JP2013014457A - Method for manufacturing granulated activated carbon and granulated activated carbon - Google Patents

Method for manufacturing granulated activated carbon and granulated activated carbon Download PDF

Info

Publication number
JP2013014457A
JP2013014457A JP2011147192A JP2011147192A JP2013014457A JP 2013014457 A JP2013014457 A JP 2013014457A JP 2011147192 A JP2011147192 A JP 2011147192A JP 2011147192 A JP2011147192 A JP 2011147192A JP 2013014457 A JP2013014457 A JP 2013014457A
Authority
JP
Japan
Prior art keywords
activated carbon
binder
granulated
mixing
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011147192A
Other languages
Japanese (ja)
Other versions
JP5408741B2 (en
Inventor
Hideya Kamikawa
秀哉 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Living Tech Co Ltd
Original Assignee
Yamaha Living Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Living Tech Co Ltd filed Critical Yamaha Living Tech Co Ltd
Priority to JP2011147192A priority Critical patent/JP5408741B2/en
Publication of JP2013014457A publication Critical patent/JP2013014457A/en
Application granted granted Critical
Publication of JP5408741B2 publication Critical patent/JP5408741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To decrease the amount of a binder to be used when using a plural kinds of activated carbons.SOLUTION: In a pre-mixing process S1, a material containing 100 pts.wt. of at least one kind of activated carbon (11) selected from activated carbon having an average particle diameter D1 and a fibrous activated carbon having an average fiber diameter D2, and 7-70 pts.wt. of a solidified thermoplastic binder (12) having an average particle diameter of D3 is mixed. In a process S2 for adding the second activated carbon, the mixture (20) prepared in the pre-mixing process S1 is added with at least 500-10,000 pts.wt. of the second activated carbon (21) having the average particle diameter 50-500 μm (D4, provided that D4>D1, D4>D2, D4>D3). In a heating and mixing process S3, a mixture (30) added at least with the second activated carbon (21) is heated to a temperature above the temperature of the softening point of the binder (12) and at which the binder (12) does not become fired to be mixed. In a process S4 for producing granular activated carbon, the granular activated carbon is produced by crushing a mixture (40) after completion of the process S3 for heating and mixing.

Description

本発明は、造粒活性炭の製造方法及び造粒活性炭に関する。   The present invention relates to a method for producing granulated activated carbon and granulated activated carbon.

水道水に含まれる遊離残留塩素や有機物等の微量成分を除去するため、活性炭を利用した浄水器カートリッジが使用されている。
また、活性炭を取り扱い易くするため、造粒活性炭も使用されている。賦活後造粒法による造粒活性炭は、通常、粉末活性炭にバインダーと水とを加えてニーダー等で混練する混練工程、混練物をペレッター等で造粒する造粒工程、及び、造粒物を乾燥させる乾燥工程を経て得られる。
In order to remove trace components such as free residual chlorine and organic substances contained in tap water, a water purifier cartridge using activated carbon is used.
In addition, granulated activated carbon is also used to facilitate handling of activated carbon. Granulation activated carbon by the granulation method after activation is usually a kneading step of adding a binder and water to powdered activated carbon and kneading with a kneader, etc., a granulation step of granulating the kneaded product with a pelleter, and the granulated product. Obtained through a drying step of drying.

特許文献1には、バインダーとしてA群バインダーとB群バインダーとを併用し、混練物を造粒して200℃以下で乾燥、硬化させた後に常温まで冷却することが示されている。A群バインダーには、アクリル・スチレン系エマルジョン(ASE)又はアクリル系エマルジョン(AE)を用いている。エマルジョンで構成されるA群バインダーは、バインダーが液状分散媒に分散している。また、B群バインダーには、カルボキシメチルセルロース(CMC)又はポリビニルアルコール(PVA)を用いている。特許文献1の段落0011に記載されるように、B群バインダーは、水溶液からなる。   Patent Document 1 discloses that a group A binder and a group B binder are used in combination as a binder, the kneaded product is granulated, dried and cured at 200 ° C. or lower, and then cooled to room temperature. As the group A binder, an acrylic / styrene emulsion (ASE) or an acrylic emulsion (AE) is used. In the group A binder composed of an emulsion, the binder is dispersed in a liquid dispersion medium. Moreover, carboxymethylcellulose (CMC) or polyvinyl alcohol (PVA) is used for the B group binder. As described in paragraph 0011 of Patent Document 1, the group B binder is an aqueous solution.

なお、特許文献2には、水を分散媒として活性炭微粒子及びポリオレフィン樹脂粒子を懸濁させ、ポリオレフィン樹脂が溶融又は半溶融状態となるまで加熱、攪拌し、冷却、ろ過、水洗、乾燥を行うことにより、ポリオレフィン樹脂粒子を核とし、活性炭微粒子を表面に配置した機能性吸着玉を製造することが示されている。   In Patent Document 2, activated carbon fine particles and polyolefin resin particles are suspended using water as a dispersion medium, and heated, stirred, cooled, filtered, washed with water, and dried until the polyolefin resin is in a molten or semi-molten state. Shows that a functional adsorbent ball in which activated carbon fine particles are arranged on the surface using polyolefin resin particles as a core is produced.

特開2004−10434号公報JP 2004-10434 A 特開平8−332381号公報Japanese Patent Laid-Open No. 8-3332381

平均粒径の異なる複数種類の活性炭と固化したバインダーと同時に混合する場合、粒径の小さい活性炭同士が自己凝集したりバインダー同士が自己凝集したりして混合物が均一とならず、活性炭同士がバインダーで接着されないことがある。従って、造粒活性炭を形成するためには、バインダーの配合比を多くして活性炭同士の間に行き渡らせる必要がある。   When mixing multiple types of activated carbons with different average particle sizes and a solidified binder at the same time, activated carbons with small particle sizes self-aggregate or binders self-aggregate, resulting in a mixture that is not uniform and the activated carbons are binders. May not be glued. Therefore, in order to form granulated activated carbon, it is necessary to increase the blending ratio of the binder and spread it between the activated carbons.

以上を鑑み、本発明は、複数種類の活性炭を併用する場合にバインダーの使用量を少なくする目的を有している。   In view of the above, the present invention has the object of reducing the amount of binder used when a plurality of types of activated carbon are used in combination.

本発明は、平均粒径D1の活性炭と、平均繊維径D2の繊維状活性炭とから選ばれる一種以上の第一の活性炭100重量部と、平均粒径D3の固化した熱可塑性のバインダー7〜70重量部と、を含む素材を混合する前混合工程と、
得られる混合物に平均粒径50〜500μm(D4とする。ただし、D4>D1、D4>D2、D4>D3。)の第二の活性炭500〜10000重量部を少なくとも加える第二活性炭添加工程と、
前記第二の活性炭を少なくとも加えた混合物を前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度に加熱して混合する加熱混合工程と、
混合終了後に混合物を砕いて造粒活性炭を形成する造粒活性炭形成工程とを備える製造方法の態様を有する。
In the present invention, 100 parts by weight of one or more kinds of first activated carbon selected from activated carbon having an average particle diameter D1 and fibrous activated carbon having an average fiber diameter D2, and solidified thermoplastic binders 7 to 70 having an average particle diameter D3. A pre-mixing step of mixing a material including parts by weight;
A second activated carbon addition step of adding at least 500 to 10000 parts by weight of a second activated carbon having an average particle diameter of 50 to 500 μm (D4, where D4> D1, D4> D2, D4> D3) to the resulting mixture;
A heating and mixing step of heating and mixing the mixture to which at least the second activated carbon has been added to a temperature not lower than the softening temperature of the binder and a temperature at which the binder does not ignite;
It has the aspect of a manufacturing method provided with the granulated activated carbon formation process which crushes a mixture after completion | finish of mixing and forms granulated activated carbon.

また、本発明は、平均粒径D1の活性炭と、平均繊維径D2の繊維状活性炭とから選ばれる一種以上の第一の活性炭100重量部と、平均粒径D3の固化した熱可塑性のバインダー7〜70重量部と、を含む素材を混合し、得られる混合物に平均粒径50〜500μm(D4とする。ただし、D4>D1、D4>D2、D4>D3。)の第二の活性炭500〜10000重量部を少なくとも加え、前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度に加熱して混合し、混合終了後に混合物を砕いて得られる造粒活性炭の態様を有する。   The present invention also relates to 100 parts by weight of at least one first activated carbon selected from activated carbon having an average particle diameter D1 and fibrous activated carbon having an average fiber diameter D2, and a solidified thermoplastic binder 7 having an average particle diameter D3. To 70 parts by weight of a second activated carbon 500 having an average particle diameter of 50 to 500 μm (D4, where D4> D1, D4> D2, D4> D3). At least 10,000 parts by weight is added, and the mixture is heated and mixed at a temperature equal to or higher than the softening temperature of the binder and the binder does not ignite.

すなわち、比較的小さい径の第一の活性炭及びバインダーを含む素材が先に混合されるので、第一の活性炭やバインダーは単独で自己凝集し難くなる。得られる混合物(前混合物と呼ぶ。)に比較的大きい径の第二の活性炭が少なくとも加えられ加熱されて混合されるので、前混合物により第二の活性炭同士が接着し、混合終了後に混合物を砕くことにより造粒活性炭が得られる。本製造方法は、バインダーが単独で自己凝集し難くなるので、複数種類の活性炭を併用する場合にバインダーの使用量を少なくすることが可能となる。   That is, since the first activated carbon having a relatively small diameter and the material containing the binder are mixed first, the first activated carbon and the binder are hardly self-aggregated alone. Since at least a second activated carbon having a relatively large diameter is added to the resulting mixture (referred to as a premix) and heated and mixed, the second activated carbon adheres to the premix, and the mixture is crushed after mixing is completed. As a result, granulated activated carbon is obtained. This production method makes it difficult for the binder to self-aggregate alone, so that the amount of binder used can be reduced when a plurality of types of activated carbon are used in combination.

各請求項に係る発明において、上記平均粒径は、50μm以上の粒子についてはJIS K1474:2007(活性炭試験方法)に規定される50%粒径(D50、メジアン径)とし、50μm未満の粒子についてはJIS K5600-9-3:2006(塗料一般試験方法−第9部:粉体塗料−第3節:レーザ回折による粒度分布の測定方法)に準拠した粒子径分布からJIS Z8819-2(粒子径測定結果の表現―第2部:粒子径分布からの平均粒子径又は平均粒子直径及びモーメントの計算)に従って求められる重み付き体積平均粒子径とする。
上記平均繊維径は、顕微鏡を用いて複数の繊維の径を実測した値の相加平均とする。
上記軟化温度は、JIS K7206:1999(プラスチック―熱可塑性プラスチック―ビカット軟化温度(VST)試験方法)に規定されるビカット軟化温度とする。
混合される素材には、金属処理剤といったイオン交換体等、活性炭及びバインダー以外の素材が含まれても良い。
上記混合終了後に混合物を砕いて造粒活性炭を形成することには、混合終了後に混合物を粗破砕し分級して造粒活性炭を形成すること、分級せずに造粒活性炭を形成すること、混合終了後に混合物を破砕し造粒して造粒活性炭を形成すること、等が含まれる。
In the invention according to each claim, the average particle diameter is 50% particle diameter (D50, median diameter) defined in JIS K1474: 2007 (activated carbon test method) for particles of 50 μm or more, and for particles less than 50 μm. Is JIS Z5 89-1-2 (particle diameter) based on the particle size distribution in accordance with JIS K5600-9-3: 2006 (General coating test method-Part 9: Powder coating-Section 3: Measurement method of particle size distribution by laser diffraction) Expression of measurement results—Part 2: Average particle diameter from particle size distribution or calculation of average particle diameter and moment).
The average fiber diameter is an arithmetic average of values obtained by actually measuring the diameters of a plurality of fibers using a microscope.
The softening temperature is the Vicat softening temperature specified in JIS K7206: 1999 (plastic-thermoplastic-Vicat softening temperature (VST) test method).
The material to be mixed may include materials other than activated carbon and a binder, such as an ion exchanger such as a metal treating agent.
After mixing is completed, the mixture is crushed to form granulated activated carbon. After mixing is completed, the mixture is roughly crushed and classified to form granulated activated carbon, to form granulated activated carbon without classification, mixing After completion, the mixture is crushed and granulated to form granulated activated carbon.

ところで、前記第二活性炭添加工程では、前記前混合工程で得られる混合物に前記第二の活性炭を少なくとも加えて混合しても良い。前混合物と第二の活性炭とを含む素材が混合された後に加熱されて混合されるので、得られる混合物がより均質となる。従って、より均質な造粒活性炭を製造することが可能となる。   Incidentally, in the second activated carbon addition step, at least the second activated carbon may be added to and mixed with the mixture obtained in the premixing step. Since the raw material containing the pre-mixture and the second activated carbon is mixed and then heated and mixed, the resulting mixture becomes more homogeneous. Therefore, it becomes possible to produce more uniform granulated activated carbon.

前記造粒活性炭形成工程では、前記加熱混合工程で得られる混合物を破砕し、得られる破砕物に液状分散媒を加えて造粒し、得られる造粒物を前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度で乾燥させて造粒活性炭を形成しても良い。混合物を一旦破砕して造粒することにより、造粒活性炭の粒径を大きくすることができ、また、カートリッジへの充填密度を高くすることができる。
なお、乾燥させた後、振動するふるいにより造粒物を分級して造粒活性炭を形成しても良い。
In the granulated activated carbon forming step, the mixture obtained in the heating and mixing step is crushed, a liquid dispersion medium is added to the obtained crushed product, and granulated, and the obtained granulated product is at or above the softening temperature of the binder and the binder. Granulated activated carbon may be formed by drying at a temperature at which does not ignite. By once crushing and granulating the mixture, the particle size of the granulated activated carbon can be increased, and the packing density into the cartridge can be increased.
In addition, after drying, the granulated product may be classified by a vibrating screen to form granulated activated carbon.

前記第一の活性炭の平均粒径D1を1〜50μmとし、前記繊維状活性炭の平均繊維径D2を5〜20μmとし、前記繊維状活性炭の平均繊維長を15〜500μmとし、前記バインダーの平均粒径D3を1〜50μmとしても良い。第一の活性炭とバインダーとに働く静電付着力がさらに大きくなるので、加熱前の混合でバインダーの分散がさらに良好となる。従って、より均質な造粒活性炭を得ることが可能となる。
ここで、上記平均繊維径は、顕微鏡を用いて複数の繊維の径を実測した値の相加平均とする。
上記平均繊維長は、顕微鏡を用いて複数の繊維の長さを実測した値の相加平均とする。
The average particle diameter D1 of the first activated carbon is 1 to 50 μm, the average fiber diameter D2 of the fibrous activated carbon is 5 to 20 μm, the average fiber length of the fibrous activated carbon is 15 to 500 μm, and the average particle of the binder The diameter D3 may be 1 to 50 μm. Since the electrostatic adhesion force acting on the first activated carbon and the binder is further increased, the dispersion of the binder is further improved by mixing before heating. Therefore, it is possible to obtain a more uniform granulated activated carbon.
Here, the average fiber diameter is an arithmetic average of values obtained by actually measuring the diameters of a plurality of fibers using a microscope.
The average fiber length is an arithmetic average of values obtained by actually measuring the lengths of a plurality of fibers using a microscope.

また、前記バインダーに、平均分子量50万〜1000万の熱可塑性樹脂を用いても良い。バインダーが溶融しても活性炭表面に拡がり難いので、造粒活性炭の吸着活性を向上させることが可能となる。
ここで、上記平均分子量は、粘度法による測定値とする。
Further, a thermoplastic resin having an average molecular weight of 500,000 to 10,000,000 may be used for the binder. Even if the binder melts, it is difficult to spread on the surface of the activated carbon, so that the adsorption activity of the granulated activated carbon can be improved.
Here, the average molecular weight is a value measured by a viscosity method.

前記前混合工程及び前記加熱混合工程の混合を液状分散媒非存在下で行っても良い。固化した熱可塑性のバインダーの平均粒径が500μm未満であるので、活性炭とバインダーとに働く静電付着力が大きく、液状分散媒が無くても加熱前の混合でバインダーが良好に分散する。このため、加熱して混合することにより活性炭同士がバインダーで接着し、混合終了後に混合物を砕くことにより造粒活性炭が得られる。混合物から液状分散媒を除去する乾燥工程が不要であるので、造粒活性炭の製造工程を短縮することが可能となる。
上記液状分散媒は、液体の分散媒を意味する。
Mixing in the premixing step and the heating and mixing step may be performed in the absence of a liquid dispersion medium. Since the average particle size of the solidified thermoplastic binder is less than 500 μm, the electrostatic adhesion acting on the activated carbon and the binder is large, and the binder is well dispersed by mixing before heating even without a liquid dispersion medium. For this reason, activated carbon adhere | attaches with a binder by heating and mixing, and granulated activated carbon is obtained by crushing a mixture after completion | finish of mixing. Since the drying process which removes a liquid dispersion medium from a mixture is unnecessary, it becomes possible to shorten the manufacturing process of granulated activated carbon.
The liquid dispersion medium means a liquid dispersion medium.

請求項1に係る発明によれば、複数種類の活性炭を併用する場合にバインダーの使用量を少なくすることが可能となる。
請求項2に係る発明では、より均質な造粒活性炭を製造することが可能となる。
請求項3に係る発明では、粒径の揃った造粒活性炭を製造することが可能となる。
請求項4に係る発明では、比較的大きい粒径でカートリッジへの充填密度の高い粒状活性炭を製造することが可能となる。
請求項5に係る発明では、より均質な造粒活性炭を得ることが可能となる。
請求項6に係る発明では、造粒活性炭の吸着活性を向上させることが可能となる。
請求項7に係る発明では、造粒活性炭の製造工程を短縮することが可能となる。
請求項8に係る発明では、バインダーの使用量を少なくさせる造粒活性炭を提供することができる。
According to the invention which concerns on Claim 1, when using multiple types of activated carbon together, it becomes possible to reduce the usage-amount of a binder.
In the invention which concerns on Claim 2, it becomes possible to manufacture a more uniform granulated activated carbon.
In the invention according to claim 3, it becomes possible to produce granulated activated carbon having a uniform particle diameter.
In the invention according to claim 4, it is possible to produce granular activated carbon having a relatively large particle size and a high packing density in the cartridge.
In the invention which concerns on Claim 5, it becomes possible to obtain a more uniform granulated activated carbon.
In the invention which concerns on Claim 6, it becomes possible to improve the adsorption activity of granulated activated carbon.
In the invention which concerns on Claim 7, it becomes possible to shorten the manufacturing process of granulated activated carbon.
In the invention which concerns on Claim 8, the granulated activated carbon which reduces the usage-amount of a binder can be provided.

造粒活性炭100の製造方法を例示する流れ図。The flowchart which illustrates the manufacturing method of the granulated activated carbon 100. FIG. 浄水器カートリッジC1を例示する図。The figure which illustrates water purifier cartridge C1. 変形例に係る造粒活性炭101の製造方法を例示する流れ図。The flowchart which illustrates the manufacturing method of the granulated activated carbon 101 which concerns on a modification.

(1)造粒活性炭の製造方法の説明:
まず、図1を参照して本発明の一実施形態に係る造粒活性炭の製造方法を説明する。
本製造方法は、平均粒径D1の活性炭と、平均繊維径D2の繊維状活性炭とから選ばれる一種以上の第一の活性炭(11)100重量部と、平均粒径D3の固化した熱可塑性のバインダー(12)7〜70重量部と、を含む素材を混合する前混合工程S1と、
得られる混合物(20)に平均粒径50〜500μm(D4とする。ただし、D4>D1、D4>D2、D4>D3。)の第二の活性炭(21)500〜10000重量部を少なくとも加える第二活性炭添加工程S2と、
第二の活性炭(21)を少なくとも加えた混合物(30)をバインダー12の軟化温度以上かつバインダー(12)が発火しない温度に加熱して混合する加熱混合工程S3と、
混合終了後に混合物(40)を砕いて造粒活性炭(100)を形成する造粒活性炭形成工程S4とを備える。
(1) Description of production method of granulated activated carbon:
First, the manufacturing method of the granulated activated carbon which concerns on one Embodiment of this invention with reference to FIG. 1 is demonstrated.
In this production method, 100 parts by weight of one or more types of first activated carbon (11) selected from activated carbon having an average particle diameter D1 and fibrous activated carbon having an average fiber diameter D2, and solidified thermoplastic resin having an average particle diameter D3 are used. A pre-mixing step S1 for mixing a material containing 7 to 70 parts by weight of a binder (12);
A second activated carbon (21) having an average particle size of 50 to 500 μm (D4, where D4> D1, D4> D2, D4> D3) is added to the resulting mixture (20). Two activated carbon addition process S2,
A heating and mixing step S3 in which the mixture (30) to which at least the second activated carbon (21) is added is heated and mixed at a temperature equal to or higher than the softening temperature of the binder 12 and the binder (12) does not ignite;
A granulated activated carbon forming step S4 for crushing the mixture (40) after mixing to form the granulated activated carbon (100).

なお、バインダーの軟化温度が範囲Tsl〜Tsh(℃)で示される場合、加熱混合温度の下限をTshとすればよい。バインダーの軟化温度が不明である場合、軟化温度よりも高い融点を加熱混合温度の下限とすればよい。また、バインダーの発火点が最低温度Tilで示される場合、加熱混合温度の上限をTil未満とすればよい。 When the softening temperature of the binder is indicated by the range T sl to T sh (° C.), the lower limit of the heating and mixing temperature may be T sh . When the softening temperature of the binder is unknown, a melting point higher than the softening temperature may be set as the lower limit of the heating and mixing temperature. Further, when the ignition point of the binder is indicated by the minimum temperature Til , the upper limit of the heating and mixing temperature may be less than Til .

活性炭(11,21)の原料となる炭素質材料は、賦活することによって活性炭を形成することができればよく、植物系、石炭系、石油系、合成樹脂系、天然素材系、各種有機灰、等を用いることができる。植物系の炭素質材料には、ヤシ殻やアーモンド殻といった果実殻、木材、おが屑、竹、草、等を用いることができる。石炭系の炭素質材料には、泥炭、亜炭、かつ炭、瀝青炭、無煙炭、等を用いることができる。石油系の炭素質材料には、石油ピッチ等を用いることができる。合成樹脂系の炭素質材料には、フェノール系樹脂、エポキシ系樹脂、ユリア系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリアクリロニトリル系樹脂、ポリオレフィン系樹脂、等を用いることができる。天然素材系の炭素質材料には、木綿といった天然繊維、レーヨンといった再生繊維、アセテートといった半合成繊維、等を用いることができる。   The carbonaceous material used as the raw material for the activated carbon (11, 21) is only required to be able to form activated carbon by activation, such as plant-based, coal-based, petroleum-based, synthetic resin-based, natural material-based, various organic ash, etc. Can be used. As the plant-based carbonaceous material, fruit shells such as coconut shells and almond shells, wood, sawdust, bamboo, grass and the like can be used. As the coal-based carbonaceous material, peat, lignite, and charcoal, bituminous coal, anthracite, or the like can be used. Petroleum pitch or the like can be used as the petroleum-based carbonaceous material. As the synthetic resin-based carbonaceous material, phenol resin, epoxy resin, urea resin, polyamide resin, polyvinyl alcohol resin, polyacrylonitrile resin, polyolefin resin, and the like can be used. As the natural carbonaceous material, natural fibers such as cotton, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, and the like can be used.

第一の活性炭11には、粉砕状、粒状及び繊維状から選ばれる一種以上の活性炭を用いることができる。粉砕状及び粒状には、粉末状が含まれる。粉砕状の概念と粒状の概念とは、一部が重複するものとする。粉砕状の概念と繊維状の概念とは、一部が重複するものとする。
粉砕状の活性炭には、上述した炭素質材料の賦活物を砕いて得られる活性炭、炭素質材料の粉砕物を賦活して得られる活性炭、等を用いることができる。粉砕状活性炭には、100メッシュ(直径0.15mm)よりも小さい粉末活性炭が含まれるものとする。
粒状の活性炭には、ヤシ殻系活性炭、木炭、竹炭、石炭系活性炭、合成樹脂系活性炭、等を用いることができる。粒状活性炭は、賦活物を砕いて所定粒度にふるい分けして得られる活性炭でも良いし、所定粒度の炭素質材料を賦活して得られる活性炭でも良い。粒状活性炭には、粉末活性炭が含まれるものとする。第一の活性炭11として用いる活性炭の平均粒径D1は、第二の活性炭21の平均粒径D4よりも小さければ良く、1〜50μmが好ましく、2〜40μmがより好ましい。平均粒径D1を前記上限以下とすることにより、比較的大きい第二の活性炭21同士の隙間に比較的小さい第一の活性炭11が入り込み、造粒活性炭100の吸着活性が向上する。また、平均粒径D1を前記下限以上とすることにより、前混合工程S1の前混合を容易にすることができる。
As the first activated carbon 11, one or more activated carbons selected from pulverized, granular, and fibrous forms can be used. The pulverized form and the granular form include a powder form. The pulverized concept and the granular concept partially overlap. The pulverized concept and the fibrous concept partially overlap.
As the pulverized activated carbon, activated carbon obtained by crushing the activated carbonaceous material described above, activated carbon obtained by activating the pulverized carbonaceous material, or the like can be used. The pulverized activated carbon includes powdered activated carbon smaller than 100 mesh (diameter 0.15 mm).
As the granular activated carbon, coconut shell activated carbon, charcoal, bamboo charcoal, coal activated carbon, synthetic resin activated carbon, or the like can be used. The granular activated carbon may be activated carbon obtained by crushing an activated material and sieving to a predetermined particle size, or activated carbon obtained by activating a carbonaceous material having a predetermined particle size. The granular activated carbon includes powdered activated carbon. The average particle diameter D1 of the activated carbon used as the first activated carbon 11 only needs to be smaller than the average particle diameter D4 of the second activated carbon 21, and is preferably 1 to 50 μm, more preferably 2 to 40 μm. By setting the average particle diameter D1 to be equal to or less than the above upper limit, the relatively small first activated carbon 11 enters the gap between the relatively large second activated carbons 21, and the adsorption activity of the granulated activated carbon 100 is improved. Moreover, premixing of premixing process S1 can be made easy by making average particle diameter D1 more than the said minimum.

繊維状の活性炭には、石炭ピッチ、石油ピッチ、合成樹脂系活性炭、天然素材系活性炭、等を用いることができる。繊維状活性炭の平均繊維径D2は、第二の活性炭21の平均粒径D4よりも小さければ良く、5〜20μmが好ましく、7〜15μmがより好ましい。繊維状活性炭の平均繊維長は、15〜500μmが好ましく、20〜300μmがより好ましい。平均繊維径D2を前記上限以下とすることにより、比較的大きい第二の活性炭21同士の隙間に繊維状活性炭が入り込み、造粒活性炭100の吸着活性が向上する。平均繊維径D2を前記下限以上とすることにより、前混合工程S1の前混合を容易にすることができる。また、平均繊維長を前記上限以下とすることにより、第一の活性炭11とバインダー12とに良好な静電付着力が働き、前混合工程S1でバインダー12が良好に分散する。平均繊維長を前記下限以上とすることにより、前混合を容易にすることができる。   As the fibrous activated carbon, coal pitch, petroleum pitch, synthetic resin activated carbon, natural material activated carbon, or the like can be used. The average fiber diameter D2 of the fibrous activated carbon may be smaller than the average particle diameter D4 of the second activated carbon 21, and is preferably 5 to 20 μm, more preferably 7 to 15 μm. The average fiber length of the fibrous activated carbon is preferably 15 to 500 μm, and more preferably 20 to 300 μm. By setting the average fiber diameter D2 to be equal to or less than the above upper limit, the fibrous activated carbon enters the gap between the relatively large second activated carbons 21, and the adsorption activity of the granulated activated carbon 100 is improved. By setting the average fiber diameter D2 to be equal to or greater than the lower limit, premixing in the premixing step S1 can be facilitated. Moreover, by setting the average fiber length to be equal to or less than the above upper limit, a good electrostatic adhesive force acts on the first activated carbon 11 and the binder 12, and the binder 12 is well dispersed in the premixing step S1. By making the average fiber length equal to or more than the lower limit, premixing can be facilitated.

前混合に用いる第一の活性炭11は、粉砕状活性炭のみ、粒状活性炭のみ、又は、繊維状活性炭のみでも良いが、粉砕状活性炭と粒状活性炭の組合せ、粉砕状活性炭と繊維状活性炭の組合せ、粒状活性炭と繊維状活性炭の組合せ、粉砕状活性炭と粒状活性炭と繊維状活性炭の組合せ、でも良い。また、平均粒径の異なる複数種類の粒状活性炭を組み合わせて使用しても良いし、平均繊維径や平均繊維長の異なる複数種類の繊維状活性炭を組み合わせて使用しても良い。   The first activated carbon 11 used for pre-mixing may be only pulverized activated carbon, only granular activated carbon, or only fibrous activated carbon, but a combination of pulverized activated carbon and granular activated carbon, a combination of pulverized activated carbon and fibrous activated carbon, granular A combination of activated carbon and fibrous activated carbon, or a combination of pulverized activated carbon, granular activated carbon and fibrous activated carbon may be used. Further, a plurality of types of granular activated carbon having different average particle diameters may be used in combination, or a plurality of types of fibrous activated carbon having different average fiber diameters and average fiber lengths may be used in combination.

バインダー12には、第二の活性炭21の平均粒径D4よりも小さい平均粒径D3の固化した熱可塑性のバインダーを用いる。これにより、第一の活性炭11とバインダー12とに働く静電付着力が大きく、液状分散媒が無くても前混合工程S1でバインダー12が良好に分散する。バインダーの平均粒径D3は、1〜50μmが好ましく、2〜40μmがより好ましい。平均粒径D3を前記上限以下とすることにより、比較的大きい第二の活性炭21同士の隙間に比較的小さいバインダー12が入り込み、造粒活性炭100の形状が良好に保持される。また、平均粒径D3を前記下限以上とすることにより、前混合を容易にすることができる。   As the binder 12, a solidified thermoplastic binder having an average particle diameter D3 smaller than the average particle diameter D4 of the second activated carbon 21 is used. Thereby, the electrostatic adhesive force which acts on the 1st activated carbon 11 and the binder 12 is large, and even if there is no liquid dispersion medium, the binder 12 disperse | distributes favorably by pre-mixing process S1. The average particle diameter D3 of the binder is preferably 1 to 50 μm, and more preferably 2 to 40 μm. By setting the average particle diameter D3 to be equal to or less than the above upper limit, the relatively small binder 12 enters the gap between the relatively large second activated carbons 21, and the shape of the granulated activated carbon 100 is favorably maintained. Moreover, premixing can be made easy by making average particle diameter D3 more than the said minimum.

さらに、バインダー12の配合量は、第一の活性炭100重量部に対して7〜70重量部(より好ましくは10〜50重量部)とする。バインダーの配合量が前記下限以上であるため、加熱混合工程S3で活性炭同士が十分に接着し、造粒活性炭100の形状が十分に保持される。また、バインダーの配合量が前記上限以下であるため、活性炭の活性を有する表面が十分に残り、造粒活性炭100が良好な吸着活性を示す。バインダー12の配合比は、造粒活性炭の形状保持性の観点から、第一の活性炭の平均粒径D1が小さくなるほど多くするのが好ましく、繊維状の第一の活性炭の平均繊維径D2が小さくなるほど多くするのが好ましく、繊維状の第一の活性炭の平均繊維長が短くなるほど多くするのが好ましい。   Furthermore, the compounding quantity of the binder 12 shall be 7-70 weight part (more preferably 10-50 weight part) with respect to 100 weight part of 1st activated carbon. Since the compounding quantity of a binder is more than the said minimum, activated carbon fully adhere | attaches by heating mixing process S3, and the shape of the granulated activated carbon 100 is fully hold | maintained. Moreover, since the compounding quantity of a binder is below the said upper limit, the surface which has the activity of activated carbon fully remains, and the granulated activated carbon 100 shows favorable adsorption activity. The blending ratio of the binder 12 is preferably increased as the average particle diameter D1 of the first activated carbon is decreased from the viewpoint of shape retention of the granulated activated carbon, and the average fiber diameter D2 of the fibrous first activated carbon is decreased. It is preferable to increase the amount, and it is preferable to increase it as the average fiber length of the fibrous first activated carbon decreases.

バインダー12には、ポリエチレン(PE)やポリプロピレン(PP)といったポリオレフィン、ポリエチレンテレフタレートといったポリエステル、熱可塑性エラストマー、これらの樹脂に改質剤といった添加剤を添加した樹脂、これらの樹脂の混合物、等を用いることができる。なお、これらの樹脂は、熱可塑性樹脂に含まれるものとする。
熱可塑性樹脂(添加剤を除く。)の平均分子量は、50万〜1000万が好ましく、100万〜700万がより好ましい。平均分子量を前記下限以上とすることにより、バインダー12が溶融しても流動性が小さく活性炭表面に拡がり難いので、活性炭(11,21)同士が点接着し易く、造粒活性炭100の吸着活性が向上する。平均分子量を前記上限以下とすることにより、加熱混合工程S3で活性炭同士が良好に接着し、造粒活性炭100の形状が良好に保持される。熱可塑性樹脂の具体例として、三井化学株式会社製超高分子量ポリエチレンパウダー(ミペロン(登録商標)、平均粒径30μm、平均分子量200万)、同社製高分子量ポリエチレンパウダー(ハイゼックスミリオン(登録商標)、平均粒径120〜360μm、平均分子量50万〜600万)、同社製ポリエチレン(リュブマー(登録商標))、等を挙げることができる。
As the binder 12, polyolefin such as polyethylene (PE) or polypropylene (PP), polyester such as polyethylene terephthalate, thermoplastic elastomer, resin obtained by adding an additive such as a modifier to these resins, a mixture of these resins, or the like is used. be able to. These resins are included in the thermoplastic resin.
The average molecular weight of the thermoplastic resin (excluding additives) is preferably 500,000 to 10,000,000, more preferably 1,000,000 to 7,000,000. By setting the average molecular weight to the above lower limit or more, even if the binder 12 is melted, the fluidity is small and it is difficult to spread on the activated carbon surface. Therefore, the activated carbon (11, 21) is easily spot-bonded, and the adsorptive activity of the granulated activated carbon 100 is increased. improves. By setting the average molecular weight to the upper limit or less, the activated carbons adhere well in the heating and mixing step S3, and the shape of the granulated activated carbon 100 is maintained well. As specific examples of the thermoplastic resin, ultra high molecular weight polyethylene powder (Miperon (registered trademark), average particle size 30 μm, average molecular weight 2 million) manufactured by Mitsui Chemical Co., Ltd., high molecular weight polyethylene powder (Hi-Zex Million (registered trademark), Examples include an average particle size of 120 to 360 μm, an average molecular weight of 500,000 to 6,000,000), and polyethylene (Lübmer (registered trademark)) manufactured by the same company.

上記熱可塑性樹脂は、超高分子量の材料であるため、通常、JIS K7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイトI(MVR)の試験方法」に規定されたMFRが0.1g/10min未満となる。ここで、MFR0.0g/10minには、熱可塑性樹脂の分子量が極めて大きいために流動性が小さく測定することができないことが含まれる。
以上のことから、熱可塑性樹脂のMFRは、0.1g/10min未満が好ましく、0.0g/10minがより好ましい。
Since the thermoplastic resin is an ultra-high molecular weight material, it is usually specified in JIS K7210: 1999 “Plastics—Test methods for melt mass flow rate (MFR) and melt volume flow rate I (MVR) of thermoplastics”. MFR is less than 0.1 g / 10 min. Here, MFR 0.0 g / 10 min includes the fact that the flowability is small and cannot be measured because the molecular weight of the thermoplastic resin is extremely large.
From the above, the MFR of the thermoplastic resin is preferably less than 0.1 g / 10 min, and more preferably 0.0 g / 10 min.

前混合工程S1に用いる素材は、第一の活性炭11とバインダー12の組合せのみでも良いが、第一の活性炭100重量部に対して0.1〜60重量部の添加剤13を添加しても良い。添加剤13には、陽イオン交換樹脂、陰イオン交換樹脂、キレート樹脂、これらの組合せ、といったイオン交換体等を用いることができる。陽イオン交換樹脂やキレート樹脂は、金属処理剤として機能する。
添加剤13が粒状である場合、添加剤の平均粒径は、1〜50μmが好ましく、2〜40μmがより好ましい。添加剤13が繊維状である場合、添加剤の平均繊維径は、5〜20μmが好ましく、7〜15μmがより好ましい。添加剤の平均繊維長は、15〜500μmが好ましく、20〜300μmがより好ましい。平均粒径や平均繊維径を前記上限以下とすることにより、比較的大きい第二の活性炭21同士の隙間に添加剤13が入り込み、造粒活性炭100の吸着活性が向上する。平均繊維長を前記上限以下とすることにより、第一の活性炭11とバインダー12と添加剤13とに良好な静電付着力が働き、前混合工程S1で添加剤13が良好に分散する。また、平均粒径や平均繊維径や平均繊維長を前記下限以上とすることにより、前混合工程S1の前混合を容易にすることができる。
The material used in the pre-mixing step S1 may be only a combination of the first activated carbon 11 and the binder 12, but 0.1 to 60 parts by weight of the additive 13 may be added to 100 parts by weight of the first activated carbon. good. As the additive 13, an ion exchanger such as a cation exchange resin, an anion exchange resin, a chelate resin, or a combination thereof can be used. The cation exchange resin or chelate resin functions as a metal treatment agent.
When the additive 13 is granular, the average particle diameter of the additive is preferably 1 to 50 μm, and more preferably 2 to 40 μm. When the additive 13 is fibrous, the average fiber diameter of the additive is preferably 5 to 20 μm, and more preferably 7 to 15 μm. The average fiber length of the additive is preferably 15 to 500 μm, and more preferably 20 to 300 μm. By making the average particle diameter and the average fiber diameter not more than the above upper limit, the additive 13 enters the gap between the relatively large second activated carbons 21, and the adsorption activity of the granulated activated carbon 100 is improved. By setting the average fiber length to be less than or equal to the above upper limit, good electrostatic adhesion acts on the first activated carbon 11, the binder 12, and the additive 13, and the additive 13 is well dispersed in the premixing step S1. Moreover, premixing of premixing process S1 can be made easy by making an average particle diameter, an average fiber diameter, and average fiber length more than the said minimum.

前混合工程S1では、第一の活性炭11とバインダー12と必要に応じて添加剤13とを含む素材を液状分散媒非存在下で前混合してもよい。液状分散媒非存在下で混合することは、水や有機溶媒等の液状分散媒を用いて素材を混練することではなく、乾式条件下で素材を混合することである。ここで、「混練」は、分散質の表面全体に液状分散媒をコーティングする分散操作を意味する。本製造方法は、固化した熱可塑性のバインダー12を第一の活性炭11とバインダー12とに大きな静電付着力が働く平均粒径としているので、液状分散媒が無くても前混合工程S1でバインダー12が良好に分散する。また、液状分散媒を用いた混合と比べて、バインダーで塞がれる活性炭細孔が少なくなり、造粒活性炭の吸着能力が向上すると推測される。
前混合工程S1の前混合には、ミキサー、ブレンダー、水平円筒型、V型、二重円錐型、正方立体型、S型、連続V型、ボールミル型、ロッキング型、クロスロータリー型、リボン型、スクリュー型、ロター型、パグミル型、遊星型、タービン型、高速流動型、回転円板型、等の混合装置を使用することができる。
In the premixing step S1, a material containing the first activated carbon 11, the binder 12, and, if necessary, the additive 13 may be premixed in the absence of the liquid dispersion medium. Mixing in the absence of a liquid dispersion medium is not mixing the material using a liquid dispersion medium such as water or an organic solvent, but mixing the material under dry conditions. Here, “kneading” means a dispersion operation in which the entire surface of the dispersoid is coated with a liquid dispersion medium. In this manufacturing method, since the solidified thermoplastic binder 12 has an average particle size at which a large electrostatic adhesion force acts on the first activated carbon 11 and the binder 12, the binder can be used in the premixing step S1 even without a liquid dispersion medium. 12 is well dispersed. Moreover, compared with the mixing using a liquid dispersion medium, the activated carbon pores plugged with the binder are reduced, and it is estimated that the adsorption ability of the granulated activated carbon is improved.
For the premixing in the premixing step S1, a mixer, blender, horizontal cylinder type, V type, double cone type, square solid type, S type, continuous V type, ball mill type, rocking type, cross rotary type, ribbon type, A mixing device such as a screw type, a rotor type, a pug mill type, a planetary type, a turbine type, a high-speed flow type, or a rotating disk type can be used.

前混合工程S1の前混合時の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で素材を前混合すると、第一の活性炭11とバインダー12とに働く静電付着力によりバインダー12が良好に分散する。なお、バインダーの融点が範囲Tml〜Tmh(℃)で示される場合、前混合時の温度の上限をTml未満とすればよい。また、バインダーの軟化温度が範囲Tsl〜Tshで示される場合、前混合時の温度のより好ましい上限をTslとすればよい。以下に記載される「融点未満」や「軟化温度未満」も、同様である。
上記混合装置の回転速度は、素材中でバインダー12や必要に応じて添加剤13が分散する速度であればよく、例えば、50〜50000rpmとすることができる。前混合の時間も、素材中でバインダー12や必要に応じて添加剤13が分散する時間であればよく、例えば、5〜120分とすることができる。
The temperature during premixing in the premixing step S1 is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the materials are premixed at such a temperature, the binder 12 is favorably dispersed by the electrostatic adhesion force acting on the first activated carbon 11 and the binder 12. In the case where the melting point of the binder is represented by the range T ml ~T mh (℃), the upper limit of the temperature before mixing time it may be less than T ml. When the softening temperature of the binder is indicated by the range T sl to T sh , a more preferable upper limit of the temperature at the time of premixing may be set to T sl . The same applies to “below melting point” and “below softening temperature” described below.
The rotational speed of the mixing device may be a speed at which the binder 12 and, if necessary, the additive 13 are dispersed in the raw material, and may be, for example, 50 to 50000 rpm. The premixing time may be a time for dispersing the binder 12 and, if necessary, the additive 13 in the material, and may be, for example, 5 to 120 minutes.

前混合工程S1では、後から添加する第二の活性炭21よりも小さい第一の活性炭11とバインダー12と必要に応じて添加剤13とを含む素材を前混合する。造粒活性炭100の骨格となる第二の活性炭21同士の間に配置される小さい粒子(11,12,13)の大きさを近付けることにより、粒子(11,12,13)が似た挙動を示し、静電付着力で自己凝集する。その後に大きい第二の活性炭21を加えても、小さな粒子(11,12,13)は分散せず自己凝集のままである割合が高く、大きさの異なる粒子(11,12,13,21)がランダムに混合する。
なお、平均粒径の異なる複数種類の活性炭と固化したバインダーと同時に混合する場合、粒径の小さい活性炭同士が自己凝集したりバインダー同士が自己凝集したりして混合物が均一とならず、活性炭同士がバインダーで接着されないことがある。バインダーを活性炭同士の間に行き渡らせるためのバインダーの配合比を多くすると、単位体積当たりの造粒活性炭の吸着活性が低下することになる。
本製造方法は、小さい粒子(11,12,13)を先に混合することにより、小さい第一の活性炭11同士が自己凝集したり小さいバインダー12同士が自己凝集したりすることが抑制され、少ない量のバインダー12で骨格粒子間に小さい粒子(11,13)を接着することができる。
In the pre-mixing step S1, a material including the first activated carbon 11 smaller than the second activated carbon 21 to be added later, the binder 12, and the additive 13 as necessary is pre-mixed. By approaching the size of the small particles (11, 12, 13) arranged between the second activated carbons 21 that form the skeleton of the granulated activated carbon 100, the particles (11, 12, 13) behave similarly. Show self-aggregation by electrostatic adhesion. Even if the large second activated carbon 21 is added thereafter, the small particles (11, 12, 13) do not disperse and remain highly self-aggregated, and the particles having different sizes (11, 12, 13, 21). Mix randomly.
In addition, when mixing multiple types of activated carbons with different average particle diameters and a solidified binder at the same time, activated carbons with small particle diameters self-aggregate or binders self-aggregate and the mixture is not uniform. May not be bonded with a binder. When the blending ratio of the binder for spreading the binder between the activated carbons is increased, the adsorption activity of the granulated activated carbon per unit volume is lowered.
In this production method, by mixing the small particles (11, 12, 13) first, the small first activated carbons 11 are prevented from self-aggregating with each other and the small binders 12 are inhibited from self-aggregating with little. Small particles (11, 13) can be bonded between the skeleton particles with an amount of binder 12.

第二活性炭添加工程S2では、前混合工程S1で得られる前混合物20に平均粒径D4の第二の活性炭(21)500〜10000重量部(より好ましくは700〜7000重量部)を少なくとも加える。ただし、D4>D1、D4>D2、D4>D3である。第二の活性炭21の配合量が前記下限以上であるため、比較的大きい第二の活性炭21が造粒活性炭100の骨格となり、造粒活性炭100の形状が良好に保持される。また、第二の活性炭21の配合量が前記上限以下であるため、比較的大きい第二の活性炭21同士の間に小さい粒子(11,12,13)が入り込み、第二の活性炭21同士が接着され、造粒活性炭100の形状が良好に保持される。
第二の活性炭21には、平均粒径D4=50〜500μm(より好ましくは60〜300μm)の活性炭を用いる。平均粒径D4が前記上限以下であるので、粒子(11,12,13,21)間に静電付着力が働き、液状分散媒が無くても第二の活性炭21が良好に分散する。また、平均粒径D4が前記下限以上であるので、第二の活性炭21が造粒活性炭100の骨格となり、造粒活性炭100の形状が良好に保持される。
In the second activated carbon addition step S2, at least 500 to 10,000 parts by weight (more preferably 700 to 7000 parts by weight) of second activated carbon (21) having an average particle diameter D4 is added to the premix 20 obtained in the premixing step S1. However, D4> D1, D4> D2, and D4> D3. Since the compounding quantity of the 2nd activated carbon 21 is more than the said minimum, the comparatively large 2nd activated carbon 21 becomes frame | skeleton of the granulated activated carbon 100, and the shape of the granulated activated carbon 100 is hold | maintained favorably. Moreover, since the compounding quantity of the 2nd activated carbon 21 is below the said upper limit, a small particle (11,12,13) enters between relatively large 2nd activated carbon 21, and the 2nd activated carbon 21 adheres. Thus, the shape of the granulated activated carbon 100 is maintained well.
As the second activated carbon 21, activated carbon having an average particle diameter D4 = 50 to 500 μm (more preferably 60 to 300 μm) is used. Since the average particle diameter D4 is not more than the above upper limit, electrostatic adhesion acts between the particles (11, 12, 13, 21), and the second activated carbon 21 is well dispersed even without a liquid dispersion medium. Moreover, since the average particle diameter D4 is more than the said minimum, the 2nd activated carbon 21 becomes frame | skeleton of the granulated activated carbon 100, and the shape of the granulated activated carbon 100 is hold | maintained favorably.

第二の活性炭21には、ヤシ殻系活性炭、木炭、竹炭、石炭系活性炭、合成樹脂系活性炭、等の粒状活性炭や粉砕状活性炭を用いることができる。第二の活性炭は、賦活物を砕いて所定粒度にふるい分けして得られる活性炭でも良いし、所定粒度の炭素質材料を賦活して得られる活性炭でも良い。第二の活性炭には、粉末活性炭が含まれるものとする。第二の活性炭には、平均粒径の異なる複数種類の活性炭を組み合わせて使用しても良い。   For the second activated carbon 21, granular activated carbon such as coconut shell activated carbon, charcoal, bamboo charcoal, coal activated carbon, synthetic resin activated carbon, or pulverized activated carbon can be used. The second activated carbon may be activated carbon obtained by crushing an activated material and sieving to a predetermined particle size, or activated carbon obtained by activating a carbonaceous material having a predetermined particle size. The second activated carbon includes powdered activated carbon. For the second activated carbon, a plurality of types of activated carbons having different average particle diameters may be used in combination.

前混合物20に加える素材は、第二の活性炭21のみでも良いが、第一の活性炭100重量部に対して0.1〜60重量部の添加剤22を添加しても良い。添加剤22には、陽イオン交換樹脂、陰イオン交換樹脂、キレート樹脂、これらの組合せ、といったイオン交換体等を用いることができる。
添加剤22が粒状である場合、添加剤の平均粒径は、50〜500μmが好ましく、60〜300μmがより好ましい。平均粒径を前記上限以下とすることにより、粒子(11,12,13,21,22)間に静電付着力が働き、液状分散媒が無くても添加剤22が良好に分散する。また、平均粒径を前記下限以上とすることにより、比較的大きい第二の活性炭21及び添加剤22が造粒活性炭100の骨格となり、造粒活性炭100の形状が良好に保持される。
The material added to the premix 20 may be only the second activated carbon 21, but 0.1 to 60 parts by weight of the additive 22 may be added to 100 parts by weight of the first activated carbon. As the additive 22, an ion exchanger such as a cation exchange resin, an anion exchange resin, a chelate resin, or a combination thereof can be used.
When the additive 22 is granular, the average particle diameter of the additive is preferably 50 to 500 μm, and more preferably 60 to 300 μm. By setting the average particle size to be equal to or less than the above upper limit, electrostatic adhesion acts between the particles (11, 12, 13, 21, 22), and the additive 22 is well dispersed without a liquid dispersion medium. In addition, by setting the average particle size to be equal to or more than the lower limit, the relatively large second activated carbon 21 and additive 22 become a skeleton of the granulated activated carbon 100, and the shape of the granulated activated carbon 100 is well maintained.

第二活性炭添加工程S2で前混合物20に第二の活性炭21を少なくとも加えて混合すると、前混合物20と第二の活性炭21とを含む素材が混合された後に加熱されて混合されるので、得られる混合物40がより均質となる。従って、より均質な造粒活性炭100を製造することが可能となる。
第二活性炭添加工程S2の混合には、前混合工程S1の前混合に使用可能な混合装置を使用することができる。混合時の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で素材を混合すると、第二の活性炭21が良好に分散する。
混合装置の回転速度は、素材中で第二の活性炭21や必要に応じて添加剤22が分散する速度であればよく、例えば、50〜50000rpmとすることができる。混合の時間も、素材中で第二の活性炭21や必要に応じて添加剤22が分散する時間であればよく、例えば、5〜120分とすることができる。
When at least the second activated carbon 21 is added to and mixed with the pre-mixture 20 in the second activated carbon addition step S2, the material containing the pre-mix 20 and the second activated carbon 21 is mixed and then heated and mixed. The resulting mixture 40 becomes more homogeneous. Therefore, it becomes possible to produce a more uniform granulated activated carbon 100.
For the mixing in the second activated carbon addition step S2, a mixing device that can be used for the premixing in the premixing step S1 can be used. The temperature at the time of mixing is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the materials are mixed at such a temperature, the second activated carbon 21 is well dispersed.
The rotation speed of the mixing device may be a speed at which the second activated carbon 21 and, if necessary, the additive 22 are dispersed in the raw material, and can be, for example, 50 to 50000 rpm. The mixing time may be any time as long as the second activated carbon 21 and, if necessary, the additive 22 are dispersed in the material, and may be, for example, 5 to 120 minutes.

加熱混合工程S3では、第二の活性炭21を少なくとも加えた混合物30をバインダー12の軟化温度以上かつバインダー(12)が発火しない温度に加熱して混合する。混合物30を液状分散媒非存在下で加熱して混合してもよい。ここでも、液状分散媒非存在下で混合することは、液状分散媒を用いて素材を混練することではなく、乾式条件下で素材を混合することである。これにより、液状分散媒を用いた混合と比べて、バインダーで塞がれる活性炭細孔が少なくなり、造粒活性炭の吸着能力が向上すると推測される。
加熱混合には、ニーダー、ラボプラストミル、ホイール型、ボール型、ブレード型、ロール型等の混合装置に前加熱や直接加熱といった加熱の機能が備わったものを使用することができる。
In the heating and mixing step S3, the mixture 30 to which at least the second activated carbon 21 is added is heated and mixed to a temperature not lower than the softening temperature of the binder 12 and the binder (12) does not ignite. The mixture 30 may be heated and mixed in the absence of the liquid dispersion medium. Again, mixing in the absence of the liquid dispersion medium is not mixing the material using the liquid dispersion medium but mixing the material under dry conditions. Thereby, compared with mixing using a liquid dispersion medium, the activated carbon pores plugged with the binder are reduced, and it is estimated that the adsorption ability of the granulated activated carbon is improved.
For the heating and mixing, a kneader, a lab plast mill, a wheel type, a ball type, a blade type, a roll type or the like having a heating function such as preheating or direct heating can be used.

加熱混合の温度は、バインダー12の軟化温度以上(好ましくは融点以上、より好ましくは融点よりも10℃高い温度以上)、かつ、バインダー12が発火しない温度(好ましくは350℃未満、より好ましくは融点よりも70℃高い温度以下)とする。加熱温度が前記下限以上であるため、活性炭同士が十分に接着し、造粒活性炭100の形状が十分に保持される。また、加熱温度が前記上限以下であるため、活性炭同士が点接着し易く活性炭の活性を有する表面が十分に残り、造粒活性炭100が良好な吸着活性を示す。なお、ポリエチレン等の熱可塑性樹脂の発火点は、通常、350℃以上であるため、加熱混合温度の好ましい上限は350℃未満である。バインダーの融点が範囲Tml〜Tmhで示される場合、加熱混合温度のより好ましい上限はTml+70とすればよく、加熱混合温度の好ましい下限はTmh(より好ましくはTmh+10)とすればよい。また、加熱温度がバインダーの融点に70℃を加えた温度よりも高い場合、バインダーからガスが発生してバインダーの容積が減少するものの、バインダーが発火しない温度であれば活性炭同士を接着し造粒活性炭の形状を保持することが可能である。
上記混合装置の回転速度は、混合物の温度の偏りを少なくする速度であればよく、例えば、15〜200rpmとすることができる。加熱混合の時間は、活性炭同士が接着して混合物40が塊状となる時間であればよく、例えば、10〜120分とすることができる。
The heating and mixing temperature is equal to or higher than the softening temperature of the binder 12 (preferably higher than the melting point, more preferably higher than 10 ° C. higher than the melting point) and the temperature at which the binder 12 does not ignite (preferably less than 350 ° C., more preferably the melting point 70 ° C. or higher). Since heating temperature is more than the above-mentioned minimum, activated carbon fully adheres and the shape of granulated activated carbon 100 is fully maintained. Moreover, since heating temperature is below the said upper limit, activated carbon is easy to carry out point adhesion, the surface which has the activity of activated carbon fully remains, and the granulated activated carbon 100 shows favorable adsorption activity. In addition, since the ignition point of thermoplastic resins, such as polyethylene, is usually 350 degreeC or more, the preferable upper limit of heating mixing temperature is less than 350 degreeC. When the melting point of the binder is shown in the range T ml to T mh , the more preferable upper limit of the heating and mixing temperature may be T ml +70, and the preferable lower limit of the heating and mixing temperature is T mh (more preferably T mh +10). That's fine. In addition, when the heating temperature is higher than the temperature obtained by adding 70 ° C. to the melting point of the binder, gas is generated from the binder and the volume of the binder is reduced. It is possible to maintain the shape of the activated carbon.
The rotational speed of the mixing device may be a speed that reduces the temperature deviation of the mixture, and can be, for example, 15 to 200 rpm. The time for heating and mixing may be any time as long as the activated carbon adheres and the mixture 40 becomes a lump, and may be, for example, 10 to 120 minutes.

造粒活性炭形成工程S4では、混合終了後の混合物40を砕いて造粒活性炭100を形成する。図1には、混合物40を粗破砕する粗破砕工程S41と、この粗破砕工程S41で得られる粗破砕物50を振動するふるいにより分級するふるい分級工程S42とを経て造粒活性炭100を形成することが示されている。   In the granulated activated carbon forming step S4, the granulated activated carbon 100 is formed by crushing the mixture 40 after completion of the mixing. In FIG. 1, the granulated activated carbon 100 is formed through a coarse crushing step S41 for roughly crushing the mixture 40 and a sieve classification step S42 for classifying the coarsely crushed product 50 obtained in the coarse crushing step S41 by a vibrating sieve. It has been shown.

粗破砕工程S41では、冷えて固化した塊状の混合物40を所定の粒径(例えば10mm)程度以下に粗く砕く。混合物40を粗破砕することにより、ふるい分級工程S42の時間が短くなり、分級時に小さすぎる粒子の割合が少なくなる。
粗破砕には、ミキサー、ブレンダー、ミル、ジョークラッシャー、ジャイレトリクラッシャー、コーンクラッシャー、ハンマークラッシャー、等の破砕装置を使用することができる。
In the coarse crushing step S41, the block mixture 40 that has been cooled and solidified is roughly crushed to a predetermined particle size (for example, 10 mm) or less. By roughly crushing the mixture 40, the time of the sieve classification step S42 is shortened, and the proportion of particles that are too small during classification is reduced.
For rough crushing, a crushing device such as a mixer, blender, mill, jaw crusher, gyre crusher, cone crusher, hammer crusher, or the like can be used.

粗破砕の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で混合物40を粗破砕すると、混合物40が良好に砕かれる。
上記破砕装置の回転速度は、混合物40が粗く砕かれる速度であればよく、例えば、50〜50000rpmとすることができる。粗破砕の時間も、混合物40が粗く砕かれる時間であればよく、例えば、1〜120分とすることができる。
The rough crushing temperature is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the mixture 40 is roughly crushed at such a temperature, the mixture 40 is crushed well.
The rotational speed of the crushing apparatus may be a speed at which the mixture 40 is roughly crushed, and may be, for example, 50 to 50000 rpm. The rough crushing time may be a time during which the mixture 40 is roughly crushed, and may be, for example, 1 to 120 minutes.

ふるい分級工程S42では、振動するふるいにより塊状の粗破砕物50をさらに小さくして所定粒度にふるい分けし、所定粒度の造粒活性炭100を得る。造粒活性炭100の平均粒径は、造粒活性炭100の使用場面に応じて決定すれば良く、例えば、50μm〜5mm、より好ましくは100〜500μm程度とすることができる。
ふるい分けには、水平振動ふるいや傾斜型振動ふるいといったふるいを有するふるい分け装置等を用いることができる。
In the sieve classification step S42, the coarsely crushed material 50 is further reduced by a vibrating sieve and sieved to a predetermined particle size to obtain granulated activated carbon 100 having a predetermined particle size. What is necessary is just to determine the average particle diameter of the granulated activated carbon 100 according to the use scene of the granulated activated carbon 100, for example, can be about 50 micrometers-5 mm, More preferably, it is about 100-500 micrometers.
For sieving, a sieving apparatus having a sieve such as a horizontal vibration sieve or an inclined vibration sieve can be used.

分級時の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で粗破砕物50を分級すると、良好に分級される。   The temperature at the time of classification is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the coarsely crushed material 50 is classified at such a temperature, it is classified well.

なお、粗破砕物50自体が造粒された状態であるので、上記ふるい分級工程S42が無くても造粒活性炭100を製造することができる。また、振動するふるいにより塊状の粗破砕物50が小さくなるので、上記粗破砕工程S41が無くても造粒活性炭100を製造することができる。   In addition, since the coarsely crushed material 50 itself is in a granulated state, the granulated activated carbon 100 can be manufactured without the sieve classification step S42. Further, since the coarse crushed material 50 is reduced by the vibrating screen, the granulated activated carbon 100 can be produced without the coarse crushing step S41.

造粒活性炭100は、例えば、図2に示すような浄水器カートリッジC1に使用することができる。
図2に示す浄水器カートリッジC1は、入口側の不織布C3と出口側のイオン交換繊維C4とで仕切られた円筒状の造粒活性炭充填室C2や、造粒活性炭充填室C2で囲まれた中央位置に設けられた円柱状の中空糸膜収容室C5を有し、入口C11から流入する水道水をろ過してろ過水を出口C12から出す。すなわち、不織布C3、造粒活性炭100、イオン交換繊維C4、及び、中空糸膜C6がろ材として使用されている。
The granulated activated carbon 100 can be used, for example, in a water purifier cartridge C1 as shown in FIG.
The water purifier cartridge C1 shown in FIG. 2 has a cylindrical granulated activated carbon filling chamber C2 partitioned by a nonwoven fabric C3 on the inlet side and an ion exchange fiber C4 on the outlet side, and a center surrounded by the granulated activated carbon filling chamber C2. It has a columnar hollow fiber membrane storage chamber C5 provided at a position, and the tap water flowing from the inlet C11 is filtered and the filtered water is discharged from the outlet C12. That is, the nonwoven fabric C3, the granulated activated carbon 100, the ion exchange fiber C4, and the hollow fiber membrane C6 are used as a filter medium.

不織布C3は、入口C11に流入した水道水から大きなゴミを除去する。造粒活性炭充填室C2に充填された造粒活性炭100は、遊離残留塩素や有機物等を吸着して除去する。造粒活性炭100に金属処理剤が含まれる場合、金属イオンが除去される。イオン交換繊維C4は、金属イオン等を除去する。イオン交換繊維C4は、活性炭繊維等と組み合わされて使用されてもよい。中空糸膜収容室C5に収容された中空糸膜C6は、0.1μm程度以上の細かい濁りや鉄サビや一般細菌を取り除く。
以上の他、造粒活性炭100は、空気清浄機等に用いることができる。
Nonwoven fabric C3 removes large debris from tap water flowing into inlet C11. The granulated activated carbon 100 filled in the granulated activated carbon filling chamber C2 adsorbs and removes free residual chlorine and organic matter. When the granulated activated carbon 100 contains a metal treatment agent, metal ions are removed. The ion exchange fiber C4 removes metal ions and the like. The ion exchange fiber C4 may be used in combination with activated carbon fiber or the like. The hollow fiber membrane C6 accommodated in the hollow fiber membrane accommodation chamber C5 removes fine turbidity of about 0.1 μm or more, iron rust and general bacteria.
In addition to the above, the granulated activated carbon 100 can be used in an air cleaner or the like.

本製造方法は、比較的小さい第一の活性炭11及びバインダー12を含む素材が先に混合されるので、第一の活性炭11やバインダー12は単独で自己凝集し難くなる。得られる前混合物20に比較的大きい第二の活性炭21が少なくとも加えられ加熱されて混合されるので、前混合物20により第二の活性炭21同士が接着し、混合終了後に混合物40を砕くことにより造粒活性炭100が得られる。本製造方法は、バインダー12が単独で自己凝集し難くなるので、複数種類の活性炭を併用する場合にバインダー12の使用量を少なくすることが可能となる。
また、バインダーが少なくて済むので、造粒活性炭の単位体積当たりの吸着能力を向上させることができる。
In this manufacturing method, since the material containing the relatively small first activated carbon 11 and the binder 12 is first mixed, the first activated carbon 11 and the binder 12 are difficult to self-aggregate alone. Since the relatively large second activated carbon 21 is added to the premix 20 to be obtained and heated and mixed, the second activated carbon 21 is bonded to the premix 20 and is crushed after the mixing is completed. Granular activated carbon 100 is obtained. This manufacturing method makes it difficult for the binder 12 to self-aggregate alone, so that the amount of the binder 12 used can be reduced when a plurality of types of activated carbon are used in combination.
Moreover, since less binder is required, the adsorption capacity per unit volume of the granulated activated carbon can be improved.

さらに、第一の活性炭11とバインダー12とに働く静電付着力が大きく、液状分散媒が無くても加熱前の混合でバインダー12が良好に分散する。このため、加熱混合工程S3で活性炭同士が接着し、混合終了後に混合物40を砕くことにより造粒活性炭100が得られる。本製造方法は、混合物40から液状分散媒を除去する乾燥工程が不要であるので、造粒活性炭100の製造工程を短縮することが可能となる。
さらに、バインダーで塞がれる活性炭細孔が少なくなり、造粒活性炭の吸着能力が向上すると推測される。
さらに、バインダー12に平均分子量50万〜1000万の熱可塑性樹脂を用いることにより、バインダー12が溶融しても活性炭表面に拡がり難くなり、造粒活性炭100の吸着活性を向上させることが可能となる。
Furthermore, the electrostatic adhesion force acting on the first activated carbon 11 and the binder 12 is large, and the binder 12 is well dispersed by mixing before heating even without a liquid dispersion medium. For this reason, activated carbon adhere | attaches by heating mixing process S3, and the granulated activated carbon 100 is obtained by crushing the mixture 40 after completion | finish of mixing. Since this manufacturing method does not require a drying step of removing the liquid dispersion medium from the mixture 40, the manufacturing step of the granulated activated carbon 100 can be shortened.
Furthermore, it is estimated that the activated carbon pores blocked with the binder are reduced, and the adsorption ability of the granulated activated carbon is improved.
Furthermore, by using a thermoplastic resin having an average molecular weight of 500,000 to 10,000,000 for the binder 12, it becomes difficult to spread on the activated carbon surface even when the binder 12 melts, and the adsorption activity of the granulated activated carbon 100 can be improved. .

なお、大きさの異なる複数種類の活性炭や添加剤を均質に混合して造粒活性炭を形成することができるので、第一及び第二の活性炭に性質の異なる活性炭を用い、必要に応じてイオン交換体等の添加剤を用いることにより、各除去物質をバランス良く処理可能な造粒活性炭を得ることができる。例えば、比較的大きい粒状フェノール活性炭は、賦活が抑えられることにより、トリハロメタンの吸着に優れた0.7nm付近の細孔が発達している。一方、比較的小さいヤシ殻系活性炭や繊維状活性炭は、賦活が進んで表面積が大きく、残留塩素の除去に優れている。そこで、粒状フェノール活性炭と、ヤシ殻系活性炭や繊維状活性炭と、必要に応じて金属処理剤とを用いて造粒活性炭を形成すると、ヤシ殻系活性炭単独や、フェノール活性炭単独や、金属処理剤単独では得られない複合した除去能力を得ることができる。   In addition, since multiple types of activated carbons and additives with different sizes can be homogeneously mixed to form a granulated activated carbon, activated carbons having different properties are used for the first and second activated carbons, and ions can be added as necessary. By using an additive such as an exchanger, it is possible to obtain granulated activated carbon capable of treating each removed substance with a good balance. For example, a relatively large granular phenol activated carbon has pores around 0.7 nm that are excellent in adsorption of trihalomethane by suppressing activation. On the other hand, relatively small coconut shell activated carbon and fibrous activated carbon are activated and have a large surface area, and are excellent in removing residual chlorine. Therefore, when granulated activated carbon is formed using granular phenol activated carbon, coconut shell activated carbon or fibrous activated carbon, and if necessary, a metal treatment agent, coconut shell activated carbon alone, phenol activated carbon alone, metal treatment agent A combined removal capability that cannot be obtained alone can be obtained.

(2)変形例:
図3は、平均粒径0.5〜5mm程度の造粒活性炭101を製造するのに適した製造方法を示している。
図1に示した製造方法は、塊状の混合物40を粗破砕するため、平均粒径0.5〜5mm程度の大きい造粒活性炭を得ようとすると、形が揃わず歪になり、脆くなったり、浄水器カートリッジに充填したときに空隙が大きくろ材の充填密度が低下し吸着性能が低下したりすることがある。大きい造粒活性炭を得るため、図3には、加熱混合工程S3で得られる混合物40を破砕し、得られる破砕物60に液状分散媒61を加えて造粒し、得られる造粒物70をバインダー12の軟化温度以上かつバインダーが発火しない温度で乾燥させて平均粒径の大きい造粒活性炭101を形成する造粒活性炭形成工程S4が示されている。
(2) Modification:
FIG. 3 shows a production method suitable for producing granulated activated carbon 101 having an average particle size of about 0.5 to 5 mm.
Since the manufacturing method shown in FIG. 1 roughly crushes the massive mixture 40, when trying to obtain a large granulated activated carbon having an average particle size of about 0.5 to 5 mm, the shape is not uniform and becomes distorted and brittle. When the water purifier cartridge is filled, there are cases where the gap is large and the packing density of the filter medium is lowered and the adsorption performance is lowered. In order to obtain a large granulated activated carbon, in FIG. 3, the mixture 40 obtained in the heating and mixing step S3 is crushed, the liquid dispersion medium 61 is added to the obtained crushed material 60, and granulated. A granulated activated carbon formation step S4 is shown in which the granulated activated carbon 101 is dried at a temperature equal to or higher than the softening temperature of the binder 12 and at which the binder does not ignite to form a granulated activated carbon 101 having a large average particle size.

破砕工程S43では、冷えて固化した塊状の混合物40を所定の平均粒径(例えば20〜200μm程度)に破砕する。
破砕には、ミキサー、ブレンダー、ミル、ジョークラッシャー、ジャイレトリクラッシャー、コーンクラッシャー、ハンマークラッシャー、ボールミル、ローラーミル、高速回転ミル、ジェットミル、等の破砕装置を使用することができる。
In the crushing step S43, the cooled and solidified mixture 40 is crushed to a predetermined average particle size (for example, about 20 to 200 μm).
For crushing, crushing apparatuses such as a mixer, a blender, a mill, a jaw crusher, a gyratory crusher, a cone crusher, a hammer crusher, a ball mill, a roller mill, a high-speed rotating mill, and a jet mill can be used.

破砕の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で混合物40を破砕すると、混合物40が良好に破砕される。
上記破砕装置の回転速度は、混合物40が破砕される速度であればよく、例えば、50〜50000rpmとすることができる。破砕の時間も、混合物40が破砕される時間であればよく、例えば、1〜120分とすることができる。
The crushing temperature is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the mixture 40 is crushed at such a temperature, the mixture 40 is crushed well.
The rotational speed of the crushing apparatus may be a speed at which the mixture 40 is crushed, and may be, for example, 50 to 50000 rpm. The time for crushing may be any time as long as the mixture 40 is crushed, and may be, for example, 1 to 120 minutes.

造粒工程S44では、破砕工程S43で得られる破砕物60に液状分散媒61を加えて造粒する。
液状分散媒61には、水、アルコール水溶液、有機溶媒、等を用いることができる。液状分散媒61の配合量は、破砕物100重量部に対して、50〜500重量部が好ましく、100〜350重量部がより好ましい。
In the granulation step S44, the liquid dispersion medium 61 is added to the crushed material 60 obtained in the crushing step S43 for granulation.
As the liquid dispersion medium 61, water, an aqueous alcohol solution, an organic solvent, or the like can be used. The blending amount of the liquid dispersion medium 61 is preferably 50 to 500 parts by weight, and more preferably 100 to 350 parts by weight with respect to 100 parts by weight of the crushed material.

造粒には、転動造粒機、撹拌造粒機、圧縮造粒機、押出造粒機、等の造粒装置を用いることができる。造粒時の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。造粒装置の回転速度は、破砕物60が造粒される速度であればよい。造粒の時間も、破砕物60が造粒される時間であればよい。   For the granulation, a granulating apparatus such as a rolling granulator, a stirring granulator, a compression granulator, an extrusion granulator, or the like can be used. The temperature at the time of granulation is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. The rotational speed of the granulator may be a speed at which the crushed material 60 is granulated. The granulation time may be a time when the crushed material 60 is granulated.

乾燥工程S45では、造粒工程S44で得られる造粒物70をバインダー12の軟化温度以上(好ましくは融点以上、より好ましくは融点よりも10℃高い温度以上)、かつ、バインダー12が発火しない温度(好ましくは350℃未満、より好ましくは融点よりも70℃高い温度以下)で乾燥させる。乾燥温度が前記下限以上であるため、バインダー12が軟化して破砕物60同士が十分に接着し、造粒活性炭101の形状が十分に保持される。また、乾燥温度が前記上限以下であるため、破砕物60同士が点接着し易く活性炭の活性を有する表面が十分に残り、造粒活性炭101が良好な吸着活性を示す。
なお、造粒物70の温度をバインダー12の軟化温度以上にする前に、バインダー12の軟化温度未満で造粒物70を乾燥してもよい。すると、バインダー12が軟化する前に造粒物70から液状分散媒61が除去されるので、破砕物60同士が良好に接着し、造粒活性炭101の形状が良好に保持される。
In the drying step S45, the granulated product 70 obtained in the granulating step S44 is not less than the softening temperature of the binder 12 (preferably not less than the melting point, more preferably not less than 10 ° C. higher than the melting point) and the temperature at which the binder 12 does not ignite. (Preferably less than 350 ° C., more preferably 70 ° C. or higher than the melting point). Since the drying temperature is equal to or higher than the lower limit, the binder 12 is softened, the crushed materials 60 are sufficiently bonded to each other, and the shape of the granulated activated carbon 101 is sufficiently maintained. Moreover, since the drying temperature is not more than the above upper limit, the crushed materials 60 are easily spot-bonded to each other, and a sufficient surface having activated carbon activity remains, and the granulated activated carbon 101 exhibits good adsorption activity.
In addition, before making the temperature of the granulated material 70 more than the softening temperature of the binder 12, you may dry the granulated material 70 below the softening temperature of the binder 12. FIG. Then, since the liquid dispersion medium 61 is removed from the granulated product 70 before the binder 12 is softened, the crushed materials 60 are bonded well, and the shape of the granulated activated carbon 101 is maintained well.

ふるい分級工程S46では、振動するふるいにより乾燥後の造粒物80を所定粒度にふるい分けし、所定粒度の造粒活性炭101を得る。造粒活性炭101の平均粒径は、造粒活性炭101の使用場面に応じて決定すれば良く、例えば、0.3〜7mm、より好ましくは0.5〜5mm程度とすることができる。
ふるい分けには、水平振動ふるいや傾斜型振動ふるいといったふるいを有するふるい分け装置等を用いることができる。分級時の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で造粒物80を分級すると、良好に分級される。
In the sieve classification step S46, the granulated product 80 after drying is screened to a predetermined particle size using a vibrating screen to obtain granulated activated carbon 101 having a predetermined particle size. What is necessary is just to determine the average particle diameter of the granulated activated carbon 101 according to the use scene of the granulated activated carbon 101, for example, can be 0.3-7 mm, More preferably, it can be set as about 0.5-5 mm.
For sieving, a sieving apparatus having a sieve such as a horizontal vibration sieve or an inclined vibration sieve can be used. The temperature at the time of classification is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the granulated product 80 is classified at such a temperature, it is classified well.

なお、造粒物80自体が造粒された状態であるので、上記ふるい分級工程S46が無くても造粒活性炭101を製造することができる。   In addition, since the granulated product 80 itself is in a granulated state, the granulated activated carbon 101 can be manufactured without the sieve classification step S46.

本製造方法も、比較的小さい第一の活性炭11及びバインダー12を含む素材が先に混合され、得られる前混合物20に比較的大きい第二の活性炭21が少なくとも加えられ加熱されて混合されるので、前混合物20により第二の活性炭21同士が接着する。従って、混合終了後に混合物40を破砕し、造粒し、乾燥することにより造粒活性炭101が得られる。本製造方法も、バインダー12が単独で自己凝集し難くなるので、複数種類の活性炭を併用する場合にバインダー12の使用量を少なくすることが可能となる。また、バインダーが少なくて済むので、造粒活性炭の単位体積当たりの吸着能力を向上させることができる。   Also in this manufacturing method, since the raw material containing the relatively small first activated carbon 11 and the binder 12 is first mixed, the relatively large second activated carbon 21 is added to the obtained premix 20 and heated and mixed. The second activated carbon 21 is bonded to the pre-mixture 20. Therefore, the granulated activated carbon 101 is obtained by crushing, granulating, and drying the mixture 40 after completion of the mixing. This manufacturing method also makes it difficult for the binder 12 to self-aggregate alone, so that the amount of the binder 12 used can be reduced when a plurality of types of activated carbon are used in combination. Moreover, since less binder is required, the adsorption capacity per unit volume of the granulated activated carbon can be improved.

なお、一般的な造粒は重力を利用した回転、圧縮、等により行われるため0.3mm程度未満の小さな粒子は形成され難い。従って、平均粒径50μm〜5mm程度の小さい造粒活性炭は、図1で示したような製造方法が適している。   In addition, since general granulation is performed by rotation, compression, etc. using gravity, it is difficult to form small particles of less than about 0.3 mm. Therefore, a small granulated activated carbon having an average particle size of about 50 μm to 5 mm is suitable for the manufacturing method as shown in FIG.

(3)実施例:
以下、実施例を示して具体的に本発明を説明するが、本発明は以下の例により限定されるものではない。
(3) Example:
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by the following examples.

[実施例1]
第一の活性炭として、粉末状のヤシ殻系活性炭(クラレケミカル株式会社製PGW20MP、平均粒径20μm)を用いた。第二の活性炭として、樹脂系活性炭である粒状のフェノール活性炭(フタムラ化学株式会社製QW、平均粒径90μm)を用いた。バインダーとして、超高分子量ポリエチレンパウダー(三井化学株式会社製、商品名:ミペロンXM220、平均粒径30μm、平均分子量200万、推定軟化温度120〜125℃、融点136℃、MFR0.0g/10min)を用いた。ブレンダーには、株式会社小平製作所製KM-800を用いた。ラボプラストミルには、東洋精機製作所製30R150を用いた。粗破砕用の粉砕機には、大阪ケミカル株式会社製PM-2005mを用いた。
上記ヤシ殻系活性炭5.0gと上記超高分子量ポリエチレンパウダー5.0gとを上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。その後、上記フェノール活性炭80.0gを上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。混合後の材料を上記ラボプラストミルに入れ、液状分散媒非存在下で200℃に加熱し、50rpmで10分間、混合した。混合後の材料が室温まで冷却された後、混合後の材料を上記粉砕機に入れて、室温下、100rpmで1分間、粗破砕処理を行った。粗破砕後の材料を振動するふるいに入れて分級し、平均粒径300μmの造粒活性炭を得た。
[Example 1]
As the first activated carbon, powdery coconut shell activated carbon (PGW20MP manufactured by Kuraray Chemical Co., Ltd., average particle size 20 μm) was used. As the second activated carbon, granular phenol activated carbon (QW manufactured by Phutamura Chemical Co., Ltd., average particle size 90 μm), which is resin-based activated carbon, was used. As a binder, ultra high molecular weight polyethylene powder (Mitsui Chemical Co., Ltd., trade name: Mipperon XM220, average particle size 30 μm, average molecular weight 2 million, estimated softening temperature 120-125 ° C., melting point 136 ° C., MFR 0.0 g / 10 min) Using. KM-800 manufactured by Kodaira Manufacturing Co., Ltd. was used as the blender. As the lab plast mill, Toyo Seiki Seisakusho 30R150 was used. PM-2005m manufactured by Osaka Chemical Co., Ltd. was used as a crusher for rough crushing.
5.0 g of the coconut shell activated carbon and 5.0 g of the ultra high molecular weight polyethylene powder were placed in the blender and mixed at 200 rpm for 10 minutes at room temperature in the absence of a liquid dispersion medium. Thereafter, 80.0 g of the above-mentioned phenol activated carbon was put into the blender, and mixed at 200 rpm for 10 minutes at room temperature in the absence of a liquid dispersion medium. The mixed material was put into the Laboplast mill, heated to 200 ° C. in the absence of a liquid dispersion medium, and mixed at 50 rpm for 10 minutes. After the mixed material was cooled to room temperature, the mixed material was put into the pulverizer and subjected to rough crushing treatment at 100 rpm for 1 minute at room temperature. The coarsely crushed material was placed in a vibrating screen and classified to obtain granulated activated carbon having an average particle size of 300 μm.

[比較例1]
第一の活性炭、第二の活性炭、バインダー、ブレンダー、ラボプラストミル、及び、粉砕機には、実施例1と同じものを用いた。
上記ヤシ殻系活性炭5.0gと上記超高分子量ポリエチレンパウダー5.0gと上記フェノール活性炭80.0gとを同時に上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。混合後の材料を上記ラボプラストミルに入れ、液状分散媒非存在下で200℃に加熱し、50rpmで10分間、混合した。混合後の材料が室温まで冷却された後、混合後の材料を上記粉砕機に入れて、室温下、100rpmで1分間、粗破砕処理を行った。この粗破砕処理により材料が崩れてしまい、平均粒径300μmの造粒活性炭を得ることができなかった。
[Comparative Example 1]
The same thing as Example 1 was used for the 1st activated carbon, the 2nd activated carbon, a binder, a blender, a lab plast mill, and a grinder.
5.0 g of the coconut shell activated carbon, 5.0 g of the ultra high molecular weight polyethylene powder, and 80.0 g of the phenol activated carbon were simultaneously put in the blender and mixed at room temperature and 200 rpm for 10 minutes in the absence of a liquid dispersion medium. . The mixed material was put into the Laboplast mill, heated to 200 ° C. in the absence of a liquid dispersion medium, and mixed at 50 rpm for 10 minutes. After the mixed material was cooled to room temperature, the mixed material was put into the pulverizer and subjected to rough crushing treatment at 100 rpm for 1 minute at room temperature. This rough crushing process collapsed the material, and granulated activated carbon having an average particle size of 300 μm could not be obtained.

[比較例2]
上記比較例1のブレンダーの混合時間を20分間に変えた以外、上記比較例1と同じ処理を行ったが、粗破砕処理により材料が崩れてしまい、平均粒径300μmの造粒活性炭を得ることができなかった。
[Comparative Example 2]
Except that the blending time of the blender of Comparative Example 1 was changed to 20 minutes, the same treatment as that of Comparative Example 1 was performed. However, the material collapsed due to the rough crushing process, and a granulated activated carbon having an average particle size of 300 μm was obtained. I could not.

[比較例3]
第一の活性炭、第二の活性炭、バインダー、ブレンダー、ラボプラストミル、及び、粉砕機には、実施例1と同じものを用いた。
上記ヤシ殻系活性炭5.0gと上記超高分子量ポリエチレンパウダー15.0gと上記フェノール活性炭80.0gとを同時に上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。混合後の材料を上記ラボプラストミルに入れ、液状分散媒非存在下で200℃に加熱し、50rpmで10分間、混合した。混合後の材料が室温まで冷却された後、混合後の材料を上記粉砕機に入れて、室温下、100rpmで1分間、粗破砕処理を行った。粗破砕後の材料を振動するふるいに入れて分級し、平均粒径300μmの造粒活性炭を得た。
[Comparative Example 3]
The same thing as Example 1 was used for the 1st activated carbon, the 2nd activated carbon, a binder, a blender, a lab plast mill, and a grinder.
5.0 g of the coconut shell activated carbon, 15.0 g of the ultra high molecular weight polyethylene powder, and 80.0 g of the phenol activated carbon are simultaneously placed in the blender and mixed at room temperature in the absence of a liquid dispersion medium at 200 rpm for 10 minutes. . The mixed material was put into the Laboplast mill, heated to 200 ° C. in the absence of a liquid dispersion medium, and mixed at 50 rpm for 10 minutes. After the mixed material was cooled to room temperature, the mixed material was put into the pulverizer and subjected to rough crushing treatment at 100 rpm for 1 minute at room temperature. The coarsely crushed material was placed in a vibrating screen and classified to obtain granulated activated carbon having an average particle size of 300 μm.

[比較例4]
上記比較例1のブレンダーの混合時間を20分間に変えた以外、上記比較例3と同じ条件で平均粒径300μmの造粒活性炭を得た。
[Comparative Example 4]
Granulated activated carbon having an average particle size of 300 μm was obtained under the same conditions as in Comparative Example 3 except that the blending time of the blender in Comparative Example 1 was changed to 20 minutes.

[評価方法]
実施例1及び比較例3,4で得られた造粒活性炭を50ml秤量して内径80mmのカラムに充填し、JIS S3201「家庭用浄水器試験方法」に準じて、遊離残留塩素濃度2.0mg/Lの水溶液を2.5L/minで通水し浄化性能を確認した。遊離塩素の浄化性能が80%に低下するまでに通水できた水量(ろ過能力)を性能とし比較した。
[Evaluation method]
50 ml of the granulated activated carbon obtained in Example 1 and Comparative Examples 3 and 4 was weighed and packed into a column having an inner diameter of 80 mm, and the free residual chlorine concentration was 2.0 mg according to JIS S3201 “Test method for household water purifier”. The purification performance was confirmed by passing a / L aqueous solution at 2.5 L / min. The amount of water that could be passed before the purification performance of free chlorine decreased to 80% (filtration capacity) was compared as performance.

[試験結果]
試験結果を表1に示す。

Figure 2013014457
実施例1のバインダーの配合比よりも多い配合比でバインダーを混合した比較例3,4については造粒活性炭が形成されたものの、実施例1のバインダーの配合比と同じ配合比でバインダーを混合した比較例1,2については造粒活性炭が形成されなかった。
また、実施例1のろ過能力は、比較例3のろ過能力の1.5倍、比較例4のろ過能力の1.4倍であった。 [Test results]
The test results are shown in Table 1.
Figure 2013014457
In Comparative Examples 3 and 4 in which the binder was mixed at a larger blending ratio than the binder ratio of Example 1, granulated activated carbon was formed, but the binder was mixed at the same blending ratio as the binder ratio of Example 1 In Comparative Examples 1 and 2, granulated activated carbon was not formed.
The filtration capacity of Example 1 was 1.5 times that of Comparative Example 3 and 1.4 times that of Comparative Example 4.

[実施例2]
第一の活性炭、第二の活性炭、バインダー、ブレンダー、及び、ラボプラストミルには、実施例1と同じものを用いた。粉砕機には、大阪ケミカル製PM-2005mを高速回転で用いた。造粒機には、アズワン株式会社製PZ-02Rを用いた。
上記ヤシ殻系活性炭5.0gと上記超高分子量ポリエチレンパウダー8.0gとを上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。その後、上記フェノール活性炭80.0gを上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。混合後の材料を上記ラボプラストミルに入れ、液状分散媒非存在下で200℃に加熱し、50rpmで10分間、混合した。混合後の材料が室温まで冷却された後、混合後の材料を上記粉砕機に入れて、室温下、20000rpmで10分間、破砕した。破砕後の材料50.0gを上記造粒機に入れ、スプレーを用いて最終的に60.0gとなるように水を徐々に加えて造粒を行った。得られた造粒物を80℃で1時間乾燥させた後、190℃で2時間熱処理した。処理後の造粒物を振動するふるいに入れて分級し、平均粒径0.8mmの造粒活性炭を得た。
[Example 2]
The same thing as Example 1 was used for the 1st activated carbon, the 2nd activated carbon, a binder, a blender, and a lab plast mill. For the pulverizer, PM-2005m manufactured by Osaka Chemical was used at high speed. As the granulator, PZ-02R manufactured by AS ONE Corporation was used.
5.0 g of the coconut shell activated carbon and 8.0 g of the ultra high molecular weight polyethylene powder were placed in the blender and mixed at 200 rpm for 10 minutes at room temperature in the absence of a liquid dispersion medium. Thereafter, 80.0 g of the above-mentioned phenol activated carbon was put into the blender, and mixed at 200 rpm for 10 minutes at room temperature in the absence of a liquid dispersion medium. The mixed material was put into the Laboplast mill, heated to 200 ° C. in the absence of a liquid dispersion medium, and mixed at 50 rpm for 10 minutes. After the mixed material was cooled to room temperature, the mixed material was put in the pulverizer and crushed at 20000 rpm for 10 minutes at room temperature. Granulated by putting 50.0 g of the crushed material into the granulator and gradually adding water using a spray to finally reach 60.0 g. The obtained granulated product was dried at 80 ° C. for 1 hour and then heat-treated at 190 ° C. for 2 hours. The treated granulated product was placed in a vibrating screen and classified to obtain granulated activated carbon having an average particle size of 0.8 mm.

[比較例5]
第一の活性炭、第二の活性炭、バインダー、ブレンダー、ラボプラストミル、粉砕機、及び、造粒機には、実施例2と同じものを用いた。
上記ヤシ殻系活性炭5.0gと上記超高分子量ポリエチレンパウダー8.0gと上記フェノール活性炭80.0gとを同時に上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。混合後の材料を上記ラボプラストミルに入れ、液状分散媒非存在下で200℃に加熱し、50rpmで10分間、混合した。混合後の材料が室温まで冷却された後、混合後の材料を上記粉砕機に入れて、室温下、20000rpmで10分間、破砕した。破砕後の材料50.0gを上記造粒機に入れ、スプレーを用いて最終的に60.0gとなるように水を徐々に加えて造粒を行った。得られた造粒物を80℃で1時間乾燥させた後、190℃で2時間熱処理した。処理後の造粒物を振動するふるいに入れたところ、崩れてしまい、平均粒径0.8mmの造粒活性炭を得ることができなかった。
[Comparative Example 5]
The same thing as Example 2 was used for the 1st activated carbon, the 2nd activated carbon, a binder, a blender, a lab plast mill, a grinder, and a granulator.
5.0 g of the coconut shell activated carbon, 8.0 g of the ultra high molecular weight polyethylene powder, and 80.0 g of the phenol activated carbon are simultaneously put in the blender and mixed at room temperature and 200 rpm for 10 minutes in the absence of a liquid dispersion medium. . The mixed material was put into the Laboplast mill, heated to 200 ° C. in the absence of a liquid dispersion medium, and mixed at 50 rpm for 10 minutes. After the mixed material was cooled to room temperature, the mixed material was put in the pulverizer and crushed at 20000 rpm for 10 minutes at room temperature. Granulated by putting 50.0 g of the crushed material into the granulator and gradually adding water using a spray to finally reach 60.0 g. The obtained granulated product was dried at 80 ° C. for 1 hour and then heat-treated at 190 ° C. for 2 hours. When the granulated product after treatment was put into a vibrating screen, it collapsed and granulated activated carbon having an average particle size of 0.8 mm could not be obtained.

[比較例6]
上記比較例5のブレンダーの混合時間を20分間に変えた以外、上記比較例5と同じ処理を行ったが、造粒物を振動するふるいに入れたところ、崩れてしまい、平均粒径0.8mmの造粒活性炭を得ることができなかった。
[Comparative Example 6]
The same treatment as in Comparative Example 5 was performed except that the blending time of the blender in Comparative Example 5 was changed to 20 minutes. However, when the granulated material was put in a vibrating screen, it collapsed, and the average particle size of 0. An 8 mm granulated activated carbon could not be obtained.

[比較例7]
第一の活性炭、第二の活性炭、バインダー、ブレンダー、ラボプラストミル、粉砕機、及び、造粒機には、実施例2と同じものを用いた。
上記ヤシ殻系活性炭5.0gと上記超高分子量ポリエチレンパウダー25.0gと上記フェノール活性炭80.0gとを同時に上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。混合後の材料を上記ラボプラストミルに入れ、液状分散媒非存在下で200℃に加熱し、50rpmで10分間、混合した。混合後の材料が室温まで冷却された後、混合後の材料を上記粉砕機に入れて、室温下、20000rpmで10分間、破砕した。破砕後の材料50.0gを上記造粒機に入れ、スプレーを用いて最終的に60.0gとなるように水を徐々に加えて造粒を行った。得られた造粒物を80℃で1時間乾燥させた後、190℃で2時間熱処理した。処理後の造粒物を振動するふるいに入れて分級し、平均粒径0.8mmの造粒活性炭を得た。
[Comparative Example 7]
The same thing as Example 2 was used for the 1st activated carbon, the 2nd activated carbon, a binder, a blender, a lab plast mill, a grinder, and a granulator.
The coconut shell activated carbon 5.0 g, the ultra high molecular weight polyethylene powder 25.0 g and the phenol activated carbon 80.0 g were simultaneously put in the blender and mixed for 10 minutes at 200 rpm at room temperature in the absence of a liquid dispersion medium. . The mixed material was put into the Laboplast mill, heated to 200 ° C. in the absence of a liquid dispersion medium, and mixed at 50 rpm for 10 minutes. After the mixed material was cooled to room temperature, the mixed material was put in the pulverizer and crushed at 20000 rpm for 10 minutes at room temperature. Granulated by putting 50.0 g of the crushed material into the granulator and gradually adding water using a spray to finally reach 60.0 g. The obtained granulated product was dried at 80 ° C. for 1 hour and then heat-treated at 190 ° C. for 2 hours. The treated granulated product was placed in a vibrating screen and classified to obtain granulated activated carbon having an average particle size of 0.8 mm.

[比較例8]
上記比較例7のブレンダーの混合時間を20分間に変えた以外、上記比較例7と同じ条件で平均粒径0.8mmの造粒活性炭を得た。
[Comparative Example 8]
Granulated activated carbon having an average particle diameter of 0.8 mm was obtained under the same conditions as in Comparative Example 7 except that the blending time of the blender of Comparative Example 7 was changed to 20 minutes.

[評価方法]
実施例2及び比較例7,8で得られた造粒活性炭を50ml秤量して内径80mmのカラムに充填し、JIS S3201に準じて、遊離残留塩素濃度2.0mg/Lの水溶液を2.5L/minで通水し浄化性能を確認した。遊離塩素の浄化性能が80%に低下するまでに通水できた水量(ろ過能力)を性能とし比較した。
[Evaluation method]
50 ml of the granulated activated carbon obtained in Example 2 and Comparative Examples 7 and 8 was weighed and packed into a column having an inner diameter of 80 mm, and 2.5 L of an aqueous solution having a free residual chlorine concentration of 2.0 mg / L was applied according to JIS S3201. Purified performance was confirmed by passing water at / min. The amount of water that could be passed before the purification performance of free chlorine decreased to 80% (filtration capacity) was compared as performance.

[試験結果]
試験結果を表2に示す。

Figure 2013014457
実施例2のバインダーの配合比よりも多い配合比でバインダーを混合した比較例7,8については造粒活性炭が形成されたものの、実施例2のバインダーの配合比と同じ配合比でバインダーを混合した比較例5,6については造粒活性炭が形成されなかった。
また、実施例2のろ過能力は、比較例7のろ過能力の1.5倍、比較例8のろ過能力の1.6倍であった。 [Test results]
The test results are shown in Table 2.
Figure 2013014457
In Comparative Examples 7 and 8 in which the binder was mixed at a larger blending ratio than the binder ratio of Example 2, granulated activated carbon was formed, but the binder was mixed at the same blending ratio as that of Example 2 In Comparative Examples 5 and 6, granulated activated carbon was not formed.
Moreover, the filtration capacity of Example 2 was 1.5 times that of Comparative Example 7 and 1.6 times that of Comparative Example 8.

以上の実施例により、本発明の製造方法は、バインダーの使用量が少なくて済み、単位体積当たりの吸着活性が向上することが確認された。   From the above examples, it was confirmed that the production method of the present invention requires a small amount of binder and improves the adsorption activity per unit volume.

以上説明したように、本発明によると、種々の態様により、複数種類の活性炭を併用する場合にバインダーの使用量を少なくする技術等を提供することができる。
また、上述した実施形態及び変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりして本発明を実施することも可能であり、公知技術並びに上述した実施形態及び変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりして本発明を実施することも可能である。従って、本発明は、上述した実施形態や変形例に限られず、公知技術並びに上述した実施形態及び変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成等も含まれる。
As described above, according to the present invention, according to various aspects, it is possible to provide a technique for reducing the amount of binder used when a plurality of types of activated carbon are used in combination.
In addition, it is also possible to implement the present invention by mutually replacing the configurations disclosed in the above-described embodiments and modifications, and changing the combination. It is also possible to carry out the present invention by substituting each component disclosed in the above or changing the combination. Therefore, the present invention is not limited to the above-described embodiments and modifications, and includes configurations in which the configurations disclosed in the publicly known technology and the above-described embodiments and modifications are mutually replaced or combinations thereof are changed. It is.

11…第一の活性炭、12…バインダー、13…添加剤、
20…前混合物、21…第二の活性炭、22…添加剤、
30,40…混合物、50…粗破砕物、
60…破砕物、61…液状分散媒、70,80…造粒物、
100,101…造粒活性炭、
C1…浄水器カートリッジ、
C2…造粒活性炭充填室、C3…不織布、C4…イオン交換繊維、
C5…中空糸膜収容室、C6…中空糸膜、
C11…入口、C12…出口、
S1…前混合工程、S2…第二活性炭添加工程、S3…加熱混合工程、S4…造粒活性炭形成工程、
S41…粗破砕工程、S42…ふるい分級工程、
S43…破砕工程、S44…造粒工程、S45…乾燥工程、S46…ふるい分級工程。
11 ... first activated carbon, 12 ... binder, 13 ... additive,
20 ... premix, 21 ... second activated carbon, 22 ... additive,
30, 40 ... mixture, 50 ... coarsely crushed material,
60 ... crushed material, 61 ... liquid dispersion medium, 70, 80 ... granulated material,
100, 101 ... granulated activated carbon,
C1 ... Water purifier cartridge,
C2 ... Granulated activated carbon filling chamber, C3 ... Nonwoven fabric, C4 ... Ion exchange fiber,
C5 ... hollow fiber membrane storage chamber, C6 ... hollow fiber membrane,
C11 ... Inlet, C12 ... Exit,
S1 ... Pre-mixing step, S2 ... Second activated carbon addition step, S3 ... Heat mixing step, S4 ... Granulated activated carbon forming step,
S41 ... Rough crushing step, S42 ... Sieve classification step,
S43 ... Crushing step, S44 ... Granulation step, S45 ... Drying step, S46 ... Sieve classification step.

Claims (8)

平均粒径D1の活性炭と、平均繊維径D2の繊維状活性炭とから選ばれる一種以上の第一の活性炭100重量部と、平均粒径D3の固化した熱可塑性のバインダー7〜70重量部と、を含む素材を混合する前混合工程と、
得られる混合物に平均粒径50〜500μm(D4とする。ただし、D4>D1、D4>D2、D4>D3。)の第二の活性炭500〜10000重量部を少なくとも加える第二活性炭添加工程と、
前記第二の活性炭を少なくとも加えた混合物を前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度に加熱して混合する加熱混合工程と、
混合終了後に混合物を砕いて造粒活性炭を形成する造粒活性炭形成工程とを備えることを特徴とする造粒活性炭の製造方法。
100 parts by weight of one or more first activated carbons selected from activated carbon having an average particle diameter D1 and fibrous activated carbon having an average fiber diameter D2, 7 to 70 parts by weight of a solidified thermoplastic binder having an average particle diameter D3, A pre-mixing step of mixing materials including
A second activated carbon addition step of adding at least 500 to 10000 parts by weight of a second activated carbon having an average particle diameter of 50 to 500 μm (D4, where D4> D1, D4> D2, D4> D3) to the resulting mixture;
A heating and mixing step of heating and mixing the mixture to which at least the second activated carbon has been added to a temperature not lower than the softening temperature of the binder and a temperature at which the binder does not ignite;
A granulated activated carbon forming step of crushing the mixture after completion of mixing to form granulated activated carbon.
前記第二活性炭添加工程では、前記前混合工程で得られる混合物に前記第二の活性炭を少なくとも加えて混合することを特徴とする請求項1に記載の造粒活性炭の製造方法。   In the said 2nd activated carbon addition process, at least said 2nd activated carbon is added and mixed with the mixture obtained at the said pre-mixing process, The manufacturing method of the granulated activated carbon of Claim 1 characterized by the above-mentioned. 前記造粒活性炭形成工程では、前記加熱混合工程で得られる混合物を粗破砕し、振動するふるいにより粗破砕物を分級して造粒活性炭を形成することを特徴とする請求項1又は請求項2に記載の造粒活性炭の製造方法。   The granulated activated carbon is formed in the granulated activated carbon forming step by roughly crushing the mixture obtained in the heating and mixing step, and classifying the coarsely crushed product with a vibrating sieve to form granulated activated carbon. A method for producing granulated activated carbon according to 1. 前記造粒活性炭形成工程では、前記加熱混合工程で得られる混合物を破砕し、得られる破砕物に液状分散媒を加えて造粒し、得られる造粒物を前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度で乾燥させて造粒活性炭を形成することを特徴とする請求項1又は請求項2に記載の造粒活性炭の製造方法。   In the granulated activated carbon forming step, the mixture obtained in the heating and mixing step is crushed, a liquid dispersion medium is added to the obtained crushed product, and granulated, and the obtained granulated product is at or above the softening temperature of the binder and the binder. The method for producing granulated activated carbon according to claim 1 or 2, wherein the granulated activated carbon is formed by drying at a temperature at which no ignition occurs. 前記D1が1〜50μmであり、前記D2が5〜20μmであり、前記繊維状活性炭の平均繊維長が15〜500μmであり、前記D3が1〜50μmである、請求項1〜請求項4のいずれか一項に記載の造粒活性炭の製造方法。   The D1 is 1 to 50 μm, the D2 is 5 to 20 μm, the average fiber length of the fibrous activated carbon is 15 to 500 μm, and the D3 is 1 to 50 μm. The manufacturing method of the granulated activated carbon as described in any one. 前記バインダーに、平均分子量50万〜1000万の熱可塑性樹脂を用いることを特徴とする請求項1〜請求項5のいずれか一項に記載の造粒活性炭の製造方法。   The method for producing granulated activated carbon according to any one of claims 1 to 5, wherein a thermoplastic resin having an average molecular weight of 500,000 to 10,000,000 is used for the binder. 前記前混合工程及び前記加熱混合工程の混合を液状分散媒非存在下で行うことを特徴とする請求項1〜請求項6のいずれか一項に記載の造粒活性炭の製造方法。   The method for producing granulated activated carbon according to any one of claims 1 to 6, wherein the mixing in the premixing step and the heating and mixing step is performed in the absence of a liquid dispersion medium. 平均粒径D1の活性炭と、平均繊維径D2の繊維状活性炭とから選ばれる一種以上の第一の活性炭100重量部と、平均粒径D3の固化した熱可塑性のバインダー7〜70重量部と、を含む素材を混合し、得られる混合物に平均粒径50〜500μm(D4とする。ただし、D4>D1、D4>D2、D4>D3。)の第二の活性炭500〜10000重量部を少なくとも加え、前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度に加熱して混合し、混合終了後に混合物を砕いて得られる造粒活性炭。   100 parts by weight of one or more first activated carbons selected from activated carbon having an average particle diameter D1 and fibrous activated carbon having an average fiber diameter D2, 7 to 70 parts by weight of a solidified thermoplastic binder having an average particle diameter D3, At least 500 parts by weight of second activated carbon having an average particle size of 50 to 500 μm (D4, where D4> D1, D4> D2, D4> D3) is added to the resulting mixture. Granulated activated carbon obtained by heating and mixing at a temperature above the softening temperature of the binder and at a temperature at which the binder does not ignite, and crushing the mixture after completion of mixing.
JP2011147192A 2011-07-01 2011-07-01 Method for producing granulated activated carbon and granulated activated carbon Active JP5408741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147192A JP5408741B2 (en) 2011-07-01 2011-07-01 Method for producing granulated activated carbon and granulated activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147192A JP5408741B2 (en) 2011-07-01 2011-07-01 Method for producing granulated activated carbon and granulated activated carbon

Publications (2)

Publication Number Publication Date
JP2013014457A true JP2013014457A (en) 2013-01-24
JP5408741B2 JP5408741B2 (en) 2014-02-05

Family

ID=47687516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147192A Active JP5408741B2 (en) 2011-07-01 2011-07-01 Method for producing granulated activated carbon and granulated activated carbon

Country Status (1)

Country Link
JP (1) JP5408741B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178697A (en) * 2016-03-30 2017-10-05 株式会社Lixil Granulated active carbon
WO2019235043A1 (en) * 2018-06-08 2019-12-12 株式会社Lixil Active carbon molded body
CN114572982A (en) * 2022-04-02 2022-06-03 中国科学院山西煤炭化学研究所 Activated carbon and microporous activated carbon prepared from solid waste and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501839A (en) * 1979-12-28 1981-12-17
JPH07124470A (en) * 1993-10-30 1995-05-16 Hayashi Seisakusho:Kk Molded adsorbent
JPH11333290A (en) * 1998-05-28 1999-12-07 Toyobo Co Ltd Adsorption molded body
WO2006082898A1 (en) * 2005-02-02 2006-08-10 Kuraray Chemical Co., Ltd Composite adsorbents, process for producing the same, and water-purifying material and water purifier
JP2008534269A (en) * 2005-04-07 2008-08-28 ピュール、ウォーター、ピューリフィケーション、プロダクツ、インコーポレーテッド Water filter material containing a mixture of microporous and mesoporous carbon particles, and water filter using the filter material
JP2009262079A (en) * 2008-04-25 2009-11-12 Mitsuboshi Belting Ltd Water treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501839A (en) * 1979-12-28 1981-12-17
JPH07124470A (en) * 1993-10-30 1995-05-16 Hayashi Seisakusho:Kk Molded adsorbent
JPH11333290A (en) * 1998-05-28 1999-12-07 Toyobo Co Ltd Adsorption molded body
WO2006082898A1 (en) * 2005-02-02 2006-08-10 Kuraray Chemical Co., Ltd Composite adsorbents, process for producing the same, and water-purifying material and water purifier
JP2008534269A (en) * 2005-04-07 2008-08-28 ピュール、ウォーター、ピューリフィケーション、プロダクツ、インコーポレーテッド Water filter material containing a mixture of microporous and mesoporous carbon particles, and water filter using the filter material
JP2009262079A (en) * 2008-04-25 2009-11-12 Mitsuboshi Belting Ltd Water treatment device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178697A (en) * 2016-03-30 2017-10-05 株式会社Lixil Granulated active carbon
WO2017170754A1 (en) * 2016-03-30 2017-10-05 株式会社Lixil Granulated activated charcoal
WO2019235043A1 (en) * 2018-06-08 2019-12-12 株式会社Lixil Active carbon molded body
JP2019209311A (en) * 2018-06-08 2019-12-12 株式会社Lixil Activated carbon molded body
CN114572982A (en) * 2022-04-02 2022-06-03 中国科学院山西煤炭化学研究所 Activated carbon and microporous activated carbon prepared from solid waste and preparation method thereof

Also Published As

Publication number Publication date
JP5408741B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4361489B2 (en) Composite adsorbent, method for producing the same, water purifier, and water purifier
CN103071464B (en) Carbon block filter formed from divided particles of binder and activated carbon and manufacturing method therefor
WO2017170754A1 (en) Granulated activated charcoal
JP5408741B2 (en) Method for producing granulated activated carbon and granulated activated carbon
JP2020019016A (en) Adsorption filter
KR101844686B1 (en) A manufacturing method for activated carbon blockfilter for water purification
JP5408740B2 (en) Method for producing granulated activated carbon and granulated activated carbon
CN111511466B (en) Adsorption filter
JP6957297B2 (en) Granulated activated carbon and its manufacturing method
EP1803493A2 (en) Method for manufacturing filters
TW202039073A (en) Water purifying filter and water purifier using same
JP5868363B2 (en) Water purification cartridge and water purifier
JP5775038B2 (en) Method for producing activated carbon or cylindrical carbonaceous material containing activated carbon raw material
JP6918323B1 (en) Granulation adsorbent and its manufacturing method
JP6174556B2 (en) Modified activated carbon, method for producing the same, and filtration cartridge
JP7453463B1 (en) Carbonaceous material and its manufacturing method, and adsorption filter
TWI753390B (en) Composite aggregate particles, and adsorbents, shaped bodies, and water purifiers using the same
JP4666452B2 (en) Compressed activated carbon block
JP7453462B1 (en) Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment
TWI754251B (en) Adsorbent material, heavy metal remover, and molded body and water purifier using the same
JP7264692B2 (en) Heavy metal remover, and adsorbent, compact and water purifier using same
JP7039395B2 (en) Fibrous binder for granulation
JP2023142935A (en) Molded adsorbent
JP2019210202A (en) Activated carbon molded body
JPH05147913A (en) Production of activated carbon made of spherical fiber lump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5408741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250