JP2012254912A - Piezoelectric ceramic, and stacked piezoelectric device - Google Patents

Piezoelectric ceramic, and stacked piezoelectric device Download PDF

Info

Publication number
JP2012254912A
JP2012254912A JP2011270761A JP2011270761A JP2012254912A JP 2012254912 A JP2012254912 A JP 2012254912A JP 2011270761 A JP2011270761 A JP 2011270761A JP 2011270761 A JP2011270761 A JP 2011270761A JP 2012254912 A JP2012254912 A JP 2012254912A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric ceramic
less
strain constant
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011270761A
Other languages
Japanese (ja)
Other versions
JP6034017B2 (en
Inventor
Takatoshi Hashimoto
孝俊 橋本
Atsushi Sasaki
淳 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2011270761A priority Critical patent/JP6034017B2/en
Publication of JP2012254912A publication Critical patent/JP2012254912A/en
Application granted granted Critical
Publication of JP6034017B2 publication Critical patent/JP6034017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic, and a stacked piezoelectric device which hold piezoelectric properties, and have a high insulation resistivity even in firing in a reductive atmosphere.SOLUTION: The piezoelectric ceramic contains a main component represented by the composition formula: (Ba, Ca)(Li, Mn, Ti)Owherein 0.005≤x<0.100, 0<y≤0.020, 0≤z≤0.003 and 1.000≤j≤1.040, and a sub-component of ≤1.000 (excluding 0) mol% of Al.

Description

本発明は、圧電効果を有する圧電セラミックスおよび圧電セラミックスを用いた圧電素子に関する。   The present invention relates to a piezoelectric ceramic having a piezoelectric effect and a piezoelectric element using the piezoelectric ceramic.

近年、鉛を含まない圧電セラミックスの開発が進み、センサ、アクチュエータ、フィルタ等様々な用途への応用が検討されている。鉛を含まない圧電セラミックスとして、例えば、特許文献1が提案されている。   In recent years, development of piezoelectric ceramics that do not contain lead has progressed, and application to various uses such as sensors, actuators, filters, etc. has been studied. As a piezoelectric ceramic not containing lead, for example, Patent Document 1 has been proposed.

特許文献1には、主成分が一般式(Ba1−xCaTiO(ただし、0.01≦x≦0.25、0.96≦y≦1.04)で表され、鉛を含有せず、室温付近で歪み量の温度依存性が小さい圧電セラミックスが開示されている。 In Patent Document 1, the main component is represented by the general formula (Ba 1-x Ca x ) y TiO 3 (where 0.01 ≦ x ≦ 0.25, 0.96 ≦ y ≦ 1.04), and lead. There has been disclosed a piezoelectric ceramic that does not contain bismuth and has a small temperature dependence of the strain amount near room temperature.

また、特許文献1には、内部にNi電極を有する積層型圧電素子も開示されている。NiまたはNi合金は、融点が1400度程度と高く、チタン酸バリウム系の圧電セラミックスの焼成温度に近いため、内部電極として好適に使用でき、さらに貴金属に比較して低コストであるという特徴を有する。   Patent Document 1 also discloses a laminated piezoelectric element having a Ni electrode inside. Ni or Ni alloy has a high melting point of about 1400 ° C., and is close to the firing temperature of barium titanate-based piezoelectric ceramics. Therefore, Ni or Ni alloy can be suitably used as an internal electrode and has a feature that it is less expensive than noble metals. .

特開2003−128460号公報JP 2003-128460 A

特許文献1に記載されている圧電セラミックス(Ba1−xCaTiO(ただし、0.01≦x≦0.25、0.96≦y≦1.04)において、y>1の組成域では圧電d31定数が150pC/N未満と低く、実用化には不十分であるという課題がある。一方、y≦1の組成域では、焼成を試行したところ、焼成過程で異常粒成長を起こしやすく、均質な焼結体が得られず、十分な圧電特性が得られないという課題が見出された。 In the piezoelectric ceramics (Ba 1-x Ca x ) y TiO 3 described in Patent Document 1 (where 0.01 ≦ x ≦ 0.25, 0.96 ≦ y ≦ 1.04), y> 1 In the composition range, the piezoelectric d 31 constant is as low as less than 150 pC / N, which is insufficient for practical use. On the other hand, in the composition range of y ≦ 1, when firing was attempted, there was a problem that abnormal grain growth was likely to occur during the firing process, a homogeneous sintered body could not be obtained, and sufficient piezoelectric characteristics could not be obtained. It was.

また、特許文献1に記載の圧電セラミックスにNiあるいはNi合金の内部電極を設け、積層型圧電素子を構成する場合、酸素分圧が1×10−2Paより低い還元雰囲気中で焼成することが必要となる。これは、NiあるいはNi合金を内部電極とした場合、大気あるいは酸素雰囲気中で焼成すると、NiがNiOに酸化されてしまうためである。しかしながら、特許文献1の圧電セラミックスを、還元雰囲気中で焼成したところ、還元反応が起こり、半導体化し、絶縁抵抗が低い圧電セラミックスとなるという課題が見出された。 Further, when an internal electrode of Ni or Ni alloy is provided on the piezoelectric ceramic described in Patent Document 1 to form a multilayer piezoelectric element, firing may be performed in a reducing atmosphere having an oxygen partial pressure lower than 1 × 10 −2 Pa. Necessary. This is because when Ni or Ni alloy is used as the internal electrode, Ni is oxidized to NiO when fired in the air or in an oxygen atmosphere. However, when the piezoelectric ceramics of Patent Document 1 are fired in a reducing atmosphere, a problem has been found in which a reduction reaction occurs to make a semiconductor and become a piezoelectric ceramic with low insulation resistance.

したがって、本発明は、圧電特性を保持するとともに、還元雰囲気中での焼成においても高い絶縁抵抗率を有する圧電セラミックスおよび積層型圧電素子を提供することを目的とする。   Accordingly, an object of the present invention is to provide a piezoelectric ceramic and a laminated piezoelectric element that retains piezoelectric characteristics and has high insulation resistivity even when firing in a reducing atmosphere.

本発明は、組成式(Ba1−x、Ca(Li、Ti1−y)O3(2/3+j/3−y/2)(ただし、0.005≦x<0.100、0<y≦0.020、1.000≦j≦1.040)で表される主成分に対して、副成分としてAlを1.000mol%以下(0を含まず)、含有することを特徴とする圧電セラミックスである。 The present invention is a composition formula (Ba 1-x, Ca x ) j (Li y, Ti 1-y) O 3 (2/3 + j / 3-y / 2) ( but, 0.005 ≦ x <0.100 , 0 <y ≦ 0.020, 1.000 ≦ j ≦ 1.040), containing 1.000 mol% or less (not including 0) of Al as a subcomponent. It is a characteristic piezoelectric ceramic.

また、本発明は、組成式(Ba1−x、Ca(Li、Mn、Ti1−y−z)O3(2/3+j/3−y/2−z/3)(ただし、0.005≦x<0.100、0<y≦0.020、0<z≦0.003、1.000≦j≦1.040)で表される主成分に対して、副成分としてAlを1.000mol%以下(0を含まず)、含有することを特徴とする圧電セラミックスである。 Further, the present invention is a composition formula (Ba 1-x, Ca x ) j (Li y, Mn z, Ti 1-y-z) O 3 (2/3 + j / 3-y / 2-z / 3) ( However, subcomponents with respect to the main component represented by 0.005 ≦ x <0.100, 0 <y ≦ 0.020, 0 <z ≦ 0.003, 1.000 ≦ j ≦ 1.040) The piezoelectric ceramic is characterized by containing Al in an amount of 1.000 mol% or less (excluding 0).

また、上記の圧電セラミックスは、絶縁抵抗率が1.000×10Ω・m以上であることが好ましい。 The piezoelectric ceramic preferably has an insulation resistivity of 1.000 × 10 9 Ω · m or more.

また、上記の圧電セラミックスは、圧電歪定数d31が150pC/N以上であることが好ましい。 The piezoelectric ceramic preferably has a piezoelectric strain constant d 31 of 150 pC / N or more.

また、上記の圧電セラミックスは、0℃以上50℃以下の温度範囲における圧電歪定数d31最大値が、前記圧電歪定数d31最小値の1.25倍以内であることが好ましい。 In the piezoelectric ceramic, the maximum value of the piezoelectric strain constant d 31 in the temperature range of 0 ° C. or more and 50 ° C. or less is preferably within 1.25 times the minimum value of the piezoelectric strain constant d 31 .

また、上記の圧電セラミックスは、酸素分圧が1×10−8Pa以上1×10−2Pa以下の雰囲気中で焼成されていることが好ましい。 The piezoelectric ceramic is preferably fired in an atmosphere having an oxygen partial pressure of 1 × 10 −8 Pa to 1 × 10 −2 Pa.

また、本発明は、上記の圧電セラミックスからなる圧電層と、NiまたはNi合金よりなる内部電極層が交互に積層されていることを特徴とする積層型圧電素子である。   According to another aspect of the present invention, there is provided a multilayer piezoelectric element in which piezoelectric layers made of the above piezoelectric ceramics and internal electrode layers made of Ni or Ni alloy are alternately laminated.

本発明によれば、圧電特性を保持するとともに、還元雰囲気中での焼成においても高い絶縁抵抗率を有する圧電セラミックスおよび積層型圧電素子を提供することが可能となる。   According to the present invention, it is possible to provide piezoelectric ceramics and multilayer piezoelectric elements that retain piezoelectric characteristics and have high insulation resistivity even when firing in a reducing atmosphere.

実施例2における焼結体表面の顕微鏡観察写真。図1(a)は、j=0.990の場合、図1(b)は、j=1.000の場合、図1(c)は、j=1.040の場合。5 is a microscopic observation photograph of the surface of a sintered body in Example 2. 1A shows a case where j = 0.990, FIG. 1B shows a case where j = 1.000, and FIG. 1C shows a case where j = 1.040.

本発明の実施の形態に係る圧電セラミックスについて説明する。本実施の形態では、まず、Ba、Ca、Ti、Li、Mnの化合物からなる粉末をそれぞれ用意し、Alの化合物からなる粉末をAl換算で1.000mol%以下(0を含まず)含有するように所定量を秤量し、混合したものを出発原料とする。この出発原料の粉末の形態は、特に限定されず、後述する工程を経て得られる圧電セラミックスが、組成式(Ba1−x、Ca(Li、Mn、Ti1−y)O3(2/3+j/3−y/2−z/3)(ただし、0.005≦x<0.100、0<y≦0.020、0≦z≦0.003、1.000≦j≦1.040)で表される主成分に対して、副成分としてAlを1.000mol%以下(0を含まず)であればよく、製造や保管の容易さや価格等を考慮して選択するのが好ましい。例えば、炭酸バリウム(BaCO)粉末、炭酸カルシウム(CaCO)粉末、二酸化チタン(TiO)粉末、炭酸リチウム(LiCO)粉末、炭酸マンガン(MnCO)粉末、酸化アルミニウム(Al)粉末等を使用することが可能である。 The piezoelectric ceramic according to the embodiment of the present invention will be described. In this embodiment, first, powders made of a compound of Ba, Ca, Ti, Li, and Mn are respectively prepared, and the powder made of an Al compound is contained in an amount of 1.000 mol% or less (excluding 0) in terms of Al. Thus, a predetermined amount is weighed and mixed to obtain a starting material. The form of the powder of the starting material is not particularly limited, and the piezoelectric ceramic obtained through the steps described below is composed of a composition formula (Ba 1-x , Ca x ) j (Li y , Mn z , Ti 1-y ) O. 3 (2/3 + j / 3−y / 2−z / 3) (where 0.005 ≦ x <0.100, 0 <y ≦ 0.020, 0 ≦ z ≦ 0.003, 1.000 ≦ j With respect to the main component represented by .ltoreq.1.040), Al should be 1.000 mol% or less (not including 0) as a subcomponent, and is selected in consideration of ease of manufacture and storage, price, and the like. Is preferred. For example, barium carbonate (BaCO 3 ) powder, calcium carbonate (CaCO 3 ) powder, titanium dioxide (TiO 2 ) powder, lithium carbonate (Li 2 CO 3 ) powder, manganese carbonate (MnCO 3 ) powder, aluminum oxide (Al 2 O) 3 ) It is possible to use powder or the like.

Li、Alを含有することにより、還元雰囲気中における焼成時の圧電セラミックスの還元を防ぎ、絶縁抵抗率を1.000×10Ω・m以上とすることができる。 また、Mnは含有しなくともよいが、含有することで絶縁抵抗率をさらに向上させることができる。 By containing Li and Al, reduction of the piezoelectric ceramic during firing in a reducing atmosphere can be prevented, and the insulation resistivity can be 1.000 × 10 9 Ω · m or more. Moreover, although Mn does not need to contain, an insulation resistivity can further be improved by containing.

また、組成式(Ba1−x、Ca(Li、Mn、Ti1−y)O3(2/3+j/3−y/2−z/3)(ただし、0.005≦x<0.100、0<y≦0.020、0≦z≦0.003、1.000≦j≦1.040)で表される主成分に対して、副成分としてAlを1.000mol%以下(0を含まず)とする本実施の形態において、Li、Mn、Alを、上記の範囲とすることにより、以下の効果を奏する。すなわち、圧電歪定数d31を150pC/N以上、0℃以上50℃以下の温度範囲における圧電歪定数d31最大値を、前記圧電歪定数d31最小値の1.25倍以内とし、実使用環境における温度特性を良好にすることができる。 Further, the composition formula (Ba 1-x, Ca x ) j (Li y, Mn z, Ti 1-y) O 3 (2/3 + j / 3-y / 2-z / 3) ( however, 0.005 ≦ x <0.100, 0 <y ≦ 0.020, 0 ≦ z ≦ 0.003, 1.000 ≦ j ≦ 1.040), and 1.000 mol of Al as a subcomponent. In the present embodiment, which is set to not more than% (not including 0), the following effects can be obtained by setting Li, Mn, and Al in the above ranges. That is, the piezoelectric constant d 31 150 pC / N or more, the piezoelectric constant d 31 maximum in the temperature range of 0 ℃ above 50 ° C. or less, and within 1.25 times of the piezoelectric strain constant d 31 minimum, actual use The temperature characteristics in the environment can be improved.

組成式(Ba1−x、Ca(Li、Ti1−y−z)O3(2/3+j/3−y/2)(ただし、0.005≦x<0.100、0<y≦0.020、1.000≦j≦1.040)、または組成式(Ba1−x、Ca(Li、Mn、Ti1−y−z)O3(2/3+j/3−y/2−z/3)(ただし、0.005≦x<0.100、0<y≦0.020、0<z≦0.003、1.000≦j≦1.040)で表される主成分において、1.000≦j≦1.040としたのは、j<1.000の組成域では焼成過程で異常粒成長が生じ、均質なセラミックスが得られないためであり、一方でj>1.040の組成域では焼結性が低下するため圧電特性が劣化してしまうという問題があるためである。 Composition formula (Ba 1-x , Ca x ) j (Li y , Ti 1-yz ) O 3 (2/3 + j / 3−y / 2) (where 0.005 ≦ x <0.100, 0 <Y ≦ 0.020, 1.000 ≦ j ≦ 1.040), or composition formula (Ba 1-x , Ca x ) j (Li y , Mn z , Ti 1-yz ) O 3 (2 / 3 + j / 3−y / 2−z / 3) (0.005 ≦ x <0.100, 0 <y ≦ 0.020, 0 <z ≦ 0.003, 1.000 ≦ j ≦ 1.040) ) In the composition range of j <1.000, abnormal grain growth occurs during the firing process, and a homogeneous ceramic cannot be obtained. On the other hand, in the composition range where j> 1.040, there is a problem in that the piezoelectric properties deteriorate because the sinterability decreases. .

前述の出発原料を加圧成形し、酸素分圧が1×10−8Pa以上1×10−2Pa以下の還元雰囲気中で焼成することにより本発明の圧電セラミックスを得ることができる。 The piezoelectric ceramic of the present invention can be obtained by pressure-molding the above starting material and firing in a reducing atmosphere having an oxygen partial pressure of 1 × 10 −8 Pa to 1 × 10 −2 Pa.

上述の製法により作製した圧電セラミックスは、絶縁抵抗率が1.000×10Ω・m以上、圧電歪定数d31が150pC/N以上、0℃以上50℃以下の温度範囲における圧電歪定数d31最大値が、前記圧電歪定数d31最小値の1.25倍以内となる。 The piezoelectric ceramic produced by the above-described manufacturing method has a piezoelectric strain constant d in a temperature range of 1.000 × 10 9 Ω · m or more, a piezoelectric strain constant d 31 of 150 pC / N or more, and 0 ° C. or more and 50 ° C. or less. The maximum value of 31 is within 1.25 times the minimum value of the piezoelectric strain constant d 31 .

なお、本実施の形態の圧電セラミックスを圧電層として、内部電極を設けた内部電極層を交互に積層した積層型圧電素子としてもよく、本実施の形態の圧電セラミックスは還元雰囲気中で焼成できるため、NiまたはNi合金を含有する内部電極を用いることができる。   The piezoelectric ceramic according to the present embodiment may be a piezoelectric layer, and a laminated piezoelectric element in which internal electrode layers having internal electrodes are alternately stacked may be used. The piezoelectric ceramic according to the present embodiment can be fired in a reducing atmosphere. An internal electrode containing Ni or Ni alloy can be used.

(実施例1)
本発明の実施例1における圧電セラミックスは、以下の製造工程により作製した。まず、組成式(Ba1−x、Ca(Li、Mn、Ti1−y−z)O3(2/3+j/3−y/2−z/3)において、j=1とし、x、y、zの各配合比が表1、表2、表3となるように、炭酸バリウム(BaCO)粉末、炭酸カルシウム(CaCO)粉末、二酸化チタン(TiO)粉末、炭酸リチウム(LiCO)粉末、炭酸マンガン(MnCO)粉末をそれぞれ秤量し、エタノールを加え、ボールミルにより24時間の湿式混合を行った。
Example 1
The piezoelectric ceramic in Example 1 of the present invention was manufactured by the following manufacturing process. First, the composition formula (Ba 1-x, Ca x ) j (Li y, Mn z, Ti 1-y-z) O 3 in (2/3 + j / 3 -y / 2-z / 3), j = 1 And barium carbonate (BaCO 3 ) powder, calcium carbonate (CaCO 3 ) powder, titanium dioxide (TiO 2 ) powder, carbonic acid so that the mixing ratios of x, y, and z are as shown in Table 1, Table 2, and Table 3, respectively. Lithium (Li 2 CO 3 ) powder and manganese carbonate (MnCO 3 ) powder were weighed, ethanol was added, and wet mixing was performed for 24 hours with a ball mill.

得られた混合物を乾燥後、800℃〜1100℃で仮焼し、得られた仮焼粉末100molに、酸化アルミニウム(Al)粉末をamol、表1、表2、表3の配合比となるように添加し、エタノールを加え、ボールミルにより24時間の湿式混合を行ったものを出発原料とした。仮焼温度は、各出発原料の組成により調整し、好適な仮焼温度でそれぞれ仮焼した。 The obtained mixture was dried and calcined at 800 ° C. to 1100 ° C., and 100 mol of the obtained calcined powder was mixed with amol, aluminum oxide (Al 2 O 3 ) powder in a mixing ratio of Table 1, Table 2, Table 3. The starting material was obtained by adding ethanol and performing wet mixing for 24 hours with a ball mill. The calcining temperature was adjusted according to the composition of each starting material, and calcined at a suitable calcining temperature.

得られた出発原料を乾燥させた後、ポリビニルアルコールをバインダーとして混合して造粒し、圧力100MPaの一軸加圧成形により、直径20mm、厚さ5mmの形状に成形した。この成形体を酸素分圧が10−3Paの雰囲気中、1100℃〜1350℃で3時間焼成し、圧電セラミックスの円板状焼結体を作製した。焼成温度は、各出発原料の組成により調整し、好適な焼成温度によりそれぞれ焼成した。 After the obtained starting material was dried, it was granulated by mixing polyvinyl alcohol as a binder, and formed into a shape having a diameter of 20 mm and a thickness of 5 mm by uniaxial pressure molding with a pressure of 100 MPa. This compact was fired at 1100 ° C. to 1350 ° C. for 3 hours in an atmosphere having an oxygen partial pressure of 10 −3 Pa to produce a disk-shaped sintered body of piezoelectric ceramics. The firing temperature was adjusted according to the composition of each starting material, and fired at a suitable firing temperature.

前述の円板状焼結体をさらに1mmの厚さに加工して円板状試料を作製し、その両面に銀電極を焼き付け、80℃のシリコンオイル中で2kV/mmの直流電界を30分間印加することによって分極処理を行った。   The above disk-shaped sintered body is further processed to a thickness of 1 mm to prepare a disk-shaped sample, silver electrodes are baked on both sides thereof, and a direct electric field of 2 kV / mm is applied in silicon oil at 80 ° C for 30 minutes Polarization treatment was carried out by applying.

分極処理した前述の円板状試料を室温で24時間放置することによって圧電特性を安定化させた後、デジタルエレクトロメータを用いた直流2端子法により絶縁抵抗率を測定した。   The above-mentioned disk-shaped sample subjected to the polarization treatment was allowed to stand at room temperature for 24 hours to stabilize the piezoelectric characteristics, and then the insulation resistivity was measured by a direct current two-terminal method using a digital electrometer.

さらに前述の円板状試料を切断加工して長さ10mm、幅2mm、厚さ1mmの矩形状試料を作製し、1kV/mmの電界を印加したときの矩形状試料の歪み率から圧電歪定数d31を測定した。 Further, the above disk-shaped sample is cut to produce a rectangular sample having a length of 10 mm, a width of 2 mm, and a thickness of 1 mm, and the piezoelectric strain constant is determined from the strain rate of the rectangular sample when an electric field of 1 kV / mm is applied. It was measured d 31.

上述の方法により測定した25℃における圧電歪定数d31、0℃以上50℃以下の温度範囲における圧電d31定数の変化率(Δd31)、および絶縁抵抗率の値を表1、表2、表3に示す。なお、圧電歪定数d31、Δd31の欄に※が表示されている試料は、絶縁抵抗率が低いことから分極処理ができず、圧電d31定数が測定できなかった。 Tables 1 and 2 show values of piezoelectric strain constant d 31 at 25 ° C., change rate (Δd 31 ) of piezoelectric d 31 constant in a temperature range of 0 ° C. to 50 ° C., and insulation resistivity measured by the above method. Table 3 shows. Note that the samples with * in the columns of the piezoelectric strain constants d 31 and Δd 31 could not be subjected to polarization processing because of their low insulation resistivity, and the piezoelectric d 31 constant could not be measured.

Figure 2012254912
Figure 2012254912

Figure 2012254912
Figure 2012254912

Figure 2012254912
Figure 2012254912

表1、表2、表3に示すように、本発明の範囲内である実施例の各試料においては、絶縁抵抗率は1.000×10Ω・m以上、圧電歪定数d31は150pC/N以上、Δd31は25%以下(0℃以上50℃以下の温度範囲における圧電歪定数d31最大値が、前記圧電歪定数d31最小値の1.25倍以内)であった。比較例の各試料においては、いずれも絶縁抵抗率および圧電歪定数d31の値の同時に満足することができなかった。 As shown in Table 1, Table 2, and Table 3, in each sample of the examples within the scope of the present invention, the insulation resistivity is 1.000 × 10 9 Ω · m or more, and the piezoelectric strain constant d 31 is 150 pC. / N or more and Δd 31 was 25% or less (the maximum value of the piezoelectric strain constant d 31 in the temperature range of 0 ° C. or more and 50 ° C. or less was within 1.25 times the minimum value of the piezoelectric strain constant d 31 ). In each sample of the comparative example, none of the values of the insulation resistivity and the piezoelectric strain constant d 31 could be satisfied at the same time.

(実施例2)
本発明の実施例2における圧電セラミックスは、以下の製造工程により作製した。組成式(Ba1−x、Ca(Li、Mn、Ti1−y−z)O3(2/3+j/3−y/2−z/3)において、x=0.030、y=0.006、z=0.001とし、jの各配合比を、0.990〜1.050となるように、炭酸バリウム(BaCO)粉末、炭酸カルシウム(CaCO)粉末、二酸化チタン(TiO)粉末、炭酸リチウム(LiCO)粉末、炭酸マンガン(MnCO)粉末をそれぞれ秤量し、エタノールを加え、ボールミルにより24時間の湿式混合を行った。
(Example 2)
The piezoelectric ceramic in Example 2 of the present invention was manufactured by the following manufacturing process. The composition formula (Ba 1-x, Ca x ) j (Li y, Mn z, Ti 1-y-z) O 3 in (2/3 + j / 3 -y / 2-z / 3), x = 0.030 , Y = 0.006, z = 0.001, and the mixing ratio of j is 0.990 to 1.050, barium carbonate (BaCO 3 ) powder, calcium carbonate (CaCO 3 ) powder, dioxide dioxide Titanium (TiO 2 ) powder, lithium carbonate (Li 2 CO 3 ) powder, and manganese carbonate (MnCO 3 ) powder were weighed, ethanol was added, and wet mixing was performed for 24 hours with a ball mill.

得られた混合物を乾燥後、実施例1と同様に仮焼し、得られた仮焼粉末100molに、酸化アルミニウム(Al)粉末を0.300mol添加し、エタノールを加え、ボールミルにより24時間の湿式混合を行ったものを出発原料とした。 The obtained mixture was dried and calcined in the same manner as in Example 1. To 100 mol of the obtained calcined powder, 0.300 mol of aluminum oxide (Al 2 O 3 ) powder was added, ethanol was added, and the mixture was mixed with a ball mill. A material obtained by wet mixing for a time was used as a starting material.

得られた出発原料を乾燥させた後、実施例1で示したのと同様の方法で、成形、焼成し、圧電セラミックスの焼結体を作製後、焼結体表面について顕微鏡観察を行った。図1は、実施例2における焼結体表面の顕微鏡観察写真で、図1(a)は、j=0.990の場合、図1(b)は、j=1.000の場合、図1(c)は、j=1.040の場合である。   After the obtained starting material was dried, it was molded and fired in the same manner as shown in Example 1 to produce a piezoelectric ceramic sintered body, and then the surface of the sintered body was observed with a microscope. FIG. 1 is a microscopic photograph of the surface of the sintered body in Example 2. FIG. 1 (a) shows a case where j = 0.990, FIG. 1 (b) shows a case where j = 1.000. (C) is a case where j = 1.040.

図1に示すように、j≧1の領域においては粒径が均一な焼結体が得られるのに対して、j=0.990の試料では、局部的に粗大化した異常粒が生成し、均質な焼結体が得られなかった。   As shown in FIG. 1, in the region where j ≧ 1, a sintered body having a uniform particle size is obtained, whereas in the sample where j = 0.990, locally coarsened abnormal particles are generated. A homogeneous sintered body could not be obtained.

作製した焼結体について、実施例1と同様の方法で、絶縁抵抗率、圧電歪定数d31、およびΔd31を測定した。 With respect to the produced sintered body, the insulation resistivity, the piezoelectric strain constant d 31 , and Δd 31 were measured in the same manner as in Example 1.

上述の方法により測定した25℃における圧電歪定数d31、0℃以上50℃以下の温度範囲における圧電歪定数d31の変化率(Δd31)、および絶縁抵抗率の値を表4に示す。なお、j=0.990の試料は、均質な焼結体が得られなかったため、表4に測定値を示していない。 Table 4 shows the values of the piezoelectric strain constant d 31 at 25 ° C., the rate of change (Δd 31 ) of the piezoelectric strain constant d 31 in the temperature range from 0 ° C. to 50 ° C., and the insulation resistivity measured by the method described above. In addition, since a homogeneous sintered body was not obtained for the sample with j = 0.990, the measured values are not shown in Table 4.

Figure 2012254912
Figure 2012254912

表4に示すように、本発明の範囲内の各試料においては、絶縁抵抗率は1.000×10Ω・m以上、圧電歪定数d31は150pC/N以上、Δd31は25%以下(0℃以上50℃以下の温度範囲における圧電歪定数d31最大値が、前記圧電歪定数d31最小値の1.25倍以内)となった。比較例の各試料においては、いずれも絶縁抵抗率および圧電歪定数d31の値の同時に満足することができなかった。 As shown in Table 4, in each sample within the scope of the present invention, the insulation resistivity is 1.000 × 10 9 Ω · m or more, the piezoelectric strain constant d 31 is 150 pC / N or more, and Δd 31 is 25% or less. (The maximum value of the piezoelectric strain constant d 31 in the temperature range of 0 ° C. to 50 ° C. is within 1.25 times the minimum value of the piezoelectric strain constant d 31 ). In each sample of the comparative example, none of the values of the insulation resistivity and the piezoelectric strain constant d 31 could be satisfied at the same time.

以上説明したとおり、本発明によれば、圧電特性を保持するとともに、還元雰囲気中での焼成においても高い絶縁抵抗率を有する圧電セラミックスおよび積層型圧電素子を提供することが可能となった。   As described above, according to the present invention, it is possible to provide piezoelectric ceramics and multilayer piezoelectric elements that retain piezoelectric characteristics and have high insulation resistivity even in firing in a reducing atmosphere.

Claims (7)

組成式(Ba1−x、Ca(Li、Ti1−y)O3(2/3+j/3−y/2)(ただし、0.005≦x<0.100、0<y≦0.020、1.000≦j≦1.040)で表される主成分に対して、副成分としてAlを1.000mol%以下(0を含まず)、含有することを特徴とする圧電セラミックス。 Composition formula (Ba 1-x , Ca x ) j (Li y , Ti 1-y ) O 3 (2/3 + j / 3−y / 2) (where 0.005 ≦ x <0.100, 0 <y ≦ 0.020, 1.000 ≦ j ≦ 1.040) containing 1.000 mol% or less (not including 0) of Al as a secondary component Ceramics. 組成式(Ba1−x、Ca(Li、Mn、Ti1−y−z)O3(2/3+j/3−y/2−z/3)(ただし、0.005≦x<0.100、0<y≦0.020、0<z≦0.003、1.000≦j≦1.040)で表される主成分に対して、副成分としてAlを1.000mol%以下(0を含まず)、含有することを特徴とする圧電セラミックス。 The composition formula (Ba 1-x, Ca x ) j (Li y, Mn z, Ti 1-y-z) O 3 (2/3 + j / 3-y / 2-z / 3) ( however, 0.005 ≦ x <0.100, 0 <y ≦ 0.020, 0 <z ≦ 0.003, 1.000 ≦ j ≦ 1.040), and 1.000 mol of Al as a subcomponent. % Or less (excluding 0), containing the piezoelectric ceramic. 絶縁抵抗率が1.000×10Ω・m以上であることを特徴とする請求項1または請求項2に記載の圧電セラミックス。 3. The piezoelectric ceramic according to claim 1, wherein the insulation resistivity is 1.000 × 10 9 Ω · m or more. 圧電歪定数d31が150pC/N以上であることを特徴とする請求項1〜請求項3のいずれかに記載の圧電セラミックス。 The piezoelectric ceramic according to any one of claims 1 to 3 in which the piezoelectric strain constant d 31 is equal to or is 150 pC / N or more. 0℃以上50℃以下の温度範囲における圧電歪定数d31最大値が、前記圧電歪定数d31最小値の1.25倍以内であることを特徴とする請求項1〜請求項4のいずれか一項に記載の圧電セラミックス。 5. The maximum value of the piezoelectric strain constant d 31 in a temperature range of 0 ° C. or more and 50 ° C. or less is within 1.25 times the minimum value of the piezoelectric strain constant d 31 . The piezoelectric ceramic according to one item. 酸素分圧が1×10−8Pa以上1×10−2Pa以下の雰囲気中で焼成したことを特徴とする請求項1〜請求項5のいずれか一項に記載の圧電セラミックス。 6. The piezoelectric ceramic according to claim 1, which is fired in an atmosphere having an oxygen partial pressure of 1 × 10 −8 Pa or more and 1 × 10 −2 Pa or less. 請求項1〜請求項6のいずれか一項に記載の圧電セラミックスからなる圧電層と、NiまたはNi合金よりなる内部電極層が交互に積層されていることを特徴とする積層型圧電素子。   A multilayer piezoelectric element, wherein piezoelectric layers made of the piezoelectric ceramic according to claim 1 and internal electrode layers made of Ni or Ni alloy are alternately laminated.
JP2011270761A 2011-05-19 2011-12-12 Piezoelectric ceramics and multilayer piezoelectric elements Active JP6034017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270761A JP6034017B2 (en) 2011-05-19 2011-12-12 Piezoelectric ceramics and multilayer piezoelectric elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011112663 2011-05-19
JP2011112663 2011-05-19
JP2011270761A JP6034017B2 (en) 2011-05-19 2011-12-12 Piezoelectric ceramics and multilayer piezoelectric elements

Publications (2)

Publication Number Publication Date
JP2012254912A true JP2012254912A (en) 2012-12-27
JP6034017B2 JP6034017B2 (en) 2016-11-30

Family

ID=47526869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270761A Active JP6034017B2 (en) 2011-05-19 2011-12-12 Piezoelectric ceramics and multilayer piezoelectric elements

Country Status (1)

Country Link
JP (1) JP6034017B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172799A (en) * 2013-03-11 2014-09-22 Ricoh Co Ltd Piezoelectric material, manufacturing method of piezoelectric material, piezoelectric actuator, manufacturing method of piezoelectric actuator
CN113451496A (en) * 2020-03-27 2021-09-28 太阳诱电株式会社 Piezoelectric element and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128460A (en) * 2001-10-23 2003-05-08 Murata Mfg Co Ltd Piezoelectric ceramics, piezoelectric element and laminated piezoelectric element
JP2004043210A (en) * 2002-07-09 2004-02-12 Nec Tokin Corp Piezoelectric porcelain formulation
JP2007055835A (en) * 2005-08-23 2007-03-08 Tdk Corp Dielectric ceramic composition and electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128460A (en) * 2001-10-23 2003-05-08 Murata Mfg Co Ltd Piezoelectric ceramics, piezoelectric element and laminated piezoelectric element
JP2004043210A (en) * 2002-07-09 2004-02-12 Nec Tokin Corp Piezoelectric porcelain formulation
JP2007055835A (en) * 2005-08-23 2007-03-08 Tdk Corp Dielectric ceramic composition and electronic component

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015030038; Yahong Xie et al.: 'Sintering and dielectric properties of BaTiO3 prepared by a composite-hydroxide-mediated approach' Materials Research Bulletin Volume 45, Issue 10, 2010, Pages 1345-1350 *
JPN6015030040; K Aliouane et al.: 'New oxyfluoride lead-free ferroelectric relaxors in the BaTiO3--BaZrO3--CaLiF3 system' Journal of Fluorine Chemistry Volume 105, Issue 1, 2000, Pages 71--76 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172799A (en) * 2013-03-11 2014-09-22 Ricoh Co Ltd Piezoelectric material, manufacturing method of piezoelectric material, piezoelectric actuator, manufacturing method of piezoelectric actuator
CN113451496A (en) * 2020-03-27 2021-09-28 太阳诱电株式会社 Piezoelectric element and method for manufacturing the same

Also Published As

Publication number Publication date
JP6034017B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
JP5710077B2 (en) Method for manufacturing piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
TW200839814A (en) Dielectric ceramic composition and electronic device
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP2011011963A (en) Ceramic material and capacitor
JP2016108231A (en) Dielectric ceramic composition and multilayer ceramic capacitor containing the same
US20120112607A1 (en) Ceramic composition for piezoelectric actuator and piezoelectric actuator including the same
JP6175528B2 (en) Piezoelectric device
JP6034017B2 (en) Piezoelectric ceramics and multilayer piezoelectric elements
JP2016098169A (en) Dielectric porcelain composition and electronic element using the same
JP2005154238A (en) Manufacturing method of piezoelectric porcelain composition
JP2015222780A (en) Piezoelectric ceramic, method for manufacturing the same, and piezoelectric material device
WO2012114938A1 (en) Alkaline niobate piezoelectric material and production method for alkaline niobate piezoelectric material
JP2021054686A (en) Dielectric composition and electronic component
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP2004104093A (en) Method for manufacturing negative characteristic thermistor
WO2011002021A1 (en) Semiconductor ceramic and positive-coefficient thermistor
JP5995096B2 (en) Metal oxide material for thermistor, method for producing the same, and thermistor element
JP2011157252A (en) Piezoelectric ceramic and method for producing the same
US11812665B1 (en) Hard piezoelectric ceramic composition for multilayer piezoelectric transformers
JP2009286662A (en) Piezoelectric ceramic, piezoelectric element and lamination type piezoelectric element
KR20150037483A (en) Piezoelectric ceramics, piezoelectric ceramics composition and piezoelectric element
JP6076058B2 (en) Piezoelectric material and method for manufacturing piezoelectric material
JP2003277142A (en) Piezoelectric ceramics and piezoelectric actuator
JP2006169020A (en) Method of manufacturing dielectric ceramic composition and ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150729

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161027

R150 Certificate of patent or registration of utility model

Ref document number: 6034017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250