JP2013002836A - Repose angle measuring device and repose angle measuring method - Google Patents

Repose angle measuring device and repose angle measuring method Download PDF

Info

Publication number
JP2013002836A
JP2013002836A JP2011131215A JP2011131215A JP2013002836A JP 2013002836 A JP2013002836 A JP 2013002836A JP 2011131215 A JP2011131215 A JP 2011131215A JP 2011131215 A JP2011131215 A JP 2011131215A JP 2013002836 A JP2013002836 A JP 2013002836A
Authority
JP
Japan
Prior art keywords
deposit
repose
angle
flat plate
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011131215A
Other languages
Japanese (ja)
Inventor
Etsukichi Kondo
悦吉 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2011131215A priority Critical patent/JP2013002836A/en
Publication of JP2013002836A publication Critical patent/JP2013002836A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a repose angle measuring device and a repose angle measuring method, allowing a repose angle to be accurately measured even in the vicinity of the ground surface with a low stress.SOLUTION: A repose angle measuring device measures the repose angle of a deposit P1 of particles P accumulated in a conical shape in a liquid. The device comprises deposit forming means 1 and pulling-up means 2 which pulls the deposit forming means 1 upward. The deposit forming means 1 includes a flat plate body 8 which is embedded in a particle pile P0 composed of assembled particles P and a cylindrical body 9 with a bottom opening which is located above the flat plate body 8. The deposit forming means 1 with the flat plate body 8 embedded in the particle pile P0 in the liquid is pulled up by the pulling-up means 2, so that the deposit p1 connected to a columnar particle assembly P2 in the cylindrical body is formed between the flat plate body 8 and the cylindrical body 9.

Description

本発明は、粒子が円錐状に堆積してなる堆積物の安息角を測定する安息角測定装置及び安息角測定方法に関する。   The present invention relates to a repose angle measuring apparatus and a repose angle measuring method for measuring a repose angle of a deposit formed by depositing particles conically.

電線管、ガス管工事等の施工において、掘削時に掘削面の崩壊が生じることがある。例えば砂などの粒子が円錐状に堆積してなる堆積物(粒状体)のせん断強度は、τ=σ×tanφ+c(σ:有効応力、φ:せん断抵抗角(内部摩擦角)、c:粒状体の見かけの粘着力)で表され、現場でのせん断抵抗角φを正確に知ることができれば、適切な掘削施工を行うことができる。   In construction such as conduits and gas pipes, the excavation surface may collapse during excavation. For example, the shear strength of a sediment (granular material) in which particles such as sand are deposited in a conical shape is τ = σ × tan φ + c (σ: effective stress, φ: shear resistance angle (internal friction angle), c: granular material) If the shear resistance angle φ at the site can be accurately known, appropriate excavation can be performed.

ところで、図8に示すように粒子(例えば砂)の堆積体の斜面が安定するためには、抵抗力Faとすべり力Fnとが等しくなることが必要である。βを斜面勾配、Wを砂の重量、Nを垂直応力とすると、Fa=Fn、すなわち、W・sinβ=W・cosβ・tanφが導かれ、これを展開するとβ=φ(ただしc=0)となる。従って、斜面勾配がせん断抵抗角となり、φは、砂の堆積体の安息角を測定することにより推定される。   By the way, as shown in FIG. 8, in order to stabilize the slope of the particle (eg, sand) deposit, the resistance Fa and the sliding force Fn must be equal. If β is the slope of the slope, W is the weight of the sand, and N is the normal stress, then Fa = Fn, that is, W · sin β = W · cos β · tan φ is derived, and if this is expanded, β = φ (where c = 0) It becomes. Accordingly, the slope gradient becomes the shear resistance angle, and φ is estimated by measuring the angle of repose of the sand deposit.

安息角を測定するための方法として、三軸圧縮試験が知られている(特許文献1)。三軸圧縮試験は、供試体に三軸的な圧力を加えながら、更に軸方向に圧縮して強度−変形特性を求める試験である。また、漏斗等から砂を水平面に落下させて、水平面に円錐状に堆積した堆積物の傾斜角を測定する注入法が知られている(特許文献2)。   A triaxial compression test is known as a method for measuring the angle of repose (Patent Document 1). The triaxial compression test is a test for obtaining strength-deformation characteristics by further compressing in the axial direction while applying triaxial pressure to the specimen. In addition, an injection method is known in which sand is dropped from a funnel or the like onto a horizontal plane, and the inclination angle of the sediment deposited conically on the horizontal plane is measured (Patent Document 2).

特開平10−281955号公報Japanese Patent Laid-Open No. 10-281955 特開2008−026232号公報JP 2008-026232 A

特許文献1に記載された三軸圧縮試験により測定されるせん断抵抗角は、深度約10m以深であり、地表からの深度が深い場所が対象となっている。一方、前記施工現場における掘削深度は約1.5m〜2.0mと低応力であることが一般的である。せん断抵抗角には応力依存性(例えば深いほど小さい)があり、三軸圧縮試験で測定したせん断抵抗角を、地表近く(低応力)におけるせん断抵抗角として適用することができない。また、特許文献2に記載された注入法は、砂に含まれる水分が影響する等して、見かけの粘着力が発生し、安息角が過剰(45以上)となるという問題がある。このように、低応力で安息角を正確に測定できる装置や方法はなかった。   The shear resistance angle measured by the triaxial compression test described in Patent Document 1 has a depth of about 10 m or more, and is intended for a place where the depth from the ground surface is deep. On the other hand, the excavation depth at the construction site is generally about 1.5 m to 2.0 m and low stress. The shear resistance angle has stress dependence (for example, the smaller the depth, the smaller the shear resistance angle), and the shear resistance angle measured by the triaxial compression test cannot be applied as the shear resistance angle near the ground surface (low stress). Moreover, the injection method described in Patent Document 2 has a problem that an apparent adhesive force is generated due to the influence of moisture contained in the sand and the angle of repose becomes excessive (45 or more). Thus, there has been no apparatus or method that can accurately measure the angle of repose with low stress.

そこで、本発明は、上記問題点に鑑みて、地表近くの低応力でも安息角を正確に測定することができる安息角測定装置及び安息角測定方法を提供する。   Therefore, in view of the above problems, the present invention provides a repose angle measuring apparatus and a repose angle measuring method capable of accurately measuring a repose angle even with a low stress near the ground surface.

本発明の安息角測定装置は、液体中で、粒子が円錐状に堆積してなる堆積物の安息角を測定する安息角測定装置であって、堆積物形成手段と、この堆積物形成手段を上方へ引き上げる引上手段とを備え、前記堆積物形成手段は、粒子が集合した粒子溜りに埋没する平板体と、この平板体の上方に位置する下方開口状の筒体とを有し、液体中で、前記平板体が粒子溜りに埋没した状態で、前記引上手段にて前記堆積体形成手段を引き上げて、前記平板体と前記筒体との間に、筒体内部の柱状の粒子集合物に連接される堆積物を形成するものである。   An angle of repose measuring device of the present invention is an angle of repose measuring device for measuring an angle of repose of a deposit formed by concentrating particles in a liquid, and includes a deposit forming unit and the deposit forming unit. A depositing means for pulling upward, and the deposit forming means includes a flat body buried in a particle reservoir in which particles are aggregated, and a cylindrical body having a lower opening located above the flat body, and a liquid In the state where the flat plate is buried in a particle reservoir, the deposit forming means is pulled up by the pulling means, and the columnar particle aggregate inside the cylindrical body is between the flat plate and the cylindrical body. It forms a deposit connected to the object.

本発明の安息角測定装置では、液体中で粒子の堆積物の安息角を測定するものであるため、粒子の見かけの粘着力を微小にすることができる。水中で平板体上に粒子を堆積させる場合、例えば、下方開口状の筒体に粒子を充満させて、筒体の下端面を平板体に当接させ、徐々に筒体を引き上げる。これにより、筒体内から粒子が排出されて、平板体上に粒子が堆積する。また、粒子溜り(粒子が多数集合した粒子の集合体)に平板体を埋没させて、徐々に平板体を引き上げることにより平板体上に粒子が堆積する。筒体を引き上げて粒子の堆積物を形成する場合、引き上げの最終段階、つまり筒体内の粒子が全て排出される寸前の状態で粒子の自由崩落が生じる。このとき平板体に堆積した粒子の頂部から粒子が雪崩のように崩壊する大崩落を引き起こし、堆積した粒子の安息角が小さくなる場合がある。そこで、筒体内部に粒子を充満させて粒子集合物を形成し、この粒子集合物が堆積物に連接したものとすると、堆積物の頂部に、柱状の粒子集合物が設けられるため、堆積物の頂部における粒子の自由崩落が生じることがなく、堆積物の大崩落を防止することができる。従って、本発明の装置により形成された堆積物の安息角を測定すると、低応力における粒子の安息角を正確に測定することができる。   Since the repose angle measuring apparatus of the present invention measures the repose angle of the particle deposit in the liquid, the apparent adhesive force of the particles can be made minute. When depositing particles on a flat plate in water, for example, the lower opening-shaped cylinder is filled with particles, the lower end surface of the cylinder is brought into contact with the flat plate, and the cylinder is gradually pulled up. As a result, the particles are discharged from the cylindrical body, and the particles are deposited on the flat plate. Further, the flat plate is buried in a particle reservoir (an aggregate of particles in which a large number of particles are aggregated), and the plate is gradually pulled up to deposit particles on the flat plate. When the cylinder is pulled up to form a deposit of particles, free fall of the particles occurs at the final stage of pulling up, that is, just before all the particles in the cylinder are discharged. At this time, a large collapse in which the particles collapse like an avalanche from the top of the particles deposited on the flat plate may cause the angle of repose of the deposited particles to be small. Therefore, if the cylindrical body is filled with particles to form a particle aggregate, and this particle aggregate is connected to the deposit, a columnar particle aggregate is provided at the top of the deposit. The free fall of the particle | grains in the top part of this does not arise, and the large fall of a deposit can be prevented. Therefore, when the angle of repose of the deposit formed by the apparatus of the present invention is measured, the angle of repose of particles at low stress can be accurately measured.

前記構成において、前記筒体は、上方に開口する上方開口部を有し、前記平板体が粒子溜りに埋没した状態で、前記上方開口部から前記筒体内部に粒子を供給することができる。これにより、堆積物の安息角は、筒体を引き上げることにより形成され、かつ、平板体を引き上げることでも形成されるものとなる。すなわち、安息角は、筒体と平板体とで二重に形成され、安息角を一層安定なものとすることができ、一層正確な測定を行うことができる。   The said structure WHEREIN: The said cylinder has an upper opening part opened upwards, and can supply particle | grains from the said upper opening part to the said cylinder inside in the state which the said flat body was buried in the particle reservoir. Thereby, the angle of repose of the deposit is formed by pulling up the cylinder, and is also formed by pulling up the flat plate. That is, the angle of repose is doubled between the cylindrical body and the flat plate, and the angle of repose can be made more stable, so that more accurate measurement can be performed.

前記構成において、前記筒体の下端面は、内径側から外径側に向かって拡径するテーパ面とすることができる。これにより、底面摩擦が生じるのを防止することができる。   The said structure WHEREIN: The lower end surface of the said cylinder can be made into the taper surface which expands toward the outer diameter side from an inner diameter side. Thereby, it can prevent that bottom face friction arises.

本発明の安息角測定方法は、液体中で、粒子が円錐状に堆積してなる堆積物の安息角を測定する安息角測定方法であって、下方開口状の筒体と平板体との間隔を一定に維持した状態で、前記平板体を粒子溜りに埋没させ、前記筒体内の少なくとも下端部に粒子を充満させて筒体内部に柱状の粒子集合物を形成した後、粒子を液体中に浸漬させ、前記平板体及び筒体を引き上げて、前記平板体と前記筒体との間に、前記粒子集合物に連接される堆積物を形成し、この堆積物の安息角を測定するものである。   The repose angle measuring method of the present invention is a repose angle measuring method for measuring a repose angle of a deposit in which particles are deposited in a conical shape in a liquid, and is a distance between a cylindrical body having a lower opening and a flat body. In a state in which the flat plate body is kept constant, the flat body is buried in a particle reservoir, and at least the lower end portion of the cylindrical body is filled with particles to form columnar particle aggregates in the cylindrical body. It is immersed, the flat plate and the cylinder are pulled up, a deposit connected to the particle aggregate is formed between the flat plate and the cylinder, and the angle of repose of the deposit is measured. is there.

本発明の安息角測定方法では、堆積物の頂部における粒子の自由崩落が生じることがなく、堆積物の大崩落を防止することができる。従って、本発明の方法により堆積物の安息角を測定すると、低応力における粒子の安息角を正確に測定することができる。   In the angle of repose measurement method of the present invention, free collapse of particles at the top of the deposit does not occur, and large collapse of the deposit can be prevented. Therefore, when the angle of repose of the deposit is measured by the method of the present invention, the angle of repose of particles at low stress can be accurately measured.

本発明の安息角測定装置及び安息角測定方法によれば、地表近くの低応力でも安息角を正確に測定することができる。   According to the repose angle measurement apparatus and repose angle measurement method of the present invention, the repose angle can be accurately measured even at low stress near the ground surface.

本発明の安息角測定装置の堆積物形成手段の要部斜視図である。It is a principal part perspective view of the deposit formation means of the repose angle measuring apparatus of this invention. 前記図1の堆積物形成手段の要部拡大断面図である。It is a principal part expanded sectional view of the deposit formation means of the said FIG. 本発明の安息角測定装置の引上手段の簡略正面図である。It is a simplified front view of the raising means of the repose angle measuring apparatus of this invention. 前記図1の堆積物形成手段を容器に入れる前の斜視図である。It is a perspective view before putting the deposit formation means of the said FIG. 1 in a container. 前記図1の堆積物形成手段を容器に入れた後の斜視図である。It is a perspective view after putting the deposit formation means of the said FIG. 1 in the container. 本発明の安息角測定方法により堆積物の安息角を測定する説明図であり、(a)は筒体に粒子を充満し、(b)は水槽に水が注入され、(c)は堆積物形成手段を引き上げた後の図である。It is explanatory drawing which measures the angle of repose of a deposit by the angle of repose measurement method of this invention, (a) fills a cylinder with particle | grains, (b) water is inject | poured into a water tank, (c) is a deposit. It is a figure after raising a formation means. 堆積物形成手段に堆積物が形成された状態を示す正面図である。It is a front view which shows the state in which the deposit was formed in the deposit formation means. 斜面勾配とせん断抵抗角とが等しくなることを説明するための説明図である。It is explanatory drawing for demonstrating that a slope gradient and a shear resistance angle become equal.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は、本発明の安息角測定装置を示す斜視図である。本発明の安息角測定装置では、液体(本実施形態では水)中で粒子(本実施形態では砂)の安息角を測定するものである。本発明により測定される安息角は、地表近くの低応力におけるものである。   FIG. 1 is a perspective view showing a repose angle measuring apparatus of the present invention. The repose angle measuring device of the present invention measures the repose angle of particles (sand in this embodiment) in a liquid (water in this embodiment). The angle of repose measured according to the present invention is at low stress near the ground.

本発明の安息角測定装置は、堆積物形成手段1(図1参照)と、引上手段2(図3参照)とを備えている。堆積物形成手段1は、水中に浸漬した状態で粒子が円錐状に堆積してなる堆積物P1(図6(c)及び図7参照)と、この堆積物P1の頂部に設けられる粒子集合物P2(図6(c)(d)及び図7参照)とを形成するものであり、引上手段2は、堆積物形成手段1を上方に引き上げるものである。   The repose angle measuring apparatus of the present invention includes deposit formation means 1 (see FIG. 1) and lifting means 2 (see FIG. 3). The deposit forming means 1 includes a deposit P1 (see FIGS. 6 (c) and 7) in which particles are deposited conically in a state immersed in water, and a particle aggregate provided on the top of the deposit P1. P <b> 2 (see FIGS. 6C, 6 </ b> D, and 7), and the pulling-up unit 2 pulls up the deposit forming unit 1 upward.

図1に示すように、堆積物形成手段1は、枠体3と、平板体8と、上方及び下方に開口する筒体9とを備えている。枠体3は、上下方向に延びる一対の鉛直部4a、4bと、夫々の鉛直部4a、4bの下端部から水平方向に延びる底部5a、5bと、一対の鉛直部4a、4bの上端部を連結する連結部6と、夫々の鉛直部4a、4bの上下方向中間部から水平方向に延びる中間部7a、7bとから構成されている。連結部6には、上方に延びる支持部10が設けられている。   As shown in FIG. 1, the deposit forming means 1 includes a frame 3, a flat plate 8, and a cylinder 9 that opens upward and downward. The frame 3 includes a pair of vertical portions 4a and 4b extending in the vertical direction, bottom portions 5a and 5b extending in the horizontal direction from the lower ends of the respective vertical portions 4a and 4b, and upper ends of the pair of vertical portions 4a and 4b. The connecting part 6 to be connected and the intermediate parts 7a and 7b extending in the horizontal direction from the intermediate part in the vertical direction of each of the vertical parts 4a and 4b. The connecting portion 6 is provided with a support portion 10 extending upward.

平板体8は、一対の底部5a、5bにて支持されている。一対の中間部7a、7bの間には円環状の支持体12が設けられ、この支持体12に筒体9が内嵌されている。筒体9には、固定用クリップ13が外嵌されることにより、固定用クリップ13と支持体12とで筒体9の軸方向(上下方向)の抜けを規制している。筒体9の下端部は、平板体8の上面から離間しており、筒体9の下方開口部は平板体8の上面に対面した状態となっている。固定用クリップ13は、筒体9の軸方向の任意の位置に外嵌することができる。これにより、固定用クリップ13の筒体9の外嵌位置を調節すれば、筒体9の上下方向位置を調節することができて、筒体9の下端部と平板体8の上面との隙間を調節することができる。   The flat plate 8 is supported by a pair of bottom portions 5a and 5b. An annular support 12 is provided between the pair of intermediate portions 7 a and 7 b, and the cylindrical body 9 is fitted into the support 12. The fixing clip 13 is externally fitted to the cylindrical body 9, so that the fixing clip 13 and the support body 12 prevent the cylindrical body 9 from coming off in the axial direction (vertical direction). The lower end portion of the cylindrical body 9 is separated from the upper surface of the flat plate body 8, and the lower opening portion of the cylindrical body 9 faces the upper surface of the flat plate body 8. The fixing clip 13 can be externally fitted at an arbitrary position in the axial direction of the cylindrical body 9. Thereby, if the external fitting position of the cylinder 9 of the fixing clip 13 is adjusted, the vertical position of the cylinder 9 can be adjusted, and the gap between the lower end portion of the cylinder 9 and the upper surface of the flat plate 8 can be adjusted. Can be adjusted.

筒部9は内径25、40、60mmのいずれかの円筒体であり、図2に示すように、筒体9の下端面は、内径側から外径側に向かって拡径するテーパ面11となっている。平板体8は、直径85、100、150mmのいずれかの円板体であり、面の粗度は滑らかな場合でも粗い場合でも値は同じである。   The cylindrical portion 9 is a cylindrical body having an inner diameter of 25, 40, or 60 mm. As shown in FIG. 2, the lower end surface of the cylindrical body 9 has a tapered surface 11 that expands from the inner diameter side toward the outer diameter side. It has become. The flat plate 8 is a circular plate having a diameter of 85, 100, or 150 mm, and the surface roughness is the same regardless of whether the surface is smooth or rough.

図3に示すように、引上手段2は、作業台26と、この作業台26に固定される一対の滑車29a、29bと、堆積物形成手段1の支持部10に連結されるロッド27と、このロッド27に連結されるワイヤー25と、このワイヤー25を巻き取る巻き取り機28とから構成されている。後述する水槽15及び容器16内に堆積物形成手段1をセットして、巻き取り機28にてワイヤー25を巻き取ることにより、堆積物形成手段1を上方に引き上げることができる。   As shown in FIG. 3, the lifting means 2 includes a work table 26, a pair of pulleys 29 a and 29 b fixed to the work table 26, and a rod 27 connected to the support portion 10 of the deposit forming means 1. The wire 25 is connected to the rod 27, and the winder 28 winds up the wire 25. The deposit forming means 1 can be pulled upward by setting the deposit forming means 1 in a water tank 15 and a container 16 to be described later and winding the wire 25 with a winder 28.

前記安息角測定装置を用いて粒子(砂)の安息角を液中(水)で測定する方法を説明する。まず、準備段階として、図4に示すように、水槽15と、容器16と、その上部に堆積物形成手段1をセットする。次に、筒体9の所定の位置に固定用クリップ13を外嵌して筒体9の上下方向位置を調節し、筒体9の下端面と平板体8の上面との間隔を所定の寸法に設定し、容器16の中に下げ入れてセットする。その後、図5、図6に示すように、容器16内に砂Pを充満させた粒子溜り(砂Pが多数集合した土層)P0を形成し、容器上面までに満たす。このとき、図5に示すように、粒子溜りP0の上面は筒体9の下端部よりも上方に位置しており、筒体9の下端部も粒子溜りP0に埋没した状態となっている。   A method of measuring the angle of repose of particles (sand) in the liquid (water) using the angle of repose measuring device will be described. First, as a preparation stage, as shown in FIG. 4, the water tank 15, the container 16, and the deposit forming means 1 are set on the upper part thereof. Next, the fixing clip 13 is externally fitted to a predetermined position of the cylindrical body 9 to adjust the vertical position of the cylindrical body 9, and the interval between the lower end surface of the cylindrical body 9 and the upper surface of the flat plate body 8 is set to a predetermined dimension. And set it down in the container 16. Thereafter, as shown in FIGS. 5 and 6, a particle reservoir (a soil layer in which a large number of sands P are aggregated) P0 filled with sand P is formed in the container 16 and filled up to the upper surface of the container. At this time, as shown in FIG. 5, the upper surface of the particle reservoir P0 is located above the lower end portion of the cylindrical body 9, and the lower end portion of the cylindrical body 9 is also buried in the particle reservoir P0.

次に、図6(a)に示すように、筒体9の上方開口部から、筒体9内部に砂Pを供給して、筒体内に砂Pの粒子集合物P2を形成する。このときに供給する砂Pは、粒子溜りP0を構成する砂Pと同一種類のものとする。さらに、図6(b)に示すように、水槽15に液体Wを注水して、フィルター着き通水口17を介して容器16内にも水が浸入し、砂Pが水中に浸漬した状態とする。この場合、水槽15の水の水面は、筒体9内に充満された砂Pの上面(つまり、粒子集合物P2の上面)とほぼ同じ高さとする。その後、図6(b)の矢印に示すように、引上手段2にて堆積物形成手段1を徐々に上方に引き上げる。この際、堆積物形成手段1を所定距離引き上げた後、所定時間引き上げを止め、再び所定距離引き上げて、所定時間引き上げを止める作業を繰り返し行い、所定時間毎に所定距離の引き上げを行う。   Next, as shown in FIG. 6A, sand P is supplied into the cylinder 9 from the upper opening of the cylinder 9 to form a particle aggregate P2 of the sand P in the cylinder. The sand P supplied at this time is of the same type as the sand P constituting the particle pool P0. Further, as shown in FIG. 6B, the liquid W is poured into the water tank 15, and water enters the container 16 through the filter wearing water port 17, and the sand P is immersed in the water. . In this case, the water level of the water tank 15 is set to be substantially the same height as the upper surface of the sand P filled in the cylindrical body 9 (that is, the upper surface of the particle aggregate P2). Thereafter, as shown by the arrow in FIG. 6B, the deposit forming means 1 is gradually pulled upward by the pulling means 2. At this time, after raising the deposit forming means 1 by a predetermined distance, the lifting operation is stopped for a predetermined time, the predetermined distance is raised again, and the operation for stopping the lifting for a predetermined time is repeated, and the predetermined distance is raised every predetermined time.

平板体8が粒子溜りP0中を上昇することに伴って、平板体8と筒体9との間において、筒体9の下端部と平板体8の外周部とで斜面を形成するように粒子溜りP0の砂Pが持ち上げられる。このとき、筒体9内の砂Pは、そのままの状態を維持するか、僅かに下方に排出される。図6(c)に示すように平板体8が容器16内の粒子溜りPから露出すると、平板体8と筒体9との間に、砂Pが円錐状に堆積してなる堆積物P1が形成される。   As the flat plate 8 rises in the particle pool P 0, particles are formed between the flat plate 8 and the cylindrical body 9 so that a slope is formed between the lower end of the cylindrical body 9 and the outer peripheral portion of the flat plate 8. The sand P in the pool P0 is lifted. At this time, the sand P in the cylinder 9 is maintained as it is or is slightly discharged downward. When the flat plate 8 is exposed from the particle reservoir P in the container 16 as shown in FIG. 6C, a deposit P1 formed by sand P concentrating between the flat plate 8 and the cylinder 9 is formed. It is formed.

堆積物形成手段1の引き上げ時間の間隔は、常に一定の間隔としてもよく、段階ごとに間隔を相違させてもよい。例えば、引き上げの初期段階では引き上げ間隔を短く(つまり、引き上げの頻度を多く)し、引き上げ完了の直前で引き上げ間隔を長く(つまり、引き上げの頻度を少なく)してもよい。このようにすれば、堆積物形成手段1を粒子溜りP0から引き上げる時間を短くすることができ、試験時間を短縮することができる。   The interval of the lifting time of the deposit forming means 1 may be always a constant interval or may be different for each stage. For example, the pulling interval may be shortened (that is, the pulling frequency is increased) in the initial stage of pulling, and the pulling interval may be increased (that is, the pulling frequency is decreased) immediately before the pulling is completed. In this way, the time for lifting the deposit forming means 1 from the particle reservoir P0 can be shortened, and the test time can be shortened.

この堆積物P1の頂部は、筒体9の下端部が若干貫入し、筒体内部の柱状の粒子集合物P2に連設された状態となる。このようにすると、堆積物P1の頂部における砂Pの自由崩落が生じることがなく、堆積物P1の頂部から砂Pが雪崩のように崩壊する大崩落を防止することができて、堆積物P1の安息角が小さくなることを防止できる。   The top of the deposit P1 is in a state where the lower end of the cylinder 9 is slightly penetrated and connected to the columnar particle aggregate P2 inside the cylinder. In this way, the free fall of the sand P at the top of the sediment P1 does not occur, and the large collapse where the sand P collapses like an avalanche from the top of the sediment P1 can be prevented, and the sediment P1. The angle of repose can be prevented from becoming smaller.

図6(c)(d)に示す状態で、水中での堆積物P1の安息角φ、すなわち、斜面勾配を目視および画像撮影により測定する。堆積物P1の安息角φは、筒体9を引き上げることにより形成され、かつ、平板体8を引き上げることでも形成されるものとなる。すなわち、図6(d)及び図7に示すように、筒体9を引き上げることにより、堆積物P1の傾斜面(二点鎖線O1で示す)が得られる。また、平板体8を引き上げることにより、堆積物P1の傾斜面(実線O2で示す)が得られる。このようにして、本発明により形成された堆積物P1の安息角φは、筒体9と平板体8とで二重に形成され、安息角φを安定なものとすることができる。これにより、砂Pの見かけの粘着力を微小にすることができ、しかも安息角φが安定したものとなっており、低応力での正確な安息角φを測定することができる。   In the state shown in FIGS. 6C and 6D, the angle of repose φ of the sediment P1 in water, that is, the slope gradient, is measured by visual observation and image capturing. The repose angle φ of the deposit P <b> 1 is formed by pulling up the cylindrical body 9 and is also formed by pulling up the flat plate body 8. That is, as shown in FIGS. 6D and 7, the inclined surface of the deposit P1 (indicated by a two-dot chain line O1) is obtained by pulling up the cylindrical body 9. Further, by pulling up the flat plate 8, an inclined surface (shown by a solid line O2) of the deposit P1 is obtained. In this way, the repose angle φ of the deposit P1 formed according to the present invention is doubled by the cylindrical body 9 and the flat plate body 8, and the repose angle φ can be stabilized. Thereby, the apparent adhesive force of the sand P can be made minute, and the angle of repose φ is stable, so that the angle of repose φ can be measured accurately at low stress.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、粒子は砂に限られず、粒子の形状、大きさ、表面の凹凸の有無、等は種々のものを採用することができる。液体も水に限られず、粒子が液面に浮上することなく底面に沈降するものであれば種々のものを採用することができる。堆積物形成手段1の材質や、サイズ(例えば、平板体8の径や筒体9の内径及び軸方向長さ)は種々のものとできる。また、筒体9に充満する粒子の量、すなわち粒子集合物P2の大きさは種々のものとできる。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the particles are not limited to sand, but the shape, size, and surface of the particles. The presence or absence of unevenness can be various. The liquid is not limited to water, and various liquids can be used as long as the particles settle on the bottom surface without floating on the liquid surface. The material and size of the deposit forming means 1 (for example, the diameter of the flat plate 8 and the inner diameter and the axial length of the cylinder 9) can be various. Further, the amount of particles filling the cylinder 9, that is, the size of the particle aggregate P2 can be various.

本発明に係る安息角測定装置及び安息角測定方法の有効性を検証するための実験について述べる。本実験は、種々の条件にて砂の堆積物の安息角を測定した。いずれの測定も、表1に示すような試料A、試料B、試料C、試料Dの4種類の砂を用いて測定を行った。低応力における各試料のφの理想値は、試料A、試料Bのφは33度以上、試料Cのφは38度以上、試料Dのφは40度以上である。   An experiment for verifying the effectiveness of the repose angle measuring apparatus and repose angle measuring method according to the present invention will be described. In this experiment, the angle of repose of sand deposits was measured under various conditions. All measurements were performed using four types of sand, Sample A, Sample B, Sample C, and Sample D as shown in Table 1. The ideal value of φ of each sample at low stress is φ of sample A and sample B is 33 degrees or more, φ of sample C is 38 degrees or more, and φ of sample D is 40 degrees or more.

内径64mmの上方及び下方開口状の円筒体内に砂を充満させて、円筒体の下端面を水槽の底面に当接させる。そして、徐々に円筒体を引き上げることにより、円筒体の下方開口部から砂が排出されて、水槽の底面に堆積してなる円錐状の堆積物を形成した。このとき、(1)水槽に水を注入することなく円筒体内の全ての砂を排出した場合と、(2)水槽に水を注入して、円筒体内の全ての砂を排出した場合と、(3)水槽に水を注入し、円筒体の下端部に粒子を残した状態で円筒体の位置を留めた場合とで、夫々堆積物の安息角を測定した。(1)(2)(3)は比較例である。(1)(2)(3)において、安息角を測定した結果を表2に示す。

Figure 2013002836
Figure 2013002836
The upper and lower cylindrical bodies having an inner diameter of 64 mm are filled with sand, and the lower end surface of the cylindrical body is brought into contact with the bottom surface of the water tank. Then, by gradually pulling up the cylindrical body, sand was discharged from the lower opening of the cylindrical body to form a conical deposit formed by depositing on the bottom surface of the water tank. At this time, (1) when all the sand in the cylindrical body is discharged without injecting water into the water tank, (2) when all the sand in the cylindrical body is discharged by injecting water into the water tank, ( 3) The angle of repose of the deposit was measured when water was poured into the water tank and the position of the cylindrical body was retained with the particles remaining at the lower end of the cylindrical body. (1), (2) and (3) are comparative examples. Table 2 shows the results of measuring the angle of repose in (1), (2) and (3).
Figure 2013002836
Figure 2013002836

表2より、(1)と(2)では、試料Cのφは38度を大きく下回っており、(2)では試料Dのφは40度を大きく下回っている。(3)では、試料Cのφは38度には満たないものの、38度に近づいており、試料Dのφは40度に近づいていることがわかる。   From Table 2, in (1) and (2), the φ of sample C is greatly below 38 degrees, and in (2), the φ of sample D is greatly below 40 degrees. In (3), although φ of sample C is less than 38 degrees, it is close to 38 degrees, and φ of sample D is close to 40 degrees.

次に、容器内に砂を充満させた粒子溜り(砂が多数集合した土層)を形成し、直径110mmの円板体を粒子溜りに埋没させて、徐々に引き上げることにより、円板体上に粒子が円錐状に堆積してなる堆積物を形成した。このとき、(1)水槽に水を注入しない場合と、(2)水槽に水を注入した場合とで、夫々堆積物の安息角を測定した。(1)(2)ともに比較例である。(1)(2)において安息角を測定した結果を表3に示す。

Figure 2013002836
Next, a particle reservoir filled with sand (a soil layer in which a large number of sands are gathered) is formed in the container, and a disk body having a diameter of 110 mm is buried in the particle reservoir and gradually lifted up. A sediment was formed in which particles were deposited in a conical shape. At this time, the angle of repose of the deposit was measured in each of (1) the case where water was not injected into the water tank and (2) the case where water was injected into the water tank. Both (1) and (2) are comparative examples. The results of measuring the angle of repose in (1) and (2) are shown in Table 3.
Figure 2013002836

表3より、(1)では、試料B及び試料Dのφは45度近くなっており、φが大きすぎることがわかる。また、(2)では試料Dのφは40度を大きく下回っていることがわかる。   From Table 3, in (1), φ of sample B and sample D is close to 45 degrees, and it can be seen that φ is too large. Also, in (2), it can be seen that the φ of sample D is greatly below 40 degrees.

次に、本発明の安息角測定装置の堆積物形成手段を用いた実験を行った。すなわち、容器内に砂を充満させた粒子溜りを形成し、この容器を、さらに水が注入されていない水槽内に入れる。そして、堆積物形成手段の平板体を容器の粒子溜りに埋没させるとともに、筒体の下端部も粒子溜りに埋没した状態とする。その後、水槽に水を注入し、堆積物形成手段を上方に引き上げる。この場合、(1)筒体に砂を供給しない場合と、(2)筒体に砂を供給した場合とで安息角を測定した。(1)(2)は実施例である。(1)(2)において安息角を測定した結果を表4に示す。

Figure 2013002836
Next, an experiment using the deposit forming means of the repose angle measuring apparatus of the present invention was conducted. That is, a particle reservoir filled with sand is formed in a container, and this container is further placed in a water tank into which water is not injected. The flat plate body of the deposit forming means is buried in the particle reservoir of the container, and the lower end portion of the cylindrical body is also buried in the particle reservoir. Thereafter, water is poured into the water tank, and the deposit forming means is pulled upward. In this case, the angle of repose was measured when (1) sand was not supplied to the cylinder and (2) when sand was supplied to the cylinder. (1) (2) is an example. The results of measuring the angle of repose in (1) and (2) are shown in Table 4.
Figure 2013002836

表4より、(1)では、試料Cのφは38度に近づいていることがわかる。(2)では試料Aのφの平均は37.54度、試料Bのφの平均は40.07度、試料Cのφの平均は39.09度、試料Dのφの平均は42.29度となっている。三軸圧縮試験結果では、試料Aのφの平均は33度、試料Bのφの平均は33度、試料Cのφの平均は38度、試料Dのφの平均は40度であり、本発明による安息角測定方法及び安息角測定装置は、せん断抵抗角の応力依存性を十分に捉えた測定であることがわかった。   From Table 4, it can be seen that in (1), the φ of Sample C approaches 38 degrees. In (2), the average φ of sample A is 37.54 degrees, the average φ of sample B is 40.07 degrees, the average φ of sample C is 39.09 degrees, and the average φ of sample D is 42.29. It is a degree. In the triaxial compression test results, the average φ of sample A is 33 degrees, the average of φ of sample B is 33 degrees, the average of φ of sample C is 38 degrees, and the average of φ of sample D is 40 degrees. It has been found that the repose angle measuring method and repose angle measuring device according to the invention are measurements that sufficiently capture the stress dependence of the shear resistance angle.

1 堆積物形成手段
2 引上手段
8 平板体
9 筒体
11 テーパ面
P 砂
P0 粒子溜り
P1 堆積物
P2 粒子集合物
W 水
DESCRIPTION OF SYMBOLS 1 Deposit formation means 2 Pull-up means 8 Flat plate 9 Tube 11 Tapered surface P Sand P0 Particle accumulation P1 Deposit P2 Particle aggregate W Water

Claims (4)

液体中で、粒子が円錐状に堆積してなる堆積物の安息角を測定する安息角測定装置であって、
堆積物形成手段と、この堆積物形成手段を上方へ引き上げる引上手段とを備え、
前記堆積物形成手段は、粒子が集合した粒子溜りに埋没する平板体と、この平板体の上方に位置する下方開口状の筒体とを有し、
液体中で、前記平板体が粒子溜りに埋没した状態で、前記引上手段にて前記堆積体形成手段を引き上げて、前記平板体と前記筒体との間に、筒体内部の柱状の粒子集合物に連接される堆積物を形成することを特徴とする安息角測定装置。
An angle of repose measuring device for measuring the angle of repose of a deposit formed by concentrating particles in a liquid,
A deposit forming means, and a pulling means for pulling up the deposit forming means upward,
The deposit forming means has a flat body buried in a particle pool in which particles are aggregated, and a cylindrical body having a lower opening located above the flat body,
In a liquid, with the flat plate body buried in a particle reservoir, the deposit forming means is pulled up by the pulling means, and the columnar particles inside the cylindrical body are between the flat plate body and the cylindrical body. A repose angle measuring device characterized by forming a deposit connected to an aggregate.
前記筒体は、上方に開口する上方開口部を有し、前記平板体が粒子溜りに埋没した状態で、前記上方開口部から前記筒体内部に粒子を供給することを特徴とする請求項1の安息角測定装置。   2. The cylinder according to claim 1, wherein the cylinder has an upper opening that opens upward, and the particles are supplied into the cylinder from the upper opening in a state where the flat plate is buried in a particle reservoir. Repose angle measuring device. 前記筒体の下端面は、内径側から外径側に向かって拡径するテーパ面としたことを特徴とする請求項1又は請求項2の安息角測定装置。   The repose angle measuring device according to claim 1 or 2, wherein the lower end surface of the cylindrical body is a tapered surface whose diameter increases from the inner diameter side toward the outer diameter side. 液体中で、粒子が円錐状に堆積してなる堆積物の安息角を測定する安息角測定方法であって、
下方開口状の筒体と平板体との間隔を一定に維持した状態で、前記平板体を粒子溜りに埋没させ、
前記筒体内の少なくとも下端部に粒子を充満させて筒体内部に柱状の粒子集合物を形成した後、粒子を液体中に浸漬させ、
前記平板体及び筒体を引き上げて、前記平板体と前記筒体との間に、前記粒子集合物に連接される堆積物を形成し、この堆積物の安息角を測定することを特徴とする安息角測定方法。
An angle of repose measurement method for measuring an angle of repose of a deposit formed by concentrating particles in a liquid,
In a state where the interval between the lower opening-shaped cylinder and the flat plate is kept constant, the flat plate is buried in the particle reservoir,
After at least the lower end of the cylinder is filled with particles to form columnar particle aggregates inside the cylinder, the particles are immersed in a liquid,
The flat plate and the cylinder are pulled up, a deposit connected to the particle aggregate is formed between the flat plate and the cylinder, and an angle of repose of the deposit is measured. Repose angle measurement method.
JP2011131215A 2011-06-13 2011-06-13 Repose angle measuring device and repose angle measuring method Withdrawn JP2013002836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131215A JP2013002836A (en) 2011-06-13 2011-06-13 Repose angle measuring device and repose angle measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131215A JP2013002836A (en) 2011-06-13 2011-06-13 Repose angle measuring device and repose angle measuring method

Publications (1)

Publication Number Publication Date
JP2013002836A true JP2013002836A (en) 2013-01-07

Family

ID=47671578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131215A Withdrawn JP2013002836A (en) 2011-06-13 2011-06-13 Repose angle measuring device and repose angle measuring method

Country Status (1)

Country Link
JP (1) JP2013002836A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106452A1 (en) 2003-05-29 2004-12-09 Equistar Chemicals, Lp Improved adhesives for fluoropolymer films and structures containing same
CN104315962A (en) * 2014-11-17 2015-01-28 重庆交通大学 Silt underwater repose angle measurement method
CN109781585A (en) * 2019-03-22 2019-05-21 安徽省引江济淮集团有限公司 A kind of no-Co-alloy steel Repose angle gauge
CN113830585A (en) * 2021-10-15 2021-12-24 河南科技大学 Material repose angle forming method and material repose angle measuring instrument
CN116295124A (en) * 2023-03-17 2023-06-23 中国有色金属工业昆明勘察设计研究院有限公司 Karst area side slope soil sample natural slope angle measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106452A1 (en) 2003-05-29 2004-12-09 Equistar Chemicals, Lp Improved adhesives for fluoropolymer films and structures containing same
CN104315962A (en) * 2014-11-17 2015-01-28 重庆交通大学 Silt underwater repose angle measurement method
CN109781585A (en) * 2019-03-22 2019-05-21 安徽省引江济淮集团有限公司 A kind of no-Co-alloy steel Repose angle gauge
CN109781585B (en) * 2019-03-22 2023-11-24 安徽省引江济淮集团有限公司 Non-cohesive soil repose angle tester
CN113830585A (en) * 2021-10-15 2021-12-24 河南科技大学 Material repose angle forming method and material repose angle measuring instrument
CN116295124A (en) * 2023-03-17 2023-06-23 中国有色金属工业昆明勘察设计研究院有限公司 Karst area side slope soil sample natural slope angle measuring device

Similar Documents

Publication Publication Date Title
JP2013002836A (en) Repose angle measuring device and repose angle measuring method
CN104458535B (en) A kind of soil body penetration characteristic detecting apparatus for centrifugal model test
CN204855317U (en) Device is jointly surveyd with lixiviation hog factor to coarse grain soil sample osmotic coefficient
CN104931360B (en) Large geotechnical staight scissors test device under a kind of dynamic loading
JP5014389B2 (en) Soil tensile strength measuring device and soil tensile strength measuring method
CN105332511B (en) A kind of huge steel core concrete column filling core, which pours, smashes device and method
KR100969288B1 (en) Apparatus protecting spreading particulate clay from marine or submarine and method constructing sand or stone column with it
JP2014145157A (en) Vibration compaction method of sand layer and management method of the same
CN107604900B (en) Pile foundation reinforcement cage installation position control and concrete pouring construction platform
CN105424485B (en) Concrete filled steel tube bow member perfusion pilot system and test method
Liu et al. Experimental study on the pull-out performance of strip plate anchors in sand
CN102704478A (en) Building anchor rod construction technology
CN112064624B (en) Pile foundation for preventing and treating earthquake liquefaction landslide of engineering soil slope and construction method thereof
CN203977418U (en) Prevent cast-in-place pile concrete loss device
CN210982159U (en) Continuous negative pressure water replenishing metering device
JP2007171136A (en) Method and device for deposit depth measurement in water bottom sediment
RU128210U1 (en) SCREW PILES FOR LOOSE SOILS
CN206002412U (en) For the densitometric counterweight of liquid electronic and liquid electronic densimeter
CN104110031B (en) High-bearing capacity foundation pile and its processing method with basis
JP2010059619A (en) Method for sampling pile hole infill and sampling device
JP7287799B2 (en) Soil improvement method and improved body
Benamar et al. Experimental study of internal erosion of fine grained soils
CN216418429U (en) Deep cone thickener mud layer height measuring device
Rashid Mahmood et al. Plug length developed in pipe pile embedded within partially saturated cohesionless soils (part 1)
JP7245145B2 (en) Seafloor crustal deformation observation equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902