JP2013001365A - Wheel supporting hub unit and method for manufacturing the same - Google Patents

Wheel supporting hub unit and method for manufacturing the same Download PDF

Info

Publication number
JP2013001365A
JP2013001365A JP2011138033A JP2011138033A JP2013001365A JP 2013001365 A JP2013001365 A JP 2013001365A JP 2011138033 A JP2011138033 A JP 2011138033A JP 2011138033 A JP2011138033 A JP 2011138033A JP 2013001365 A JP2013001365 A JP 2013001365A
Authority
JP
Japan
Prior art keywords
hub
side flange
axial direction
flange
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011138033A
Other languages
Japanese (ja)
Inventor
Toshiaki Maeda
俊秋 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011138033A priority Critical patent/JP2013001365A/en
Publication of JP2013001365A publication Critical patent/JP2013001365A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a structure and a method for manufacturing the same hardly causing deformation in a rotating side flange due to heat treatment when forming a quench-hardened layer from an outer peripheral surface of an axial middle part of a hub body composing a hub to a base end of an axial inner side face of the rotating side flange of the hub body.SOLUTION: A boundary 21a with other portions regarding a radial direction of a quench-hardened layer 17a existing in a rotating side flange 10a is arranged in a step part 20a of the rotating side flange 10a. Also, a boundary between an axial outer end of the quench-hardened layer 17a existing in the rotating side flange 10a and other portions is arranged in an axial inner side than a position X regarding an axial direction of an axial inner side face of a thin part 18a of the rotating side flange 10a.

Description

この発明は、懸架装置に対し車輪を回転自在に支持する為の車輪支持用ハブユニットの改良に関する。具体的には、車輪支持用ハブユニットを構成するハブ本体の軸方向中間部外周面に高周波焼入れを施す際に、このハブ本体の軸方向外端寄り部分の外周面に設けられた回転側フランジに熱処理変形が生じる事を抑制できる構造、及びその製造方法を実現するものである。   The present invention relates to an improvement of a wheel support hub unit for rotatably supporting a wheel with respect to a suspension device. More specifically, when induction hardening is performed on the outer circumferential surface of the intermediate portion in the axial direction of the hub body constituting the hub unit for supporting the wheel, the rotation side flange provided on the outer circumferential surface of the hub body closer to the outer end in the axial direction. The structure which can suppress that heat processing deformation | transformation arises in this, and its manufacturing method are implement | achieved.

懸架装置に対して車輪を回転自在に支持する為に、例えば図2に示す様な、車輪支持用ハブユニット1が使用されている。この車輪支持用ハブユニット1は、外輪2の内径側にハブ3を、複数個の転動体4、4を介して回転自在に支持している。   In order to rotatably support the wheel with respect to the suspension device, for example, a wheel supporting hub unit 1 as shown in FIG. 2 is used. The wheel support hub unit 1 supports a hub 3 on the inner diameter side of an outer ring 2 through a plurality of rolling elements 4 and 4 so as to be rotatable.

このうちの外輪2は、内周面に複列の外輪軌道5、5を、外周面に、この外輪2を前記懸架装置を構成するナックルに結合固定する為の、外向フランジ状の取付部6を、それぞれ設けている。   Of these, the outer ring 2 has a double-row outer ring raceway 5, 5 on the inner peripheral surface, and an outer flange-shaped mounting portion 6 for fixing the outer ring 2 to the knuckle constituting the suspension device on the outer peripheral surface. Are provided.

又、前記ハブ3は、ハブ本体7と内輪8とを組み合わせて成り、外周面に複列の内輪軌道9a、9bを設けている。
このうちのハブ本体7は、外周面の軸方向外端寄り(軸方向に関して外とは、懸架装置への組み付け状態で幅方向外側を言い、図1、2の左側)部分に、車輪を支持固定する為の回転側フランジ10を、同じく軸方向内端寄り(軸方向に関して内とは、懸架装置への組み付け状態で幅方向中央側を言い、図1、2の右側)部分に小径段部11を、それぞれ設けている。又、前記回転側フランジ10は、この回転側フランジ10の径方向内端部を、軸方向に関する厚さ寸法(肉厚)が大きい厚肉部18としている。一方、前記回転側フランジ10の中間部乃至外端部を、軸方向に関する厚さ寸法が、この厚肉部18と比べて小さい薄肉部19としている。そして、この厚肉部18とこの薄肉部19とを、前記回転側フランジ10の軸方向内側面の内径寄り部分に全周に亙り設けた、段差部20により連続させている。この様にして回転側フランジ10を含む、前記ハブ本体7の重量増大を抑えつつ、この回転側フランジ10の基端部(径方向内端部)の強度及び剛性を確保している。
The hub 3 is formed by combining a hub body 7 and an inner ring 8, and is provided with double-row inner ring raceways 9a and 9b on the outer peripheral surface.
Of these, the hub body 7 supports the wheel on the outer peripheral surface near the outer end in the axial direction (outside in the axial direction means the outer side in the width direction in the assembled state to the suspension device, left side in FIGS. 1 and 2). The rotation side flange 10 for fixing is also a small-diameter stepped portion near the inner end in the axial direction (inside with respect to the axial direction, the inner side is the center in the width direction in the assembled state to the suspension device, and the right side in FIGS. 11 are provided. Moreover, the said rotation side flange 10 makes the radial direction inner end part of this rotation side flange 10 the thick part 18 with a large thickness dimension (thickness) regarding an axial direction. On the other hand, an intermediate portion or an outer end portion of the rotation side flange 10 is a thin portion 19 having a thickness dimension in the axial direction smaller than that of the thick portion 18. The thick wall portion 18 and the thin wall portion 19 are made continuous by a stepped portion 20 that is provided over the entire circumference at a portion closer to the inner diameter of the inner side surface in the axial direction of the rotating flange 10. In this way, the strength and rigidity of the base end portion (radial inner end portion) of the rotation side flange 10 are secured while suppressing an increase in the weight of the hub body 7 including the rotation side flange 10.

又、前記内輪8は、この小径段部11に外嵌した状態で、前記ハブ本体7の軸方向内端部を径方向外方に塑性変形させて成るかしめ部12により、このハブ本体7に対し結合固定している。この様な車輪支持用ハブユニット1の使用時には、前記取付部6を懸架装置に結合固定すると共に、前記回転側フランジ10に車輪を支持固定する事により、この懸架装置に対してこの車輪を回転自在に支持する。   In addition, the inner ring 8 is attached to the hub body 7 by a caulking portion 12 formed by plastically deforming the inner end portion in the axial direction of the hub body 7 radially outward in a state of being externally fitted to the small diameter step portion 11. It is fixed to the connection. When such a wheel support hub unit 1 is used, the mounting portion 6 is coupled and fixed to a suspension device, and the wheel is supported and fixed to the rotation side flange 10 so that the wheel rotates relative to the suspension device. Support freely.

上述の様な車輪支持用ハブユニット1を構成するハブ本体7を造るのに、材料の歩留向上や機械加工量の削減によるコスト低減等を目的として、冷間鍛造により造る事が考えられている。この様なハブ本体7を冷間鍛造により造る為の方法として、例えば特許文献1に記載された方法が知られている。図3は、この特許文献1に記載された、冷間鍛造により前記ハブ本体7を造る方法の1例を示している。この冷間鍛造による製造方法では、先ず、(A)に示した円柱状の素材13を用意する。この素材13には、予め軟化焼鈍処理を施して、常温でも塑性変形し易くしておく。この様な素材13に前方押し出し加工を施して、(B)に示す様な、段付の第一中間素材14を得る。そして、この第一中間素材14を、フローティングダイを使用した冷間鍛造加工(押し出し加工)により、(C)に示す様な第二中間素材15とする。次いでこの第二中間素材15に、軸方向外側のアンギュラ型の内輪軌道9a(図2参照)を設ける為の段差部等を形成する段付加工を施して、(D)に示す様な第三中間素材16とする。更に、この第三中間素材16に側方押し出し加工及び前記内輪軌道9aを形成する加工を施して、(E)に示す様なハブ本体7とする。   In order to manufacture the hub body 7 constituting the wheel support hub unit 1 as described above, it is considered that the hub body 7 is manufactured by cold forging for the purpose of improving the material yield and reducing the cost of machining. Yes. As a method for manufacturing such a hub main body 7 by cold forging, for example, a method described in Patent Document 1 is known. FIG. 3 shows an example of a method for manufacturing the hub body 7 described in Patent Document 1 by cold forging. In this manufacturing method by cold forging, first, the columnar material 13 shown in FIG. The material 13 is preliminarily softened and annealed to facilitate plastic deformation even at room temperature. Such a material 13 is subjected to a forward extrusion process to obtain a stepped first intermediate material 14 as shown in FIG. And this 1st intermediate material 14 is made into the 2nd intermediate material 15 as shown to (C) by the cold forging process (extrusion process) using a floating die. Next, the second intermediate material 15 is subjected to a stepping process for forming a stepped portion or the like for providing an axially-shaped angular inner ring raceway 9a (see FIG. 2), and a third step as shown in FIG. The intermediate material 16 is used. Further, the third intermediate material 16 is subjected to a side extrusion process and a process for forming the inner ring raceway 9a to obtain a hub body 7 as shown in FIG.

この様にして造ったハブ本体7の必要箇所には、前記内輪8を結合固定するのに先立って、図2に斜格子で示す様に、焼入れ硬化層17を形成する。即ち、前記ハブ本体7の外周面のうち、前記小径段部11から前記内輪軌道9aを含め、前記回転側フランジ10の軸方向内側面内径寄り端部迄の部分に、前記焼入れ硬化層17を形成する。この焼入れ硬化層17のうち、前記小径段部11部分は、この小径段部11に外嵌固定した内輪8から加わる衝撃荷重に拘らず、この小径段部11が塑性変形する事を防止する為に設ける。又、前記内輪軌道9a部分は、各転動体4、4から加わる荷重に拘らず、この内輪軌道9aの転がり疲れ寿命を確保する為に設ける。又、前記回転側フランジ10の軸方向内側面内径寄り端部には、車輪からこの回転側フランジ10に加わるモーメントに拘らず、この回転側フランジ10の基端部が塑性変形するのを防止する為に設ける。更に、前記小径段部11と前記内輪軌道9aとの間部分は、前記モーメント等により前記ハブ本体7の軸方向中間部が塑性変形するのを防止する為に設ける。   A hardened and hardened layer 17 is formed at a necessary portion of the hub body 7 thus manufactured, as shown by a diagonal lattice in FIG. That is, the hardened hardened layer 17 is disposed on the outer peripheral surface of the hub body 7 from the small-diameter step portion 11 to the inner ring raceway 9a to the end portion closer to the inner diameter of the inner side surface of the rotation side flange 10. Form. Of the hardened hardened layer 17, the small diameter step portion 11 portion prevents the small diameter step portion 11 from being plastically deformed regardless of the impact load applied from the inner ring 8 fitted and fixed to the small diameter step portion 11. Provided. The inner ring raceway 9a is provided to ensure the rolling fatigue life of the inner ring raceway 9a regardless of the load applied from the rolling elements 4 and 4. Further, the proximal end portion of the rotation side flange 10 is prevented from being plastically deformed at the end portion on the inner side surface in the axial direction of the rotation side flange 10 regardless of the moment applied to the rotation side flange 10 from the wheel. Provided for this purpose. Further, a portion between the small diameter step portion 11 and the inner ring raceway 9a is provided in order to prevent the intermediate portion in the axial direction of the hub body 7 from being plastically deformed by the moment or the like.

ところで、前記焼入れ硬化層17のうちの、前記回転フランジ部10に形成された部分と、他の部分(前記冷間鍛造の側方押し出し加工により加工硬化した部分)との境界部分には、前記焼入れ硬化層17を形成する際の熱により、前記側方押し出し加工により生じた残留応力が開放された部分、並びに、焼鈍により硬度低下が生じた層が存在する事が知られている。この様に残留応力が開放された部分(前記焼入れ硬化層17を形成された部分と、他の部分との径方向に関する境界21)が、前記図2に示す様に前記回転フランジ10の基端部に存在すると、この回転フランジ10に熱処理変形が生じる可能性がある。
又、この回転側フランジ10の基端部は、使用時にこの回転側フランジ10に加わるモーメントを支承する部分であり、高い強度及び剛性を確保する事が要求される。従って、前述した様に硬度低下が生じた部分(前記焼入れ硬化層を形成された部分と、他の部分との径方向に関する境界21)が、前記図2に示す様に前記回転フランジ10の基端部に存在すると、この回転フランジ10の強度及び剛性が不足する可能性がある。
By the way, in the quenching hardened layer 17, the boundary portion between the portion formed in the rotating flange portion 10 and the other portion (the portion hardened by the side extrusion of the cold forging) It is known that there are portions where the residual stress generated by the side extrusion process is released by heat at the time of forming the hardened hardened layer 17, and a layer where the hardness is reduced by annealing. In this way, the portion where the residual stress is released (the boundary 21 in the radial direction between the portion where the hardened hardening layer 17 is formed and the other portion) is the base end of the rotating flange 10 as shown in FIG. If it exists in the part, this rotating flange 10 may be subjected to heat treatment deformation.
Further, the base end portion of the rotation-side flange 10 is a portion that supports a moment applied to the rotation-side flange 10 during use, and it is required to ensure high strength and rigidity. Therefore, as described above, the portion where the hardness is reduced (the boundary 21 in the radial direction between the portion where the hardened hardened layer is formed and the other portion) is the base of the rotating flange 10 as shown in FIG. If present at the end, the strength and rigidity of the rotating flange 10 may be insufficient.

又、高周波焼入れ等の熱硬化処理により前記焼入れ硬化層17が形成された部分では、所謂マルテンサイト変態による体積膨張を生じる事が知られている。この為、前記焼入れ硬化層17が、前記図2に示す様に、前記回転フランジ10の薄肉部19の軸方向内側面の軸方向に関する位置Xよりも外側に存在する(この回転フランジ10の薄肉部19と径方向に関して重畳する位置に存在する)と、前記体積膨張の影響が、この回転側フランジ10の変形として現れ易くなる。尚、前記焼入れ硬化層17を、前記回転側フランジ10の軸方向内側面内径寄り端部まで形成せずに、前記ハブ本体7の軸方向中間部外周面のみに形成すれば上述した問題は殆ど生じない。但し、この場合には、前記回転側フランジ10の基端部の曲げ剛性の確保が難しくなる。又、耐摩耗性確保の為に、前記外輪2の内周面の軸方向外端に設けたシールリング22を構成するシール部材のシールリップを、前記ハブ本体7の前記焼入れ硬化層17を形成した軸方向中間部外周面側にのみ摺接する構造とする必要がある。この様な構造では、異物が前記外輪2の内径側に存在する空間の、比較的内側部分にまで入り込む。この為、前記図2に示したシールリング22の様に、各シールリップが、前記回転側フランジ10の軸方向内側面内径寄り端部、及び前記ハブ本体7の軸方向中間部外周面と摺接する構造と比べて、シール性能が低下してしまう。   In addition, it is known that volume expansion due to so-called martensitic transformation occurs in a portion where the quench hardened layer 17 is formed by a heat curing process such as induction hardening. Therefore, as shown in FIG. 2, the hardened hardened layer 17 exists outside the position X in the axial direction of the inner side surface in the axial direction of the thin wall portion 19 of the rotating flange 10 (the thin wall of the rotating flange 10 is thinned). And the influence of the volume expansion is likely to appear as deformation of the rotation side flange 10. If the hardened hardened layer 17 is formed only on the outer peripheral surface of the hub body 7 in the axial direction without forming the end near the inner diameter of the inner surface in the axial direction of the rotation side flange 10, the above-mentioned problems are almost eliminated. Does not occur. However, in this case, it is difficult to ensure the bending rigidity of the base end portion of the rotation side flange 10. Further, in order to ensure wear resistance, the hardened hardened layer 17 of the hub body 7 is formed on the seal lip of the seal member constituting the seal ring 22 provided at the axially outer end of the inner peripheral surface of the outer ring 2. It is necessary to have a structure that is in sliding contact with only the outer peripheral surface side of the axially intermediate portion. In such a structure, the foreign matter enters the relatively inner portion of the space existing on the inner diameter side of the outer ring 2. Therefore, like the seal ring 22 shown in FIG. 2, each seal lip slides with the axially inner side inner surface end portion of the rotating side flange 10 and the axially intermediate portion outer peripheral surface of the hub body 7. Compared with the structure in contact, the sealing performance is reduced.

特開2007−152413号公報JP 2007-152413 A

本発明は、上述の様な事情に鑑みて、ハブを構成するハブ本体の軸方向中間部の外周面からこのハブ本体の回転側フランジの軸方向内側面内径寄り端部に掛けて焼入れ硬化層を形成する際、この回転側フランジに熱処理による変形が生じにくい構造、及びその製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides a hardened hardened layer that is hung from the outer peripheral surface of the axially intermediate portion of the hub body constituting the hub to the end portion closer to the inner diameter of the inner side surface of the rotating flange of the hub body. The invention was invented to realize a structure in which the rotation-side flange is not easily deformed by heat treatment and a manufacturing method thereof.

本発明の車輪支持用ハブユニットは、外輪と、ハブと、複数個の転動体とを備える。
このうちの、外輪は、内周面に複列の外輪軌道を有し、使用時にも回転しない。
又、前記ハブは、外周面に複列の内輪軌道を有し、使用時に車輪と共に回転するもので、ハブ本体と内輪とを結合固定して成る。このうちのハブ本体は、軸方向外端寄り部分の外周面に前記車輪を支持固定する為の回転側フランジを、軸方向中間部外周面に軸方向外側の内輪軌道を、それぞれ直接形成している。又、この回転側フランジは、この回転側フランジの軸方向内側面の径方向中間部に全周に亙り、内径側の厚肉部と外径側の薄肉部とを連続させる、段差部が形成されている。
又、前記内輪は、外周面に軸方向内側の内輪軌道を形成したもので、前記ハブ本体の軸方向内端寄り部分に形成された小径段部に外嵌固定されている。
更に、前記ハブ本体の外周面のうちで、少なくとも前記回転側フランジ寄りの内輪軌道からこの回転側フランジの内径寄り部分に掛けての部分に焼入れ硬化層を設けている。
The wheel support hub unit of the present invention includes an outer ring, a hub, and a plurality of rolling elements.
Of these, the outer ring has a double row outer ring raceway on the inner peripheral surface, and does not rotate during use.
The hub has a double-row inner ring raceway on the outer peripheral surface, and rotates together with the wheel when in use. The hub main body and the inner ring are coupled and fixed. Of these, the hub body is formed by directly forming a rotation flange for supporting and fixing the wheel on the outer peripheral surface near the outer end in the axial direction, and an inner ring raceway on the outer side in the axial direction on the outer peripheral surface in the axial direction. Yes. In addition, the rotation side flange has a stepped portion that extends over the entire circumference in the radial intermediate portion of the inner side surface in the axial direction of the rotation side flange, and connects the thick portion on the inner diameter side and the thin portion on the outer diameter side. Has been.
The inner ring is formed with an inner ring raceway on the outer peripheral surface on the inner side in the axial direction, and is externally fixed to a small-diameter step portion formed near the inner end in the axial direction of the hub body.
Further, a hardened hardened layer is provided on a portion of the outer peripheral surface of the hub main body that extends from at least the inner ring raceway near the rotation side flange to the inner diameter portion of the rotation side flange.

特に本発明の車輪支持用ハブユニットに於いては、前記回転側フランジに存在する前記焼入れ硬化層の径方向に関する他の部分(焼入れ硬化せずに生のままの部分)との境界(前記回転側フランジの軸方向内側面に露出している境界)が、前記段差部に存在している。更に、前記回転側フランジの内部に存在する、前記焼入れ硬化層の軸方向外端と他の部分との境界が、前記回転側フランジの薄肉部の軸方向内側面の軸方向に関する位置よりも軸方向内側に存在している。即ち、前記回転側フランジに存在する前記焼入れ硬化層と、この回転側フランジの薄肉部とは、径方向に関して重畳していない。
尚、前記境界とは、前記焼入れ硬化層から前記他の部分に向かうにつれて、硬度が次第に低下してHV500となる点を言う。
In particular, in the hub unit for supporting a wheel of the present invention, the boundary with the other part (the part that remains unhardened and hardened) in the radial direction of the hardened hardened layer existing on the rotating flange (the rotating part). The boundary exposed on the inner side surface in the axial direction of the side flange is present in the stepped portion. Further, the boundary between the axially outer end of the hardened hardened layer and the other part existing inside the rotating side flange is more axial than the position in the axial direction of the axially inner side surface of the thin portion of the rotating side flange. It exists inside the direction. That is, the quench hardened layer present on the rotation side flange and the thin portion of the rotation side flange do not overlap in the radial direction.
In addition, the said boundary means the point from which hardness falls gradually and becomes HV500 as it goes to the said other part from the said hardening hardening layer.

又、請求項2に記載した車輪支持用ハブユニットの製造方法の発明は、上述の様な請求項1に記載した車輪支持用ハブユニットを造る為、炭素鋼製の素材に、常温で順次塑性変形させる冷間鍛造を施す工程を有する。
特に、請求項2に記載した車輪支持用ハブユニットの製造方法では、前記素材に最初の塑性加工を施す以前に、この素材に軟化焼鈍処理を施す。そして、各工程を経て造ったハブ本体に焼入れ硬化層を、高周波焼入れにより形成する。
Further, the invention of the manufacturing method of the wheel supporting hub unit described in claim 2 is to produce the wheel supporting hub unit described in claim 1 as described above, so that the steel material is sequentially plasticized at room temperature. A step of performing cold forging to deform.
In particular, in the method for manufacturing a wheel-supporting hub unit according to the second aspect, the material is subjected to soft annealing before the first plastic working is performed on the material. Then, a hardened hardened layer is formed by induction hardening on the hub body made through the respective steps.

前述の様に構成する本発明によれば、ハブ本体の軸方向中間部外周面に高周波焼入れにより焼入れ硬化層を形成する際に、回転側フランジに熱処理変形が生じる事を抑制すると共に、この回転側フランジの強度及び剛性を高く保つ事ができる。
即ち、本発明の場合には、前記焼入れ硬化層のうちの、前記回転側フランジに形成した部分の径方向外端と、他の部分との境界を、前記段差部に存在させている。この為、前記焼入れ硬化層を形成する際の熱により、冷間鍛造の側方押し出し加工により生じた残留応力が開放される層を、前記段差部に配置できる。言い換えれば、この残留応力が開放される層が、前記回転側フランジのうちで、車輪等を支持固定する為の薄肉部に存在しない。その結果、前記残留応力の開放に基づく熱処理変形の影響を前記段差部により吸収して、前記回転側フランジのうちの薄肉部に、この熱処理変形の影響が及ぶ事を抑えられる。
又、前記焼入れ硬化層を形成した後、この焼入れ硬化層を形成した部分に研削加工を施す際、この研削加工の熱により、前記焼入れ硬化層の残留応力状態に変化が生じた場合でも、この変化の影響を前記段差部で吸収して、前記回転側フランジにこの変形の影響が及ぶ事を抑えられる。
又、前記焼入れ硬化層を形成する際の熱により硬度低下が生じた部分が、前記回転側フランジのうちの薄肉部に存在しない為、この薄肉部の強度及び剛性を高く保つ事ができる。
According to the present invention configured as described above, when forming a hardened hardened layer by induction hardening on the outer peripheral surface in the axial direction of the hub body, it is possible to suppress the occurrence of heat treatment deformation on the rotating side flange and The strength and rigidity of the side flange can be kept high.
In other words, in the case of the present invention, a boundary between the radially outer end of the portion formed on the rotation-side flange and the other portion of the hardened hardened layer exists in the stepped portion. For this reason, the layer in which the residual stress generated by the side extrusion process of cold forging is released by the heat at the time of forming the quenched and hardened layer can be disposed in the stepped portion. In other words, the layer from which the residual stress is released does not exist in the thin wall portion for supporting and fixing the wheel or the like in the rotation side flange. As a result, the influence of the heat treatment deformation due to the release of the residual stress is absorbed by the stepped portion, and the influence of the heat treatment deformation on the thin wall portion of the rotation side flange can be suppressed.
Further, after forming the quench-hardened layer, when grinding the portion where the quench-hardened layer is formed, even if the residual stress state of the quench-hardened layer changes due to the heat of the grinding process, The influence of the change is absorbed by the stepped portion, and the influence of the deformation on the rotation side flange can be suppressed.
In addition, since the portion where the hardness is reduced due to heat when forming the hardened hardened layer does not exist in the thin portion of the rotation side flange, the strength and rigidity of the thin portion can be kept high.

又、前記焼入れ硬化層のうちの、前記回転側フランジに形成した部分の軸方向外端と他の部分との境界を、この回転側フランジの薄肉部の軸方向内側面の軸方向に関する位置よりも軸方向内側に存在させている。この為、前記焼入れ硬化層を形成する際の熱により、この焼入れ硬化層が形成された部分の体積が膨張した場合でも、この体積膨張の影響が、前記薄肉部に及ぶ事を抑えられる。   In addition, the boundary between the axially outer end of the portion formed on the rotation-side flange and the other portion of the hardened hardened layer is determined from the position in the axial direction of the axially inner side surface of the thin portion of the rotation-side flange. Is also present on the inner side in the axial direction. For this reason, even when the volume of the portion where the quench hardened layer is formed expands due to the heat at the time of forming the quench hardened layer, the influence of the volume expansion can be prevented from reaching the thin wall portion.

本発明の実施の形態の1例の車輪支持用ハブユニットのハブを構成するハブ本体を示す断面図。Sectional drawing which shows the hub main body which comprises the hub of the hub unit for wheel support of one example of embodiment of this invention. 従来構造の車輪支持用ハブユニットの構造を示す断面図。Sectional drawing which shows the structure of the hub unit for wheel support of the conventional structure. ハブ本体の製造方法の1例を工程順に示す図。The figure which shows one example of the manufacturing method of a hub main body in order of a process.

図1は、本発明の実施の形態の1例を示している。本発明の車輪支持用ハブユニットの特徴は、ハブを構成するハブ本体7aの軸方向中間部の外周面からこのハブ本体7aの回転側フランジ10aの軸方向内側面の基端部に掛けて形成する焼入れ硬化層17aと、この回転側フランジ10aとの位置関係を工夫した点にある。この特徴部分以外の構造は、前記図2に示した構造を含め、従来から知られている車輪支持用ハブユニットの構造とほぼ同様である。又、前記ハブ本体7aの製造方法は、前記図3を用いて説明した従来から考えられている製造方法と同様である。この為、従来と同様に構成する部分に就いては、図示並びに説明を、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   FIG. 1 shows an example of an embodiment of the present invention. The wheel support hub unit of the present invention is characterized in that it is formed by being hung from the outer peripheral surface of the axially intermediate portion of the hub main body 7a constituting the hub to the base end portion of the axially inner side surface of the rotation side flange 10a of the hub main body 7a. The hardened and hardened layer 17a and the rotation side flange 10a are devised. The structure other than this characteristic part is substantially the same as the structure of a conventionally known wheel support hub unit including the structure shown in FIG. The manufacturing method of the hub body 7a is the same as the conventional manufacturing method explained with reference to FIG. For this reason, the illustration and description of the parts that are configured in the same manner as in the prior art will be omitted or simplified, and hereinafter, the characteristic parts of this example will be mainly described.

本例の車輪支持用ハブユニットは、前記図2に示した従来構造と同様の基本構造を有している(図2参照)。
又、この車輪支持用ハブユニットを構成するハブ本体7aは、前記図3を用いて説明した従来から考えられている製造方法と同様に、例えば、S50C〜S58C程度(一般的にはS53C又はS55C、JIS G 4051)の機械構造用炭素鋼製の素材を冷間鍛造により塑性変形させる事により造る。
The wheel support hub unit of this example has the same basic structure as the conventional structure shown in FIG. 2 (see FIG. 2).
Further, the hub body 7a constituting the wheel supporting hub unit is, for example, about S50C to S58C (generally, S53C or S55C), as in the conventional manufacturing method described with reference to FIG. , JIS G 4051), which is made by plastically deforming a carbon steel material for machine structural use by cold forging.

特に、本例の車輪支持用ハブユニットの場合、前記ハブ本体7aの軸方向中間部の外周面からこのハブ本体7aの回転側フランジ10aの軸方向内側面の基端部に掛けて形成した焼入れ硬化層17aのうちの、この回転側フランジ10aに形成した部分の径方向外端と、他の部分、即ち、焼入れ硬化せずに生のままである部分との境界21aが、前記回転側フランジ10aの軸方向内側面の基端寄り部分に形成した段差部20aの軸方向に関するほぼ中央位置に存在している。尚、焼入れ硬化層と、他の部分との境界とは、この焼入れ硬化層からこの他の部分に向かうにつれて、硬度が次第に低下してHV500となる点を言う。又、前記境界21aは、この段差部20aのうちの何れの位置に存在させる事もできる。但し、この境界21aに存在する、側方押し出し加工{図3(E)参照}により生じた残留応力が開放されると共に、焼鈍による硬度低下が生じた層の厚さを考慮して、本例の様に、前記段差部20aの軸方向に関するほぼ中央位置に存在させる事が好ましい。   In particular, in the case of the wheel supporting hub unit of this example, the quenching formed by hanging from the outer peripheral surface of the intermediate portion in the axial direction of the hub body 7a to the proximal end portion of the inner surface in the axial direction of the rotation side flange 10a of the hub body 7a. Of the hardened layer 17a, a boundary 21a between the radially outer end of the portion formed on the rotating side flange 10a and the other portion, that is, the portion that remains unhardened and hardened is the rotating side flange. The step portion 20a formed in the portion near the base end of the inner side surface in the axial direction 10a exists at a substantially central position in the axial direction. Note that the boundary between the quench-hardened layer and the other part refers to a point where the hardness gradually decreases to HV500 from the quench-hardened layer toward the other part. Further, the boundary 21a can exist at any position of the stepped portion 20a. However, in consideration of the thickness of the layer in which the residual stress generated by the side extrusion process {refer to FIG. 3 (E)} existing in the boundary 21a is released and the hardness is decreased by annealing, this example is taken into consideration. As described above, it is preferable that the stepped portion 20a exists at a substantially central position in the axial direction.

又、前記焼入れ硬化層17aのうちの、前記回転側フランジ10aに形成した部分の軸方向外端と、他の部分との軸方向に関する境界が、前記回転側フランジ10aの薄肉部19aの軸方向内側面の軸方向に関する位置Xよりも軸方向内側に存在している。即ち、前記焼入れ硬化層17aと、前記薄肉部19aとは、径方向に関して重畳していない。
尚、本例の場合、前記図2に示すハブ本体7の構造と比べて、前記回転側フランジ10aの薄肉部19aの軸方向に関する寸法を小さくしている。言い換えれば、前記ハブ本体7の構造と比べて、前記回転側フランジ10aの薄肉部19aの、この回転側フランジ10aの厚肉部18aに対する軸方向に関する寸法比を小さくしている。この為、前記ハブ本体7の構造と比べて、より一層の軽量化を図れると共に、前述した側方押し出し加工{図3(E)参照}の際、押圧部材に加える力を小さく抑えられる。
Moreover, the boundary in the axial direction between the axially outer end of the portion formed on the rotating side flange 10a and the other portion of the hardened hardening layer 17a is the axial direction of the thin portion 19a of the rotating side flange 10a. It exists in the axial direction inner side than the position X regarding the axial direction of the inner surface. That is, the quench-hardened layer 17a and the thin portion 19a do not overlap in the radial direction.
In the case of this example, the dimension in the axial direction of the thin portion 19a of the rotation side flange 10a is made smaller than the structure of the hub body 7 shown in FIG. In other words, as compared with the structure of the hub body 7, the dimensional ratio of the thin portion 19a of the rotation side flange 10a with respect to the thick portion 18a of the rotation side flange 10a is reduced. For this reason, as compared with the structure of the hub body 7, the weight can be further reduced, and the force applied to the pressing member at the time of the above-described side extrusion processing (see FIG. 3E) can be suppressed to be small.

上述の様な焼入れ硬化層17aは、高周波焼入れにより形成する。又、この高周波焼入れは、この焼入れ硬化層17aのうちの前記回転フランジ10aに形成した部分と、他の部分との境界を前述した様に規制する為に、前記焼入れ硬化層17aを形成する為の高周波焼入れの為のコイル(高周波加熱コイル)の出力、形状、寸法を考慮しつつ、その設置位置を規制して行う。尚、前記高周波焼入れを行う際、前記ハブ本体7aの軸方向外側の内径側に設けた凹部23、或は前記回転側フランジ17aの軸方向外側面に冷却水を接触させる等して冷やしながら行えば、前記回転フランジ10aに形成した焼入れ硬化層17aと他の部分との境界を、前述した様に規制し易い。   The quench hardening layer 17a as described above is formed by induction quenching. The induction hardening is performed in order to form the quench hardened layer 17a in order to restrict the boundary between the part formed on the rotary flange 10a and the other part of the hardened hard layer 17a as described above. In consideration of the output, shape and dimensions of the induction hardening coil (high frequency heating coil), the installation position is regulated. When induction hardening is performed, cooling is performed by bringing cooling water into contact with the recess 23 provided on the inner diameter side of the hub body 7a on the outer diameter side in the axial direction or the outer surface of the rotation side flange 17a in the axial direction. For example, the boundary between the hardened hardened layer 17a formed on the rotary flange 10a and other portions can be easily regulated as described above.

前述の様に構成する本例の車輪支持用ハブユニットによれば、前記ハブ本体7aの軸方向中間部外周面に高周波焼入れにより前記焼入れ硬化層17aを形成する際、前記回転側フランジ10aに熱処理変形が生じる事を抑制すると共に、この回転側フランジ10aの強度及び剛性を高く保つ事ができる。
即ち、本例の場合には、前記焼入れ硬化層17aのうちの、前記回転側フランジ10aに形成した部分と、他の部分との境界21aを、この回転側フランジ10aの段差部20aに配置している。この為、前記焼入れ硬化層17aを形成する際の熱により、冷間鍛造による側方押し出し加工に伴って生じた残留応力が開放される層を、前記回転側フランジ10aの段差部20aに配置できる。言い換えれば、前記残留応力が開放される層が、前記回転側フランジ10aのうちで変形し易い、前記薄肉部19aに存在しない。その結果、前記残留応力の開放に基づく熱処理変形の影響を前記段差部20aで吸収して、前記回転フランジ10aのうちで、車輪等を支持する部分である、前記薄肉部19aに前記熱処理変形の影響が及ぶ事を抑えられる。
又、前記焼入れ硬化層17aを形成した後、この焼入れ硬化層17aを形成した部分に研削加工を施す際、この研削加工の熱により、この焼入れ硬化層17aの残留応力状態に変化が生じた場合でも、この変化の影響を前記段差部20aで吸収して、前記薄肉部19aに、この変化の影響が及ぶ事を抑えられる。
According to the wheel supporting hub unit of the present example configured as described above, when the hardened hardened layer 17a is formed by induction hardening on the outer peripheral surface in the axial direction of the hub body 7a, heat treatment is applied to the rotating flange 10a. While suppressing that a deformation | transformation arises, the intensity | strength and rigidity of this rotation side flange 10a can be kept high.
That is, in the case of this example, a boundary 21a between the portion formed on the rotation side flange 10a and the other portion of the hardened hardened layer 17a and the other portion is disposed on the step portion 20a of the rotation side flange 10a. ing. For this reason, the layer in which the residual stress generated by the side extrusion process by cold forging is released by the heat at the time of forming the hardened hardened layer 17a can be disposed on the stepped portion 20a of the rotary side flange 10a. . In other words, the layer from which the residual stress is released does not exist in the thin portion 19a that is easily deformed in the rotation side flange 10a. As a result, the influence of the heat treatment deformation based on the release of the residual stress is absorbed by the stepped portion 20a, and the thin wall portion 19a, which is a portion of the rotating flange 10a that supports a wheel or the like, is subjected to the heat treatment deformation. The influence can be suppressed.
In addition, when the hardened layer 17a is formed and then subjected to grinding on the portion where the hardened layer 17a is formed, the residual stress state of the hardened layer 17a changes due to the heat of the grinding process. However, the influence of this change is absorbed by the step portion 20a, and the influence of this change on the thin wall portion 19a can be suppressed.

又、前記焼入れ硬化層17aを形成する際の熱により硬度低下が生じた部分が、前記薄肉部19aに存在しない為、前記回転側フランジ10aの基端部の強度及び剛性を高く保つ事ができる。
この様にして前記回転側フランジ10aの強度及び剛性を高く保つ事ができれば、前記ハブ本体7aの軸方向内端部にかしめ部12(図2参照)を形成する作業を、前記回転側フランジ10aの軸方向外側面を、軸方向の荷重を支承する為の支承面等に押し付けた状態で行う事ができる。その結果、前記かしめ部12を形成する作業を、前記ハブ本体7aの凹部23を、前記支承面等に押し付けた状態で行う場合と比べて、前記かしめ部12を形成する作業を安定して行う事ができる。
Further, since the thinned portion 19a does not have a portion where the hardness is reduced due to heat when forming the hardened hardened layer 17a, the strength and rigidity of the base end portion of the rotating side flange 10a can be kept high. .
If the strength and rigidity of the rotation-side flange 10a can be kept high in this manner, the operation of forming the caulking portion 12 (see FIG. 2) at the axially inner end of the hub body 7a is performed. This can be performed in a state where the outer surface in the axial direction is pressed against a bearing surface for supporting an axial load. As a result, the operation for forming the caulking portion 12 is performed more stably than when the operation for forming the caulking portion 12 is performed in a state where the recess 23 of the hub body 7a is pressed against the bearing surface or the like. I can do things.

更に、前記焼入れ硬化層17aのうちの、前記回転側フランジ10aに存在する部分の軸方向外端と、他の部分との境界を、この回転側フランジ10aの薄肉部19aの軸方向内側面の軸方向に関する位置Xよりも軸方向内側に存在させている。この為、前記焼入れ硬化層17aを形成する際の熱により、この焼入れ硬化層17aが形成された部分の体積が膨張した場合でも、この体積膨張の影響が、前記回転側フランジ10aのうちの薄肉部19aに及ぶ事を抑えられる。   Further, in the quench-hardened layer 17a, the boundary between the axially outer end of the portion existing on the rotating side flange 10a and the other portion is formed on the inner surface in the axial direction of the thin portion 19a of the rotating side flange 10a. It exists on the inner side in the axial direction than the position X in the axial direction. For this reason, even when the volume of the portion where the hardened layer 17a is formed expands due to heat at the time of forming the hardened layer 17a, the effect of this volume expansion is the thin wall of the rotating flange 10a. It is possible to suppress the part 19a.

前述した実施の形態では、ハブ本体を冷間鍛造により成形しているが、このハブ本体を温間鍛造により成形する事もできる。   In the embodiment described above, the hub body is formed by cold forging, but the hub body can also be formed by warm forging.

1 車輪支持用ハブユニット
2 外輪
3 ハブ
4 転動体
5 外輪軌道
6 取付部
7、7a ハブ本体
8 内輪
9a、9b 内輪軌道
10、10a 回転側フランジ
11 小径段部
12 かしめ部
13 素材
14 第一中間素材
15 第二中間素材
16 第三中間素材
17、17a 焼入れ硬化層
18 厚肉部
19、19a 薄肉部
20、20a 段差部
21、21a 境界
22 シールリング
23 凹部

DESCRIPTION OF SYMBOLS 1 Wheel support hub unit 2 Outer ring 3 Hub 4 Rolling body 5 Outer ring raceway 6 Mounting part 7, 7a Hub main body 8 Inner ring 9a, 9b Inner ring raceway 10, 10a Rotation side flange 11 Small diameter step part 12 Caulking part 13 Material 14 First intermediate Material 15 Second intermediate material 16 Third intermediate material 17, 17a Hardened and hardened layer 18 Thick part 19, 19a Thin part 20, 20a Step part 21, 21a Boundary 22 Seal ring 23 Concave part

Claims (2)

内周面に複列の外輪軌道を有し、使用時にも回転しない外輪と、
外周面に複列の内輪軌道を有し、使用時に車輪と共に回転するハブと、
これら両内輪軌道と前記両外輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられた転動体とを備え、
前記ハブは、ハブ本体と内輪とを結合固定して成るものであって、
このうちのハブ本体は、軸方向外端寄り部分の外周面に前記車輪を支持固定する為の回転側フランジを、軸方向中間部外周面に軸方向外側の内輪軌道を、それぞれ直接形成したものであり、前記回転側フランジの軸方向内側面の径方向中間部に全周に亙り、内径側の厚肉部と外径側の薄肉部とを連続させる、段差部を形成しており、
前記内輪は、外周面に軸方向内側の内輪軌道を形成したもので、前記ハブ本体の軸方向内端寄り部分に形成された小径段部に外嵌固定されており、
前記ハブ本体の外周面のうちで、少なくとも前記回転側フランジ寄りの内輪軌道からこの回転側フランジの内径寄り部分に掛けての部分に焼入れ硬化層を設けている車輪支持用ハブユニットに於いて、
前記回転側フランジに存在する前記焼入れ硬化層の径方向外端と他の部分との境界が、前記段差部に存在しており、前記焼入れ硬化層の軸方向外端と他の部分との境界が、前記回転側フランジの薄肉部の軸方向内側面の軸方向に関する位置よりも軸方向内側に存在している事を特徴とする車輪支持用ハブユニット。
An outer ring having a double-row outer ring raceway on the inner peripheral surface and not rotating during use;
A hub that has a double-row inner ring raceway on its outer peripheral surface and that rotates with the wheel during use;
Between these inner ring raceways and the outer ring raceways, a plurality of rolling elements are provided for each row, and are provided for rolling freely.
The hub is formed by coupling and fixing a hub body and an inner ring,
Of these, the hub body is formed by directly forming the rotation side flange for supporting and fixing the wheel on the outer peripheral surface near the outer end in the axial direction, and the inner ring raceway on the outer side in the axial direction on the outer peripheral surface in the axial direction A step portion is formed over the entire circumference in the radial intermediate portion of the axially inner side surface of the rotation side flange, and the thick portion on the inner diameter side and the thin portion on the outer diameter side are continuous.
The inner ring is formed with an inner ring raceway on the outer peripheral surface on the inner side in the axial direction, and is fitted and fixed to a small-diameter step portion formed near the inner end in the axial direction of the hub body.
In the hub unit for supporting a wheel, wherein a hardened hardening layer is provided on a portion of the outer peripheral surface of the hub main body at least from an inner ring raceway near the rotation side flange to a portion near the inner diameter of the rotation side flange,
The boundary between the radially outer end of the quenched hardened layer present in the rotating flange and the other portion exists in the stepped portion, and the boundary between the outer axial end of the quenched hardened layer and the other portion. The hub unit for supporting a wheel is characterized in that the hub unit is present on the axially inner side of the axially inner side surface of the thin portion of the rotating flange.
請求項1に記載した車輪支持用ハブユニットを造る為、炭素鋼製の素材に、常温で順次塑性変形させる冷間鍛造を施す工程を有する、車輪支持用ハブユニットの製造方法であって、前記素材に最初の塑性加工を施す以前にこの素材に軟化焼鈍処理を施し、各工程を経て造ったハブ本体に焼入れ硬化層を、高周波焼入れにより形成する事を特徴とする車輪支持用ハブユニットの製造方法。   A method for manufacturing a wheel support hub unit, comprising the step of performing cold forging by sequentially plastically deforming a carbon steel material at room temperature in order to produce the wheel support hub unit according to claim 1, Manufacture of a hub unit for wheel support, characterized by subjecting this material to soft annealing before the first plastic working, and forming a hardened hardened layer on the hub body made through each process by induction hardening. Method.
JP2011138033A 2011-06-22 2011-06-22 Wheel supporting hub unit and method for manufacturing the same Withdrawn JP2013001365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138033A JP2013001365A (en) 2011-06-22 2011-06-22 Wheel supporting hub unit and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138033A JP2013001365A (en) 2011-06-22 2011-06-22 Wheel supporting hub unit and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013001365A true JP2013001365A (en) 2013-01-07

Family

ID=47670348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138033A Withdrawn JP2013001365A (en) 2011-06-22 2011-06-22 Wheel supporting hub unit and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013001365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007485A (en) * 2015-06-22 2017-01-12 日産自動車株式会社 Axle component and method for manufacturing axle component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007485A (en) * 2015-06-22 2017-01-12 日産自動車株式会社 Axle component and method for manufacturing axle component

Similar Documents

Publication Publication Date Title
JP2006200700A (en) Rolling bearing device for supporting wheel
US9511628B2 (en) Lightweight hub unit with integrated bearing rings and process for its manufacture
JP2010241188A (en) Bearing device for wheel
JP5050446B2 (en) Bearing unit
JP2012197070A (en) Manufacturing method for wheel rolling bearing device, and wheel rolling bearing device
JP5136146B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2008128450A (en) Wheel bearing device and its manufacturing method
JP2013023086A (en) Hub unit for supporting wheel, and method for manufacturing the same
JP4893585B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP5168852B2 (en) Bearing unit
JP5644881B2 (en) Manufacturing method of wheel bearing rolling bearing device
JP2013001365A (en) Wheel supporting hub unit and method for manufacturing the same
JP2010013039A (en) Rolling bearing unit for wheel support and method of manufacturing the same
JP2015028372A (en) Rolling bearing unit for supporting wheel
JP5195081B2 (en) Rolling bearing unit for wheel support and manufacturing method thereof
JP2008223990A (en) Rolling bearing unit for supporting wheel
JP2010089522A (en) Method for manufacturing rolling bearing unit for supporting wheel
JP2005282691A (en) Rolling bearing and wheel supporting bearing device
JP2008266667A (en) Rolling bearing device for supporting wheel
JP2008064268A (en) Rolling bearing unit for wheel support
WO2012121246A1 (en) Manufacturing method for wheel roller bearing device
JP2006153188A (en) Roller bearing system for supporting wheel
JP2013018338A (en) Hub unit for wheel support
JP2012228697A (en) Shaft member of rolling bearing device for wheel, and method for manufacturing the same
JP2012192818A (en) Bearing device for wheel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902