JP2013018682A - Ozone generating apparatus, and method for manufacturing the same - Google Patents

Ozone generating apparatus, and method for manufacturing the same Download PDF

Info

Publication number
JP2013018682A
JP2013018682A JP2011154594A JP2011154594A JP2013018682A JP 2013018682 A JP2013018682 A JP 2013018682A JP 2011154594 A JP2011154594 A JP 2011154594A JP 2011154594 A JP2011154594 A JP 2011154594A JP 2013018682 A JP2013018682 A JP 2013018682A
Authority
JP
Japan
Prior art keywords
tube
ground electrode
gap
ozone generator
electrode tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011154594A
Other languages
Japanese (ja)
Other versions
JP5669685B2 (en
Inventor
Yoshiaki Odai
佳明 尾台
Hajime Nakatani
元 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011154594A priority Critical patent/JP5669685B2/en
Publication of JP2013018682A publication Critical patent/JP2013018682A/en
Application granted granted Critical
Publication of JP5669685B2 publication Critical patent/JP5669685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone generating apparatus capable of making temperature distribution of a dielectric tube more uniform, and resultantly increasing discharge power density, and furthermore achieving miniaturization of the apparatus or capacity increase.SOLUTION: This ozone generating apparatus includes: two tube plates set up in parallel so as to partition the inside of an airtightly sealed container into three spaces; a ground electrode tube provided so as to connect each hole of the two tube plates; and a dielectric tube held inside the ground electrode tube so that an outer wall and a ground electrode tube inner wall have a prescribed interval distance and including a metal electrode inside; and is constituted so as to generate ozone by discharging raw material gas containing oxygen and flowing through the interval, and to be cooled by circulating cooling water into a space partitioned by the two tube plates, the ground electrode tube outer wall and the sealed container inner wall. In the apparatus, the interval distance of an interval part facing to the tube plates is adjusted to be wider than a prescribed interval distance so that the discharge power density of the interval part facing to the tube plates becomes smaller than the discharge power density of a part at the prescribed interval distance.

Description

本発明は、無声放電を利用してオゾンを発生するオゾン発生装置に関するものである。   The present invention relates to an ozone generator that generates ozone using silent discharge.

従来、水処理などに用いられているオゾン発生装置は、無声放電を利用したものが多い。無声放電を利用したオゾン発生装置の基本構成は、内面に金属膜が形成された円筒状の誘電体管を円筒状の金属管内に、この金属管内壁と誘電体管外壁とが所定の間隙を有する寸法となるよう挿入した構成になっている。この間隙に、酸素を含む原料ガス(空気、あるいは酸素ガスなど)を流して、金属管と誘電体管内面の金属膜の間に高圧の交流電圧を印加し、誘電体管の誘電体を介して間隙に交流電界を発生させることにより原料ガスを放電させ、原料ガス中の酸素をオゾン化することでオゾンを発生させる。このような構造のオゾン発生装置にあって、誘電体管端部付近の沿面放電や金属間の直接放電を防止するために誘電体管端部付近に絶縁物を設けるなどの工夫がなされている。(例えば特許文献1)   Conventionally, many ozone generators used for water treatment use silent discharge. The basic structure of an ozone generator using silent discharge is that a cylindrical dielectric tube having a metal film formed on its inner surface is placed inside the cylindrical metal tube, and a predetermined gap is formed between the inner wall of the metal tube and the outer wall of the dielectric tube. It is the structure inserted so that it may have a dimension. A source gas containing oxygen (air or oxygen gas, etc.) is allowed to flow through this gap, and a high-voltage AC voltage is applied between the metal tube and the metal film on the inner surface of the dielectric tube, via the dielectric of the dielectric tube. Then, an alternating electric field is generated in the gap to discharge the raw material gas, and ozone is generated by ozonizing oxygen in the raw material gas. In the ozone generator having such a structure, in order to prevent creeping discharge near the end of the dielectric tube and direct discharge between metals, an contrivance has been made such as providing an insulator near the end of the dielectric tube. . (For example, Patent Document 1)

一方、特に大量の水処理に用いられるようなオゾン発生装置においては、近年、処理量の増大化に伴い、装置を大型化せずに処理量を増大させることが求められている。このような要求を満足させるためには、装置寸法当たりのオゾン発生量を増大させる必要があり、このためには放電電力密度を上げる必要がある。しかしながら、放電電力密度の増大に伴い、熱的な問題も増大している。   On the other hand, especially in an ozone generator used for a large amount of water treatment, in recent years, with an increase in the processing amount, it is required to increase the processing amount without increasing the size of the device. In order to satisfy such requirements, it is necessary to increase the amount of ozone generated per unit size, and for this purpose, it is necessary to increase the discharge power density. However, as the discharge power density increases, the thermal problem also increases.

特開平10−338503号公報JP 10-338503 A 特開2010−269950号公報JP 2010-269950 A

熱的な問題は、冷却の不均一性や、投入電力の不均一性すなわち放電の不均一性など、種々の原因が考えられる場合が多く、放電電力密度が小さい従来のオゾン発生装置では、明確になっていない問題も多かった。   The thermal problem is often caused by various causes such as non-uniformity of cooling and non-uniformity of input power, that is, non-uniformity of discharge. There were many problems that were not.

このほど、発明者らの詳細な検討により、金属管の端部付近に対向する誘電体管の、冷却の不均一性により発生する熱的な問題が明らかとなった。   As a result of detailed examinations by the inventors, a thermal problem caused by nonuniform cooling of the dielectric tube facing the vicinity of the end of the metal tube has been clarified.

この発明は上記のような発明者らにより明らかにされた、金属管の端部付近の冷却の不均一性の問題を解決するためになされたものである。従来は金属管の端部付近に対向した誘電体管の温度が他の部分よりも高くなり、この部分の温度により放電電力密度の上限が決まっていた。本発明では、誘電体管の温度分布を従来よりも均一にし、全体として放電電力密度を増大させることが出来、ひいては装置の小型化、あるいは大容量化を実現できるオゾン発生装置を提供することを目的とする。   The present invention has been made to solve the problem of non-uniformity of cooling near the end portion of the metal tube, which has been clarified by the inventors as described above. Conventionally, the temperature of the dielectric tube opposed to the vicinity of the end portion of the metal tube is higher than that of other portions, and the upper limit of the discharge power density is determined by the temperature of this portion. The present invention provides an ozone generator that can make the temperature distribution of a dielectric tube more uniform than the conventional one, increase the discharge power density as a whole, and thus realize downsizing or large capacity of the device. Objective.

この発明に係るオゾン発生装置は、気密密閉容器と、穴が開いた導電金属板であって、気密密閉容器の内部を3つの空間に仕切るように平行に設置された2枚の管板と、この2枚の管板の穴同士を連結するように設けられた接地電極管と、外壁と接地電極管内壁とが所定の間隙距離を有するように接地電極管内部に保持され、内部に金属電極を備えた誘電
体管と、接地電極管と金属電極との間に交流の高電圧を印加するための交流高圧電源とを備え、3つの空間のうち両端にある空間の一方の空間から、少なくとも間隙を通って両端にある空間の他方の空間に酸素を含む原料ガスを流し、誘電体管内部の金属電極を高電位、接地電極管および管板を接地電位として、間隙を流れる原料ガスを放電させてオゾンを発生させるとともに、2枚の管板と接地電極管外壁、および密閉容器内壁とで区切られた空間に冷却水を流して冷却するように構成されたオゾン発生装置であって、管板に対向する間隙部分の放電電力密度が、所定の間隙距離の部分の放電電力密度よりも小さくなるよう、管板に対向する間隙部分の間隙距離を、所定の間隙距離よりも広くしたものである。
The ozone generator according to the present invention is an airtight sealed container, a conductive metal plate with a hole, and two tube plates installed in parallel so as to partition the inside of the airtight sealed container into three spaces; The ground electrode tube provided so as to connect the holes of the two tube plates, and the outer wall and the inner wall of the ground electrode tube are held inside the ground electrode tube so as to have a predetermined gap distance. A dielectric tube comprising: an AC high voltage power source for applying an alternating high voltage between the ground electrode tube and the metal electrode; and at least one of the three spaces at both ends, A source gas containing oxygen flows through the gap to the other of the spaces at both ends. The metal electrode inside the dielectric tube is set to a high potential, and the ground electrode tube and tube plate are set to the ground potential. To generate ozone and two tubes And an outer wall of the ground electrode tube, and an inner wall of the sealed container, the ozone generator is configured to flow and cool the cooling water, and the discharge power density in the gap portion facing the tube plate is predetermined. The gap distance of the gap portion facing the tube plate is made larger than the predetermined gap distance so as to be smaller than the discharge power density of the gap distance portion.

この発明によれば、管板に対向する間隙部分を広げて、管板に対向する間隙部分の放電電力密度が、所定の間隙距離の部分の放電電力密度よりも小さくなるようにした。そのため管板に対向する部分の誘電体管の温度上昇が、従来に比較して小さくすることができ、誘電体管の温度分布を従来よりも均一にできる。その結果全体として放電電力密度を増大させることが出来、ひいては装置の小型化、あるいは大容量化を実現できるオゾン発生装置を提供することができる。   According to the present invention, the gap portion facing the tube plate is widened so that the discharge power density of the gap portion facing the tube plate is smaller than the discharge power density of the portion of the predetermined gap distance. Therefore, the temperature rise of the dielectric tube at the portion facing the tube plate can be made smaller than before, and the temperature distribution of the dielectric tube can be made more uniform than before. As a result, it is possible to provide an ozone generator that can increase the discharge power density as a whole, and that can realize downsizing of the apparatus or increase in capacity.

本発明の実施の形態1によるオゾン発生装置の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of the ozone generator by Embodiment 1 of this invention. 本発明の実施の形態1によるオゾン発生装置の主要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the ozone generator by Embodiment 1 of this invention. 本発明の実施の形態1によるオゾン発生装置の動作を説明する線図である。It is a diagram explaining operation | movement of the ozone generator by Embodiment 1 of this invention. 本発明の実施の形態2によるオゾン発生装置の主要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the ozone generator by Embodiment 2 of this invention. 本発明の実施の形態2によるオゾン発生装置の主要部を示す図4のA−A位置の拡大断面図である。It is an expanded sectional view of the AA position of FIG. 4 which shows the principal part of the ozone generator by Embodiment 2 of this invention. 本発明の実施の形態4によるオゾン発生装置の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of the ozone generator by Embodiment 4 of this invention.

実施の形態1.
以下、この発明の実施の形態1によるオゾン発生装置を図1、図2に基づいて説明する。図1は本発明の実施の形態1によるオゾン発生装置の概略構成を示す側面断面図であり、図2は本発明の主要部を示す拡大断面図である。
Embodiment 1 FIG.
Hereinafter, an ozone generator according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a side sectional view showing a schematic configuration of an ozone generator according to Embodiment 1 of the present invention, and FIG. 2 is an enlarged sectional view showing a main part of the present invention.

図1において、気密密閉容器1は、原料ガス入口2側の空間(第一の空間)100を仕切る第一の管板11、および、オゾン化ガス出口3側の空間(第二の空間)200を仕切る第二の管板12を備えている。円筒状の金属管である接地電極管4が、第一の管板11に開けられた穴と第二の管板12に開けられた穴との間に、第一の管板11(以後単に管板11とも記載する)および第二の管板12(以後単に管板12とも記載する)に気密を保つように固定接続されている。管板11と管板12の間の空間13内は冷却水で満たされ、冷却水が流れる。接地電極管4内には、接地電極管4と同軸状に、金属電極となる金属膜6を内壁に有する円筒状の誘電体管5が設けられている。交流高圧電源10から、高圧碍子9を通して、給電素子7によって金属膜6に交流高電圧が給電される。誘電体管5と金属電極となる金属膜6とをあわせて高圧電極管50と記載することもあり、一対の接地電極管4と高圧電極管50を放電管と称することもある。実際のオゾン発生器は多数本の接地電極管4と誘電体管5と給電素子7が配置された構造となっているが、図1では接地電極管4や高圧電極管50と管板11などの詳細構造が解り易いように、1本の放電管のみが配置された構造を図示している。   In FIG. 1, an airtight sealed container 1 includes a first tube plate 11 that partitions a space (first space) 100 on the source gas inlet 2 side, and a space (second space) 200 on the ozonized gas outlet 3 side. Is provided with a second tube sheet 12 for partitioning. A ground electrode tube 4, which is a cylindrical metal tube, is interposed between a hole formed in the first tube plate 11 and a hole formed in the second tube plate 12. The tube plate 11 is also fixedly connected to the second tube plate 12 (hereinafter also simply referred to as the tube plate 12) so as to maintain airtightness. The space 13 between the tube plate 11 and the tube plate 12 is filled with cooling water, and the cooling water flows. In the ground electrode tube 4, a cylindrical dielectric tube 5 having a metal film 6 serving as a metal electrode on the inner wall is provided coaxially with the ground electrode tube 4. An AC high voltage is supplied to the metal film 6 from the AC high voltage power source 10 through the high voltage insulator 9 by the power supply element 7. The dielectric tube 5 and the metal film 6 serving as a metal electrode may be collectively referred to as a high voltage electrode tube 50, and the pair of ground electrode tube 4 and high voltage electrode tube 50 may be referred to as a discharge tube. The actual ozone generator has a structure in which a large number of ground electrode tubes 4, dielectric tubes 5 and power feeding elements 7 are arranged. In FIG. 1, the ground electrode tube 4, the high voltage electrode tube 50, the tube plate 11, etc. The structure in which only one discharge tube is arranged is illustrated so that the detailed structure of FIG.

次に動作について説明する。原料ガスは酸素や空気など、オゾンの原料となる酸素を含むガスであり、原料ガスは気密密閉容器1の原料ガス入口2から供給される。誘電体管5は、原料ガスが供給される側の端部が開放し、他端は閉鎖された円筒状に形成されている。通常、交流高圧電源10から金属膜6への給電は、図1のように、誘電体管5の開放された原料ガス入口側の空間100側から高圧碍子9のような絶縁碍子を通して給電素子7により金属膜6に電気的に接触させて行われる。また、誘電体管5は一方が閉鎖されているため、原料ガスは、誘電体管5と接地電極管4との間の間隙を通過する。金属膜6と接地電極管4の間に印加される交流高電圧により、間隙には誘電体管5を介して交流高圧電界が発生し、原料ガスは間隙を通過する間に無声放電によりオゾン化される。オゾン化されたガスは、オゾン化ガス出口3からオゾン処理装置(図示せず)に供給される。誘電体管5を形成する誘電体としては、斯界で周知されているように高比誘電率を有する材料、例えばガラス、セラミックス、石英、ホーローなどが例示される。誘電体管5の外壁と、接地電極管4の内壁との間には所定の寸法の間隙20が形成されており、この間隙20は、例えば0.3mm以下といった狭い寸法に保たれている。   Next, the operation will be described. The source gas is a gas containing oxygen that is a source of ozone, such as oxygen or air, and the source gas is supplied from the source gas inlet 2 of the hermetic sealed container 1. The dielectric tube 5 is formed in a cylindrical shape with the end on the side to which the source gas is supplied opened and the other end closed. Normally, power is supplied from the AC high-voltage power supply 10 to the metal film 6 from the space 100 side on the source gas inlet side where the dielectric tube 5 is opened through the insulator such as the high-voltage insulator 9 as shown in FIG. This is performed by bringing the metal film 6 into electrical contact. Further, since one of the dielectric tubes 5 is closed, the source gas passes through the gap between the dielectric tube 5 and the ground electrode tube 4. An AC high voltage applied between the metal film 6 and the ground electrode tube 4 generates an AC high-voltage electric field in the gap via the dielectric tube 5, and the raw material gas is ozonized by silent discharge while passing through the gap. Is done. The ozonized gas is supplied from an ozonized gas outlet 3 to an ozone treatment device (not shown). Examples of the dielectric forming the dielectric tube 5 include materials having a high relative dielectric constant, such as glass, ceramics, quartz, and enamel, as is well known in the art. A gap 20 having a predetermined size is formed between the outer wall of the dielectric tube 5 and the inner wall of the ground electrode tube 4, and this gap 20 is kept narrow, for example, 0.3 mm or less.

また、誘電体管5は、原料ガス入口側の管板11から原料ガス入口側の空間100内に所定の寸法突き出しており、この部分の内壁にも金属膜6が形成されている。この突き出している寸法は、高圧電位となっている誘電体管5の内壁に設けられた金属膜6と、接地電位となっている管板11との間が、誘電体管5の外面を通って沿面放電が生じない距離となる寸法となっている。また、給電素子7を管板11の位置よりも外側、すなわち原料ガス入口側の空間(第一の空間)の位置に設けるため、管板11に対向する誘電体管5の内壁部にも金属膜6が形成されている構成になっている。   The dielectric tube 5 protrudes from the tube plate 11 on the source gas inlet side into the space 100 on the source gas inlet side, and a metal film 6 is formed on the inner wall of this portion. The protruding dimension is such that the space between the metal film 6 provided on the inner wall of the dielectric tube 5 at a high voltage potential and the tube plate 11 at the ground potential passes through the outer surface of the dielectric tube 5. Therefore, the distance is such that creeping discharge does not occur. Further, since the feeding element 7 is provided outside the position of the tube plate 11, that is, in the space (first space) on the source gas inlet side, the inner wall portion of the dielectric tube 5 facing the tube plate 11 is also made of metal. The film 6 is formed.

図2に、管板11付近の接地電極管4および誘電体管5の拡大した断面図を示す。図2では、接地電極管4や誘電体管5の中心軸に対して片側のみを示している。本実施の形態1では、接地電極管4が冷却水に接している部分(以下、主放電部と称する)に対応する間隙20の間隙距離d1は、上記のように例えば0.3mmといった狭い寸法であり、原料ガス入口2が設けられている空間100を仕切る管板11に対向する部分の間隙21の間隙距離d2は、例えば約1.5mmと、主放電部の間隙20の間隙距離よりも大きくしている。管板11に対応する位置の間隙距離が主放電部の間隙距離と同じ距離になっている従来のオゾン発生装置では、管板11に対応する位置の間隙を通過する原料ガスも放電するが、本実施の形態1によれば、管板11に対応する位置の間隙は広いために放電が発生し難く、放電電力密度が小さくなる構成となっている。一方、第二の管板12、すなわちオゾン化ガス出口側に設けられた管板12に対向する誘電体管5の内壁部には金属膜6は形成されていないため、この部分の間隙では放電が生じない。したがって、オゾン化ガス出口3側の管板12に対向する部分の間隙距離は主放電部の間隙距離と同じでも良いし、異なっていても良く、どのような間隙距離になっていても良い。   FIG. 2 shows an enlarged cross-sectional view of the ground electrode tube 4 and the dielectric tube 5 in the vicinity of the tube plate 11. In FIG. 2, only one side with respect to the central axis of the ground electrode tube 4 or the dielectric tube 5 is shown. In the first embodiment, the gap distance d1 of the gap 20 corresponding to the portion where the ground electrode tube 4 is in contact with the cooling water (hereinafter referred to as the main discharge portion) is as narrow as 0.3 mm as described above. The gap distance d2 of the gap 21 at the portion facing the tube plate 11 that partitions the space 100 where the source gas inlet 2 is provided is, for example, about 1.5 mm, which is larger than the gap distance of the gap 20 of the main discharge portion. It is getting bigger. In the conventional ozone generator in which the gap distance at the position corresponding to the tube plate 11 is the same as the gap distance of the main discharge portion, the source gas passing through the gap at the position corresponding to the tube plate 11 is also discharged. According to the first embodiment, since the gap at the position corresponding to the tube plate 11 is wide, the discharge hardly occurs and the discharge power density is reduced. On the other hand, the metal film 6 is not formed on the inner wall portion of the dielectric tube 5 facing the second tube plate 12, that is, the tube plate 12 provided on the ozonized gas outlet side. Does not occur. Therefore, the gap distance of the portion facing the tube plate 12 on the ozonized gas outlet 3 side may be the same as or different from the gap distance of the main discharge part, and may be any gap distance.

ここで、間隙距離と放電との関係について説明する。図3は間隙距離と放電電力密度との関係について説明した図である。図3は、図1、図2で示すような、主放電部の間隙距離d1に対して、一部間隙距離d2が広い部分がある場合に、広い間隙距離の部分の放電電力密度がどうなるかをシミュレーションにより求めた結果を示すものである。曲線aは、主放電部の間隙距離d1=0.15mm、曲線bはd1=0.2mm、曲線cはd1=0.3mmの場合を示している。図3に示すように、d2をd1より大きくすると、d2の部分の放電電力密度は一旦増大する。すなわち、d2をd1より単に拡げただけでは、d2の部分の放電電力密度が小さくなるわけではないことが解った。   Here, the relationship between the gap distance and the discharge will be described. FIG. 3 is a diagram illustrating the relationship between the gap distance and the discharge power density. FIG. 3 shows what happens to the discharge power density of the wide gap distance when there is a portion where the gap distance d2 is wider than the gap distance d1 of the main discharge portion as shown in FIGS. The result of having been calculated | required by simulation is shown. Curve a shows the gap distance d1 = 0.15 mm of the main discharge part, curve b shows d1 = 0.2 mm, and curve c shows d1 = 0.3 mm. As shown in FIG. 3, when d2 is made larger than d1, the discharge power density in the portion d2 temporarily increases. That is, it has been found that simply increasing d2 above d1 does not reduce the discharge power density at the portion d2.

図3より、主放電部の間隙距離d1によらず、d2が約0.8mmで放電電力密度が最大
となる。図3において、a、b、cそれぞれの曲線の左端の点は、主放電部の放電電力密
度を示している。また、a、b、cいずれの曲線も、Pで示すd2=0.8mmの直線に対
してほぼ対称となっている。よって、d2における放電電力密度がd1における放電電力密度よりも小さくなるのは、概略、
d2>0.8+(0.8−d1)=(1.6−d1)mm (1)
の条件を満足する場合である。すなわち、管板11に対向する部分の間隙21の間隙距離d2を1.6mm−d1より大きくしておけば、間隙21の部分の放電電力密度が、主放電部の放電電力密度よりも小さくなり、管板11に対向する部分の誘電体管5の温度上昇が抑えられる。なお、式(1)の条件でd2を決定できるのは、主放電部の間隙距離d1が0.4mm以下の場合である。
FIG. 3 shows that the discharge power density is maximized when d2 is about 0.8 mm regardless of the gap distance d1 of the main discharge portion. In FIG. 3, the leftmost point of each of the curves a, b, and c indicates the discharge power density of the main discharge portion. Further, the curves a, b, and c are almost symmetrical with respect to a straight line d2 = 0.8 mm indicated by P. Therefore, the discharge power density at d2 is smaller than the discharge power density at d1, roughly,
d2> 0.8+ (0.8−d1) = (1.6−d1) mm (1)
Is satisfied. That is, if the gap distance d2 of the gap 21 at the portion facing the tube plate 11 is made larger than 1.6 mm-d1, the discharge power density at the gap 21 portion becomes smaller than the discharge power density at the main discharge portion. The temperature rise of the dielectric tube 5 at the portion facing the tube plate 11 is suppressed. It should be noted that d2 can be determined under the condition of equation (1) when the gap distance d1 of the main discharge portion is 0.4 mm or less.

図3から解るように、d2を1.8mm以上とすれば放電電力密度が0、すなわち放電が発生しなくなるため、より好ましい。また、誘電体管5や接地電極管4の製造上のばらつきや設置精度などを考慮すると、さらにd2を大きくしておく方がより効果が大きい。ただし、d2を大きくすれば、放電管を複数配置した場合に、同一の大きさの気密密閉容器に配置できる放電管の数が減少する。このため、d2はできるだけ小さい方が良く、これらを総合的に考慮すると、2mm以下であることが好ましい。   As can be seen from FIG. 3, it is more preferable that d2 is 1.8 mm or more because the discharge power density is 0, that is, no discharge occurs. Further, in consideration of manufacturing variations and installation accuracy of the dielectric tube 5 and the ground electrode tube 4, it is more effective to further increase d2. However, if d2 is increased, when a plurality of discharge tubes are arranged, the number of discharge tubes that can be arranged in the same size hermetically sealed container is reduced. For this reason, d2 should be as small as possible, and considering these comprehensively, it is preferably 2 mm or less.

誘電体管5の冷却については、接地電極管4の外壁を流れる冷却水により接地電極管4が冷却され、その接地電極管4により間隙20を流れるガスが冷却され、そのガスを介して誘電体管5の冷却が行われる。管板11に対向した誘電体管5の部分は、冷却水に接する管板11からこの管板11に対向した間隙を介して冷却されるので、接地電極管4から間隙を介して冷却される部分よりも冷却水から遠い位置にあるため、冷却能力が低い。このため、誘電体管5の管板11に対向する部分は、誘電体管5の他の部分よりも温度が上昇し易い。本実施の形態1では、管板11に対向する部分の間隙21では、主放電部よりも放電電力密度が小さい。このため、冷却能力が低くても誘電体管5の温度上昇が少なく、他の部分と同じ、あるいは他の部分よりも少ない温度上昇にできる。もし間隙21が主放電部の間隙20と同じ間隙距離の場合は、誘電体管5のうち、この管板11に対向した部分の温度上昇が他の部分よりも大きくなるため、この部分の温度が、誘電体管5の許容上限温度以下となる放電電力しか投入できなかった。一方、本実施の形態1の場合は、管板11に対向する部分の温度は他の部分と同じか低いため、この部分の温度により放電電力の上限が限られることがない。よって、主放電部が従来と同じ寸法の高圧電極管50と接地電極管4を用いた場合、従来に比較して放電管全体に電力を多く投入でき、同じ寸法の高圧電極管50と接地電極管4であっても、大容量のオゾン発生装置とすることができる。また、より小型で、従来と同じオゾン発生量のオゾン発生装置とすることができる。   Regarding cooling of the dielectric tube 5, the ground electrode tube 4 is cooled by cooling water flowing on the outer wall of the ground electrode tube 4, and the gas flowing through the gap 20 is cooled by the ground electrode tube 4, and the dielectric is passed through the gas. The pipe 5 is cooled. The portion of the dielectric tube 5 facing the tube plate 11 is cooled from the tube plate 11 in contact with the cooling water through a gap facing the tube plate 11, and thus cooled from the ground electrode tube 4 through the gap. Since it is located farther from the cooling water than the part, the cooling capacity is low. For this reason, the temperature of the portion of the dielectric tube 5 facing the tube plate 11 is more likely to rise than the other portion of the dielectric tube 5. In the first embodiment, the discharge power density is smaller in the gap 21 at the portion facing the tube plate 11 than in the main discharge portion. For this reason, even if the cooling capacity is low, the temperature rise of the dielectric tube 5 is small, and the temperature rise can be the same as the other parts or less than the other parts. If the gap 21 has the same gap distance as the gap 20 of the main discharge portion, the temperature rise in the portion of the dielectric tube 5 facing the tube plate 11 is greater than in the other portions. However, only the discharge power that is lower than the allowable upper limit temperature of the dielectric tube 5 could be input. On the other hand, in the case of the first embodiment, the temperature of the portion facing the tube sheet 11 is the same as or lower than that of the other portions, so the upper limit of the discharge power is not limited by the temperature of this portion. Therefore, when the main discharge portion uses the high-pressure electrode tube 50 and the ground electrode tube 4 having the same dimensions as the conventional one, more electric power can be supplied to the entire discharge tube than in the conventional case, and the high-pressure electrode tube 50 and the ground electrode having the same dimensions can be supplied. Even the tube 4 can be a large-capacity ozone generator. Moreover, it can be set as the ozone generator which is smaller and has the same ozone generation amount as the conventional one.

ここで、本発明において、「管板に対向する」とは、管板11の幅(厚み)を延長した範囲に含まれる部分を指す。ただし、加工誤差その他により、多少前後するものを含む。さらに得られる効果をより確実にするために、意図的に管板11に対向する部分に加えて冷却水に対向する部分にも数cm以内でまたがった範囲とすることもありうる。このように本発明は、少なくとも管板に対向する部分は、間隙を、上記で説明した広い間隙にするものである。   Here, in the present invention, “opposing the tube sheet” refers to a portion included in a range in which the width (thickness) of the tube sheet 11 is extended. However, some may be slightly different due to processing errors. Further, in order to ensure the effect obtained, it is possible to intentionally set a range extending within several centimeters to a portion facing the cooling water in addition to the portion facing the tube sheet 11. As described above, according to the present invention, at least a portion facing the tube sheet is formed with the wide gap described above.

以上のようなオゾン発生装置、特に接地電極管の製造方法の一例を説明する。あらかじめ、管板11に対向した部分について、接地電極管単体で部分的に内径を拡大する加工を行う。このような加工は、所定の外径(接地電極管の内径より大きい)を有する円筒状の治具等を接地電極管の片端から接地電極管内部に所定の距離だけ圧入することにより容易に実現できる。   An example of a method for manufacturing the above ozone generator, particularly a ground electrode tube will be described. For the portion facing the tube plate 11, a process for partially expanding the inner diameter is performed with a ground electrode tube alone. Such processing is easily realized by press-fitting a cylindrical jig or the like having a predetermined outer diameter (larger than the inner diameter of the ground electrode tube) from one end of the ground electrode tube into the ground electrode tube by a predetermined distance. it can.

このように、接地電極管単体で部分的に内径の大きい接地電極管4を作製したのち、一般的に行われる管板11と接地電極管4との接合方法を用いて、オゾン発生装置を構成す
る。一般的に行われる管板11と接地電極管4との接合方法とは、溶接、あるいは拡管(管板に固定するための拡管)、さらにはOリング等により固定する方法などがある。なお、拡管加工で固定する場合は、万一、上記接地電極管単体での加工(管板11に対向する部分の内径を大きくする)において、接地電極管内面に傷等凹凸が生じた場合に、拡管ツールで表面を圧接することより、当該凹凸をある程度平坦化する効果がある。またオゾン側の管板12と接地電極管4との接合においても、どのような接合方法を用いても良い。ただし、この部分の接合を、酸素側の管板11と接地電極管4とが固定された状態で行う場合は、接地電極管のオゾン側を拡管すると接地電極管が延びて曲がるため、拡管は避けた方が良い。
In this way, after the ground electrode tube 4 having a large inner diameter is produced by a single ground electrode tube, an ozone generator is constructed by using a generally performed method of joining the tube plate 11 and the ground electrode tube 4. To do. Commonly used methods for joining the tube plate 11 and the ground electrode tube 4 include welding, tube expansion (expansion for fixing to the tube plate), and fixing by an O-ring or the like. In the case of fixing by tube expansion processing, in the event that the ground electrode tube itself is processed (the inner diameter of the portion facing the tube plate 11 is increased), irregularities such as scratches occur on the inner surface of the ground electrode tube. By pressing the surface with a tube expansion tool, there is an effect of flattening the unevenness to some extent. Also, any joining method may be used for joining the ozone side tube plate 12 and the ground electrode tube 4. However, when this portion is joined in a state where the oxygen side tube plate 11 and the ground electrode tube 4 are fixed, if the ozone side of the ground electrode tube is expanded, the ground electrode tube extends and bends. It is better to avoid it.

なお、通常の熱交換器あるいは従来のオゾン発生装置において一般的に行われている、管板11または管板12と接地電極管4を固定およびシールするための拡管加工においても、結果的に管板に対向する部分のみ接地電極管4の内径を広げることになるが、当該拡管加工における内径の拡大は、0.3mmないし0.6mm程度、半径(間隙に相当)では0.15mmないし0.3mm程度である。この程度の接地電極管4の拡大であれば、図3で示したように、管板に対向する部分で、かえって放電電力密度が増大する可能性がある。従って、本発明での接地電極管4の内径拡大は、通常の拡管加工とは、目的も寸法もまったく異なるものである。   In addition, as a result of the tube expansion process for fixing and sealing the tube plate 11 or the tube plate 12 and the ground electrode tube 4 which is generally performed in a normal heat exchanger or a conventional ozone generator, as a result, the tube The inner diameter of the ground electrode tube 4 is expanded only in the portion facing the plate. The expansion of the inner diameter in the tube expansion processing is about 0.3 mm to 0.6 mm, and the radius (corresponding to the gap) is 0.15 mm to 0.00 mm. It is about 3 mm. If the ground electrode tube 4 is expanded to such a degree, as shown in FIG. 3, there is a possibility that the discharge power density is increased at the portion facing the tube plate. Therefore, the expansion of the inner diameter of the ground electrode tube 4 in the present invention is completely different from the normal tube expansion processing in both purpose and size.

実施の形態2.
図4および図5は、本発明の実施の形態2の構成を示す図である。図4は、実施の形態2による主要部を示す拡大断面図であり、図5は図4のA−A部の断面図である。なお、図4は図2と同様、管板11に対向する付近であって、接地電極管4や誘電体管5の中心軸に対して片側のみを示している。
Embodiment 2. FIG.
4 and 5 are diagrams showing the configuration of the second embodiment of the present invention. 4 is an enlarged cross-sectional view showing a main part according to the second embodiment, and FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4 shows only one side with respect to the central axis of the ground electrode tube 4 and the dielectric tube 5 near the tube plate 11 as in FIG.

本実施の形態2においては、管板11に対向する部分の間隙21に、位置決め部材30を設けたものである。位置決め部材30は誘電体管5の表面に、周方向4箇所貼付されている。位置決め部材30には例えばガラス繊維やテフロン(登録商標)のようなフッ素樹脂やポリエステル、アセテートなどの絶縁性や耐酸化性に富んだ材料を用い、粘着剤には粘着力に富んだものを用いる。さらに、SUSや銅にNIやZnメッキを施した耐酸化性に優れ
た金属材料であっても良い。
In the second embodiment, a positioning member 30 is provided in a gap 21 at a portion facing the tube sheet 11. The positioning member 30 is adhered to the surface of the dielectric tube 5 at four locations in the circumferential direction. For the positioning member 30, for example, a fluororesin such as glass fiber or Teflon (registered trademark), a material having a high insulating property or an oxidation resistance such as a polyester, and an acetate is used. . Further, it may be a metal material having excellent oxidation resistance obtained by applying NI or Zn plating to SUS or copper.

本実施の形態2によれば、位置決め部材30により、間隙が大きくなった部分において、接地電極管4の中の誘電体管5の偏心が防止でき、管板に対向する部分での間隙を均一にでき、より確実にこの部分での放電電力密度を小さくできるという効果がある。   According to the second embodiment, the positioning member 30 can prevent the eccentricity of the dielectric tube 5 in the ground electrode tube 4 in the portion where the gap is increased, and the gap in the portion facing the tube plate is uniform. The discharge power density at this portion can be reduced more reliably.

なお、図5においては、位置決め部材30を周方向に4箇所設けた例を示したが、これに限らず、3箇所でも5箇所でもよい。また、ガスが通過するような構造(例えばハニカム状)、あるいは材料(例えば多孔質体)であれば、全周に設けられていてもよい。   In addition, although the example which provided the positioning member 30 four places in the circumferential direction was shown in FIG. 5, not only this but three places or five places may be sufficient. Further, if it has a structure through which gas passes (for example, a honeycomb shape) or a material (for example, a porous body), it may be provided all around.

実施の形態3.
本実施の形態は、実施の形態1と構造はほとんど同じであるが、製造方法が異なるものである。実施の形態1においては、接地電極管4は単体で径を広げる加工を行うが、本実施の形態3においては、管板11への固定と同時に行う。管板11に開けられた接地電極管4を通すための穴の直径は実施の形態1においては接地電極管(一部径を大きくする加工後)の外径より0.2mm程度大きいものであるが、本実施の形態においては、接地電極
管(加工前)の外径よりも例えば約2.0mm大きくしておく。そして、通常(従来)の
オゾン発生装置において、管板11と接地電極管4を固定するための拡管ツールを用いて、接地電極管4の管板11に対向する部分の内径を2.2mm拡げると接地電極管4の肉厚が約0.1mm薄くなり、接地電極管4の当該部分の外径は約2.0mm拡大され、管板11の穴にほぼ接する。さらに、軸方向の位置を微調整しながら、接地電極管4の内径を約0.4mm拡げることにより接地電極管4が管板11の穴に強固に固着されシールが完了する。本実施の形態では、接地電極管4の当該部分の内径は、結果的に主放電部より2.2+0.4=2.6mm大きくなる。誘電体管5の外径はほぼ一定であるから、間隙の距離は、管板11に対向する位置だけ、主放電部よりも1.3mm大きくなることになる。なお、上記加工のうち、最初に接地電極管4の内径を約2.2mm広げる(管板の穴にほぼ接する)までの作業は、通常の拡管と異なり接地電極管4が軸方向に動いてしまうため、管板12側に接地電極管4が軸方向に移動しないようにするためのストッパを設けて実施する必要がある。
Embodiment 3 FIG.
The present embodiment has almost the same structure as that of the first embodiment, but differs in the manufacturing method. In the first embodiment, the ground electrode tube 4 is processed to increase the diameter by itself, but in the third embodiment, it is performed simultaneously with the fixing to the tube plate 11. In the first embodiment, the diameter of the hole through which the ground electrode tube 4 formed in the tube plate 11 is passed is about 0.2 mm larger than the outer diameter of the ground electrode tube (after processing to increase a part of the diameter). In the present embodiment, the outer diameter of the ground electrode tube (before processing) is, for example, about 2.0 mm larger. In a normal (conventional) ozone generator, the inner diameter of the portion of the ground electrode tube 4 facing the tube plate 11 is expanded by 2.2 mm using a tube expansion tool for fixing the tube plate 11 and the ground electrode tube 4. The thickness of the ground electrode tube 4 is reduced by about 0.1 mm, the outer diameter of the portion of the ground electrode tube 4 is enlarged by about 2.0 mm, and is almost in contact with the hole of the tube plate 11. Further, the ground electrode tube 4 is firmly fixed in the hole of the tube plate 11 by expanding the inner diameter of the ground electrode tube 4 by about 0.4 mm while finely adjusting the position in the axial direction, and the sealing is completed. In the present embodiment, the inner diameter of the portion of the ground electrode tube 4 is consequently 2.2 + 0.4 = 2.6 mm larger than the main discharge portion. Since the outer diameter of the dielectric tube 5 is substantially constant, the distance of the gap is 1.3 mm larger than that of the main discharge portion only at a position facing the tube plate 11. In the above processing, the work until the inner diameter of the ground electrode tube 4 is first expanded by about 2.2 mm (substantially in contact with the hole in the tube plate) is different from the normal tube expansion in that the ground electrode tube 4 moves in the axial direction. Therefore, it is necessary to provide a stopper for preventing the ground electrode tube 4 from moving in the axial direction on the tube plate 12 side.

本実施の形態3においても、実施の形態1と同様の理由で、管板11に対向する部分が電力密度の最大部分にならないため、電力密度の向上、ひいてはオゾン発生装置の小型化ができる効果がある。さらに、接地電極管の内径を大きくする加工と管板に固定する加工を同時(ほぼ一連の動作)としたため、加工工数を減らすことができる効果がある。   Also in the third embodiment, for the same reason as in the first embodiment, the portion facing the tube plate 11 does not become the maximum power density portion, so that the power density can be improved and the ozone generator can be downsized. There is. Furthermore, since the processing for increasing the inner diameter of the ground electrode tube and the processing for fixing to the tube plate are performed simultaneously (substantially a series of operations), the number of processing steps can be reduced.

実施の形態4.
図6は、本発明の実施の形態4によるオゾン発生装置の概略構成を示す側面断面図である。図6において、図1と同一符号は、同一または相当する部分を示す。上記実施の形態1〜3では、当該部分の接地電極管4の内径を大きくする例を示したが、本実施の形態4では、図5に示すように接地電極管4に内径は全ての部分で一定であり、誘電体管5の管板11に対向する位置から外側の部分51の外形を小さくした。
Embodiment 4 FIG.
FIG. 6 is a side sectional view showing a schematic configuration of an ozone generator according to Embodiment 4 of the present invention. 6, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. In the first to third embodiments, an example in which the inner diameter of the ground electrode tube 4 in the portion is increased has been shown. However, in the fourth embodiment, the inner diameter of the ground electrode tube 4 is the entire portion as shown in FIG. The outer shape of the outer portion 51 is reduced from the position facing the tube plate 11 of the dielectric tube 5.

このように、管板11に対向する部分の間隙21を、主放電部の間隙20よりも広くするために、誘電体管5の管板11に対向する部分の外径を、主放電部に対応する部分の外径よりも小さくしても良い。さらに、接地電極管4の管板11に対向する部分の内径を大きくするとともに、誘電体管5の管板11に対向する部分の外径を小さくして、管板11に対向する部分の間隙21を、主放電部の間隙20よりも広くしても良い。   Thus, in order to make the gap 21 at the portion facing the tube plate 11 wider than the gap 20 at the main discharge portion, the outer diameter of the portion of the dielectric tube 5 facing the tube plate 11 is set at the main discharge portion. It may be smaller than the outer diameter of the corresponding part. Further, the inner diameter of the portion of the ground electrode tube 4 facing the tube plate 11 is increased, and the outer diameter of the portion of the dielectric tube 5 facing the tube plate 11 is decreased, so that the gap between the portions facing the tube plate 11 is reduced. 21 may be wider than the gap 20 of the main discharge part.

いずれにしても、本発明は、管板11に対向する部分における放電電力密度が、主放電部の放電電力密度よりも小さくなるよう、管板11に対向する部分の間隙21の間隙距離d2を、主放電部の間隙20の間隙距離d1よりも広くした。より好ましくは、管板11に対向する部分の間隙21の間隙距離d2を、1.6mm−d1以上となるようにした。こ
のため、管板11に対向する部分の間隙21における放電電力密度によって、投入電力の上限が決まることなく、主放電部における放電電力密度を増大でき、放電管への全投入電力を向上させることができる効果がある。
In any case, according to the present invention, the gap distance d2 of the gap 21 in the portion facing the tube plate 11 is set so that the discharge power density in the portion facing the tube plate 11 is smaller than the discharge power density in the main discharge portion. The gap distance d1 of the gap 20 of the main discharge part is made larger. More preferably, the gap distance d2 of the gap 21 at the portion facing the tube plate 11 is set to 1.6 mm-d1 or more. For this reason, the upper limit of the input power is not determined by the discharge power density in the gap 21 at the portion facing the tube plate 11, so that the discharge power density in the main discharge portion can be increased and the total input power to the discharge tube can be improved. There is an effect that can.

以上の実施の形態1から4、すなわち本発明は、特に電力密度が大きいオゾン発生装置に効果がある。すなわち、放電する部分全体における平均的な電力密度が0.2W〜0.7W/cm2といった、高放電電力密度で特に効果があり、本発明によれば、このような高放電電力密度で放電させる場合でも、安定な動作ができるオゾン発生装置を提供できる。   Embodiments 1 to 4 described above, that is, the present invention is particularly effective for an ozone generator having a high power density. That is, it is particularly effective at a high discharge power density such that the average power density in the entire portion to be discharged is 0.2 W to 0.7 W / cm 2. According to the present invention, discharge is performed at such a high discharge power density. Even in this case, an ozone generator capable of stable operation can be provided.

1:気密密閉容器 2:原料ガス入口
3:オゾン化ガス出口 4:接地電極管
5:誘電体管 6:金属膜(金属電極)
10:交流高圧電源 11:第一の管板(原料ガス入口側の管板)12:第二の管板(オゾン化ガス出口側の管板)
20:主放電部の間隙 21:管板11に対向する部分の間隙
30:位置決め部材 50:高圧電極管
100:原料ガス入口側の空間 200:オゾン化ガス出口側の空間
1: Airtight sealed container 2: Raw material gas inlet 3: Ozonized gas outlet 4: Ground electrode tube 5: Dielectric tube 6: Metal film (metal electrode)
10: AC high-voltage power supply 11: First tube plate (tube plate on the raw material gas inlet side) 12: Second tube plate (tube plate on the ozonized gas outlet side)
20: A gap between main discharge portions 21: A gap between portions facing the tube plate 30: A positioning member 50: A high-pressure electrode tube 100: A space on the source gas inlet side 200: A space on the ozonized gas outlet side

Claims (7)

気密密閉容器と、
穴が開いた導電金属板であって、上記気密密閉容器の内部を3つの空間に仕切るように平行に設置された2枚の管板と、
この2枚の管板の上記穴同士を連結するように設けられた接地電極管と、
外壁と上記接地電極管内壁とが所定の間隙距離を有するように上記接地電極管内部に保持され、内部に金属電極を備えた誘電体管と、
上記接地電極管と上記金属電極との間に交流の高電圧を印加するための交流高圧電源とを備え、
上記3つの空間のうち両端にある空間の一方の空間から、少なくとも上記間隙を通って両端にある空間の他方の空間に酸素を含む原料ガスを流し、上記誘電体管内部の金属電極を高電位、上記接地電極管および上記管板を接地電位として、上記間隙を流れる原料ガスを放電させてオゾンを発生させるとともに、上記2枚の管板と上記接地電極管外壁、および上記気密密閉容器の内壁とで区切られた空間に冷却水を流して冷却するように構成されたオゾン発生装置であって、
上記管板に対向する上記間隙部分の放電電力密度が、上記所定の間隙距離の部分の放電電力密度よりも小さくなるよう、上記管板に対向する上記間隙部分の間隙距離を、上記所定の間隙距離よりも広くしたことを特徴とするオゾン発生装置。
An airtight sealed container;
A conductive metal plate having a hole, and two tube plates installed in parallel so as to partition the inside of the hermetically sealed container into three spaces;
A ground electrode tube provided so as to connect the holes of the two tube plates;
A dielectric tube that is held inside the ground electrode tube such that an outer wall and the inner wall of the ground electrode tube have a predetermined gap distance, and includes a metal electrode inside;
An AC high voltage power source for applying an AC high voltage between the ground electrode tube and the metal electrode,
A source gas containing oxygen is allowed to flow from one of the three spaces to the other of the spaces at both ends through at least the gap, so that the metal electrode in the dielectric tube has a high potential. The ground electrode tube and the tube plate are set to the ground potential, and the raw material gas flowing in the gap is discharged to generate ozone, and the two tube plates and the outer wall of the ground electrode tube, and the inner wall of the hermetic sealed container An ozone generator configured to cool and flow cooling water through a space separated by
The gap distance of the gap portion facing the tube plate is set to the predetermined gap so that the discharge power density of the gap portion facing the tube plate is smaller than the discharge power density of the portion of the predetermined gap distance. An ozone generator characterized by being wider than the distance.
上記所定の間隙距離をd1とし、d1が0.4mm以下であり、上記管板に対向する上記間隙部分の間隙距離d2を、1.6mm−d1より大きくしたことを特徴とする請求項1に記載のオゾン発生装置。   The predetermined gap distance is d1, wherein d1 is 0.4 mm or less, and the gap distance d2 of the gap portion facing the tube sheet is set to be larger than 1.6 mm-d1. The ozone generator as described. 上記接地電極管の内径が、上記管板に対向する部分で大きくなっていることを特徴とする請求項1または2に記載のオゾン発生装置。   The ozone generator according to claim 1 or 2, wherein an inner diameter of the ground electrode tube is large at a portion facing the tube plate. 上記誘電体管の外径が、上記管板に対向する部分で小さくなっていることを特徴とする請求項1乃至3のいずれか1項に記載のオゾン発生装置。   The ozone generator according to any one of claims 1 to 3, wherein an outer diameter of the dielectric tube is small at a portion facing the tube plate. 上記管板に対向する部分の上記間隙部分に、上記誘電体管を上記接地電極管と同軸になるよう配置する位置決め部材を設けたことを特徴とする請求項1乃至4のいずれか1項に記載のオゾン発生装置。   5. A positioning member for disposing the dielectric tube so as to be coaxial with the ground electrode tube is provided in the gap portion of the portion facing the tube plate. The ozone generator as described. 請求項3に記載のオゾン発生装置の製造方法であって、上記接地電極管を単体で、上記接地電極管の端部の内径を拡げる工程の後、上記接地電極管を上記管板に固定する工程を行うことを特徴とする、オゾン発生装置の製造方法。   4. The method for manufacturing an ozone generator according to claim 3, wherein the ground electrode tube is fixed to the tube plate after the step of expanding the inner diameter of the end portion of the ground electrode tube by using the ground electrode tube alone. The manufacturing method of an ozone generator characterized by performing a process. 請求項3に記載のオゾン発生装置の製造方法であって、上記接地電極管の端部の内径を拡げると同時に、上記接地電極管を上記管板に固定する工程を行うことを特徴とする、オゾン発生装置の製造方法。   The method for producing an ozone generator according to claim 3, wherein the step of fixing the ground electrode tube to the tube plate is performed simultaneously with expanding the inner diameter of the end of the ground electrode tube. Manufacturing method of ozone generator.
JP2011154594A 2011-07-13 2011-07-13 Ozone generator and method for manufacturing ozone generator Expired - Fee Related JP5669685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154594A JP5669685B2 (en) 2011-07-13 2011-07-13 Ozone generator and method for manufacturing ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154594A JP5669685B2 (en) 2011-07-13 2011-07-13 Ozone generator and method for manufacturing ozone generator

Publications (2)

Publication Number Publication Date
JP2013018682A true JP2013018682A (en) 2013-01-31
JP5669685B2 JP5669685B2 (en) 2015-02-12

Family

ID=47690503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154594A Expired - Fee Related JP5669685B2 (en) 2011-07-13 2011-07-13 Ozone generator and method for manufacturing ozone generator

Country Status (1)

Country Link
JP (1) JP5669685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232306B2 (en) 2012-06-10 2016-01-05 Apple Inc. Systems and methods for reducing stray magnetic flux
DE112019002340T5 (en) 2018-05-09 2021-08-26 Yazaki Energy System Corporation EXTERIOR WALL MATERIAL AND METHOD OF MANUFACTURING THEREOF

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104492A (en) * 1975-03-12 1976-09-16 Mo Gasudarusutobennu Uniberush KOSHUHAKANJOOZON HATSUSEIKI
JPS5274594A (en) * 1975-12-17 1977-06-22 Fuji Electric Co Ltd Ozone generator
JPS52140492A (en) * 1976-05-19 1977-11-24 Mitsubishi Electric Corp Ozonizer
JPS5411894A (en) * 1977-06-29 1979-01-29 Mitsubishi Electric Corp Ozonizer
JPS56114810A (en) * 1980-02-14 1981-09-09 Mitsubishi Electric Corp Ozonizer
JPH0624708A (en) * 1991-12-10 1994-02-01 Karuto Kk Ozone generator applying enamel coating film to two metallic pipe different in diameter
JP2009096693A (en) * 2007-10-18 2009-05-07 Metawater Co Ltd Ozone generating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104492A (en) * 1975-03-12 1976-09-16 Mo Gasudarusutobennu Uniberush KOSHUHAKANJOOZON HATSUSEIKI
JPS5274594A (en) * 1975-12-17 1977-06-22 Fuji Electric Co Ltd Ozone generator
JPS52140492A (en) * 1976-05-19 1977-11-24 Mitsubishi Electric Corp Ozonizer
JPS5411894A (en) * 1977-06-29 1979-01-29 Mitsubishi Electric Corp Ozonizer
JPS56114810A (en) * 1980-02-14 1981-09-09 Mitsubishi Electric Corp Ozonizer
JPH0624708A (en) * 1991-12-10 1994-02-01 Karuto Kk Ozone generator applying enamel coating film to two metallic pipe different in diameter
JP2009096693A (en) * 2007-10-18 2009-05-07 Metawater Co Ltd Ozone generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232306B2 (en) 2012-06-10 2016-01-05 Apple Inc. Systems and methods for reducing stray magnetic flux
DE112019002340T5 (en) 2018-05-09 2021-08-26 Yazaki Energy System Corporation EXTERIOR WALL MATERIAL AND METHOD OF MANUFACTURING THEREOF

Also Published As

Publication number Publication date
JP5669685B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5048714B2 (en) Ozone generator
WO2013136663A1 (en) Ozone generation device
WO2014076851A1 (en) Tube-type ozone generation device and manufacturing method therefor
JP2015151311A (en) Tube type ozone generator
JP5669685B2 (en) Ozone generator and method for manufacturing ozone generator
JP2012206898A (en) Ozone generator
JP2021002474A (en) Antenna and plasma processing apparatus
JP5395142B2 (en) Ozone generator
JP2012126614A (en) Ozone generating apparatus and method for manufacturing the same
JP7020785B2 (en) Ozone generator
US20080025883A1 (en) Ozone generator
JP5185592B2 (en) Ozone generator
TWI577632B (en) Ozone generating apparatus
JP2002255514A (en) Ozone generator
WO2020213083A1 (en) Ozone generator and ozone generator set
JP6721364B2 (en) Ozone generator
JP4138684B2 (en) Ozone generation method and ozone generator
KR100441982B1 (en) Ozonizer producing High Concentration Ozone
JP2008031002A (en) Ozone generator, ozone generator module, and stack assembly of ozone generators
JP2018200744A (en) Lamp unit
JP4206047B2 (en) Ozone generator tube and ozone generator equipped with the same
JP5202066B2 (en) Ozone generator
US9321645B2 (en) Ozone generator
JP2013142053A (en) Ozone generator
JP2006083013A (en) Ozone generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R151 Written notification of patent or utility model registration

Ref document number: 5669685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees