JP2013004868A - Thermosetting resin composition for bonding of semiconductor, and semiconductor device using the same - Google Patents

Thermosetting resin composition for bonding of semiconductor, and semiconductor device using the same Download PDF

Info

Publication number
JP2013004868A
JP2013004868A JP2011136496A JP2011136496A JP2013004868A JP 2013004868 A JP2013004868 A JP 2013004868A JP 2011136496 A JP2011136496 A JP 2011136496A JP 2011136496 A JP2011136496 A JP 2011136496A JP 2013004868 A JP2013004868 A JP 2013004868A
Authority
JP
Japan
Prior art keywords
resin composition
semiconductor
component
thermosetting resin
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011136496A
Other languages
Japanese (ja)
Inventor
Masakazu Fujiwara
正和 藤原
Yuu Satake
由宇 佐竹
Yuya Ninai
勇哉 似内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2011136496A priority Critical patent/JP2013004868A/en
Publication of JP2013004868A publication Critical patent/JP2013004868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin composition for bonding of a semiconductor which has a low elastic modulus and good adhesion, and a semiconductor device using the thermosetting resin composition.SOLUTION: The thermosetting resin composition for bonding of a semiconductor comprises, as essential constituents, (A) a carbon hydride compound having a number-average molecular weight of 500 to 30000 inclusive, and at least one double bond per molecule, or a derivative thereof, (B) a monomer having one or more ethylenic unsaturated groups, (C) a radical polymerization catalyst, (D) a (meth)acrylic acid ester derivative having a cyclic disulfide group expressed by the general formula [I], and (E) filler. In the semiconductor device, the thermosetting resin composition is used.

Description

本発明は、半導体接着用熱硬化型樹脂組成物及び半導体装置に係り、特に、低応力で高密着性の半導体接着用熱硬化型樹脂組成物及びその樹脂を用いた耐半田クラック性に優れた半導体装置に関する。   The present invention relates to a thermosetting resin composition for semiconductor bonding and a semiconductor device, and in particular, it is excellent in low stress and high adhesion thermosetting resin composition for semiconductor bonding and solder crack resistance using the resin. The present invention relates to a semiconductor device.

近年、半導体装置の生産量は増加の一途をたどっており、これに伴い製造コストの削減は重要な課題となっている。半導体素子とリードフレームの接合方法として、金−シリコン共晶体等の無機材料を接着剤として用いる方法があるが、コストが高く、また熱応力により半導体素子の破壊が起こることもあるため、有機材料等に充填剤を分散させたダイアタッチペースト(ペースト状の接着剤)を使用する方法が主流となっている。   In recent years, the production amount of semiconductor devices has been steadily increasing, and accordingly, reduction of manufacturing costs has become an important issue. As a method for joining a semiconductor element and a lead frame, there is a method using an inorganic material such as a gold-silicon eutectic as an adhesive, but the cost is high, and the semiconductor element may be destroyed by thermal stress. For example, a method using a die attach paste (a paste-like adhesive) in which a filler is dispersed in a mainstream has become the mainstream.

一方、半導体装置としての信頼性は、特に耐半田クラック性が重要であるが、半導体素子とリードフレームの接着に用いられるダイアタッチペーストにも、半導体装置の耐半田クラック性を向上させるため、半導体素子とリードフレームとの線膨張率の差を緩和するために低弾性率化が求められている。従来から、低応力変性アクリレート及びゴム成分を使用したダイアタッチペーストが知られている。   On the other hand, solder crack resistance is particularly important for reliability as a semiconductor device. However, in order to improve the solder crack resistance of a semiconductor device, a die attach paste used for bonding a semiconductor element and a lead frame can be improved. In order to mitigate the difference in coefficient of linear expansion between the element and the lead frame, a low elastic modulus is required. Conventionally, a die attach paste using a low-stress modified acrylate and a rubber component is known.

特開2002−12637号公報Japanese Patent Laid-Open No. 2002-12737

しかしながら、これまで半導体接着用熱硬化型樹脂組成物を低応力化しようとすると、同時に密着性の低下も起こってしまい、半導体装置の耐久性に影響を与えていた。そのため、低応力と、高密着という両特性を両立させた半導体接着用熱硬化型樹脂組成物が求められている。   However, until now, when attempting to reduce the stress of the thermosetting resin composition for semiconductor bonding, the adhesion is also lowered, affecting the durability of the semiconductor device. Therefore, there is a demand for a thermosetting resin composition for semiconductor bonding that has both low stress and high adhesion properties.

そこで、本発明は、上記課題を解決するために、低弾性率であり、かつ、高密着性の両特性を有する半導体接着用熱硬化型樹脂組成物を提供し、この樹脂組成物を用いることで耐半田クラック性に優れた半導体装置を提供しようとするものである。   Therefore, in order to solve the above problems, the present invention provides a thermosetting resin composition for semiconductor adhesion having both low elastic modulus and high adhesion properties, and uses this resin composition. Therefore, an object of the present invention is to provide a semiconductor device having excellent solder crack resistance.

本発明者らは、上記課題を解決するために鋭意検討した結果、所定の成分配合とすること、特に、ジスルフィド環式基を有する(メタ)アクリル酸エステル誘導体を用いることで、上記課題を解決することができることを見出し、本発明を完成したものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors solved the above-mentioned problems by using a predetermined component blend, particularly by using a (meth) acrylic acid ester derivative having a disulfide cyclic group. The present invention has been completed by finding out what can be done.

すなわち、本発明の半導体接着用熱硬化型樹脂組成物は、(A)数平均分子量500以上30000以下で、かつ、1分子内に少なくとも1つの二重結合を有する炭化水素化合物又はその誘導体と、(B)1つ以上のエチレン性不飽和基を有するモノマーと、(C)ラジカル重合触媒と、(D)下記一般式(I)

Figure 2013004868
(式中、Rは水素原子又はメチル基を表し、Rは置換基を有していてもよい炭素原子数1〜14のアルキレン基を表わす。)で示されるジスルフィド環式基を有する(メタ)アクリル酸エステル誘導体と、(E)充填材と、を必須成分とすることを特徴とする。 That is, the thermosetting resin composition for semiconductor adhesion of the present invention comprises (A) a hydrocarbon compound having a number average molecular weight of 500 or more and 30000 or less and having at least one double bond in one molecule, or a derivative thereof, (B) a monomer having one or more ethylenically unsaturated groups, (C) a radical polymerization catalyst, and (D) the following general formula (I)
Figure 2013004868
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an optionally substituted alkylene group having 1 to 14 carbon atoms). A (meth) acrylic acid ester derivative and (E) a filler are essential components.

また、本発明の半導体装置は、上記本発明の半導体接着用熱硬化型樹脂組成物を用いて半導体素子を基板上に接着したことを特徴とする。   The semiconductor device of the present invention is characterized in that a semiconductor element is bonded onto a substrate using the thermosetting resin composition for semiconductor bonding of the present invention.

さらに好ましい形態としては、(A)成分が室温で液状であり、かつ1分子内に少なくとも1つのアクリル基又はメタクリル基を有するものであって、(A)成分と(B)成分との質量比が90/10から10/90であり、(A)成分と(B)成分の合計質量100質量部に対して、(D)成分が1〜200質量部である半導体接着用熱硬化型樹脂組成物及びこの半導体接着用熱硬化型樹脂組成物を用いて得られた半導体装置である。   As a more preferable form, the component (A) is liquid at room temperature and has at least one acrylic group or methacryl group in one molecule, and the mass ratio of the component (A) to the component (B) Is a thermosetting resin composition for semiconductor bonding, wherein the component (D) is 1 to 200 parts by mass with respect to the total mass of 100 parts by mass of the component (A) and the component (B). And a semiconductor device obtained using the thermosetting resin composition for semiconductor bonding.

本発明の半導体接着用熱硬化型樹脂組成物は、低弾性率かつ高密着性の特性を有しており、これを用いた半導体装置は、耐半田クラック性が優れているので、信頼性の高い半導体装置を得ることができる。   The thermosetting resin composition for semiconductor bonding of the present invention has low elastic modulus and high adhesion properties, and a semiconductor device using the same has excellent solder crack resistance, and therefore has high reliability. A high semiconductor device can be obtained.

以下、本発明について詳細に説明する。
本発明に用いられる(A)数平均分子量500以上30000以下で、かつ、1分子内に少なくとも1つの二重結合を有する炭化水素化合物又はその誘導体としては、例えば、ブチルゴム(BR)、イソプレンゴム(IR)、ポリブタジエン等のジエン系ゴム、又はそれらの水素添加型などの誘導体等が挙げられるが、これらに限定されるものではない。さらに好ましい形態としては室温で液状であり、かつ1分子内に少なくとも1つのアクリル基又はメタクリル基を有するものである。(A)成分としては、上記の化合物を単独で又は2種以上を併用して用いることができる。
Hereinafter, the present invention will be described in detail.
Examples of the hydrocarbon compound (A) having a number average molecular weight of 500 to 30,000 and having at least one double bond in one molecule or a derivative thereof used in the present invention include butyl rubber (BR), isoprene rubber ( IR), diene rubbers such as polybutadiene, or derivatives thereof such as hydrogenated type thereof, but are not limited thereto. As a more preferable form, it is liquid at room temperature and has at least one acrylic group or methacryl group in one molecule. (A) As a component, said compound can be used individually or in combination of 2 or more types.

本発明で使用される(B)1つ以上のエチレン性不飽和基を有するモノマーは、例えば、脂環式(メタ)アクリル酸エステル、脂肪族(メタ)アクリル酸エステル、芳香族(メタ)アクリル酸エステル等が挙げられ、具体的には、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジメタクリレート、フェノキシジエチレングリコールジメタクリレート、ラウリルアクリレート、ステアリルアクリレート、フェノキシエチルメタクリレート等があるが、これらに限定されるものではない。(B)成分としては、上記の化合物を単独で又は2種以上を併用して用いることができる。   The monomer (B) having one or more ethylenically unsaturated groups used in the present invention is, for example, an alicyclic (meth) acrylic acid ester, an aliphatic (meth) acrylic acid ester, or an aromatic (meth) acrylic. Acid esters, and the like. Specific examples include 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, phenoxydiethylene glycol dimethacrylate, lauryl acrylate, stearyl acrylate, and phenoxyethyl methacrylate. It is not limited to. (B) As a component, said compound can be used individually or in combination of 2 or more types.

本発明に用いられる(A)成分の配合量は、(A)成分と(B)成分の合計質量中に10〜90質量%含まれるものが好ましい。10質量%未満であると接着性が悪くなり、90質量%を超えると半導体接着用熱硬化型樹脂組成物の粘度が高くなり作業性に問題が生じるので好ましくない。   As for the compounding quantity of (A) component used for this invention, what is contained 10-90 mass% in the total mass of (A) component and (B) component is preferable. If it is less than 10% by mass, the adhesiveness is deteriorated, and if it exceeds 90% by mass, the viscosity of the thermosetting resin composition for semiconductor bonding becomes high, which causes problems in workability.

本発明に用いられる(B)成分の配合量は、(A)成分と(B)成分の合計質量中に10〜90質量%含まれるものが好ましい。10質量%未満であると半導体接着用熱硬化型樹脂組成物の粘度が高く作業性が悪くなり、90質量%を越えると接着性に問題が生じるので好ましくない。   As for the compounding quantity of (B) component used for this invention, what is contained 10-90 mass% in the total mass of (A) component and (B) component is preferable. If it is less than 10% by mass, the thermosetting resin composition for semiconductor bonding has a high viscosity and the workability is poor, and if it exceeds 90% by mass, there is a problem in adhesion, which is not preferable.

本発明に用いられる(C)ラジカル重合触媒は、通常ラジカル重合に用いられている触媒であれば特に限定されないが、望ましいものとしては、急速加熱試験(試料1gを電熱板の上に乗せ、4℃/分で昇温したときの分解開始温度の測定試験)における分解開始温度が40〜140℃となるものが望ましい。分解開始温度が40℃未満だと、接着性熱硬化型樹脂組成物の常温における保存性が悪くなり、140℃を超えると硬化時間が極端に長くなる可能性がある。なお、ここで試料の加熱前の質量に対する1%質量減少時の温度を分解開始温度とする。   The (C) radical polymerization catalyst used in the present invention is not particularly limited as long as it is a catalyst usually used for radical polymerization, but as a desirable one, a rapid heating test (1 g of a sample placed on an electric heating plate, 4 It is desirable that the decomposition start temperature is 40 to 140 ° C. in the measurement test of the decomposition start temperature when the temperature is raised at C / min. When the decomposition start temperature is less than 40 ° C., the storage stability of the adhesive thermosetting resin composition at normal temperature is deteriorated, and when it exceeds 140 ° C., the curing time may be extremely long. In addition, the temperature at the time of 1% mass reduction | decrease with respect to the mass before a sample is heated here is set as decomposition start temperature.

この条件を満たす触媒の具体例としては、例えば、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、t−ブチルパーオキシネオデカノエート、ジクミルパーオキサイド等が挙げられるが、これらは単独でも又は硬化性を制御するために2種類以上を混合して用いてもよい。さらに、接着性熱硬化型樹脂組成物の保存性を向上するために各種の重合禁止剤を予め添加しておくことも可能である。この(C)ラジカル重合触媒の配合量は、(A)成分と(B)成分の合計質量100質量部に対して、0.1〜10質量部が好ましい。10質量部を越えると接着性熱硬化型樹脂組成物の粘度の経時変化が大きくなり作業性に問題を生じ、0.1質量部未満であると硬化性が著しく低下する可能性がある。   Specific examples of the catalyst satisfying this condition include 1,1-bis (t-butylperoxy) -2-methylcyclohexane, t-butylperoxyneodecanoate, dicumyl peroxide, and the like. These may be used alone or in combination of two or more in order to control curability. Furthermore, various polymerization inhibitors may be added in advance in order to improve the storage stability of the adhesive thermosetting resin composition. As for the compounding quantity of this (C) radical polymerization catalyst, 0.1-10 mass parts is preferable with respect to 100 mass parts of total mass of (A) component and (B) component. If it exceeds 10 parts by mass, the change in the viscosity of the adhesive thermosetting resin composition with time will increase, causing problems in workability, and if it is less than 0.1 part by mass, the curability may be significantly reduced.

本発明に用いられる(D)下記一般式[I]

Figure 2013004868
(式中、Rは水素原子又は炭素数1〜3の炭化水素基を表す。好ましいRは水素原子又はメチル基である。Rは置換基を有していてもよい炭素原子数1〜30、好ましくは1〜14、さらに好ましくは2〜12のアルキレン基を示す。Rに結合していてもよい置換基としては不飽和結合を有する炭化水素基、アルキル基、フェニル基と結合したアルキル基等である。)で表される(メタ)アクリル酸エステル誘導体である。 (D) The following general formula [I] used in the present invention
Figure 2013004868
(In the formula, R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms. Preferred R 1 is a hydrogen atom or a methyl group. R 2 has 1 carbon atom which may have a substituent. -30, preferably 1-14, more preferably 2-12, and the substituent which may be bonded to R 2 is bonded to a hydrocarbon group, an alkyl group or a phenyl group having an unsaturated bond. A (meth) acrylic acid ester derivative represented by:

この(メタ)アクリル酸エステル誘導体は、その構造内にジスルフィド環式基を有することを特徴とする。かかる化合物を含むプライマー又は接着剤は従来技術の問題を解決し、金、銀、白金、パラジウム等の貴金属及びその合金に対し、スズ電析や酸化処理等の煩雑な処理を施すことなく、強力かつ耐久的な接着性を発現できるだけでなく、優れた可とう性を有する特徴がある。   This (meth) acrylic acid ester derivative has a disulfide cyclic group in its structure. A primer or an adhesive containing such a compound solves the problems of the prior art and is powerful without subjecting noble metals such as gold, silver, platinum, and palladium and their alloys to complicated treatment such as tin electrodeposition and oxidation treatment. In addition to exhibiting durable adhesiveness, it is characterized by excellent flexibility.

本発明の一般式[I]式に示される(メタ)アクリル酸エステル誘導体は、特開平7−258248号公報に記載されているようにヒドロキシアルキル(メタ)アクリレートに、チオクト酸を触媒存在下、無溶媒又は不活性溶媒中でエステル化することによって得られる。   The (meth) acrylic acid ester derivative represented by the general formula [I] of the present invention is a hydroxyalkyl (meth) acrylate and a thioctic acid in the presence of a catalyst as described in JP-A-7-258248, It can be obtained by esterification in a solvent-free or inert solvent.

この(D)成分の配合量は、(A)成分と(B)成分の合計質量100質量部に対して、1〜200質量部が好ましい。さらに2〜50質量部がより好ましい。1質量部未満であると接着性に問題が生じ、200質量部を越えると耐熱性が低下する可能性がある。   As for the compounding quantity of this (D) component, 1-200 mass parts is preferable with respect to 100 mass parts of total mass of (A) component and (B) component. Furthermore, 2-50 mass parts is more preferable. If the amount is less than 1 part by mass, there will be a problem in adhesiveness, and if it exceeds 200 parts by mass, the heat resistance may decrease.

本発明で用いられる(E)充填材としては、従来、樹脂中に含有可能なものとして公知なものであればよく、例えば、無機充填材、有機充填材等が挙げられる。無機充填材としては、例えば、金粉、銀粉、銅粉、アルミニウム粉等の金属粉や、溶融シリカ、結晶シリカ、窒化珪素、アルミナ、窒化アルミ、タルク等が挙げられる。これらの内、金属粉は主に導電性や熱伝導性を付与するために用いられる。有機充填材としては、例えば、シリコーン樹脂、ポリテトラフロロエチレン等のフッ素樹脂、ポリメチルメタクリレート等のアクリル樹脂、ベンゾグアナミンやメラミンとホルムアルデヒドとの架橋物等が挙げられる。   The (E) filler used in the present invention may be any conventionally known filler that can be contained in a resin, and examples thereof include inorganic fillers and organic fillers. Examples of the inorganic filler include metal powder such as gold powder, silver powder, copper powder, and aluminum powder, fused silica, crystalline silica, silicon nitride, alumina, aluminum nitride, talc, and the like. Among these, metal powder is mainly used for imparting electrical conductivity and thermal conductivity. Examples of the organic filler include a silicone resin, a fluororesin such as polytetrafluoroethylene, an acrylic resin such as polymethyl methacrylate, a cross-linked product of benzoguanamine, melamine, and formaldehyde.

その中でも導電性の用途には特に銀粉の入手が容易なこと、形状や粒径の種類が多く、導電性が良好であり、加熱しても導電性が変化しない点で好ましく、絶縁用途の半導体樹脂ペーストにはシリカが入手の容易さと種類の豊富さの点で好ましい。これらの充填材は、ハロゲンイオン、アルカリ金属イオン等のイオン性不純物の含有量が10ppm以下であることが好ましい。また、充填材の形状としては、例えば、フレーク状、鱗片状、樹脂状、球状等のものが用いられる。   Among them, it is preferable for conductive applications that silver powder is particularly easily available, there are many types of shapes and particle sizes, good conductivity, and the conductivity does not change even when heated. Silica is preferable for the resin paste in terms of availability and variety. These fillers preferably have a content of ionic impurities such as halogen ions and alkali metal ions of 10 ppm or less. Moreover, as a shape of a filler, things, such as flake shape, scale shape, resin shape, spherical shape, are used, for example.

必要とされる特性を付与するためには、上記以外の充填材を用いてもよい。例えば、粒径が1〜100nm程度のナノスケール充填材や、シリカとアクリルとの複合材、有機充填材表面に金属コーティングを施したもの等の様な有機化合物と無機化合物との複合充填材等が挙げられる。なお、本発明の充填材は、予め表面をアルコキシシラン、アシロキシシラン、シラザン、オルガノアミノシラン等のシランカップリング材等で処理したものを用いてもよい。   In order to impart the required characteristics, fillers other than those described above may be used. For example, a nanoscale filler having a particle size of about 1 to 100 nm, a composite material of silica and acrylic, a composite filler of an organic compound and an inorganic compound such as a metal coating on the surface of the organic filler, etc. Is mentioned. Note that the filler of the present invention may be prepared by treating the surface with a silane coupling material such as alkoxysilane, acyloxysilane, silazane, or organoaminosilane in advance.

この(E)成分の配合量は、(A)成分と(B)成分の合計質量100質量部に対して、20〜1500質量部が好ましい。さらに50〜1200質量部がより好ましい。20質量部未満であると熱時の接着強度が低下する虞があり、1500質量部を越えると粘度が増大し、作業性が低下する虞がある。   As for the compounding quantity of this (E) component, 20-1500 mass parts is preferable with respect to 100 mass parts of total mass of (A) component and (B) component. Furthermore, 50-1200 mass parts is more preferable. If it is less than 20 parts by mass, the adhesive strength during heating may be reduced, and if it exceeds 1500 parts by mass, the viscosity may increase and workability may be reduced.

本発明の半導体用熱硬化性樹脂組成物は、(A)〜(E)成分を必須成分とするが、それら以外にも必要に応じて硬化促進剤、ゴムやシリコーン等の低応力化剤、シランカップリング剤、チタネートカップリング剤、顔料、染料、消泡剤、界面活性剤、溶剤等の添加剤を適宜配合することができる。本発明の半導体用熱硬化性樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等を予備混合し、ロール等を用いて混練した後、真空下脱泡する等の製造方法で得られる。   The thermosetting resin composition for semiconductors of the present invention comprises the components (A) to (E) as essential components, but in addition to these, a curing accelerator, a low stress agent such as rubber or silicone, Additives such as a silane coupling agent, a titanate coupling agent, a pigment, a dye, an antifoaming agent, a surfactant, and a solvent can be appropriately blended. The thermosetting resin composition for a semiconductor of the present invention is produced by premixing the components (A) to (E) and other additives, kneading using a roll, etc., and degassing under vacuum. Obtained by the method.

本発明の半導体接着用熱硬化型樹脂組成物を用いて半導体装置を製造するには、公知の方法を用いればよく、例えば、半導体素子と基板との間に上記樹脂組成物を介して接着、固定することにより行われる。   In order to produce a semiconductor device using the thermosetting resin composition for semiconductor bonding of the present invention, a known method may be used, for example, bonding between the semiconductor element and the substrate via the resin composition, This is done by fixing.

次に、実施例により本発明をさらに詳細に説明するが、本発明が下記実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example.

(実施例1〜2、比較例1〜2)
表1の配合に従って各成分を混合し、ロールで混練し、半導体接着用の樹脂ペーストを得た。得られた半導体接着用樹脂ペーストを以下の方法で評価した。その結果を表1に示す。なお、この実施例及び比較例で用いた材料は、下記の方法で入手したものである。
(Examples 1-2, Comparative Examples 1-2)
Each component was mixed according to the composition of Table 1 and kneaded with a roll to obtain a resin paste for semiconductor bonding. The obtained resin paste for semiconductor bonding was evaluated by the following method. The results are shown in Table 1. In addition, the material used by this Example and the comparative example was obtained with the following method.

(A)成分:アクリル変性ポリブタジエン(日本石油化学(株)製、商品名:MM−1000−80;数平均分子量:1000)
(B)成分:ラウリルアクリレート(新中村化学工業(株)製、商品名:NKエステルLA)
(C)成分:ジクミルパーオキサイド(日本油脂(株)製、商品名:パークミルD)
(A) Component: Acrylic modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: MM-1000-80; number average molecular weight: 1000)
(B) component: lauryl acrylate (made by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester LA)
Component (C): Dicumyl peroxide (Nippon Yushi Co., Ltd., trade name: Park Mill D)

(D)成分:2−ヒドロキシエチルメタクリレート 6.50g(0.05モル)、N,N’−ジシクロヘキシルカルボジイミド 10.30g(0.05モル)、チオクト酸(=6,8−ジチオオクタン酸) 10.36g(0.05モル)及びベンゼン 100gを500mL四つ口フラスコに入れて溶解し、室温で2週間撹拌し、次式で示す2−メタクリロイルオキシエチル6,8−ジチオオクタネート(以下、2−MEDTと称す。)を得た。

Figure 2013004868
(E)成分:充填剤1(銀粉;粒径 0.1〜30μm、平均粒径 3μm、フレーク状)
充填材2(シリカ;平均粒径 3μm、最大粒径 20μm、球状)
(その他):カップリング剤(信越化学工業(株)製、商品名:KBM−403;アルコキシシラン) Component (D): 2-hydroxyethyl methacrylate 6.50 g (0.05 mol), N, N′-dicyclohexylcarbodiimide 10.30 g (0.05 mol), thioctic acid (= 6,8-dithiooctanoic acid) 10 .36 g (0.05 mol) and 100 g of benzene were dissolved in a 500 mL four-necked flask, stirred at room temperature for 2 weeks, and 2-methacryloyloxyethyl 6,8-dithiooctanoate (hereinafter referred to as 2 -Referred to as MEDT).
Figure 2013004868
(E) Component: Filler 1 (silver powder; particle size 0.1 to 30 μm, average particle size 3 μm, flake shape)
Filler 2 (silica; average particle size 3 μm, maximum particle size 20 μm, spherical)
(Others): Coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403; alkoxysilane)

<評価方法>
[粘度]:E型粘度計(3°コーン)を用いて、25℃、2.5rpmでの値を測定した。
[弾性率]:得られた半導体接着用樹脂組成物を用いて、4×20×0.1mmのフィルム状の試験片を作製し(硬化条件 150℃、30分)、動的粘弾性測定機(DMA)にて引張モードでの測定を行った。
測定条件は以下の通りである。
・測定温度:−100〜300℃
・昇温速度:5℃/分
・周波数:10Hz
・荷重:100mN
ここで、25℃における貯蔵弾性率を弾性率とし5000MPa以下の場合を合格とした。弾性率の単位はMPaである。
<Evaluation method>
[Viscosity]: A value at 25 ° C. and 2.5 rpm was measured using an E-type viscometer (3 ° cone).
[Elastic Modulus]: Using the obtained semiconductor adhesive resin composition, a 4 × 20 × 0.1 mm film-like test piece was prepared (curing conditions 150 ° C., 30 minutes), and a dynamic viscoelasticity measuring machine. Measurement in tensile mode was performed with (DMA).
The measurement conditions are as follows.
Measurement temperature: -100 to 300 ° C
・ Temperature increase rate: 5 ° C./min ・ Frequency: 10 Hz
・ Load: 100mN
Here, the storage elastic modulus at 25 ° C. was regarded as the elastic modulus, and the case of 5000 MPa or less was regarded as acceptable. The unit of elastic modulus is MPa.

[ポットライフ]:25℃の恒温槽内に半導体接着用樹脂ペーストを放置した時の粘度が初期粘度の1.5倍以上増粘するまでの日数を測定した。
[熱時接着強度]:2mm×2mmのシリコンチップを、半導体用樹脂ペーストを用いて銅フレームにマウントし、200℃、60分で硬化した。硬化後マウント強度測定装置を用い25℃、260℃での熱時ダイシュア強度を測定した。
[Pot life]: The number of days until the viscosity when the semiconductor adhesive resin paste was allowed to stand in a constant temperature bath at 25 ° C. increased 1.5 times or more of the initial viscosity was measured.
[Heat Adhesive Strength]: A 2 mm × 2 mm silicon chip was mounted on a copper frame using a resin paste for semiconductor and cured at 200 ° C. for 60 minutes. After curing, the hot-water diesure strength at 25 ° C. and 260 ° C. was measured using a mount strength measuring device.

[耐パッケージクラック性]:6mm×6mmのシリコンチップを、ペーストを用いて銅フレームにマウントし、200℃中60秒間ホットプレート上(HP硬化)又はオーブンを使用し200℃、60分(OV硬化)で硬化した。これを京セラケミカル(株)製エポキシ封止材(商品名:KE−G1200)を用い、下記の条件で成形したパッケージを85℃、相対湿度85%、168時間吸湿処理した後、IRリフロー処理(260℃、10秒)を行い、パッケージの外部クラックの発生数を顕微鏡(倍率:15倍)で、また、パッケージの内部クラックの発生数を超音波顕微鏡で観察した。5個のサンプルについてクラックの発生したサンプル数を示す。
・パッケージ:80pQFP(14×20×2mm厚さ)
・チップサイズ:6mm×6mm(表面アルミ配線のみ)
・リードフレーム:銅
・封止材の成形:175℃、2分間
・ポストモールドキュアー:175℃、8時間
[Package crack resistance]: A 6 mm × 6 mm silicon chip is mounted on a copper frame using a paste, and then heated on a hot plate at 200 ° C. for 60 seconds (HP curing) or using an oven at 200 ° C. for 60 minutes (OV curing) ). This was subjected to a moisture absorption treatment at 85 ° C. and a relative humidity of 85% for 168 hours using an epoxy sealing material (trade name: KE-G1200) manufactured by Kyocera Chemical Co., Ltd., followed by an IR reflow treatment ( 260 ° C., 10 seconds), the number of external cracks in the package was observed with a microscope (magnification: 15 times), and the number of internal cracks in the package was observed with an ultrasonic microscope. The number of samples in which cracks occurred for five samples is shown.
・ Package: 80pQFP (14x20x2mm thickness)
・ Chip size: 6mm × 6mm (surface aluminum wiring only)
Lead frame: copper Molding of encapsulant: 175 ° C, 2 minutes Post mold cure: 175 ° C, 8 hours

Figure 2013004868
Figure 2013004868

以上より、ジスルフィド環式基を有する(メタ)アクリル酸エステル誘導体を含有させることで、樹脂組成物の粘度及び弾性率を低減させ低応力化を達成しながら、同時に熱時接着強度を向上させることができ、この樹脂組成物により半導体素子を基板に接着した半導体パッケージが、耐半田リフロー性を向上させることもできることがわかった。したがって、本発明の樹脂組成物は、半導体接着用に特に優れたものであり、これを用いることで信頼性の高い半導体装置を提供できる。   As described above, by containing a (meth) acrylic acid ester derivative having a disulfide cyclic group, the viscosity and elastic modulus of the resin composition are reduced to achieve low stress while simultaneously improving the adhesive strength during heating. It has been found that a semiconductor package in which a semiconductor element is bonded to a substrate with this resin composition can also improve solder reflow resistance. Therefore, the resin composition of the present invention is particularly excellent for semiconductor bonding, and by using this, a highly reliable semiconductor device can be provided.

Claims (5)

(A)数平均分子量500以上30000以下で、かつ、1分子内に少なくとも1つの二重結合を有する炭化水素化合物又はその誘導体と、
(B)1つ以上のエチレン性不飽和基を有するモノマーと、
(C)ラジカル重合触媒と、
(D)下記一般式[I]
Figure 2013004868
(式中、Rは水素原子又はメチル基を表し、Rは置換基を有していてもよい炭素原子数1〜14のアルキレン基を示す。)で表されるジスルフィド環式基を有する(メタ)アクリル酸エステル誘導体と、
(E)充填材と、
を必須成分とすることを特徴とする半導体接着用熱硬化型樹脂組成物。
(A) a hydrocarbon compound having a number average molecular weight of 500 or more and 30000 or less and having at least one double bond in one molecule, or a derivative thereof;
(B) a monomer having one or more ethylenically unsaturated groups;
(C) a radical polymerization catalyst;
(D) The following general formula [I]
Figure 2013004868
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an optionally substituted alkylene group having 1 to 14 carbon atoms). (Meth) acrylic acid ester derivatives;
(E) a filler;
A thermosetting resin composition for bonding semiconductors, characterized in that is an essential component.
前記(A)成分が室温で液状であり、かつ1分子内に少なくとも1つのアクリル基又はメタクリル基を有する請求項1記載の半導体接着用熱硬化型樹脂組成物。   The thermosetting resin composition for semiconductor adhesion according to claim 1, wherein the component (A) is liquid at room temperature and has at least one acrylic group or methacryl group in one molecule. 前記(A)成分と(B)成分との質量比が、90/10から10/90である請求項1又は2記載の半導体接着用熱硬化型樹脂組成物。   The thermosetting resin composition for semiconductor bonding according to claim 1 or 2, wherein a mass ratio of the component (A) to the component (B) is 90/10 to 10/90. 前記(A)成分と(B)成分の合計質量を100質量部としたとき、前記(D)成分が1〜200質量部である請求項1乃至3のいずれか1項記載の半導体用熱硬化型樹脂組成物。   The thermosetting for semiconductor according to any one of claims 1 to 3, wherein when the total mass of the component (A) and the component (B) is 100 parts by mass, the component (D) is 1 to 200 parts by mass. Mold resin composition. 請求項1乃至4のいずれか1項記載の半導体接着用熱硬化型樹脂組成物を用いて、半導体素子を基板上に接着した半導体装置。   A semiconductor device in which a semiconductor element is bonded onto a substrate using the thermosetting resin composition for semiconductor bonding according to any one of claims 1 to 4.
JP2011136496A 2011-06-20 2011-06-20 Thermosetting resin composition for bonding of semiconductor, and semiconductor device using the same Pending JP2013004868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011136496A JP2013004868A (en) 2011-06-20 2011-06-20 Thermosetting resin composition for bonding of semiconductor, and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011136496A JP2013004868A (en) 2011-06-20 2011-06-20 Thermosetting resin composition for bonding of semiconductor, and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2013004868A true JP2013004868A (en) 2013-01-07

Family

ID=47673077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136496A Pending JP2013004868A (en) 2011-06-20 2011-06-20 Thermosetting resin composition for bonding of semiconductor, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2013004868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208724A (en) * 2013-04-16 2014-11-06 京セラケミカル株式会社 Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
WO2022230928A1 (en) * 2021-04-28 2022-11-03 国立大学法人九州大学 Heat releasable adhesive, article and release method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238326A (en) * 2002-02-15 2003-08-27 Shiyoufuu:Kk Metal adhesive composition
JP2004168907A (en) * 2002-11-20 2004-06-17 Sumitomo Bakelite Co Ltd Die attach paste and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238326A (en) * 2002-02-15 2003-08-27 Shiyoufuu:Kk Metal adhesive composition
JP2004168907A (en) * 2002-11-20 2004-06-17 Sumitomo Bakelite Co Ltd Die attach paste and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208724A (en) * 2013-04-16 2014-11-06 京セラケミカル株式会社 Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
WO2022230928A1 (en) * 2021-04-28 2022-11-03 国立大学法人九州大学 Heat releasable adhesive, article and release method

Similar Documents

Publication Publication Date Title
JP3765731B2 (en) Die attach paste and semiconductor device
EP1274808B1 (en) Die-attaching paste and semiconductor device
JP2013004868A (en) Thermosetting resin composition for bonding of semiconductor, and semiconductor device using the same
JP2012182184A (en) Thermosetting resin composition for adhering semiconductor, and semiconductor device
JP6029370B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
JP3827281B2 (en) Die attach paste and semiconductor device
JP2017031341A (en) Thermal hardening type resin composition for semiconductor adhesion and semiconductor device using the same
JP6100017B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
JP5873284B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device
JP3871828B2 (en) Die attach paste and semiconductor device using the same
JP6029310B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device
JP4341193B2 (en) Die attach paste and semiconductor device
JP4125024B2 (en) Die attach paste and semiconductor device
TWI752050B (en) Adhesive composition, hardened product, precision parts
JP3482153B2 (en) Die attach paste for semiconductor
JP5573028B2 (en) Liquid resin composition and semiconductor device produced using liquid resin composition
JP6074309B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
JP3469498B2 (en) Die attach paste
JP4517499B2 (en) Die attach paste and semiconductor device
JP4064089B2 (en) Die attach paste and semiconductor device
JP3469499B2 (en) Die attach paste
JP2000239638A (en) Die-attaching paste for semiconductor
JP2000265117A (en) Die attach paste
JPWO2012033135A1 (en) Resin composition and semiconductor device produced using resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150414