JP2013003495A - Microscope system - Google Patents

Microscope system Download PDF

Info

Publication number
JP2013003495A
JP2013003495A JP2011137110A JP2011137110A JP2013003495A JP 2013003495 A JP2013003495 A JP 2013003495A JP 2011137110 A JP2011137110 A JP 2011137110A JP 2011137110 A JP2011137110 A JP 2011137110A JP 2013003495 A JP2013003495 A JP 2013003495A
Authority
JP
Japan
Prior art keywords
light
fluorescent
visible light
image
optical means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011137110A
Other languages
Japanese (ja)
Inventor
Hideji Inaba
秀司 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2011137110A priority Critical patent/JP2013003495A/en
Publication of JP2013003495A publication Critical patent/JP2013003495A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a microscope system capable of simultaneously superimposing and displaying a fluorescent image and a visible light image in real time.SOLUTION: A microscope system includes: branch optical means 7 that is freely combined with a single light source for projecting illumination light including a wavelength region of excitation light that is projected to an affected part with a fluorescent probe administrated and excites fluorescent light of a predetermined wavelength, and branches an observation light bundle extracted to the outside into two; fluorescent imaging means 10 that is connected to one side of the branch optical means; visible light imaging means 9 that is connected to the other side of the branch optical means; and display means that superimposes and displays a fluorescent image picked up by the fluorescent imaging means and a visible light image picked up by the visible light imaging means. The branch optical means 7 has an interface 8 that branches only the fluorescent light of the predetermined wavelength from visible light on the same axis of the observation light bundle.

Description

本発明は顕微鏡システムに関するものである。   The present invention relates to a microscope system.

近年の医学において、患者に蛍光プローブと称される蛍光物質を投与し、患部への集積が進んだ段階で、その蛍光プローブを励起できる波長の励起光を照射し、患部だけを蛍光させると共に、その蛍光だけを透過する光学フィルターを介して、患部の蛍光観察を行う技術が知られている。   In recent medicine, a fluorescent substance called a fluorescent probe is administered to a patient, and at the stage where accumulation in the affected area has progressed, the excitation light of a wavelength that can excite the fluorescent probe is irradiated, and only the affected area is fluorescent, A technique for performing fluorescence observation of an affected area through an optical filter that transmits only the fluorescence is known.

蛍光物質としては、5−アミノレブリン酸(5−ALA)、タラポルフィンナトリウム(登録商標レザフィリン)、インドシアニングリーン(ICG)などが知られている。5−アミノレブリン酸は、波長380nm付近の励起光を受けて、波長620nm付近の蛍光を発する。タラポルフィンナトリウムは、波長664nm付近の励起光を受けて、波長672nm付近の蛍光を発する。インドシアニングリーンは、波長805nm付近の励起光を受けて、波長835nm付近の蛍光を発する。インドシアニングリーンが最も赤外側(長波長側)である。   As the fluorescent substance, 5-aminolevulinic acid (5-ALA), talaporfin sodium (registered trademark Rezaphyrin), indocyanine green (ICG) and the like are known. 5-Aminolevulinic acid receives excitation light having a wavelength of about 380 nm and emits fluorescence having a wavelength of about 620 nm. Talaporfin sodium emits fluorescence having a wavelength of about 672 nm in response to excitation light having a wavelength of about 664 nm. Indocyanine green receives excitation light having a wavelength of about 805 nm and emits fluorescence having a wavelength of about 835 nm. Indocyanine green is the most infrared side (long wavelength side).

この種の蛍光観察の場合、蛍光だけの観察だと、患部の中における蛍光部分がどの位置か特定できないため、その周辺部も可視光により観察できれば好ましい。   In the case of this type of fluorescence observation, if only fluorescence is observed, the position of the fluorescent portion in the affected area cannot be specified, so it is preferable if the peripheral portion can be observed with visible light.

そのため、従来は患部から発せられた蛍光と、患部で反射された可視光の両方を透過する光学フィルターを備えた一台の撮像装置を備え、その撮像装置により、蛍光画像と可視光画像を切り替えながら撮像し、それを表示装置に重ね合わせて表示している(例えば、特許文献1参照)。   For this reason, a conventional imaging device is equipped with an optical filter that transmits both the fluorescence emitted from the affected area and the visible light reflected from the affected area, and the imaging device switches between the fluorescent image and the visible light image. The image is captured while being superimposed on the display device (for example, see Patent Document 1).

特開2006−14868号公報JP 2006-14868 A

しかしながら、このような従来の技術にあっては、一台の撮像装置により、蛍光画像と可視光画像を切り換えながら撮像し、それを表示装置において重ね合わせて表示しているため、どちからの画像にタイムラグが生じ、両方ともリアルタイムの画像ではない。そのため手術中の患部など、動きのある画像には不向きであった。   However, in such a conventional technique, a single image pickup device picks up an image while switching between a fluorescent image and a visible light image, and displays the image superimposed on the display device. Time lag, both are not real-time images. For this reason, it is not suitable for moving images such as affected areas during surgery.

本発明は、このような従来の技術に着目してなされたものであり、それぞれリアルタイムの蛍光画像と可視光画像を同時に重ね合わせて表示することができる顕微鏡システムを提供するものである。   The present invention has been made by paying attention to such a conventional technique, and provides a microscope system capable of simultaneously superimposing and displaying a real-time fluorescent image and a visible light image, respectively.

請求項1記載の発明は、蛍光プローブが投与された患部に照射して所定波長の蛍光を発光させる励起光の波長領域を含む照明光を照射する単一の光源と組み合わせ自在で、外部に取り出された観察光束を2つに分岐する分岐光学手段と、分岐光学手段の一方に接続される蛍光撮像手段と、分岐光学手段の他方に接続される可視光撮像手段と、蛍光撮像手段で撮像された蛍光画像と可視光撮像手段で撮像された可視光画像とを重畳して表示する表示手段とを備える顕微鏡システムであって、前記分岐光学手段が観察光束の同軸上で可視光から所定波長の蛍光のみを分岐する界面を有する光学ブロックであることを特徴とする。   The invention according to claim 1 can be combined with a single light source that emits illumination light including a wavelength region of excitation light that irradiates an affected area to which a fluorescent probe is administered and emits fluorescence of a predetermined wavelength, and is extracted outside. Branching optical means for branching the observed light flux into two, fluorescence imaging means connected to one of the branching optical means, visible light imaging means connected to the other of the branching optical means, and fluorescence imaging means And a display means for displaying the fluorescent image and the visible light image captured by the visible light imaging means in a superimposed manner, the branching optical means having a predetermined wavelength from the visible light on the same axis of the observation light beam. It is an optical block having an interface that branches only fluorescence.

請求項2記載の発明は、前記単一の光源がキセノンランプであることを特徴とする。   The invention according to claim 2 is characterized in that the single light source is a xenon lamp.

請求項1記載の発明によれば、観察光束を蛍光画像と可視光画像に分岐して、重畳して表示するため、それぞれリアルタイムの蛍光画像と可視光画像を重ね合わせて表示することができる。観察光束の分岐を光学ブロックにより同軸上で行うため、蛍光画像と可視光画像とは視野及び倍率などが一致して合成画像が得やすい。合成画像では蛍光の周辺の状態も可視光により確認することができるため、動きのある患部の状態も正確に観察することができる。   According to the first aspect of the present invention, since the observation light beam is branched into the fluorescent image and the visible light image and displayed in a superimposed manner, the real-time fluorescent image and the visible light image can be displayed in a superimposed manner. Since the observation light beam is split on the same axis by the optical block, the fluorescent image and the visible light image have the same field of view and magnification, and it is easy to obtain a composite image. In the synthesized image, the state around the fluorescent light can be confirmed by visible light, so that the state of the affected part in motion can be accurately observed.

請求項2記載の発明によれば、光源がキセノンランプであるため、蛍光プローブとして広く使用されているインドシアニングリーンの励起光としての波長領域と、可視光画像用の通常照明としての波長領域の両方を含み、光源が単一で済む。   According to the second aspect of the present invention, since the light source is a xenon lamp, a wavelength region as excitation light of indocyanine green widely used as a fluorescent probe and a wavelength region as normal illumination for a visible light image Including both, a single light source is sufficient.

本発明の実施形態に係る顕微鏡システムを示す概略図。Schematic which shows the microscope system which concerns on embodiment of this invention. 顕微鏡システムの撮像装置部分を示す概略図。Schematic which shows the imaging device part of a microscope system. 蛍光画像と可視光画像の合成を示す模式図。The schematic diagram which shows the synthesis | combination of a fluorescence image and a visible light image. キセノンランプの放射スペクトル分布を示すグラフ。The graph which shows the radiation spectrum distribution of a xenon lamp.

図1〜図4は、本発明の好適な実施形態を示す図である。手術用の顕微鏡1は、手術室内において、図示せぬスタンド装置のアームにより支持されている。顕微鏡1は、2つの接眼部を有する立体顕微鏡で、内部にはフォーカスレンズやズームレンズが設けられ、それらにより左右2系統の光路が形成されている。   1 to 4 are views showing a preferred embodiment of the present invention. The surgical microscope 1 is supported by an arm of a stand device (not shown) in the operating room. The microscope 1 is a three-dimensional microscope having two eyepieces, and a focus lens and a zoom lens are provided inside, thereby forming two left and right optical paths.

また、顕微鏡1には、外部光源装置2から照明光Rが導入され、その照明光Rは顕微鏡1に導かれ、顕微鏡1から患部Pに照射される。外部光源装置2には、光源としてキセノンランプ3が収納されている。   Further, the illumination light R is introduced into the microscope 1 from the external light source device 2, and the illumination light R is guided to the microscope 1 and irradiated from the microscope 1 to the affected part P. The external light source device 2 houses a xenon lamp 3 as a light source.

キセノンランプ3の照明光は、図4に示すように、蛍光プローブとしてインドシアニングリーンを使用する場合の励起波長(805nm)を含んでいる。従って、キセノンランプ3により、インドシアニングリーンを励起させることができると共に、可視光による通常照明も行える。   As shown in FIG. 4, the illumination light of the xenon lamp 3 includes an excitation wavelength (805 nm) when indocyanine green is used as a fluorescent probe. Therefore, indocyanine green can be excited by the xenon lamp 3, and normal illumination with visible light can also be performed.

顕微鏡1の側部には撮像装置4が取り付けられている。この撮像装置4には、顕微鏡1内の二系統ある光路のうちの一系統が分岐されて導入される。この撮像装置4の内部には、2つのプリズム5、6を組み合わせた光学ブロック(分岐光学手段)7が設けられている。2つのプリズム5、6の界面8は光学多層膜となっており、インドシアニングリーンの蛍光(835nm)だけを選択的に反射し他の波長成分はそのまま透過させる機能を有する。   An imaging device 4 is attached to the side of the microscope 1. One system of two optical paths in the microscope 1 is branched and introduced into the imaging device 4. An optical block (branching optical means) 7 in which two prisms 5 and 6 are combined is provided inside the imaging device 4. The interface 8 between the two prisms 5 and 6 is an optical multilayer film, and has a function of selectively reflecting only indocyanine green fluorescence (835 nm) and transmitting other wavelength components as they are.

光学ブロック7の界面8は顕微鏡1から取り出された観察光束Lの光軸上に存在するため、観察光束Lは、界面8を通過する可視光画像L1と、界面8で反射される蛍光画像L2に同軸上で分岐される。可視光画像L1は界面8を通過した後に一方のプリズム5側に設置された可視光撮像手段としてのカラーCCDカメラ9で撮像される。界面8で分岐された蛍光画像L2は他方のプリズム6における別の面で反射された後に蛍光撮像手段としての高感度カラーCCDカメラ10で撮像される。   Since the interface 8 of the optical block 7 exists on the optical axis of the observation light beam L extracted from the microscope 1, the observation light beam L includes the visible light image L 1 that passes through the interface 8 and the fluorescent image L 2 that is reflected by the interface 8. Branches on the same axis. The visible light image L1 passes through the interface 8 and is picked up by a color CCD camera 9 as a visible light image pickup means installed on one prism 5 side. The fluorescent image L2 branched at the interface 8 is reflected by another surface of the other prism 6 and then picked up by a high sensitivity color CCD camera 10 as a fluorescent image pickup means.

各CCDカメラ9、10で撮像されたデータは画像合成処理装置11で合成される。画像合成処理装置11で合成された画像は表示装置(表示手段)12に送られ、そこで可視光画像L1と蛍光画像L2を重畳した状態で表示することができる。可視光画像L1と蛍光画像L2は、同軸から分離されたため、両者が同視野及び同倍率で表示される。   Data captured by the CCD cameras 9 and 10 are combined by the image combining processing device 11. The image synthesized by the image synthesis processing device 11 is sent to a display device (display means) 12 where the visible light image L1 and the fluorescence image L2 can be displayed in a superimposed state. Since the visible light image L1 and the fluorescent image L2 are separated from the same axis, both are displayed with the same field of view and the same magnification.

しかも、可視光画像L1び蛍光画像L2の両方とも、リアルタイムで同期した状態で表示され、実際の患部の状態との間にタイムラグがない。   Moreover, both the visible light image L1 and the fluorescent image L2 are displayed in a synchronized state in real time, and there is no time lag between the actual state of the affected area.

例えば、患部Pにおいて、リンパ管Aと静脈血管Bの吻合手術を行う場合、予め患者に、インドシアニングリーン(ICG)を注入する。ICGはリンパ管Aだけに流れ、照明光Rを照射することにより、照明光R中の励起波長(805nm)に励起されて、波長835nm付近の蛍光を発する。静脈血管BにはICGが流れないため、静脈血管Bは蛍光を発しない。   For example, when an anastomosis operation of lymphatic vessel A and venous blood vessel B is performed in the affected area P, indocyanine green (ICG) is injected into the patient in advance. The ICG flows only in the lymphatic vessel A, and when irradiated with the illumination light R, the ICG is excited to the excitation wavelength (805 nm) in the illumination light R and emits fluorescence having a wavelength of about 835 nm. Since ICG does not flow through the venous blood vessel B, the venous blood vessel B does not emit fluorescence.

皮膚切開した患部P中に、図3に示すように、複数のリンパ管Aと静脈血管Bが密接していても、その中からリンパ管Aだけを蛍光画像L2により特定することができる。リンパ管Aが特定できれば、リンパ管Aでない管は静脈血管Bなので、可視光画像L1において、リンパ管Aと静脈血管Bを正確に区別して認識することができる。従って、顕微鏡1でリンパ管Aの手術を行う場合など、手術処置によりリンパ管Aが視野の中で動いても、その状態を表示装置12においてリアルタイムで正確に観察することができる。従って、術者だけでなく助手なども患部Pの状態を正確に把握することができる。   As shown in FIG. 3, even if a plurality of lymphatic vessels A and venous blood vessels B are in close contact with each other in the affected part P that has undergone skin incision, only the lymphatic vessels A can be identified by the fluorescence image L2. If lymphatic vessel A can be identified, the non-lymphatic vessel A is a venous blood vessel B, so that the lymphatic vessel A and the venous blood vessel B can be accurately distinguished and recognized in the visible light image L1. Therefore, even when the lymph vessel A moves in the visual field due to the surgical treatment, such as when the operation of the lymph vessel A is performed with the microscope 1, the state can be accurately observed in real time on the display device 12. Therefore, not only the surgeon but also an assistant can accurately grasp the state of the affected area P.

尚、インドシアニングリーンはリンパ管Aの他にも、センチネルリンパ節などのリンパ節を検出することができる。センチネルリンパ節は、腫瘍から癌細胞がリンパ流によって最初に到達する部分であり、このセンチネルリンパ節に癌細胞の転移が認められなければ、他臓器への転移がないと考えられる。そのため、このセンチネルリンパ節の蛍光画像を可視光画像中で確実に特定できる意味は大きい。   Indocyanine green can detect lymph nodes such as sentinel lymph nodes in addition to lymphatic vessel A. A sentinel lymph node is a part where cancer cells first reach from a tumor by lymph flow, and if cancer cell metastasis is not observed in this sentinel lymph node, it is considered that there is no metastasis to other organs. Therefore, there is a great meaning that the fluorescence image of the sentinel lymph node can be reliably specified in the visible light image.

以上の実施形態では、2つのプリズム5、6を組み合わせた光学ブロック7により、可視光の光束から1つの蛍光を分離する例を示したが、3つのプリズムを組み会わせてより、1つ可視光から2つの蛍光を分離しても良い。   In the above embodiment, an example is shown in which one fluorescent light is separated from a visible light beam by the optical block 7 in which the two prisms 5 and 6 are combined. However, one visible light can be obtained by combining three prisms. Two fluorescences may be separated from the light.

1 顕微鏡
3 キセノンランプ(光源)
7 光学ブロック(分岐光学手段)
8 界面
9 カラーCCDカメラ(可視光撮像手段)
10 高感度カラーCCDカメラ(蛍光撮像手段)
12 表示装置(表示手段)
A リンパ管
B 静脈血管
P 患部
R 照明光
L 観察光
L1 可視光画像
L2 蛍光画像
1 Microscope 3 Xenon lamp (light source)
7 optical block (branch optical means)
8 Interface 9 Color CCD camera (Visible light imaging means)
10 High-sensitivity color CCD camera (fluorescence imaging means)
12 Display device (display means)
A lymphatic vessel B venous blood vessel P affected area R illumination light L observation light L1 visible light image L2 fluorescent image

Claims (2)

蛍光プローブが投与された患部に照射して所定波長の蛍光を発光させる励起光の波長領域を含む照明光を照射する単一の光源と組み合わせ自在で、外部に取り出された観察光束を2つに分岐する分岐光学手段と、
分岐光学手段の一方に接続される蛍光撮像手段と、
分岐光学手段の他方に接続される可視光撮像手段と、
蛍光撮像手段で撮像された蛍光画像と可視光撮像手段で撮像された可視光画像とを重畳して表示する表示手段とを備える顕微鏡システムであって、
前記分岐光学手段が観察光束の同軸上で可視光から所定波長の蛍光のみを分岐する界面を有する光学ブロックであることを特徴とする顕微鏡システム。
It can be combined with a single light source that irradiates illumination light including a wavelength region of excitation light that irradiates an affected area to which a fluorescent probe is administered and emits fluorescence of a predetermined wavelength, so that two observation light beams extracted outside can be combined. Branching optical means for branching;
Fluorescence imaging means connected to one of the branching optical means;
Visible light imaging means connected to the other of the branching optical means;
A microscope system comprising a display unit that superimposes and displays a fluorescent image captured by a fluorescent imaging unit and a visible light image captured by a visible light imaging unit,
2. The microscope system according to claim 1, wherein the branching optical means is an optical block having an interface for branching only fluorescence having a predetermined wavelength from visible light on the same axis of the observation light beam.
前記単一の光源がキセノンランプであることを特徴とする請求項1記載の顕微鏡システム。   The microscope system according to claim 1, wherein the single light source is a xenon lamp.
JP2011137110A 2011-06-21 2011-06-21 Microscope system Pending JP2013003495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137110A JP2013003495A (en) 2011-06-21 2011-06-21 Microscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137110A JP2013003495A (en) 2011-06-21 2011-06-21 Microscope system

Publications (1)

Publication Number Publication Date
JP2013003495A true JP2013003495A (en) 2013-01-07

Family

ID=47672102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137110A Pending JP2013003495A (en) 2011-06-21 2011-06-21 Microscope system

Country Status (1)

Country Link
JP (1) JP2013003495A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041312A1 (en) * 2013-09-20 2015-03-26 国立大学法人旭川医科大学 Method and system for image processing of intravascular hemodynamics
WO2015194410A1 (en) * 2014-06-20 2015-12-23 コニカミノルタ株式会社 Image input device and microscope device
WO2016063636A1 (en) * 2014-10-23 2016-04-28 浜松ホトニクス株式会社 Fluorescence observation method and fluorescence observation device
JP2017053890A (en) * 2015-09-07 2017-03-16 ソニー株式会社 Imaging device, microscope imaging system, and endoscope imaging system
WO2019225693A1 (en) * 2018-05-24 2019-11-28 学校法人 慶應義塾 Surgical observation system
CN114288020A (en) * 2021-12-08 2022-04-08 浙江大学 Visible light illumination and near-infrared fluorescence operation navigation system based on shadowless lamp

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123297A (en) * 1991-11-01 1993-05-21 Topcon Corp Ophthalmic device
JPH05127096A (en) * 1991-05-16 1993-05-25 Olympus Optical Co Ltd Ultraviolet microscope
JPH05344997A (en) * 1992-06-15 1993-12-27 Topcon Corp Medical stereoscopic microscope
JPH10325798A (en) * 1997-05-23 1998-12-08 Olympus Optical Co Ltd Microscope apparatus
US5865829A (en) * 1992-06-15 1999-02-02 Kabushiki Kaisha Topcon Medical optical apparatus
US20040109231A1 (en) * 2002-08-28 2004-06-10 Carl-Zeiss-Stiftung Trading As Carl Zeiss Microscopy system, microscopy method and a method of treating an aneurysm
US20100182418A1 (en) * 2008-12-17 2010-07-22 Carl Zeiss Surgical Gmbh Surgical microscope for observing an infrared fluorescence and corresponding method
JP2010213995A (en) * 2009-03-18 2010-09-30 Olympus Medical Systems Corp Surgical microscope
JP2011027895A (en) * 2009-07-23 2011-02-10 Mitaka Koki Co Ltd Microscope system
JP2011110272A (en) * 2009-11-27 2011-06-09 Fujifilm Corp Endoscope apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127096A (en) * 1991-05-16 1993-05-25 Olympus Optical Co Ltd Ultraviolet microscope
US5481401A (en) * 1991-05-16 1996-01-02 Olympus Optical Co., Ltd. Ultraviolet microscope
JPH05123297A (en) * 1991-11-01 1993-05-21 Topcon Corp Ophthalmic device
JPH05344997A (en) * 1992-06-15 1993-12-27 Topcon Corp Medical stereoscopic microscope
US5865829A (en) * 1992-06-15 1999-02-02 Kabushiki Kaisha Topcon Medical optical apparatus
JPH10325798A (en) * 1997-05-23 1998-12-08 Olympus Optical Co Ltd Microscope apparatus
US20040109231A1 (en) * 2002-08-28 2004-06-10 Carl-Zeiss-Stiftung Trading As Carl Zeiss Microscopy system, microscopy method and a method of treating an aneurysm
JP2004163413A (en) * 2002-08-28 2004-06-10 Carl-Zeiss-Stiftung Trading As Carl Zeiss Microscope system and microscope inspection method
US20100097618A1 (en) * 2002-08-28 2010-04-22 Michael Haisch Microscopy system, microscopy method, and a method of treating an aneurysm
US20100182418A1 (en) * 2008-12-17 2010-07-22 Carl Zeiss Surgical Gmbh Surgical microscope for observing an infrared fluorescence and corresponding method
JP2010213995A (en) * 2009-03-18 2010-09-30 Olympus Medical Systems Corp Surgical microscope
JP2011027895A (en) * 2009-07-23 2011-02-10 Mitaka Koki Co Ltd Microscope system
JP2011110272A (en) * 2009-11-27 2011-06-09 Fujifilm Corp Endoscope apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953437B2 (en) * 2013-09-20 2016-07-20 国立大学法人旭川医科大学 Image processing method and system for intravascular blood flow dynamics
US10898088B2 (en) 2013-09-20 2021-01-26 National University Corporation Asahikawa Medical University Method and system for image processing of intravascular hemodynamics
WO2015041312A1 (en) * 2013-09-20 2015-03-26 国立大学法人旭川医科大学 Method and system for image processing of intravascular hemodynamics
CN105705084A (en) * 2013-09-20 2016-06-22 国立大学法人旭川医科大学 Method and system for image processing of intravascular hemodynamics
WO2015194410A1 (en) * 2014-06-20 2015-12-23 コニカミノルタ株式会社 Image input device and microscope device
US10031079B2 (en) 2014-10-23 2018-07-24 Hamamatsu Photonics K.K. Fluorescence observation method and fluorescence observation device
JP2016085052A (en) * 2014-10-23 2016-05-19 浜松ホトニクス株式会社 Fluorescence observation method and fluorescence observation device
US10267731B2 (en) 2014-10-23 2019-04-23 Hamamatsu Photonics K.K. Fluorescence observation method
US10444150B2 (en) 2014-10-23 2019-10-15 Hamamatsu Photonics K.K. Fluorescence observation method and fluorescence observation device
WO2016063636A1 (en) * 2014-10-23 2016-04-28 浜松ホトニクス株式会社 Fluorescence observation method and fluorescence observation device
JP2017053890A (en) * 2015-09-07 2017-03-16 ソニー株式会社 Imaging device, microscope imaging system, and endoscope imaging system
WO2017043000A1 (en) 2015-09-07 2017-03-16 Sony Corporation Image pickup device, microscope image pickup system, and endoscope image pickup system
US10820790B2 (en) 2015-09-07 2020-11-03 Sony Corporation Image pickup device, microscope image pickup system, and endoscope image pickup system
US11712156B2 (en) 2015-09-07 2023-08-01 Sony Corporation Image pickup device, microscope image pickup system, and endoscope image pickup system
WO2019225693A1 (en) * 2018-05-24 2019-11-28 学校法人 慶應義塾 Surgical observation system
JPWO2019225693A1 (en) * 2018-05-24 2021-06-24 学校法人慶應義塾 Surgical observation system
CN114288020A (en) * 2021-12-08 2022-04-08 浙江大学 Visible light illumination and near-infrared fluorescence operation navigation system based on shadowless lamp

Similar Documents

Publication Publication Date Title
US11765340B2 (en) Goggle imaging systems and methods
US10295815B2 (en) Augmented stereoscopic microscopy
US20160089013A1 (en) Method and system for fluorescent imaging with background surgical image composed of selective illumination spectra
US10105096B2 (en) Biological observation apparatus
JP2011027895A (en) Microscope system
CA3148654A1 (en) Systems and methods for vascular and structural imaging
US20120056996A1 (en) Special-illumination surgical video stereomicroscope
JP2013003495A (en) Microscope system
EP2641529A1 (en) Augmented stereoscopic visualization for a surgical robot
JP2012016545A (en) Endoscope apparatus
US11717375B2 (en) Methods and systems for alternate image display
US10805512B2 (en) Dual path endoscope
JP4633210B2 (en) Surgical microscope equipment
JP2017176811A (en) Imaging device, imaging method, and medical observation instrument
TW202217280A (en) Systems and methods for simultaneous near-infrared light and visible light imaging
JP5600553B2 (en) Surgical microscope
JP6859554B2 (en) Observation aids, information processing methods, and programs
WO2010054510A1 (en) Surgical microscope system having angiography function
JPH05344997A (en) Medical stereoscopic microscope
JP2009140827A (en) External light source apparatus
Papayan et al. Video-endoscopy system for photodynamic theranostics of central lung cancer
WO2015194410A1 (en) Image input device and microscope device
Watson Development of an augmented microscope for image guided surgery in the brain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331