JP2012518914A - Method for manufacturing flexible metal contacts - Google Patents

Method for manufacturing flexible metal contacts Download PDF

Info

Publication number
JP2012518914A
JP2012518914A JP2011551476A JP2011551476A JP2012518914A JP 2012518914 A JP2012518914 A JP 2012518914A JP 2011551476 A JP2011551476 A JP 2011551476A JP 2011551476 A JP2011551476 A JP 2011551476A JP 2012518914 A JP2012518914 A JP 2012518914A
Authority
JP
Japan
Prior art keywords
metal
fiber
thermal
electrical
metal contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011551476A
Other languages
Japanese (ja)
Other versions
JP5581340B2 (en
Inventor
ハース,フランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2012518914A publication Critical patent/JP2012518914A/en
Application granted granted Critical
Publication of JP5581340B2 publication Critical patent/JP5581340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/654Including a free metal or alloy constituent
    • Y10T442/655Metal or metal-coated strand or fiber material

Abstract

電気素子、電子素子または熱素子の接続用の、可撓性を有する電気金属接点及び/または熱金属接点を製造するために、1〜500μmの範囲の平均の繊維直径を有する金属繊維不織布または金属繊維織布を、冷間加工を含む圧延加工、プレス加工または押出加工で圧縮して、繊維シートを形成する。
【選択図】図1
Metal fiber nonwoven fabric or metal having an average fiber diameter in the range of 1 to 500 μm for producing flexible electrical metal contacts and / or thermal metal contacts for the connection of electrical, electronic or thermal elements The fiber woven fabric is compressed by rolling, pressing or extrusion including cold working to form a fiber sheet.
[Selection] Figure 1

Description

本発明は、電気素子、電子素子または熱素子の接続用の、可撓性のある電気金属接点及び/または熱金属接点の製造方法、この接点及び電気素子、電子素子または熱素子の機械疲労及び/または熱疲労を補うために接点を使用する方法に関する。   The present invention relates to a method for producing flexible electrical metal contacts and / or thermal metal contacts for the connection of electrical, electronic or thermal elements, mechanical fatigue of the contacts and electrical elements, electronic or thermal elements and It relates to a method of using contacts to compensate for thermal fatigue.

電気素子、電子素子及び熱素子に不可欠な要素は、接点である。接点は、素子の中心の材料(素子の所望の効果を担う)と「外界」との物理的な接続を担う。このような接点の構造の概略を、図1に示す。   An essential element for electrical, electronic and thermal elements is a contact. The contacts are responsible for the physical connection between the material at the center of the element (which is responsible for the desired effect of the element) and the “outside”. An outline of the structure of such a contact is shown in FIG.

素子中の材料1は、素子に実際的な機能を付与する。例えば、電気抵抗、ダイオード材料、キャパシタ、ピエゾ結晶または熱電脚(thermoelectric leg)である。いくつかの材料、複合物または他の構造的な単位が関連することから、この点において、挙げられる材料は一つのものに限定されるものではない。本発明の目的に直接的な関連を有することは、素子の構造全体としての機能を果たすために、材料1は、電流及び/または熱が流れるものでなければならない。   The material 1 in the element imparts a practical function to the element. For example, an electrical resistance, a diode material, a capacitor, a piezo crystal, or a thermoelectric leg. In this respect, the listed materials are not limited to one, as several materials, composites or other structural units are involved. To have a direct relevance for the purposes of the present invention, the material 1 must flow current and / or heat in order to serve as the overall structure of the device.

電流及び/または熱流の組み合わせは、素子の性能特性に制限を与える要素であることがわかっている。従来の構造が図1に示されている。材料1は、その両端部において、それぞれ接点4及び5を介してリード線6及び7に接続されている。この場合、層2及び3は、材料1と接点4及び5との間において、必要となりうる中間層(バリア材料、はんだ、接着促進剤等)を表すものである。しかし、素子の特定の構成によっては、これらの中間層は省略され、または複合層を含む。それぞれ対となるセグメント2/3、4/5、6/7は同質であるが、本来、同質である必要はない。この点は、特定の構造物及び装置、及び構造物を流れる電流または熱流の方向に依存する。   The combination of current and / or heat flow has been found to be a limiting factor on device performance characteristics. A conventional structure is shown in FIG. The material 1 is connected to lead wires 6 and 7 via contact points 4 and 5 at both ends thereof. In this case, layers 2 and 3 represent intermediate layers (barrier material, solder, adhesion promoter, etc.) that may be required between material 1 and contacts 4 and 5. However, depending on the particular configuration of the device, these intermediate layers may be omitted or include composite layers. The segments 2/3, 4/5, and 6/7 that are paired with each other have the same quality, but need not be the same. This point depends on the particular structure and device and the direction of current or heat flow through the structure.

接点4及び5によって、重要な機能が実行される。これら接点4及び5は、材料とリード線との間の近接した接続をもたらす。この接続が不十分であれば高い損失が生じ、場合によっては素子の性能が大幅に制限される。このため、接点はしばしば材料側に押し込まれる。これにより、接点は強い機械的負荷に晒されることとなる。温度の上昇(または下降)及び/または熱の変化が生じ始めるとすぐに、機械的負荷が増大する。素子に組み込まれた材料の熱の増大により、機械的疲労は回避し得なくなる。極端な場合は、接点が破損して素子の故障につながることとなる。   Contacts 4 and 5 perform important functions. These contacts 4 and 5 provide a close connection between the material and the lead. If this connection is insufficient, high losses occur and in some cases the performance of the device is severely limited. For this reason, the contacts are often pushed into the material side. As a result, the contact is exposed to a strong mechanical load. As soon as an increase (or decrease) in temperature and / or a change in heat begins to occur, the mechanical load increases. Mechanical fatigue is inevitable due to the increased heat of the material incorporated into the device. In an extreme case, the contact is damaged, leading to a failure of the element.

これを防ぐためには、用いられる接点は、かかる熱疲労を与えないようにすることを許容すべく、ある程度の可撓性を有し、弾力性を有することが必要である。   In order to prevent this, it is necessary that the contact point used has a certain degree of flexibility and elasticity in order to allow it to avoid such thermal fatigue.

金属シートまたは小さい金属プレートは通常、かかる要求に応えるほど十分に柔軟ではなく、または可撓性を有さない。   Metal sheets or small metal plates are usually not sufficiently soft or flexible to meet such requirements.

しばしば、極めて大きな温度勾配下で動作する熱電構造要素の場合は、このような“緩衝的な”接点を用いることが、文献によって知られている。例えば、N.Elsner,Mat.Res.Soc.Symp.Proc.1991,234,167deha,では、熱電発電機において接点用の可撓性のある金属プレートを用いることが開示されている。   Often, it is known from the literature to use such “buffer” contacts for thermoelectric structural elements operating under extremely large temperature gradients. For example, N.I. Elsner, Mat. Res. Soc. Symp. Proc. 1999, 234, 167 deha, discloses the use of flexible metal plates for contacts in thermoelectric generators.

N.Elsner,Mat.Res.Soc.Symp.Proc.1991,234,167deha,N. Elsner, Mat. Res. Soc. Symp. Proc. 1991, 234, 167 deha,

開示された接点においても、十分に可撓性を有しておらず、かつ全ての装置に対応し得る強い温度変化に対応できるものではない。   The disclosed contacts are not sufficiently flexible and cannot cope with a strong temperature change that can be applied to all devices.

本発明は、かかる課題に鑑みてなされたものであり、その目的は、電気素子、電子素子または熱素子の接続用の、可撓性のある電気金属接点及び/または熱金属接点の製造方法を提供するものであり、これにより、特に熱電装置に有利な特性を有する、可撓性または弾力性のある接点を得ることができる。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a flexible electrical metal contact and / or thermal metal contact manufacturing method for connecting an electrical element, an electronic element, or a thermal element. This provides a flexible or resilient contact with properties that are particularly advantageous for thermoelectric devices.

上記目的は、電気素子、電子素子または熱素子の接続用の、可撓性のある電気的金属接点及び/または熱金属接点を製造する本発明に係る方法によって達成される。1〜500μmの範囲の平均の繊維直径を備えた金属繊維、金属繊維の不織布または金属繊維の織布を、冷間加工を含む圧延加工、プレス加工または押出加工によって圧縮して繊維シートを形成する。   The above objective is accomplished by a method according to the invention for producing flexible electrical and / or thermal metal contacts for the connection of electrical, electronic or thermal elements. A fiber sheet is formed by compressing metal fibers, metal fiber nonwoven fabrics or metal fiber woven fabrics having an average fiber diameter in the range of 1 to 500 μm by rolling, pressing or extrusion including cold working. .

素子の従来の構造を示す図である。It is a figure which shows the conventional structure of an element.

圧延、プレス加工された微細なワイヤメッシュ、ワイヤ織布またはワイヤ不織布は、極めて高密度の繊維状のシートを作り出すことが可能であることが分かった。このシートは、素子において高い熱伝導性及び電気導電性を有し、加えて、機械的に極めて安定している。それにも関わらず、同時に、熱または機械疲労を補うのに十分な柔軟性(すなわち、圧力または弾力に順応する)及び可撓性を備えている。   It has been found that a rolled, pressed fine wire mesh, wire woven or wire non-woven can produce very dense fibrous sheets. This sheet has high thermal conductivity and electrical conductivity in the device, and in addition, is extremely mechanically stable. Nevertheless, at the same time, it has sufficient flexibility (i.e. adapts to pressure or elasticity) and flexibility to compensate for thermal or mechanical fatigue.

同時に、対象となる装置によっては、異なった金属を用いることもできる。銅、銀、金、アルミニウム、鉄または鋼といった従来からの接点用金属も、当然に、極めて好適である。しかし、原則として、本方法では、任意の金属的導電性材料を用いることができる。本発明の一実施の形態によれば、金属は、Cu、Ag、Au、Fe、Ni、Pt、Alまたはそれらの合金である。   At the same time, different metals can be used depending on the target device. Of course, conventional contact metals such as copper, silver, gold, aluminum, iron or steel are also quite suitable. However, in principle, any metallic conductive material can be used in the method. According to one embodiment of the present invention, the metal is Cu, Ag, Au, Fe, Ni, Pt, Al or an alloy thereof.

金属繊維、金属不織布または金属繊維織布では、平均の繊維直径は、1〜500μm、好ましくは10〜100μm、特に好ましくは40〜80μmである。また、金属織布は、金属編物を含むものとして理解されている。金属不織布は、シート状の不織布となるように、第3空間方向におけるよりも、第2空間方向におけるより大きな広がりを有することが好適である。金属織布は、100〜5000g/m2の単位面積あたりの質量、特に好ましくは160〜2800g/m2、特に1400〜2000g/m2の単位面積あたりの質量を有することが好適である。製造される金属接点は、100μm〜10mmの範囲の平均直径または厚みを有することが好適である。 In the case of metal fibers, metal nonwoven fabrics or metal fiber woven fabrics, the average fiber diameter is 1 to 500 μm, preferably 10 to 100 μm, and particularly preferably 40 to 80 μm. Metal woven fabric is also understood to include metal knitted fabrics. It is preferable that the metal nonwoven fabric has a larger spread in the second space direction than in the third space direction so as to be a sheet-like nonwoven fabric. Metal fabric, the weight per unit area of 100~5000g / m 2, particularly preferably 160~2800g / m 2, it is preferable in particular with a mass per unit area of 1400~2000g / m 2. The metal contacts to be manufactured preferably have an average diameter or thickness in the range of 100 μm to 10 mm.

構造化されたまたは構造化されていない(繊維の方向の意味において)、織布または不織布は、出発材料として用いられる。織布の密度は、当然、結果に対する影響はあるものの、原則として、メッシュ幅、表面密度等についての制限はない。   Structured or unstructured (in the sense of fiber orientation), woven or non-woven fabrics are used as starting materials. The density of the woven fabric naturally has an influence on the result, but in principle there are no restrictions on the mesh width, the surface density, and the like.

繊維それ自体の長さは、織布が耐えうる限りにおいて、広い範囲で変化させることができる。   The length of the fiber itself can be varied over a wide range as long as the fabric can withstand.

個々の繊維の表面の性質の点においても、何の制限も存在しない。繊維を粗い表面とすることは、製品における強い結合に直結する。均質な繊維で形成された不織布または織布も、何ら問題なく加工及び圧縮できる。   There are no restrictions in terms of the surface properties of the individual fibers. Making the fiber a rough surface directly leads to a strong bond in the product. Nonwoven fabrics or woven fabrics formed of homogeneous fibers can be processed and compressed without any problems.

金属繊維織布または金属繊維不織布は、圧縮前に1回以上折り畳まれ、より厚い不織布または織布の被覆を形成する。異なる金属の金属繊維織布または金属繊維不織布は、積層複合物の形成のために結合される。異なる配列を有する織布または不織布は、一の織布または不織布が、他の織布または不織布の上に配置される。一般に、不織布または織布は、1以上の好ましい方向を有する。他の層の上に配置される層またはそれに続く別の層は、この場合、同じ好ましい方向を有する。または、個々の層の好適な方向は、互いに角度を形成する。例えば、一方向性の金属繊維不織布は、一の不織布が他の不織布の上となるように、縦方向及び横方向に交互に配置される。   The metal fiber woven fabric or metal fiber nonwoven fabric is folded one or more times before compression to form a thicker nonwoven fabric or woven fabric coating. Metal fiber woven fabrics or metal fiber nonwoven fabrics of different metals are combined to form a laminated composite. For woven or non-woven fabrics having different arrangements, one woven or non-woven fabric is placed over the other woven or non-woven fabric. In general, a nonwoven or woven fabric has one or more preferred directions. The layer arranged on top of the other layer or another layer following it has in this case the same preferred direction. Alternatively, the preferred directions of the individual layers form an angle with each other. For example, the unidirectional metal fiber nonwoven fabric is alternately arranged in the longitudinal direction and the lateral direction so that one nonwoven fabric is placed on the other nonwoven fabric.

上記の製造工程それ自体は、好適には、特に金属繊維不織布に関する。これは、例えば、圧縮のために直接的に用いられる。しかし、圧縮の前に、不織布を新聞紙のように複数回折り畳んで、圧縮することも可能である。このようにして、厚くかつ緊密に連結された接点プレートが得られる。原則として、最初の圧縮工程の後のみに折り畳み、再び圧縮を行う(必要であればこの操作を複数回行う)ことも可能である。しかし、一度圧縮された材料の表面は均質であることから、通常は、これら個々の層の連結は不十分なものとなる。   The above manufacturing process itself preferably relates in particular to a metal fiber nonwoven. This is used directly, for example, for compression. However, before compression, it is also possible to fold and fold the nonwoven fabric like newspaper. In this way a thick and tightly connected contact plate is obtained. In principle, it is also possible to fold only after the first compression step and perform compression again (if necessary, this operation is performed several times). However, since the surface of the material once compressed is homogeneous, the connection of these individual layers is usually insufficient.

圧縮は方向的な操作であることから、少なくとも好適な圧延またはダイに強制的に通す押出成形の場合は、ワークの向きが、ここで最終的な役割を果たしている。特に、不織布それ自体が、当然に好適な繊維の向きを有するからである。従って、互いに直交する2つの空間的方向における連続的な“交差する”圧縮は、最も緊密かつ濃密な連結のために好ましいものと考えられる。   Since compression is a directional operation, the orientation of the workpiece plays a final role here, at least in the case of extrusion which is forced through a suitable rolling or die. In particular, the nonwoven fabric itself naturally has a suitable fiber orientation. Thus, continuous “crossing” compression in two spatial directions orthogonal to each other would be preferred for the tightest and densest connections.

圧延は、単一の圧延装置で実行され、または複数の圧延ロールを並列または直列で用いる。この場合、圧延ロールは、均質な表面及び構造化された表面の双方を備える。後者は、製品にある種の表面粗さが要求される場合において有利である。   Rolling is performed with a single rolling device, or a plurality of rolling rolls are used in parallel or in series. In this case, the mill roll has both a homogeneous surface and a structured surface. The latter is advantageous when the product requires a certain surface roughness.

押出成形の場合、例えば不織布の場合は、押出成形用のダイの形成が、当然ながら最も重要である。押出成形は、製品に特殊な形状が要求される場合、または単軸圧縮が要求されていない、または適切でない場合において特に有用である。   In the case of extrusion, for example in the case of non-woven fabrics, the formation of an extrusion die is of course the most important. Extrusion is particularly useful when the product requires a special shape, or when uniaxial compression is not required or not appropriate.

冷間加工は、適切であれば、繊維の厚さに応じて行われる圧延、プレスまたは押出成形工法のそれぞれに対するそれぞれの金属の工程の性質に適合させるために、加熱または冷却とともに行われる。   If appropriate, the cold working is done with heating or cooling to adapt to the nature of the respective metal process for each rolling, pressing or extrusion process depending on the fiber thickness.

加えて、この工法は、連続生産及び不連続生産に用いられる。   In addition, this method is used for continuous production and discontinuous production.

本発明はまた、上記手法によって得られる繊維シートを含む可撓性を有する電気及び/または熱金属接点に関連する。   The present invention also relates to flexible electrical and / or thermal metal contacts comprising fiber sheets obtained by the above approach.

金属接点は、好ましくは、電気素子、電子素子または熱素子の機械的疲労及び/または熱疲労を補うために用いられる。この場合、特に、操作環境の下で生じ得る機械的疲労及び/または熱疲労が補われる。   Metal contacts are preferably used to compensate for mechanical and / or thermal fatigue of electrical, electronic or thermal elements. In this case, in particular, mechanical fatigue and / or thermal fatigue that can occur under the operating environment is compensated.

繊維シートまたは金属接点は、良好な熱伝導性及び/または電気導電性が重要となる多くの装置で用いられる。好適な装置の領域は、キャパシタ、燃料電池、変換器、バッテリー、発電機、光電装置またはこれらを組み合わせたシステムといった熱電気、磁気熱、電子機器が挙げられる。特に好適なのは、熱電発生機またはペルチェ素子といった装置となる機器である。   Fiber sheets or metal contacts are used in many devices where good thermal and / or electrical conductivity is important. Suitable device areas include thermoelectric, magnetothermal, electronic equipment such as capacitors, fuel cells, converters, batteries, generators, photoelectric devices or systems that combine these. Particularly suitable are devices that are devices such as thermoelectric generators or Peltier elements.

以下、本発明を実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

60μmの線厚さを備えた銅製の不織布が、圧延によって繊維シートに変換された。この場合、材料は当初の4.5mmの厚さから0.9mmに圧縮された。   A copper non-woven fabric having a line thickness of 60 μm was converted into a fiber sheet by rolling. In this case, the material was compressed from the original 4.5 mm thickness to 0.9 mm.

60μmの繊維直径を備え,単位面積当たりの質量が1700g/m2の銅製の織布が、圧延によって繊維シートに変換された。この場合、材料は当初の6.0mmの厚さから1.4mmに圧縮された。 A copper woven fabric having a fiber diameter of 60 μm and a mass per unit area of 1700 g / m 2 was converted into a fiber sheet by rolling. In this case, the material was compressed from the original 6.0 mm thickness to 1.4 mm.

1 材料
2、3 層
4、5 接点
6、7 リード線
1 Material 2, 3 Layer 4, 5 Contact 6, 7 Lead wire

Claims (11)

電気素子、電子素子または熱素子の接続用の、可撓性を有する電気金属接点及び/または熱金属接点の製造方法において、
1〜500μmの範囲の平均の繊維直径を備えた金属繊維、金属繊維の不織布または金属繊維の織布を、冷間加工を含む圧延加工、プレス加工または押出加工によって圧縮して繊維シートを形成することを特徴とする方法。
In a method for producing a flexible electrical metal contact and / or thermal metal contact for connection of an electrical element, an electronic element or a thermal element,
A fiber sheet is formed by compressing metal fibers, metal fiber nonwoven fabrics or metal fiber woven fabrics having an average fiber diameter in the range of 1 to 500 μm by rolling, pressing or extrusion including cold working. A method characterized by that.
前記平均の直径が10〜100μmであることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the average diameter is 10 to 100 μm. 前記金属繊維織布は、
単位面積当たりの質量が100〜5000g/m2であることを特徴とする請求項1または2に記載の方法。
The metal fiber woven fabric is
The method according to claim 1, wherein the mass per unit area is 100 to 5000 g / m 2 .
前記金属は、
Cu,Ag,Au,Fe,Ni,Pt,Al及びそれらの合金の中から選択されることを特徴とする請求項1〜3のいずれか1項に記載の方法。
The metal is
4. The method according to claim 1, wherein the method is selected from Cu, Ag, Au, Fe, Ni, Pt, Al and alloys thereof.
前記金属接点は、
平均の繊維直径または100μm〜10mmの範囲の厚みを有することを特徴とする請求項1〜4のいずれか1項に記載の方法。
The metal contact is
5. The method according to any one of claims 1 to 4, characterized in that it has an average fiber diameter or a thickness in the range of 100 [mu] m to 10 mm.
前記金属繊維織布または金属繊維不織布を圧縮前に複数回折り畳んで、より厚い不織布または織布の被覆を形成することを特徴とする請求項1〜5のいずれか1項に記載の方法。   The method according to claim 1, wherein the metal fiber woven fabric or metal fiber nonwoven fabric is folded a plurality of times before compression to form a thicker nonwoven fabric or woven fabric coating. 少なくとも2つの異なった金属で形成したそれぞれの金属繊維織布または金属繊維不織布の一方が他方の金属の上に配置され、この複合物が圧縮されることを特徴とする請求項1〜6のいずれか1項に記載の方法。   One of the respective metal fiber woven fabrics or metal fiber non-woven fabrics formed of at least two different metals is placed on the other metal and the composite is compressed. The method according to claim 1. 前記圧縮は、
相互に直交する2つの空間的方向において連続的に行われることを特徴とする請求項1〜7のいずれか1項に記載の方法。
The compression is
The method according to claim 1, wherein the method is carried out continuously in two spatial directions orthogonal to each other.
請求項1〜8のいずれか1項に記載の方法で得られた繊維シートを含むことを特徴とする、可撓性を有する電気金属接点及び/または熱金属接点。   A flexible electrical metal contact and / or thermal metal contact, characterized in that it comprises a fiber sheet obtained by the method according to claim 1. 請求項9に記載の金属接点を、電気素子、電子素子または熱素子の機械的及び/または熱疲労を補うために使用することを特徴とする方法。   10. A method of using a metal contact according to claim 9 to compensate for mechanical and / or thermal fatigue of electrical, electronic or thermal elements. 前記素子は、
熱電発生機またはペルチェ素子に使用することを特徴とする請求項10に記載の方法。
The element is
The method according to claim 10, wherein the method is used for a thermoelectric generator or a Peltier device.
JP2011551476A 2009-02-25 2010-02-22 Method for manufacturing flexible metal contacts Expired - Fee Related JP5581340B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09153561 2009-02-25
EP09153561.7 2009-02-25
PCT/EP2010/052194 WO2010097360A1 (en) 2009-02-25 2010-02-22 Method for producing flexible metal contacts

Publications (2)

Publication Number Publication Date
JP2012518914A true JP2012518914A (en) 2012-08-16
JP5581340B2 JP5581340B2 (en) 2014-08-27

Family

ID=42201056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011551476A Expired - Fee Related JP5581340B2 (en) 2009-02-25 2010-02-22 Method for manufacturing flexible metal contacts

Country Status (10)

Country Link
US (1) US20110306261A1 (en)
EP (1) EP2401789B1 (en)
JP (1) JP5581340B2 (en)
KR (1) KR20110121709A (en)
CN (1) CN102362393B (en)
CA (1) CA2753484A1 (en)
RU (1) RU2011138927A (en)
SG (1) SG174144A1 (en)
TW (1) TW201041256A (en)
WO (1) WO2010097360A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204093A (en) * 2013-04-10 2014-10-27 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
JP2017143111A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Thermoelectric conversion module and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200933940A (en) * 2007-12-28 2009-08-01 Basf Se Extrusion process for preparing improved thermoelectric materials
CA2715040A1 (en) * 2008-02-07 2009-08-13 Basf Se Doped tin tellurides for thermoelectric applications
CN102414121A (en) 2009-03-24 2012-04-11 巴斯夫欧洲公司 Self-organising thermoelectric materials
KR101854318B1 (en) * 2017-01-06 2018-05-03 조인셋 주식회사 Elastic thermal dissipation terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008690A1 (en) * 2001-07-18 2003-01-30 Kabushiki Kaisha Unix Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method, and laminated aluminum material manufacturing method
JP2007103580A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Thermoelectric transducer and method of manufacturing same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469297A (en) * 1966-04-20 1969-09-30 Brunswick Corp Porous metal structure
USRE28470E (en) * 1966-04-20 1975-07-08 Porous metal structure
JPS6134131A (en) * 1984-07-26 1986-02-18 Tomokazu Takeuchi Porous metallic thin foil and its manuacture
EP0329863B1 (en) * 1987-12-29 1992-07-15 N.V. Bekaert S.A. Compacting of a metal web
JPH0779023B2 (en) * 1988-06-03 1995-08-23 シャープ株式会社 Method for manufacturing battery electrode
US5408047A (en) * 1990-10-25 1995-04-18 Minnesota Mining And Manufacturing Company Transition joint for oil-filled cables
JP2829811B2 (en) * 1992-12-28 1998-12-02 東京製綱株式会社 Sheet-shaped sintered body of metal fiber and method for producing the same
JP3481797B2 (en) * 1996-10-03 2003-12-22 片山特殊工業株式会社 Method for manufacturing battery electrode substrate and battery electrode substrate
BE1010937A3 (en) * 1997-02-20 1999-03-02 Bekaert Sa Nv Covering structures for any contact with glass items during their design process.
US6222126B1 (en) * 1997-09-08 2001-04-24 Thomas & Betts International, Inc. Woven mesh interconnect
JPH11238423A (en) * 1998-02-20 1999-08-31 Porimatec Kk Contact key switch and its manufacture
JP2000129311A (en) * 1998-10-28 2000-05-09 Bridgestone Corp Metallic fiber non-woven fabric sintered sheet
JP2000273504A (en) * 1999-03-26 2000-10-03 Kanai Hiroaki Manufacture of continuous metallic fiber sintered sheet, and its device
CN1086321C (en) * 1999-12-23 2002-06-19 尤文法 Technology for making metal wire net
US6531238B1 (en) * 2000-09-26 2003-03-11 Reliant Energy Power Systems, Inc. Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
US6944428B2 (en) * 2001-08-06 2005-09-13 Kabushiki Kaisha Toshiba Image information input/output device and control system for the same using mobile device
EP1369815A1 (en) * 2002-06-03 2003-12-10 Dialog Semiconductor GmbH Battery pack with electronics assembly
DE10250716C1 (en) * 2002-10-31 2003-12-24 Ulrich Mueller Process for producing a porous, plate-shaped metal composite
US7014479B2 (en) * 2003-03-24 2006-03-21 Che-Yu Li Electrical contact and connector and method of manufacture
US7040902B2 (en) * 2003-03-24 2006-05-09 Che-Yu Li & Company, Llc Electrical contact
CN100468869C (en) * 2003-03-24 2009-03-11 李泽豫 Electrical contact
WO2005029645A2 (en) * 2003-09-15 2005-03-31 Che-Yu Li Electrical contact and connector and method of manufacture
JP2006198520A (en) * 2005-01-20 2006-08-03 Canon Inc Filter and liquid discharge head using the filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008690A1 (en) * 2001-07-18 2003-01-30 Kabushiki Kaisha Unix Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method, and laminated aluminum material manufacturing method
JP2007103580A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Thermoelectric transducer and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204093A (en) * 2013-04-10 2014-10-27 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
JP2017143111A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Thermoelectric conversion module and method for manufacturing the same

Also Published As

Publication number Publication date
RU2011138927A (en) 2013-04-10
JP5581340B2 (en) 2014-08-27
US20110306261A1 (en) 2011-12-15
TW201041256A (en) 2010-11-16
EP2401789B1 (en) 2014-04-09
CA2753484A1 (en) 2010-09-02
CN102362393A (en) 2012-02-22
KR20110121709A (en) 2011-11-08
SG174144A1 (en) 2011-10-28
WO2010097360A1 (en) 2010-09-02
EP2401789A1 (en) 2012-01-04
CN102362393B (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5581340B2 (en) Method for manufacturing flexible metal contacts
JP5116082B2 (en) High thermal conductivity composite material
KR101534478B1 (en) Highly thermally conductive composite material
JP4078392B1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
JP6064886B2 (en) Thermally conductive stress relaxation structure
JP2011003800A (en) Low thermal expansion type composite heat sink and method of manufacturing the same
JP6570146B2 (en) Metal laminate having metallurgical bond and density-reduced metal core layer and method for producing the same
CN109318547A (en) A kind of MAX phase ceramics-layered metal composite material, preparation method and purposes
JP4850083B2 (en) Thermoelectric conversion module, power generation device and cooling device using the same
JP5176610B2 (en) Thermoelectric device element
JP6148615B2 (en) Interlaced laminate of fiber structure with metal fibers
JP2011119600A (en) Method of manufacturing heat sink and heat sink
JP5500710B2 (en) High thermal conductive composite material and manufacturing method thereof
WO2017122627A1 (en) Thermoelectric conversion material and thermoelectric conversion device
JP5176607B2 (en) Thermoelectric device element
JPH0677365A (en) Radiation board material
JP5176609B2 (en) Thermoelectric device element
JP5200884B2 (en) Thermoelectric power generation device
JP2022142334A (en) Terminal connection structure
JP5200885B2 (en) Thermoelectric power generation device
JP4130845B1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
JP5200883B2 (en) Thermoelectric power generation device
TW201427122A (en) Methods of fabricating thermoelectric elements
JP2009218253A (en) Thermal power generation device element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5581340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees