JP2013019032A - Electrical contact material and method for producing the same - Google Patents

Electrical contact material and method for producing the same Download PDF

Info

Publication number
JP2013019032A
JP2013019032A JP2011154324A JP2011154324A JP2013019032A JP 2013019032 A JP2013019032 A JP 2013019032A JP 2011154324 A JP2011154324 A JP 2011154324A JP 2011154324 A JP2011154324 A JP 2011154324A JP 2013019032 A JP2013019032 A JP 2013019032A
Authority
JP
Japan
Prior art keywords
internal oxidation
contact
electrical contact
time
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011154324A
Other languages
Japanese (ja)
Inventor
Hideo Kumita
英生 汲田
Shinya Mamada
慎也 眞々田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP2011154324A priority Critical patent/JP2013019032A/en
Publication of JP2013019032A publication Critical patent/JP2013019032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrical contact material composed of a silver alloy, in which a satisfying temperature characteristic is obtained and a consumption-resistant performance and a deposition-resistant performance are maintained.SOLUTION: In the electrical contact material, a base metal, which is deposited as oxide, and a non-oxidized base metal, which is not deposited as oxide, are mixed.

Description

本発明は、銀合金からなる電気接点材料およびその製造方法に関する。   The present invention relates to an electrical contact material made of a silver alloy and a method for producing the same.

銀‐酸化物系電気接点材料においては、耐消耗性能、耐溶着性能、温度特性などの接点特性の向上を図る際に、添加元素の検討、内部酸化前の素材における加工率の検討あるいは内部酸化時の温度や酸素分圧等の条件などの検討と工夫がなされ、従来からそれらの製造条件を検討することで適宜、使用条件に見合った接点材料を開発、製造して使用されている。(例えば、特許文献1参照、特許文献2参照、特許文献3参照)。   In silver-oxide-based electrical contact materials, when improving contact characteristics such as wear resistance, welding resistance, and temperature characteristics, study additive elements, work rate of materials before internal oxidation, or internal oxidation. The conditions such as the temperature and oxygen partial pressure have been studied and devised, and contact materials that meet the conditions of use have been developed, manufactured, and used as appropriate by examining the manufacturing conditions. (For example, refer patent document 1, refer patent document 2, refer patent document 3).

特に、接点性能における温度特性の改善については、さまざまな試行錯誤が繰り返されてきている。その理由としては、温度特性の改善について考えると、接点素材そのものの固有抵抗が高いことや、接点材料として使用した場合に、接点表面における酸化物の堆積が接触抵抗の上昇を引き起こす要因となるため、その改善策は、添加される卑金属の量を減らすことにつながり、それは接点の耐消耗特性や耐溶着特性の低下につながる場合が多く、安易な温度特性の改善が他の特性の低下に通じてしまい相反する状況を引き起こしてしまうことになる。   In particular, various trials and errors have been repeated for improving the temperature characteristics of the contact performance. The reason for this is that, considering the improvement of temperature characteristics, the contact material itself has a high specific resistance, and when used as a contact material, the deposition of oxide on the contact surface can cause an increase in contact resistance. Therefore, the improvement measures often lead to a reduction in the amount of base metal added, which often leads to a decrease in the wear resistance and welding resistance of the contacts, and an easy improvement in temperature characteristics leads to a decrease in other characteristics. This will cause a conflicting situation.

そのために、単に卑金属の添加量の削減というような組織の変更による改善ではなく、さらなる元素の添加や内部酸化条件の工夫、内部酸化前の素材の加工方法の工夫等様々な改善により温度特性の向上が試みられてきた。   Therefore, it is not an improvement by simply changing the structure such as reducing the amount of base metal added, but by adding various elements, devising internal oxidation conditions, devising processing methods for materials before internal oxidation, etc. Improvements have been tried.

特開2006−111956公報JP 2006-111956 A 特開2005−166338公報JP 2005-166338 A 特開2002−363665公報JP 2002-363665 A

近年、マグネットスイッチやブレーカ等の開閉器においては、その小型化が加速度的に進み、接点自体も小型化が求められ、さらに接点材料が接合される台材についても小型化、薄板化が進み、接点材料が開閉時に発するアークを消弧する消弧室のスペースも小さくなり、その結果、温度上昇がますます助長される状況となっている。
そのため、上記のような内部酸化時の条件を変更させたりする等の改善策では仕様にあった満足する温度特性を持つ接点材料を得ることが困難な場合が多くなってきた。
そのため、卑金属の量を減らして耐消耗特性や耐溶着特性を犠牲にして温度特性を改善するという場合がある。
In recent years, in switches such as magnet switches and breakers, the miniaturization has accelerated, the contact itself has been required to be miniaturized, and the base material to which the contact material is joined has also become smaller and thinner, The space of the arc-extinguishing chamber for extinguishing the arc generated when the contact material is opened and closed is also reduced, and as a result, the temperature rise is further promoted.
For this reason, it is often difficult to obtain contact materials having satisfactory temperature characteristics in accordance with specifications by means of improvement measures such as changing the conditions during internal oxidation as described above.
For this reason, the amount of base metal may be reduced to improve temperature characteristics at the expense of wear resistance and welding resistance.

しかし、このような場合、実際に量産品として使用してみると、市場において想定外の使用をされた場合に、機器としての性能が仕様を満足させることができずに不具合を起こしてしまう場合が生じる。
そのため、満足する温度特性を得つつしかも耐消耗性能、耐溶着性能を保持するような改善策が求められている。
However, in such a case, when actually used as a mass-produced product, if it is used unexpectedly in the market, the performance as equipment can not satisfy the specifications and cause problems Occurs.
Therefore, there is a demand for an improvement measure that obtains satisfactory temperature characteristics while maintaining wear resistance and welding resistance.

まず、内部酸化の理論を簡単に説明する。あらかじめ銀(溶媒金属)に対して卑金属(溶質金属)を添加して溶解法によって合金化しておいた銀合金を、高圧の酸素雰囲気下においた状態で500°C以上に加熱する。この時500°C以上とするのは、銀が500°C以上の温度にさらされると酸素を吸蔵する性質を利用するもので、酸素と結合して酸化物を形成し易い卑金属を予め合金化しておくことで、銀合金が酸素を吸蔵する際に、卑金属が酸化物として銀マトリックス中に析出する。   First, the theory of internal oxidation will be briefly explained. A silver alloy that has been previously alloyed with a melting method by adding a base metal (solute metal) to silver (solvent metal) in advance is heated to 500 ° C. or higher in a state of being placed in a high-pressure oxygen atmosphere. At this time, the temperature is set to 500 ° C. or higher because the silver absorbs oxygen when exposed to a temperature of 500 ° C. or higher, and a base metal that easily forms an oxide by combining with oxygen is previously alloyed. Thus, when the silver alloy occludes oxygen, the base metal is precipitated in the silver matrix as an oxide.

この現象を利用し、銀マトリックス中に様々な酸化物を析出させた銀‐酸化物系材料を得て、それを接点材料として利用する技術が従来から用いられている。ここで、この酸化物を得る際に、後に接点として使用する際に求められる仕様を満足するために、添加する卑金属の種類や、さらにそこに加える第三、第四元素の種類あるいは内部酸化条件の検討を行った。   By utilizing this phenomenon, a technique of obtaining a silver-oxide-based material in which various oxides are precipitated in a silver matrix and using it as a contact material has been conventionally used. Here, when obtaining this oxide, in order to satisfy the specifications required for later use as a contact, the type of base metal to be added, the type of third and fourth elements to be added, or the internal oxidation conditions Was examined.

特に、温度特性の改善について用いられる工夫としては、なるべく抵抗の少ないもしくは接点として使用される際に接点表面に堆積しづらい元素を添加する手法が用いられてきた。具体的にはSn等は耐摩耗性能、耐溶着性能を向上させる一方で、固有抵抗の上昇を招くことや接点の開閉が繰り返されることで接点表面に堆積し易い性質があるため温度上昇の要因となってしまう。
そのため、In、Sb、ZnもしくはCu等を添加することで、酸化物を微細にしたり耐熱性のある複合酸化物とすることで温度上昇を抑制しつつ、耐摩耗性能や耐用着性能を向上させる工夫がなされてきた。
In particular, as a device used for improving the temperature characteristics, a technique of adding an element having as little resistance as possible or difficult to deposit on the contact surface when used as a contact has been used. Specifically, Sn and the like improve the wear resistance and welding resistance, but increase the specific resistance and easily accumulate on the contact surface due to repeated opening and closing of the contact. End up.
Therefore, by adding In, Sb, Zn, Cu, or the like, the wear resistance and wear resistance are improved while the temperature rise is suppressed by making the oxide finer or making it a heat-resistant composite oxide. Ingenuity has been made.

しかし、このような添加元素による固有抵抗の上昇抑制や添加元素の減少により固有抵抗を低下させる等の手法では温度特性の改善に限界がある。
そこで本発明は、銀合金からなる電気接点材料の製造方法において、内部酸化方法を用いて銀‐酸化物系接点材料を得る際に、酸化物として析出する卑金属と酸化物として析出せずに未酸化の状態のままの卑金属とが混在した状態に制御することで、すべての卑金属が酸化物にならず、固有抵抗の上昇が抑えられ、結果として、耐摩耗性能、耐溶着性能を維持したまま、温度特性に優れた電気接点材料を得ることができた。
なお、銀に添加する元素としては、上記の他Sn、Ni等従来から用いられている元素でよい。
However, there is a limit to the improvement of temperature characteristics in such methods as suppressing the increase of the specific resistance by the additive element and reducing the specific resistance by reducing the additive element.
Accordingly, the present invention provides a method for producing an electrical contact material made of a silver alloy. By controlling the mixed state with the base metal in the oxidized state, all base metals are not converted to oxides, and the increase in specific resistance is suppressed. As a result, wear resistance and welding resistance are maintained. Thus, an electrical contact material having excellent temperature characteristics could be obtained.
In addition, as elements to be added to silver, conventionally used elements such as Sn and Ni may be used.

内部酸化方法において本発明の特長は、内部酸化時に使用するガスを酸素のみではなく酸素に窒素やアルゴン等の不活性ガスを混合させて作製した混合ガスを用いることにより材料中に酸化物として析出する卑金属と、酸化物として析出しない未酸化の卑金属とを混在させて卑金属が従来と異なる内部酸化組織を得て、接点材料の温度特性を改善するというものである。   The feature of the present invention in the internal oxidation method is that the gas used during the internal oxidation is deposited not only as oxygen but also as an oxide in the material by using a mixed gas prepared by mixing an inert gas such as nitrogen or argon with oxygen. The base metal is mixed with unoxidized base metal that does not precipitate as an oxide, and the base metal obtains an internal oxide structure different from the conventional one, thereby improving the temperature characteristics of the contact material.

なお、この時の混合ガスの酸素の体積含有率を1〜10%とする。その理由は、酸素が1%未満の比率になると、銀マトリックス中に析出する酸化物の形状が小さくなり過ぎてしまい、耐溶着性能が得られない。また、酸素が10%を超える比率になると、内部酸化時に未酸化の状態で入る卑金属がほとんど存在しない状態になってしまい、優れた温度特性が得られないためである。   Note that the volume content of oxygen in the mixed gas at this time is 1 to 10%. The reason is that when the oxygen content is less than 1%, the shape of the oxide deposited in the silver matrix becomes too small, and the welding resistance cannot be obtained. Moreover, when the ratio of oxygen exceeds 10%, there is almost no base metal that enters in an unoxidized state during internal oxidation, and excellent temperature characteristics cannot be obtained.

以上のようにした電気接点材料によると、耐摩耗性能、耐溶着性能を維持したまま、温度特性に優れた電気接点材料を得ることができた。
また、量産可能な技術であり、コストの上昇を招くことなく上記の優れた特性を有する電気接点材料を製造することができる。
According to the electrical contact material as described above, it was possible to obtain an electrical contact material having excellent temperature characteristics while maintaining wear resistance and welding resistance.
Moreover, it is a technology that can be mass-produced, and an electrical contact material having the above-described excellent characteristics can be manufactured without causing an increase in cost.

実施例による接点の顕微鏡写真Photomicrograph of contact according to the example 従来例による接点の顕微鏡写真Micrograph of contact point by conventional example

本発明の実施例を説明する。
実施例1
まず、90質量%Ag−6質量%Sn−3.7質量%In−0.3質量%Niの合金を溶解法によって得る。この溶解法によって得た合金の表面と裏面を切削して清浄な面とし、その片面に純Agを複合する。この面は、後に加工を施して接点形状としたときに台材などと接合する面として使用するものである。
こうして得たAg−Sn−In−Ni合金と純Agの複合材を圧延、焼鈍を繰り返し、所望の板厚の素材を得る。この時の最終焼鈍後から所望の板厚下での加工率は50%とする。
Examples of the present invention will be described.
Example 1
First, an alloy of 90 mass% Ag-6 mass% Sn-3.7 mass% In-0.3 mass% Ni is obtained by a melting method. The front and back surfaces of the alloy obtained by this melting method are cut into clean surfaces, and pure Ag is compounded on one side. This surface is used as a surface to be joined to a base material or the like when processed into a contact shape later.
The composite material of Ag—Sn—In—Ni alloy and pure Ag thus obtained is repeatedly rolled and annealed to obtain a material with a desired plate thickness. The processing rate under the desired plate thickness after the final annealing at this time is 50%.

つぎに、その板材からプレス加工により所定の形状の接点に加工する。
このようにして得られた接点を内部酸化する。この時の内部酸化条件の一つである内部酸化雰囲気を、本実施例では、酸素を10体積%、窒素を90体積%の比で混合させた混合雰囲気を用いる。
この時の混合雰囲気の圧力は、1MPa、内部酸化温度は750°Cとし、内部酸化時間を72時間とした。
Next, the plate material is processed into a contact with a predetermined shape by pressing.
The contacts thus obtained are internally oxidized. In this embodiment, an internal oxidation atmosphere which is one of the internal oxidation conditions at this time is a mixed atmosphere in which oxygen is mixed at a ratio of 10% by volume and nitrogen is mixed by 90% by volume.
The pressure of the mixed atmosphere at this time was 1 MPa, the internal oxidation temperature was 750 ° C., and the internal oxidation time was 72 hours.

以上の条件で内部酸化した接点の断面組織の顕微鏡写真を図1に示す。
同じ配合値で、従来の工程どおりに内部酸化雰囲気に100%の酸素を用いて内部酸化を行った接点(下記従来例1)の断面組織の顕微鏡写真を図2に示す。
図1と図2を比較すると、実施例の図1は析出酸化物の量が減少していることが確認できる。
A photomicrograph of the cross-sectional structure of the contact internally oxidized under the above conditions is shown in FIG.
FIG. 2 shows a photomicrograph of the cross-sectional structure of the contact (conventional example 1 below) subjected to internal oxidation using 100% oxygen in the internal oxidation atmosphere as in the conventional process at the same blending value.
Comparing FIG. 1 and FIG. 2, it can be confirmed that FIG. 1 of the example shows a decrease in the amount of precipitated oxide.

実施例2
実施例1と同様の方法で得られた接点を内部酸化する。この時の内部酸化条件の一つである内部酸化雰囲気を、本実施例では、酸素を5体積%、窒素を95体積%の比で混合させた混合雰囲気を用いる。
この時の混合雰囲気の圧力は、1MPa、内部酸化温度は750°Cとし、内部酸化時間を72時間とした。
Example 2
The contacts obtained by the same method as in Example 1 are internally oxidized. In this embodiment, an internal oxidation atmosphere, which is one of the internal oxidation conditions at this time, is a mixed atmosphere in which oxygen is mixed at a ratio of 5% by volume and nitrogen is 95% by volume.
The pressure of the mixed atmosphere at this time was 1 MPa, the internal oxidation temperature was 750 ° C., and the internal oxidation time was 72 hours.

比較例1
実施例1と同様の方法で得られた接点を内部酸化する。この時の内部酸化条件の一つである内部酸化雰囲気を、本実施例では、酸素を15体積%、窒素を85体積%の比で混合させた混合雰囲気を用いる。
この時の混合雰囲気の圧力は、1MPa、内部酸化温度は750°Cとし、内部酸化時間を72時間とした。
Comparative Example 1
The contacts obtained by the same method as in Example 1 are internally oxidized. In this embodiment, an internal oxidation atmosphere which is one of the internal oxidation conditions at this time is a mixed atmosphere in which oxygen is mixed at a ratio of 15% by volume and nitrogen is 85% by volume.
The pressure of the mixed atmosphere at this time was 1 MPa, the internal oxidation temperature was 750 ° C., and the internal oxidation time was 72 hours.

従来例1
まず、90質量%Ag−6質量%Sn−3.7質量%In−0.3質量%Niの合金を溶解法によって得る。この溶解法によって得た合金の表面と裏面を切削して清浄な面とし、その片面に純Agを複合する。
こうして得たAg−Sn−In−Ni合金と純Agの複合材を圧延、焼鈍を繰り返し、所望の板厚の素材を得る。この時の最終焼鈍後から所望の板厚下での加工率は50%とする。
Conventional Example 1
First, an alloy of 90 mass% Ag-6 mass% Sn-3.7 mass% In-0.3 mass% Ni is obtained by a melting method. The front and back surfaces of the alloy obtained by this melting method are cut into clean surfaces, and pure Ag is compounded on one side.
The composite material of Ag—Sn—In—Ni alloy and pure Ag thus obtained is repeatedly rolled and annealed to obtain a material with a desired plate thickness. The processing rate under the desired plate thickness after the final annealing at this time is 50%.

つぎに、その板材からプレス加工により所定の形状の接点に加工する。
このようにして得られた接点を内部酸化する。この時の内部酸化条件の一つである内部酸化雰囲気を、酸素が100%の雰囲気を用いる。
この時の雰囲気の圧力は、1MPa、内部酸化温度は750°Cとし、内部酸化時間を72時間とした。
Next, the plate material is processed into a contact with a predetermined shape by pressing.
The contacts thus obtained are internally oxidized. As an internal oxidation atmosphere that is one of the internal oxidation conditions at this time, an atmosphere containing 100% oxygen is used.
At this time, the pressure of the atmosphere was 1 MPa, the internal oxidation temperature was 750 ° C., and the internal oxidation time was 72 hours.

従来例2
まず、90質量%Ag−6質量%Sn−3.7質量%In−0.3質量%Niの合金を溶解法によって得る。この溶解法によって得た合金の表面と裏面を切削して清浄な面とし、その片面に純Agを複合する。
こうして得たAg−Sn−In−Ni合金と純Agの複合材を圧延、焼鈍を繰り返し、所望の板厚の素材を得る。この時の最終焼鈍後から所望の板厚下での加工率は50%とする。
Conventional example 2
First, an alloy of 90 mass% Ag-6 mass% Sn-3.7 mass% In-0.3 mass% Ni is obtained by a melting method. The front and back surfaces of the alloy obtained by this melting method are cut into clean surfaces, and pure Ag is compounded on one side.
The composite material of Ag—Sn—In—Ni alloy and pure Ag thus obtained is repeatedly rolled and annealed to obtain a material with a desired plate thickness. The processing rate under the desired plate thickness after the final annealing at this time is 50%.

つぎに、その板材からプレス加工により所定の形状の接点に加工する。
このようにして得られた接点を内部酸化する。この時の内部酸化条件の一つである内部酸化雰囲気を、酸素が100%の雰囲気を用いる。
この時の雰囲気の圧力は、2MPa、内部酸化温度は750°Cとし、内部酸化時間を72時間とした。
Next, the plate material is processed into a contact with a predetermined shape by pressing.
The contacts thus obtained are internally oxidized. As an internal oxidation atmosphere that is one of the internal oxidation conditions at this time, an atmosphere containing 100% oxygen is used.
At this time, the pressure of the atmosphere was 2 MPa, the internal oxidation temperature was 750 ° C., and the internal oxidation time was 72 hours.

従来例3
まず、90質量%Ag−6質量%Sn−3.7質量%In−0.3質量%Niの合金を溶解法によって得る。この溶解法によって得た合金の表面と裏面を切削して清浄な面とし、その片面に純Agを複合する。
こうして得たAg−Sn−In−Ni合金と純Agの複合材を圧延、焼鈍を繰り返し、所望の板厚の素材を得る。この時の最終焼鈍後から所望の板厚下での加工率は50%とする。
Conventional example 3
First, an alloy of 90 mass% Ag-6 mass% Sn-3.7 mass% In-0.3 mass% Ni is obtained by a melting method. The front and back surfaces of the alloy obtained by this melting method are cut into clean surfaces, and pure Ag is compounded on one side.
The composite material of Ag—Sn—In—Ni alloy and pure Ag thus obtained is repeatedly rolled and annealed to obtain a material with a desired plate thickness. The processing rate under the desired plate thickness after the final annealing at this time is 50%.

つぎに、その板材からプレス加工により所定の形状の接点に加工する。
このようにして得られた接点を内部酸化する。この時の内部酸化条件の一つである内部酸化雰囲気を、酸素が100%の雰囲気を用いる。
この時の雰囲気の圧力は、1MPa、内部酸化温度は750°Cとし、内部酸化時間を72時間とした。
Next, the plate material is processed into a contact with a predetermined shape by pressing.
The contacts thus obtained are internally oxidized. As an internal oxidation atmosphere that is one of the internal oxidation conditions at this time, an atmosphere containing 100% oxygen is used.
At this time, the pressure of the atmosphere was 1 MPa, the internal oxidation temperature was 750 ° C., and the internal oxidation time was 72 hours.

従来例4
まず、90質量%Ag−6質量%Sn−3.7質量%In−0.3質量%Niの合金を溶解法によって得る。この溶解法によって得た合金の表面と裏面を切削して清浄な面とし、その片面に純Agを複合する。
こうして得たAg−Sn−In−Ni合金と純Agの複合材を圧延、焼鈍を繰り返し、所望の板厚の素材を得る。この時の最終焼鈍後から所望の板厚下での加工率は75%とする。
Conventional example 4
First, an alloy of 90 mass% Ag-6 mass% Sn-3.7 mass% In-0.3 mass% Ni is obtained by a melting method. The front and back surfaces of the alloy obtained by this melting method are cut into clean surfaces, and pure Ag is compounded on one side.
The composite material of Ag—Sn—In—Ni alloy and pure Ag thus obtained is repeatedly rolled and annealed to obtain a material with a desired plate thickness. The processing rate under the desired plate thickness after the final annealing at this time is 75%.

つぎに、その板材からプレス加工により所定の形状の接点に加工する。
このようにして得られた接点を内部酸化する。この時の内部酸化条件の一つである内部酸化雰囲気を、酸素が100%の雰囲気を用いる。
この時の雰囲気の圧力は、1MPa、内部酸化温度は750°Cとし、内部酸化時間を72時間とした。
Next, the plate material is processed into a contact with a predetermined shape by pressing.
The contacts thus obtained are internally oxidized. As an internal oxidation atmosphere that is one of the internal oxidation conditions at this time, an atmosphere containing 100% oxygen is used.
At this time, the pressure of the atmosphere was 1 MPa, the internal oxidation temperature was 750 ° C., and the internal oxidation time was 72 hours.

従来例5
まず、90質量%Ag−6質量%Sn−3.7質量%In−0.3質量%Niの合金を溶解法によって得る。この溶解法によって得た合金の表面と裏面を切削して清浄な面とし、その片面に純Agを複合する。
こうして得たAg−Sn−In−Ni合金と純Agの複合材を圧延、焼鈍を繰り返し、所望の板厚の素材を得る。この時の最終焼鈍後から所望の板厚下での加工率は75%とする。
Conventional Example 5
First, an alloy of 90 mass% Ag-6 mass% Sn-3.7 mass% In-0.3 mass% Ni is obtained by a melting method. The front and back surfaces of the alloy obtained by this melting method are cut into clean surfaces, and pure Ag is compounded on one side.
The composite material of Ag—Sn—In—Ni alloy and pure Ag thus obtained is repeatedly rolled and annealed to obtain a material with a desired plate thickness. The processing rate under the desired plate thickness after the final annealing at this time is 75%.

つぎに、その板材からプレス加工により所定の形状の接点に加工する。
このようにして得られた接点を内部酸化する。この時の内部酸化条件の一つである内部酸化雰囲気を、酸素が100%の雰囲気を用いる。
この時の雰囲気の圧力は、2MPa、内部酸化温度は550°Cとし、内部酸化時間を96時間とした。
以上の実施例、比較例、従来例の説明の結果、接点材料を定格100Aのブレーカに使用して、温度上昇、耐溶着性能、耐消耗性能について実機評価を行った。その結果を表1に示す。
Next, the plate material is processed into a contact with a predetermined shape by pressing.
The contacts thus obtained are internally oxidized. As an internal oxidation atmosphere that is one of the internal oxidation conditions at this time, an atmosphere containing 100% oxygen is used.
At this time, the pressure of the atmosphere was 2 MPa, the internal oxidation temperature was 550 ° C., and the internal oxidation time was 96 hours.
As a result of the description of the above examples, comparative examples, and conventional examples, the contact material was used for a breaker with a rating of 100 A, and actual machine evaluation was performed with respect to temperature rise, welding resistance, and wear resistance. The results are shown in Table 1.

評価方法としては、温度上昇については、定格100Aのブレーカに接点を組み込み、440V、100Aにて50回開閉した後、440V、100Aにて2時間通電後の固定接点端子部分の温度上昇値を測定した。
耐溶着性能については、440V、5000Aにてブレーカを投入した後、無負荷ブレーカを開放するときの接点の溶着力について評価した。
耐消耗性能については、440V、100Aにて5000回開閉した後、接点の消耗量を測定した。
As an evaluation method, for the temperature rise, incorporate a contact in a breaker rated 100A, open and close 50 times at 440V, 100A, and measure the temperature rise value of the fixed contact terminal part after energization for 2 hours at 440V, 100A did.
Regarding the welding resistance, the welding force of the contact when the unloaded breaker was opened after the breaker was charged at 440 V and 5000 A was evaluated.
Regarding the wear resistance, the contact wear amount was measured after opening and closing 5000 times at 440 V, 100 A.

この結果、従来の内部酸化方法で製造された接点と比較して、本発明品は、温度上昇が約10〜20%減少することが確認された。また、そのときの耐溶着性能、耐消耗性能については、従来の内部酸化方法により製造された接点と同等の性能を示した。
また、比較例1については、混合ガスにおける酸素の含有率が多いため、未酸化の状態の卑金属がほとんど存在できない状態になってしまったため、温度、特性において効果がみられなかった。
As a result, it was confirmed that the temperature increase of the product of the present invention was reduced by about 10 to 20% compared to the contact manufactured by the conventional internal oxidation method. In addition, regarding the welding resistance and wear resistance at that time, the same performance as that of a contact manufactured by a conventional internal oxidation method was shown.
Further, in Comparative Example 1, since the oxygen content in the mixed gas was large, there was almost no unoxidized base metal, so no effect was observed in temperature and characteristics.

Claims (3)

銀合金からなる電気接点材料において、材料中に酸化物として析出する卑金属と、酸化物として析出しない未酸化の卑金属とが混在していることを特徴とする電気接点材料。   An electrical contact material made of a silver alloy, wherein a base metal that precipitates as an oxide and an unoxidized base metal that does not precipitate as an oxide coexist in the material. 請求項1における銀合金からなる電気接点材料の製造法において、酸素と不活性ガスとの混合ガスによる雰囲気中で内部酸化を行うことにより、材料中に酸化物として析出する卑金属と、酸化物として析出しない未酸化の卑金属とを混在させることを特徴とする電気接点材料の製造方法。 In the manufacturing method of the electrical contact material which consists of a silver alloy in Claim 1, by performing internal oxidation in the atmosphere by the mixed gas of oxygen and an inert gas, the base metal which precipitates as an oxide in material, and as an oxide A method for producing an electrical contact material, characterized by mixing non-oxidized base metal that does not precipitate. 請求項2において、酸素と不活性ガスとの混合ガスに含まれる酸素の比率を、1〜10体積%としたことを特徴とする電気接点材料の製造方法。 3. The method for producing an electrical contact material according to claim 2, wherein the ratio of oxygen contained in the mixed gas of oxygen and inert gas is 1 to 10% by volume.
JP2011154324A 2011-07-12 2011-07-12 Electrical contact material and method for producing the same Pending JP2013019032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154324A JP2013019032A (en) 2011-07-12 2011-07-12 Electrical contact material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154324A JP2013019032A (en) 2011-07-12 2011-07-12 Electrical contact material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013019032A true JP2013019032A (en) 2013-01-31

Family

ID=47690745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154324A Pending JP2013019032A (en) 2011-07-12 2011-07-12 Electrical contact material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013019032A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029404A (en) * 1983-07-28 1985-02-14 Omron Tateisi Electronics Co Manufacture of electrical contact material
JPH0636634A (en) * 1992-07-20 1994-02-10 Matsushita Electric Works Ltd Fabrication of contact material
JPH07502787A (en) * 1992-01-21 1995-03-23 ユナイテッド テクノロジーズ コーポレイション Silver-metal oxide materials used in electrical contacts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029404A (en) * 1983-07-28 1985-02-14 Omron Tateisi Electronics Co Manufacture of electrical contact material
JPH07502787A (en) * 1992-01-21 1995-03-23 ユナイテッド テクノロジーズ コーポレイション Silver-metal oxide materials used in electrical contacts
JPH0636634A (en) * 1992-07-20 1994-02-10 Matsushita Electric Works Ltd Fabrication of contact material

Similar Documents

Publication Publication Date Title
JP5170864B2 (en) Copper-based precipitation type alloy sheet for contact material and method for producing the same
JP2008223143A (en) Plated material and method for preparation thereof, and electric and electronic parts using the same
JP2008270192A (en) Silver coating material for movable contact component, and manufacturing method thereof
JP2003171790A (en) Plating material, production method therefor, and electrical and electronic part obtained by using the same
JP5746344B2 (en) ELECTRODE MATERIAL FOR THERMAL FUSE, METHOD FOR MANUFACTURING THE SAME, AND THERMAL FUSE USING THE ELECTRODE MATERIAL
JP5684809B2 (en) Electrical contact material
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP4932465B2 (en) Ag-oxide-based electrical contact material and method for producing the same
JP2013019032A (en) Electrical contact material and method for producing the same
CN102304640A (en) Silver-base rare-earth alloy material and preparation method and application thereof
JP2015125936A (en) Electric contact
JP4514061B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP6753022B2 (en) Electrical contacts and contacts
JP6860435B2 (en) A sintered body composed of a copper-based alloy powder for powder metallurgy and the copper-based alloy powder.
JP3987458B2 (en) Electrical contact materials and switches
JP2007204854A (en) Plated material, method of producing the same, and electrical/electronic part using the same
JPS62158839A (en) Silver-oxide type contact point material
JP6753023B2 (en) Manufacturing method of electrical contacts
JP5088384B2 (en) High strength and high conductivity copper alloy
JP2007177330A (en) Plated material, method of producing the same, and electrical/electronic parts using the same
JP6380220B2 (en) Copper powder for paste
CN112899519A (en) Preparation method of silver-tin oxide composite board and contact
JP2015165041A (en) electrical contact material
JP2003064432A (en) Contact structure of connecting parts
KR100464868B1 (en) Electric contact material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110