiを求める。
h=(L-l)×tanθ
i=l-Xo
hとiよりtanαを求める。
tanα=h/i
x軸に対し角度αで集熱パイプの中心にレーザー光が当たる時通るx軸上の座標を求める。
(R+d)/tanα
この座標に集熱パイプ集熱部分の半径r分の幅を持たせる。
(R+d)/tanα±(r/sinα)
さらに太陽の視直径32分による反射光の広がりを考慮する。
100mで0.93m反射光が広がると考え、光感知器と反射鏡の距離g=l/cosα-(R+d)/sinαであるので光感知器の反応したx座標の収まるべき範囲が下式数式1のように導かれる。さらに既知のtanαからsinα、cosαは求められるから数式2が導き出せる。ただし±以降は常に正でなくてはならない。この式を用いて移動しながら一枚一枚反射鏡の複数箇所を調べて式の範囲内であればTrue範囲外であればFalseを返し一枚の反射鏡で複数測定するのでその何%がTrueであったかを集計し結果を出力する。

Figure 2013019640
Figure 2013019640
The principle of a specific reflector inspection robot program will be described below with reference to FIG.
It is checked whether the laser light is hitting the heat collecting pipe according to the light detection position of the light sensor.
Place the x axis with the trough end to which the metal rod of the search robot is connected as the positive direction on the sensor with the origin at the point descending perpendicular to the sensor from the center of the heat collecting pipe,
L = Distance of the center of the metal rod at the end of the trough where the robot is in contact with the center of the heat collecting pipe l = Distance of the laser generator from the center of the heat collecting pipe θ = Acute angle of the right angled isosceles triangle trough
Xo = Distance between x-axis origin and detection point when laser beam hits new reflector Side on the mirror
i = Side on the x axis from the triangular laser generator formed by the x axis and the laser trajectory g = Distance between the photodetector and the reflector
r = radius of the heat collecting pipe heat collecting portion R = radius of the heat collecting pipe including the vacuum glass tube d = shortest distance from one point of the heat collecting pipe to the photodetector First, h and i are obtained.
h = (Ll) × tanθ
i = l-Xo
Find tanα from h and i.
tanα = h / i
Find the coordinates on the x-axis through which the laser beam hits the center of the heat collecting pipe at an angle α to the x-axis.
(R + d) / tanα
This coordinate is given a width corresponding to the radius r of the heat collecting pipe heat collecting portion.
(R + d) / tanα ± (r / sinα)
In addition, the spread of reflected light due to the sun's visual diameter of 32 minutes is considered.
Since 0.93m reflected light spreads at 100m, the distance between the light sensor and the reflector is g = l / cosα- (R + d) / sinα. It is derived as Equation 1. Furthermore, since sin α and cos α are obtained from the known tan α, Equation 2 can be derived. However, after ±, it must always be positive. While moving using this formula, the multiple locations of each reflector are examined, and if it is within the range of the formula, if it is outside the True range, False is returned and multiple measurements are made with a single reflector. Sum up whether or not it was True and output the result.
Figure 2013019640
Figure 2013019640

四角錐ディッシュ式でこれと同様のロボットを使いたい場合は図7で言えば集熱パイプの方向にx軸の原点から新たにy軸を作り。入射角αから同様の式を作る。そうすることで許容されるx,yの値が定まる。ただ、注意したいのがこのままのプログラムだと反射鏡を長辺方向に横切って検査してしまうことである。そうなると、ディッシュ式の反射板はカーブしているので、同じ反射板を違う反射板と誤認識する可能性が出てくる。そこで四角形ディッシュの場合は四角錐の反射鏡が載っている4面の内二面ずつ検査する方法が考えられる。ロボットが接続されているトラフの金属棒に接触した2面の反射鏡は短辺方向に横切れるのでこれらのみ検査して、残りの二面は位置からプログラムで判断して飛ばす。残った二面はこのロボットを残った二面と接触している金属棒にセットし直して検査する。 If you want to use a robot similar to this with a quadrangular pyramid dish, create a new y-axis from the origin of the x-axis in the direction of the heat collecting pipe in FIG. A similar expression is made from the incident angle α. By doing so, the allowable x and y values are determined. However, what I want to pay attention to is that the program is inspected across the reflector in the long side direction. Then, since the dish type reflector is curved, there is a possibility that the same reflector is mistakenly recognized as a different reflector. Therefore, in the case of a square dish, a method of inspecting two of the four surfaces on which a quadrangular pyramid reflector is mounted can be considered. The two mirrors that contact the metal rod of the trough to which the robot is connected cross in the short side direction, so only these are inspected, and the remaining two surfaces are judged by the program based on the position and skipped. The remaining two surfaces are inspected by setting the robot on a metal bar that is in contact with the remaining two surfaces.

太陽熱発電の低コスト化につながる。また軽量化が可能で強風に強いので海上設置が可能になる可能性が出てくる。また平面の反射鏡は大量生産が既にされておりゴミとして多数存在する。これを加工する事でトラフを作れるので鏡をプロダクトリサイクルできる。 This leads to lower cost of solar thermal power generation. In addition, it can be reduced in weight and strong against strong winds. In addition, many flat reflectors have already been mass-produced and are present as garbage. By processing this, you can make a trough, so you can product recycle the mirror.

直角二等辺三角形のトラフとそれを集熱パイプに触れずして太陽追尾する装置を南北方向から見た図である。It is the figure which looked at the trough of a right-angled isosceles triangle and the device which tracks the sun without touching it with a heat collecting pipe from the north-south direction. 三角形のトラフとそれを集熱パイプと共に太陽追尾する装置を南北方向から見た図である。It is the figure which looked at the trough of a triangle and the device which tracks it with a heat collecting pipe from the north and south directions. 反射鏡がついてないパネルで構成された直角二等辺三角形トラフと集熱パイプに触れずに太陽追尾ができる装置の円形レールを東西方向から見た図である。It is the figure which looked at the circular rail of the apparatus which can track the sun without touching the right isosceles triangle trough comprised with the panel which does not have a reflecting mirror, and a heat collecting pipe from the east-west direction. 四角錐ディッシュを構成する為の反射パネル支持構造と反射鏡が付いていないパネルである。This is a panel without a reflecting panel support structure and a reflecting mirror for constituting a quadrangular pyramid dish. 耐風反射パネルの全体図である。It is a general view of a wind-resistant reflective panel. 耐風反射パネルと反射鏡、その取付部品の拡大図である。It is an enlarged view of a wind-resistant reflective panel, a reflective mirror, and its attachment components. 直角二等辺三角形トラフとその反射板の検査ロボットInspection robot for right isosceles triangle trough and its reflector

まず、集熱パイプが南北方向になるように反射パネル支持材と回転装置を設置する。この時、緯度による太陽光の減少を減らす為時期によって南北方向に傾斜できる支持台をつけるのも良い。トラフ式は傾斜が無くともある程度集光ができるがディッシュ式に関してはこの傾斜できる支持台が必須である。 First, the reflective panel support material and the rotating device are installed so that the heat collecting pipe is in the north-south direction. At this time, in order to reduce the decrease in sunlight due to latitude, it is also possible to attach a support stand that can tilt in the north-south direction depending on the time. The trough type can collect light to some extent even if there is no inclination, but for the dish type, a support base that can incline is essential.

支持材が組み立てられたら、反射パネルをセットする。トラフの場合反射鏡が南北方向に四角錐ディッシュ式の場合反射鏡の載る4つの面に接続する支持棒に長辺が平行になるようにセットする。 When the support is assembled, set the reflective panel. In the case of trough, if the reflector is a quadrangular pyramid dish type in the north-south direction, set the long side parallel to the support rod connected to the four surfaces on which the reflector is mounted.

集熱器はトラフの場合は集熱パイプを利用する。集熱パイプは既存のトラフのように反射防止膜をコーティングされた真空ガラス管に包まれた金属パイプの形式を取る。この金属パイプには選択吸収膜が形成されている。400度程度で運用するのであれば既存のトラフのように溶融塩やオイルを用いる方法が考えられる。オイルを使う場合金属パイプから水素が透過してくるのでこれを吸収させる為ハイドロジェン・ゲッターを使う。また、集熱パイプに高圧を掛けられるようにすると、沸点を上昇させた水や蒸気を熱媒体にしたり、化学プラントとして使える可能性が出てくる。ただし、図2の太陽追尾形式ではパイプが地面に固定できないので高圧は掛けられない。 If the collector is a trough, use a collector pipe. The heat collecting pipe takes the form of a metal pipe wrapped in a vacuum glass tube coated with an antireflection film like an existing trough. A selective absorption film is formed on the metal pipe. If operating at around 400 degrees, a method using molten salt or oil like an existing trough can be considered. When using oil, hydrogen permeates through the metal pipe, so use a hydrogen getter to absorb it. In addition, if high pressure is applied to the heat collecting pipe, there is a possibility that water or steam having a raised boiling point can be used as a heat medium or used as a chemical plant. However, in the solar tracking type of FIG. 2, high pressure cannot be applied because the pipe cannot be fixed to the ground.

トラフで高温にされた熱媒体により高温の蒸気を生み出しタービンを回す事で発電し電力を生み出す。ディッシュの場合は焦点にスターリングエンジンを置き発電をする方法が考えられる High temperature steam is generated by the heat medium heated at the trough, and power is generated by generating electricity by turning the turbine. In the case of a dish, a method of generating electricity by placing a Stirling engine at the focus can be considered

太陽追尾は基本季節の太陽の動きに合わせて回転装置を回すようプログラムするだけであるが、それだけでは正確に太陽追尾ができない可能性があるので、トラフもしくはディッシュの最下部が常に集熱器によって影が作られるのを利用する。この位置に光感知器をセットしておき影の位置が少しずれたら回転装置をその分動かすようにプログラムする。 Sun tracking is only programmed to rotate the rotating device in accordance with the movement of the sun in the basic season, but it may not be possible to accurately track the sun, so the bottom of the trough or dish is always kept by a collector. Use shadows to be created. A photo detector is set at this position, and when the shadow position is slightly shifted, the rotating device is programmed to move accordingly.

反射鏡検査ロボットを定期的にトラフ及びディッシュにセットし反射鏡の焦点が集熱器からずれてないかを検査する。焦点がずれている反射鏡が見つかった場合は人力で反射鏡角度調節板の長さを変更する事により焦点を直す。 A reflector inspection robot is periodically set on the trough and dish to inspect whether the reflector is out of focus from the heat collector. If a reflector out of focus is found, the focus is corrected by manually changing the length of the reflector angle adjustment plate.

反射鏡の汚れを取り除く為、定期的に洗浄をしなくてはならない。その為に既存のトラフの使用している洗浄車を用いる方法がある。図1で集熱パイプが固定式のトラフの場合は特殊な反射鏡の洗浄の仕方が出来る。パイプが固定である事を利用してパイプに弱いバネを取り付け押される事である程度上下運動ができる棒の先に集熱パイプ方向に長さを持つスポンジ又はブラシを付ける。そして回転装置を回転させると全ての反射鏡が自動でブラッシングされる。ただし、反射鏡の角度を動かさないように非常に弱いバネと柔らかいブラシを用いる。ブラシに水を通す機能を付けるとより洗浄効果が高まる。 In order to remove dirt from the reflector, it must be cleaned regularly. For this purpose, there is a method of using a washing car used by an existing trough. If the heat collecting pipe is a fixed trough in Fig. 1, a special reflector can be cleaned. A sponge or brush having a length in the direction of the heat collecting pipe is attached to the tip of a rod that can move up and down to some extent by attaching a weak spring to the pipe by using the fact that the pipe is fixed. When the rotating device is rotated, all the reflecting mirrors are automatically brushed. However, a very weak spring and soft brush are used so as not to move the angle of the reflector. A cleaning effect is enhanced by adding water to the brush.

発電所や給湯器などのボイラー、化学プラント、太陽炉等に使用できる。 It can be used for boilers such as power plants and water heaters, chemical plants and solar furnaces.

10 金属棒
11 金属棒
12 可動接続部
13 ローラー
14 ローラー
15 ローラー
16 円形レール
17 固定集熱パイプ
18 回転装置
19 反射鏡
20 可動集熱パイプ
21 回転軸
30 トラフ用反射パネル
40 四角錐ディッシュ支持体
41 ディッシュ用三角形反射パネル
42 ディッシュ用四角形反射パネル
51 反射鏡取付板
52 反射鏡角度調節板
70 レーザー発生装置
71 金属棒
72 光検出器
10 Metal rod
11 Metal rod
12 Movable connection
13 Roller
14 Roller
15 rollers
16 round rail
17 Fixed heat collecting pipe
18 Rotating device
19 Reflector
20 Movable heat collecting pipe
21 Rotation axis
30 Reflective panel for trough
40 Square pyramid dish support
41 Triangular reflective panel for dish
42 Rectangular reflector panel for dish
51 Reflector mounting plate
52 Reflector angle adjustment plate
70 Laser generator
71 Metal rod
72 photodetectors

Claims (9)

複数の風通し用の隙間を持ったパネルに角度をつけて幅が数mmから数十cmの完全な平面または曲面状の反射鏡を複数並べることで風を受けた場合に角度をつけた反射鏡表面がパネル上に小乱流を作りその乱流が強風を風通し用の隙間を抜けていくよう促す事で耐風性能を持たせた反射鏡パネル。 Reflective mirrors that are angled when wind is received by arranging multiple flat or curved reflectors with a width of several millimeters to several tens of centimeters at an angle to a panel with multiple air gaps A reflector panel with wind resistance by creating a small turbulent surface on the panel and encouraging the turbulence to pass through the gaps for ventilating strong winds. 請求項1の反射鏡が強風に吹かれた時に角度を調節する部品の結合を反射鏡から風の力のため自動で外れ反射鏡を風に合わせて動けるようにし、さらにそれ以上の強風が吹くと反射鏡と反射パネルを取り付けている部品が風の力のため自動で外れ反射鏡が取れるようにした反射鏡取付部品。 When the reflector of claim 1 is blown in a strong wind, the coupling of the components that adjust the angle is automatically removed from the reflector due to the wind force so that the reflector can be moved to match the wind, and further strong wind blows Reflector mounting parts that allow the reflector and the panel to which the reflector panel is attached to come off automatically due to the force of the wind and take the reflector. 請求項1のパネルを用いた平面又は多角形トラフ。 A flat or polygonal trough using the panel of claim 1. 請求項1のパネルを用いた多角錐ディッシュ。 A polygonal pyramid dish using the panel of claim 1. 円形のレールにトラフ及びディッシュを支持させ、外部からの動力でそれらを半回転できるようにし、円形レールの中心を通る集熱パイプに触れることなく太陽光を追尾させる事ができる太陽光追尾装置。 A solar tracker that supports troughs and dishes on a circular rail, allows them to be rotated halfway by external power, and tracks sunlight without touching the heat collecting pipe that passes through the center of the circular rail. 請求項1の反射鏡の焦点が一枚一枚合っているかどうかを調べるためにレーザー発生装置をトラフまたはディッシュ開口部上をモーターで動ける様にし、集熱器には光感知器をセットしレーザー発生装置がレーザーを発しながら別のモーターにより動く事で光感知器でそれを検出し反射光が焦点に当たっているかをプログラム制御で自動で移動しながら調べるロボット。 In order to check whether the reflectors of claim 1 are in focus one by one, the laser generator can be moved by a motor on the trough or the dish opening, and a light detector is set on the heat collector. A robot that uses a motor to detect whether the reflected light is in focus by moving the generator with a separate motor while emitting a laser, and checks whether the reflected light is in focus while moving automatically under program control. 請求項6の反射鏡検査装置を本発明でない既存のトラフの反射鏡に使えるようにプログラムを組み直した反射鏡検査装置。 7. A reflector inspection apparatus in which a program is reconfigured so that the reflector inspection apparatus according to claim 6 can be used for an existing trough reflector that is not the present invention. 請求項5の集熱パイプが固定であることと太陽追尾装置が回転できるのを利用して、上下にバネを内蔵することで伸び縮みすることができる棒を集熱パイプから真下になるよう2本互いに距離を置き取り付けその先に集熱パイプに沿ったスポンジまたはブラシをつけ太陽追尾装置を回転させる事で反射鏡を洗浄するシステム。 By utilizing the fact that the heat collecting pipe of claim 5 is fixed and the solar tracking device can be rotated, a bar that can be expanded and contracted by incorporating springs up and down is placed directly below the heat collecting pipe. A system that cleans the reflector by rotating the solar tracking device with a sponge or brush along the heat collecting pipe at the tip of the book. 太陽追尾をさせることで集熱パイプによって常に影になる部分に光検出器を置きトラフ又はディッシュに適切な角度の光が当たっているかどうかを調べる装置。 A device that puts a light detector on the part that is always shaded by the heat collecting pipe by tracking the sun and checks whether the trough or dish is exposed to light at an appropriate angle.
JP2011154914A 2011-07-13 2011-07-13 Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel Withdrawn JP2013019640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154914A JP2013019640A (en) 2011-07-13 2011-07-13 Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154914A JP2013019640A (en) 2011-07-13 2011-07-13 Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel

Publications (1)

Publication Number Publication Date
JP2013019640A true JP2013019640A (en) 2013-01-31

Family

ID=47691242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154914A Withdrawn JP2013019640A (en) 2011-07-13 2011-07-13 Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel

Country Status (1)

Country Link
JP (1) JP2013019640A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140204395A1 (en) * 2011-09-15 2014-07-24 Xiangtan Liyuan Electric Tooling Co., Ltd Detecting method and device for curved surface precision of dish parabolic reflecting mirror
JP2015010748A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Trough-type solar heat collection device
CN104316084A (en) * 2014-11-25 2015-01-28 中国人民解放军军械工程学院 Detection device for solar tracking errors
EP3045838A4 (en) * 2013-09-10 2017-10-11 SolarFlame Corporation Heliostat device, solar thermal collection device, and solar concentrating photovoltaic device
CN110486953A (en) * 2019-08-08 2019-11-22 合肥荣事达太阳能有限公司 A kind of solar water heater of thermal-collecting tube easy to clean
CN116315721A (en) * 2023-05-24 2023-06-23 南方电网数字平台科技(广东)有限公司 Emergency production command management device for power grid
CN117490126A (en) * 2024-01-02 2024-02-02 川楚***际工程有限公司 Heating device for factory building

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140204395A1 (en) * 2011-09-15 2014-07-24 Xiangtan Liyuan Electric Tooling Co., Ltd Detecting method and device for curved surface precision of dish parabolic reflecting mirror
US8970851B2 (en) * 2011-09-15 2015-03-03 Xiangtan Liyuan Electric Tooling Co. Ltd. Detecting method and device for curved surface precision of dish parabolic reflecting mirror
JP2015010748A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Trough-type solar heat collection device
EP3045838A4 (en) * 2013-09-10 2017-10-11 SolarFlame Corporation Heliostat device, solar thermal collection device, and solar concentrating photovoltaic device
US10008977B2 (en) 2013-09-10 2018-06-26 Solarflame Corporation Heliostat apparatus and solar heat collecting apparatus and concentrating photovoltaic apparatus
CN104316084A (en) * 2014-11-25 2015-01-28 中国人民解放军军械工程学院 Detection device for solar tracking errors
CN104316084B (en) * 2014-11-25 2018-01-09 中国人民解放军军械工程学院 A kind of solar tracking error detecting apparatus
CN110486953A (en) * 2019-08-08 2019-11-22 合肥荣事达太阳能有限公司 A kind of solar water heater of thermal-collecting tube easy to clean
CN116315721A (en) * 2023-05-24 2023-06-23 南方电网数字平台科技(广东)有限公司 Emergency production command management device for power grid
CN116315721B (en) * 2023-05-24 2023-08-15 南方电网数字平台科技(广东)有限公司 Emergency production command management device for power grid
CN117490126A (en) * 2024-01-02 2024-02-02 川楚***际工程有限公司 Heating device for factory building
CN117490126B (en) * 2024-01-02 2024-03-19 川楚***际工程有限公司 Heating device for factory building

Similar Documents

Publication Publication Date Title
JP2013019640A (en) Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel
US20200208880A1 (en) Concentrating solar power with glasshouses
Mills et al. Compact linear Fresnel reflector solar thermal powerplants
US8378621B2 (en) Integrated systems for harnessing solar and wind energy
JP5876873B2 (en) Photovoltaic power generation apparatus provided with a columnar condensing device
Ab Kadir et al. A review on factors for maximizing solar fraction under wet climate environment in Malaysia
US9236516B2 (en) Solar energy collector apparatus
Zhu et al. Optical design of compact linear fresnel reflector systems
CN102484159A (en) 1-dimensional concentrated photovoltaic systems
WO2015037230A1 (en) Heliostat device, solar thermal collection device, and solar concentrating photovoltaic device
CN103238033A (en) A solar energy collector system
JP2012038954A (en) Condensing photovoltaic power generation system
US7878190B2 (en) Solar collection apparatus, solar collection arrays, and related methods
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
CN107407502B (en) CSP tracking
CN106571773A (en) Rigidly mounted tracking solar panel and method
KR101652243B1 (en) Solar sensor and solar tracker including the solar sensor
US20090194097A1 (en) Methods and Mechanisms to Increase Efficiencies of Energy or Particle Beam Collectors
AU2009202371A1 (en) Reflective light concentrator
Lu¨ pfert et al. Comparative flux measurement and raytracing for the characterization of the focal region of solar parabolic trough collectors
JPWO2002052204A1 (en) Solar radiation concentrator
Emetere et al. A short review on solar concentrator for energy generation in tropical coastal belt
JP2011129847A (en) Reflecting concentrated solar power generating module
Lamba et al. Designing of parabolic trough collector using plane mirrors
ES1074545U (en) Armor for multiple heliostatos or photovoltaic panels with independent adjustment and automatic arrastre (Machine-translation by Google Translate, not legally binding)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007