JP2012252799A - Electrolytic solution, gel electrolyte and lithium ion secondary battery - Google Patents

Electrolytic solution, gel electrolyte and lithium ion secondary battery Download PDF

Info

Publication number
JP2012252799A
JP2012252799A JP2011122452A JP2011122452A JP2012252799A JP 2012252799 A JP2012252799 A JP 2012252799A JP 2011122452 A JP2011122452 A JP 2011122452A JP 2011122452 A JP2011122452 A JP 2011122452A JP 2012252799 A JP2012252799 A JP 2012252799A
Authority
JP
Japan
Prior art keywords
lithium
electrolytic solution
lithium salt
boron
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011122452A
Other languages
Japanese (ja)
Other versions
JP5592836B2 (en
Inventor
Kenichi Shinmyo
健一 新明
Masashi Kano
正史 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011122452A priority Critical patent/JP5592836B2/en
Publication of JP2012252799A publication Critical patent/JP2012252799A/en
Application granted granted Critical
Publication of JP5592836B2 publication Critical patent/JP5592836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic solution which can be used in a secondary battery while containing lactones, e.g. γ-butyrolactone, γ-valerolactone, and/or cyclic carbonates having a branch chain, e.g. propylene carbonate, butylene carbonate, and has excellent cycle life characteristics, and to provide a gel electrolyte using the electrolytic solution, and a lithium ion secondary battery using the electrolytic solution or the gel electrolyte.SOLUTION: <1>In the electrolytic solution, an organic lithium salt or an inorganic lithium salt containing (C) chlorine, fluorine or boron, (A) a lithium salt of organic acid and (B) a boron compound not corresponding to the organic lithium salt are compounded with a nonaqueous solvent containing the lactones and/or the cyclic carbonates having a branch chain.<2>In the electrolytic solution, (A) the lithium salt of organic acid contains one kind or more selected from a group consisting of lithium salts of 1-6C aliphatic carboxylic acid and 7-8C aromatic carboxylic acid.

Description

本発明は、電解液、該電解液を用いたゲル電解質、及び該電解液又はゲル電解質を用いたリチウムイオン二次電池に関する。   The present invention relates to an electrolytic solution, a gel electrolyte using the electrolytic solution, and a lithium ion secondary battery using the electrolytic solution or gel electrolyte.

リチウムイオン二次電池は、鉛蓄電池やニッケル水素電池に比べて、エネルギー密度及び起電力が高いという特徴を有するため、小型化及び軽量化が要求される携帯電話やノートパソコン等の電源として広く使用されている。
一般に、従来のリチウムイオン二次電池の多くは、負極、正極ならびにその両極の短絡を防止するセパレータから構成されており、前記セパレータに電解液が保持されている。当該電解液として、塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩を非水溶媒に溶解させたものが従来使用されている。
Lithium-ion secondary batteries are characterized by higher energy density and electromotive force than lead-acid batteries and nickel metal hydride batteries, so they are widely used as power sources for mobile phones and laptop computers that require miniaturization and weight reduction. Has been.
In general, many of the conventional lithium ion secondary batteries are composed of a negative electrode, a positive electrode, and a separator that prevents a short circuit between both electrodes, and an electrolyte is held in the separator. As the electrolytic solution, a solution in which an organic lithium salt or an inorganic lithium salt containing chlorine, fluorine, or boron is dissolved in a non-aqueous solvent is conventionally used.

従来のリチウムイオン二次電池の負極としては、金属リチウム、リチウム合金、リチウムを吸蔵及び放出し得る炭素系材料、金属酸化物等が使用される。また、従来のリチウムイオン二次電池の正極としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、オリビン型リン酸鉄リチウム等の遷移金属酸化物が使用される。
従来のリチウムイオン二次電池の電解液としては、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、メチルカーボネート、エチルメチルカーボネート、エチルカーボネート等の各種非水溶媒に、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)、過塩素酸リチウム(LiClO)、三フッ化メタンスルホン酸リチウム(LiCFSO)、六フッ化アンチモン酸リチウム(LiSbF)、六フッ化ヒ素酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)等の塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩を溶解させた非水系電解液が使用されている(例えば、特許文献1、特許文献2参照)。
As a negative electrode of a conventional lithium ion secondary battery, metallic lithium, a lithium alloy, a carbon-based material capable of inserting and extracting lithium, a metal oxide, and the like are used. In addition, transition metal oxides such as lithium cobaltate, lithium nickelate, lithium manganate, and olivine type lithium iron phosphate are used as the positive electrode of the conventional lithium ion secondary battery.
As an electrolytic solution of a conventional lithium ion secondary battery, lithium hexafluorophosphate (LiPF 6 ) is used in various nonaqueous solvents such as ethylene carbonate, propylene carbonate, γ-butyrolactone, methyl carbonate, ethyl methyl carbonate, and ethyl carbonate. , Lithium boron tetrafluoride (LiBF 4 ), bis (trifluoromethylsulfonyl) imide lithium (LiN (SO 2 CF 3 ) 2 ), lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3) SO 3), lithium hexafluoro antimonate (LiSbF 6), hexafluoroarsenate arsenate periodate lithium (LiAsF 6), lithium tetraphenylborate (LiB (C 6 H 5) containing chlorine, such as 4), the fluorine or boron , Organic lithium salt or inorganic lithium salt A dissolved nonaqueous electrolytic solution is used (see, for example, Patent Document 1 and Patent Document 2).

リチウムイオン二次電池に使用される非水溶媒は、リチウム塩を電離させる程度に誘電率が高いこと、少なくとも−30〜60℃の広い温度領域で使用可能であることが求められる。この要求を満たすために、環状カーボネート(環状炭酸エステル)であるエチレンカーボネートと、粘度の低いジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の環構造を有さない鎖状カーボネート(鎖状炭酸エステル)とを混合した非水系溶媒が、一般に広く用いられている。しかし、エチレンカーボネートを混合した電解液は、低温において、粘性が高くなってイオン伝導度が低くなる問題、エチレンカーボネートやリチウム塩が析出してしまう問題があった。これらの問題は、エチレンカーボネートの融点が30℃以上であることが原因の一つである。これらの問題を解決する従来方法として、プロピレンカーボネート、ブチレンカーボネートなどの分岐鎖を有する環状カーボネート類(環状炭酸エステル類)や、γ−ブチロラクトン、γ−バレロラクトンなどのラクトン類を用いた非水溶媒の使用が知られている(特許文献1,2)。   The nonaqueous solvent used for the lithium ion secondary battery is required to have a dielectric constant high enough to ionize the lithium salt and to be usable in a wide temperature range of at least −30 to 60 ° C. In order to satisfy this requirement, ethylene carbonate, which is a cyclic carbonate (cyclic carbonate), and a chain carbonate (chain carbonate) having no ring structure such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate having a low viscosity, In general, a non-aqueous solvent mixed with is widely used. However, the electrolyte mixed with ethylene carbonate has a problem that viscosity becomes high and ion conductivity is lowered at low temperature, and ethylene carbonate and lithium salt are precipitated. These problems are caused by the fact that the melting point of ethylene carbonate is 30 ° C. or higher. As conventional methods for solving these problems, non-aqueous solvents using branched carbonates (cyclic carbonates) such as propylene carbonate and butylene carbonate, and lactones such as γ-butyrolactone and γ-valerolactone Is known (Patent Documents 1 and 2).

特許第3369583号公報Japanese Patent No. 3369583 特許第4407205号公報Japanese Patent No. 4407205

従来のリチウムイオン二次電池の負極において、負極活物質として黒鉛や非晶質炭素等の炭素材料が使用されている場合、電解液に含まれるプロピレンカーボネートやブチレンカーボネートが、充電の際に当該炭素材料に対して共挿入されて更に還元分解される。その結果、当該炭素材料の層状構造が破壊されるので、当該負極表面上に良好な固体電解質様の界面被膜(以下、SEIという。)が形成されず、二次電池として機能し難いという問題がある。
また、当該電解液にγ−ブチロラクトンやγ−バレロラクトンが含まれる場合においても、これらが充電時に還元分解するため、良好なSEIの形成が妨げられ、二次電池として機能し難いという問題がある。このような問題があるにも関わらず、当該電解液を二次電池に使用して繰り返し充電を行った場合、すぐに電池の容量が著しく低下してしまう問題、すなわちサイクル寿命特性が悪いという問題がある。
In a negative electrode of a conventional lithium ion secondary battery, when a carbon material such as graphite or amorphous carbon is used as a negative electrode active material, propylene carbonate or butylene carbonate contained in the electrolyte solution is charged with the carbon during charging. Co-inserted into the material and further reduced and decomposed. As a result, since the layered structure of the carbon material is destroyed, a good solid electrolyte-like interface coating (hereinafter referred to as SEI) is not formed on the negative electrode surface, and it is difficult to function as a secondary battery. is there.
In addition, even when γ-butyrolactone or γ-valerolactone is contained in the electrolytic solution, since these undergo reductive decomposition during charging, there is a problem that formation of good SEI is hindered and it is difficult to function as a secondary battery. . In spite of such problems, when the electrolyte is used repeatedly for a secondary battery and repeatedly charged, the capacity of the battery is quickly reduced, that is, the cycle life characteristics are poor. There is.

本発明は上記事情に鑑みてなされたものであり、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類及び/又はプロピレンカーボネート、ブチレンカーボネート等の分岐鎖を有する環状カーボネート類を含みながらも、二次電池に使用可能であり且つサイクル寿命特性が優れる電解液、該電解液を用いたゲル電解質、及び該電解液若しくは該ゲル電解質を用いたリチウムイオン二次電池の提供を課題とする。   The present invention has been made in view of the above circumstances, and includes lactones such as γ-butyrolactone and γ-valerolactone and / or cyclic carbonates having a branched chain such as propylene carbonate and butylene carbonate. It is an object of the present invention to provide an electrolytic solution that can be used for a battery and has excellent cycle life characteristics, a gel electrolyte using the electrolytic solution, and a lithium ion secondary battery using the electrolytic solution or the gel electrolyte.

本発明の請求項1に記載の電解液は、(C)塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩、前記有機リチウム塩に該当しない(A)有機酸のリチウム塩及び(B)ホウ素化合物が、ラクトン類及び/又は分岐鎖を有する環状カーボネート類を含む非水溶媒に配合されてなることを特徴とする。
本発明の請求項2に記載の電解液は、請求項1において、前記(A)有機酸のリチウム塩が、炭素数1〜6の脂肪族カルボン酸及び炭素数7〜8の芳香族カルボン酸のリチウム塩からなる群から選択される1種以上含むことを特徴とする。
本発明の請求項3に記載の電解液は、請求項1又は2において、前記(A)有機酸のリチウム塩が、ギ酸リチウム、酢酸リチウム、プロピオン酸リチウム、酪酸リチウム、イソ酪酸リチウム、シュウ酸リチウム、マロン酸リチウム、コハク酸リチウム、グルタル酸リチウム、アジピン酸リチウム、マレイン酸リチウム、フマル酸リチウム、フタル酸リチウム及び安息香酸リチウムからなる群から選択される1種以上であることを特徴とする。
本発明の請求項4に記載の電解液は、請求項1〜3のいずれか一項において、前記(C)塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩の配合量:前記(A)有機酸のリチウム塩の配合量が99:1〜50:50(モル比)であることを特徴とする。
本発明の請求項5に記載の電解液は、請求項1〜4のいずれか一項において、前記(B)ホウ素化合物が、ハロゲン化ホウ素及び/又はハロゲン化ホウ素錯体であることを特徴とする。
本発明の請求項6に記載の電解液は、請求項1〜5のいずれか一項において、前記(B)ホウ素化合物が、三フッ化ホウ素及び/又は三フッ化ホウ素錯体であることを特徴とする。
本発明の請求項7に記載の電解液は、請求項1〜6のいずれか一項において、前記(B)ホウ素化合物が、三フッ化ホウ素、三フッ化ホウ素ジメチルエーテル錯体、三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素ジn−ブチルエーテル錯体、三フッ化ホウ素ジtert−ブチルエーテル錯体、三フッ化ホウ素tert−ブチルメチルエーテル錯体、三フッ化ホウ素テトラヒドロフラン錯体、三フッ化ホウ素メタノール錯体、三フッ化ホウ素プロパノール錯体、及び三フッ化ホウ素フェノール錯体からなる群から選択される1種以上であることを特徴とする。
本発明の請求項8に記載の電解液は、請求項1〜7のいずれか一項において、(C)塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩が、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)、三フッ化メタンスルホン酸リチウム(LiCFSO)、六フッ化アンチモン酸リチウム(LiSbF)、六フッ化ヒ素酸リチウム(LiAsF)、及びテトラフェニルホウ酸リチウム(LiB(C)からなる群から選択される1種以上であることを特徴とする。
本発明の請求項9に記載の電解液は、請求項1〜8のいずれか一項において、前記分岐鎖を有する環状カーボネート類が、プロピレンカーボネート又はブチレンカーボネートであることを特徴とする。
本発明の請求項10に記載の電解液は、請求項1〜9のいずれか一項において、前記ラクトン類がγ−ブチロラクトン又はγ−バレロラクトンであることを特徴とする。
本発明の請求項11に記載の電解液は、請求項1〜10のいずれか一項において、さらに、分岐鎖を有さない環状カーボネート類、鎖状カーボネート類、エーテル類、カルボン酸エステル類、ニトリル類、アミド類及びスルホン類からなる群から選択される1種以上が配合されてなることを特徴とする。
本発明の請求項12に記載のゲル電解質は、請求項1〜11のいずれか一項に記載の電解液に、さらに(D)マトリクスポリマーが配合されてなることを特徴とする。
本発明の請求項13に記載のリチウムイオン二次電池は、請求項1〜11のいずれか一項に記載の電解液又は請求項12に記載のゲル電解質を用いたことを特徴とする。
The electrolytic solution according to claim 1 of the present invention includes (C) an organic lithium salt or an inorganic lithium salt containing chlorine, fluorine or boron, (A) a lithium salt of an organic acid not corresponding to the organic lithium salt, and (B ) A boron compound is blended in a non-aqueous solvent containing a lactone and / or a cyclic carbonate having a branched chain.
The electrolyte solution according to claim 2 of the present invention is the electrolyte solution according to claim 1, wherein the lithium salt of the organic acid (A) is an aliphatic carboxylic acid having 1 to 6 carbon atoms and an aromatic carboxylic acid having 7 to 8 carbon atoms. It contains 1 or more types selected from the group which consists of these lithium salt.
The electrolyte solution according to claim 3 of the present invention is the electrolyte solution according to claim 1 or 2, wherein the lithium salt of the organic acid (A) is lithium formate, lithium acetate, lithium propionate, lithium butyrate, lithium isobutyrate, or oxalic acid. It is one or more selected from the group consisting of lithium, lithium malonate, lithium succinate, lithium glutarate, lithium adipate, lithium maleate, lithium fumarate, lithium phthalate and lithium benzoate .
The electrolyte solution according to a fourth aspect of the present invention is the electrolyte solution according to any one of the first to third aspects, wherein the amount of the (C) organic lithium salt or inorganic lithium salt containing chlorine, fluorine, or boron: A) The amount of the organic acid lithium salt is 99: 1 to 50:50 (molar ratio).
The electrolyte solution according to claim 5 of the present invention is characterized in that, in any one of claims 1 to 4, the (B) boron compound is a boron halide and / or a boron halide complex. .
The electrolyte solution according to claim 6 of the present invention is the electrolyte solution according to any one of claims 1 to 5, wherein the boron compound (B) is boron trifluoride and / or boron trifluoride complex. And
The electrolyte solution according to claim 7 of the present invention is the electrolyte solution according to any one of claims 1 to 6, wherein the boron compound (B) is boron trifluoride, boron trifluoride dimethyl ether complex, or boron trifluoride diethyl. Ether complex, boron trifluoride di n-butyl ether complex, boron trifluoride di tert-butyl ether complex, boron trifluoride tert-butyl methyl ether complex, boron trifluoride tetrahydrofuran complex, boron trifluoride methanol complex, trifluoride It is one or more selected from the group consisting of a boron fluoride propanol complex and a boron trifluoride phenol complex.
The electrolyte solution according to claim 8 of the present invention is the electrolyte solution according to any one of claims 1 to 7, wherein (C) an organic lithium salt or an inorganic lithium salt containing chlorine, fluorine, or boron is hexafluorophosphoric acid. Lithium (LiPF 6 ), lithium boron tetrafluoride (LiBF 4 ), lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluoro antimonate (LiSbF 6), is hexafluoro arsenate periodate lithium (LiAsF 6), and lithium tetraphenylborate (LiB (C 6 H 5) 4) 1 or more selected from the group consisting of It is characterized by that.
The electrolyte solution according to claim 9 of the present invention is characterized in that, in any one of claims 1 to 8, the cyclic carbonate having a branched chain is propylene carbonate or butylene carbonate.
The electrolyte solution according to claim 10 of the present invention is characterized in that, in any one of claims 1 to 9, the lactone is γ-butyrolactone or γ-valerolactone.
The electrolyte solution according to an eleventh aspect of the present invention is the electrolyte solution according to any one of the first to tenth aspects, further comprising cyclic carbonates having no branched chain, chain carbonates, ethers, carboxylic acid esters, One or more selected from the group consisting of nitriles, amides and sulfones are blended.
The gel electrolyte according to a twelfth aspect of the present invention is characterized in that (D) a matrix polymer is further blended with the electrolytic solution according to any one of the first to eleventh aspects.
The lithium ion secondary battery according to claim 13 of the present invention is characterized by using the electrolytic solution according to any one of claims 1 to 11 or the gel electrolyte according to claim 12.

本発明の電解液によれば、有機リチウム塩若しくは無機リチウム塩及び前記有機リチウム塩に該当しない有機酸のリチウム塩並びにホウ素化合物を組み合わせて含むことによって優れたサイクル寿命特性を示すリチウムイオン二次電池が得られる。また、本発明の電解液中に、低温における粘性の増加やリチウム塩の析出を防止するための、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類及び/又はプロピレンカーボネート、ブチレンカーボネート等の分岐鎖を有する環状カーボネート類が含まれているので、広い温度範囲で当該電解液を使用することができ、且つ、当該電解液中に有機リチウム塩若しくは無機リチウム塩及び有機酸のリチウム塩並びにホウ素化合物が配合されているので、優れたサイクル寿命特性を有するリチウムイオン二次電池が得られる。
本発明のゲル電解質によれば、優れたサイクル寿命特性を有するリチウムイオン二次電池が得られ、当該リチウムイオン二次電池から電解液が漏出する虞を低減することができる。
本発明のリチウムイオン二次電池は、優れたサイクル寿命特性を有するので、繰り返し充放電を行った場合でも十分な容量を維持できる。また、電解液若しくはゲル電解質中にラクトン類及び/又は分岐鎖を有する環状カーボネート類を含むので、無機リチウム塩、有機リチウム塩及び有機酸のリチウム塩が充分に電離する。このため本発明にかかる電解液若しくはゲル電解質を用いたリチウムイオン二次電池は優れた電池特性を有し、且つ広い温度領域で使用できる。
According to the electrolytic solution of the present invention, a lithium ion secondary battery exhibiting excellent cycle life characteristics by including a combination of an organic lithium salt or an inorganic lithium salt and a lithium salt of an organic acid not corresponding to the organic lithium salt and a boron compound. Is obtained. Further, in the electrolyte solution of the present invention, lactones such as γ-butyrolactone and γ-valerolactone and / or branched chains such as propylene carbonate and butylene carbonate are used to prevent increase in viscosity at low temperature and precipitation of lithium salt. In the electrolyte solution, an organic lithium salt or an inorganic lithium salt and an organic acid lithium salt and a boron compound can be used in a wide temperature range. Since it is blended, a lithium ion secondary battery having excellent cycle life characteristics can be obtained.
According to the gel electrolyte of the present invention, a lithium ion secondary battery having excellent cycle life characteristics can be obtained, and the risk of electrolyte leakage from the lithium ion secondary battery can be reduced.
Since the lithium ion secondary battery of the present invention has excellent cycle life characteristics, a sufficient capacity can be maintained even when repeated charging and discharging are performed. In addition, since the electrolyte solution or gel electrolyte contains lactones and / or cyclic carbonates having a branched chain, inorganic lithium salts, organic lithium salts, and lithium salts of organic acids are sufficiently ionized. For this reason, the lithium ion secondary battery using the electrolytic solution or gel electrolyte according to the present invention has excellent battery characteristics and can be used in a wide temperature range.

<<電解液>>
本発明の電解液は(C)塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩、前記有機リチウム塩に該当しない(A)有機酸のリチウム塩及び(B)ホウ素化合物が、分岐鎖を有する環状カーボネート類及び/又はラクトン類を含む非水溶媒に配合されてなるものである。
例えば(C)有機リチウム塩又は無機リチウム塩を非水溶媒に溶解させた電解液に(A)有機酸のリチウム塩及び(B)ホウ素化合物を添加することにより、本発明の電解液を得ることができる。前記非水溶媒が、例えばプロピレンカーボネート、ブチレンカーボネート等の分岐鎖を有する環状カーボネート類、及びγ−ブチロラクトン、γ−バレロラクトン等のラクトン類からなる群から選択される一種以上からなる電解液、又は前記一種以上を含有する電解液を用いたリチウムイオン二次電池は、サイクル寿命特性が優れる。
<< Electrolyte >>
The electrolytic solution of the present invention comprises (C) an organic lithium salt or inorganic lithium salt containing chlorine, fluorine or boron, (A) a lithium salt of an organic acid not corresponding to the organic lithium salt, and (B) a boron compound. It is blended in a non-aqueous solvent containing cyclic carbonates and / or lactones.
For example, the electrolyte solution of the present invention is obtained by adding (A) a lithium salt of an organic acid and (B) a boron compound to an electrolyte solution in which (C) an organic lithium salt or an inorganic lithium salt is dissolved in a nonaqueous solvent. Can do. The non-aqueous solvent is, for example, an electrolyte solution composed of one or more selected from the group consisting of cyclic carbonates having a branched chain such as propylene carbonate and butylene carbonate, and lactones such as γ-butyrolactone and γ-valerolactone, or A lithium ion secondary battery using an electrolyte containing one or more of the above has excellent cycle life characteristics.

<(C)有機リチウム塩又は無機リチウム塩>
本発明における(C)塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩は、非水溶媒中に溶解するものであれば特に限定されず、好ましいものとしては、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化アンチモン酸リチウム(LiSbF)、六フッ化ヒ素酸リチウム(LiAsF)、六フッ化タンタル酸リチウム(LiTaF)、六フッ化ニオブ酸リチウム(LiNbF)、テトラフェニルホウ酸リチウム(LiB(C)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)、ビス(ペンタフルオロエチルスルホニル)イミドリチウム(LiN(SO)、三フッ化メタンスルホン酸リチウム(LiCFSO)等が例示できる。
前記有機リチウム塩は、カルボン酸のリチウム塩以外の有機リチウム塩であることが好ましい。
前記有機リチウム塩又は無機リチウム塩は、LiPF、LiBF、又はLiN(SOCFであることが更に好ましい。
<(C) Organic lithium salt or inorganic lithium salt>
The organic lithium salt or inorganic lithium salt containing (C) chlorine, fluorine or boron in the present invention is not particularly limited as long as it is soluble in a non-aqueous solvent, and preferred is lithium hexafluorophosphate. (LiPF 6), boron tetrafluoride lithium (LiBF 4), lithium perchlorate (LiClO 4), lithium hexafluoro antimonate (LiSbF 6), hexafluoroarsenate arsenate periodate lithium (LiAsF 6), hexafluoride tantalum lithium acid (LiTaF 6), lithium hexafluoro niobate (LiNbF 6), lithium tetraphenylborate (LiB (C 6 H 5) 4), bis (fluorosulfonyl) imide lithium (LiN (FSO 2) 2), bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3) 2), bis Pentafluoroethyl) imide (LiN (SO 2 C 3 F 5) 2), trifluoromethane sulfonic lithium (LiCF 3 SO 3) or the like can be exemplified.
The organic lithium salt is preferably an organic lithium salt other than the lithium salt of carboxylic acid.
More preferably, the organic lithium salt or inorganic lithium salt is LiPF 6 , LiBF 4 , or LiN (SO 2 CF 3 ) 2 .

前記有機リチウム塩又は無機リチウム塩は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。前記有機リチウム塩又は無機リチウム塩の配合量は特に限定されず、例えば、前記有機リチウム塩又は無機リチウム塩や非水溶媒の種類に応じて適宜調節すれば良い。通常は、[有機リチウム塩又は無機リチウム塩の配合量(モル数)]/[配合された物質の総重量]の質量モル濃度が0.2以上であることが好ましく、0.5以上であることがより好ましい。このような範囲とすることで、電解液のイオン伝導度が一層向上する。また、前記質量モル濃度の上限値は本発明の効果を妨げない限り特に限定されないが、3.0であることが好ましく、2.0であることがより好ましい。   The said organic lithium salt or inorganic lithium salt may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose. The compounding quantity of the said organic lithium salt or inorganic lithium salt is not specifically limited, For example, what is necessary is just to adjust suitably according to the kind of the said organic lithium salt or inorganic lithium salt, and a nonaqueous solvent. Usually, it is preferable that the molar concentration of [the amount of the organic lithium salt or inorganic lithium salt (number of moles)] / [total weight of the compounded material] is 0.2 or more, preferably 0.5 or more. It is more preferable. By setting it as such a range, the ionic conductivity of electrolyte solution improves further. The upper limit of the molar concentration is not particularly limited as long as the effect of the present invention is not hindered, but is preferably 3.0, more preferably 2.0.

<非水溶媒>
本発明における非水溶媒とは、水以外の溶媒を意味し、好適には有機溶媒である。前記非水溶媒の好適な具体例としては、前記非水溶媒は、プロピレンカーボネート、ブチレンカーボネート等の分岐鎖を有する環状カーボネート類(分岐鎖を有する環状炭酸エステル類)、及びγ−ブチロラクトン、γ−バレロラクトン等のラクトン類から選択される一種以上を含むもの又は前記一種以上からなるものである。
<Nonaqueous solvent>
The nonaqueous solvent in the present invention means a solvent other than water, and is preferably an organic solvent. As a preferable specific example of the non-aqueous solvent, the non-aqueous solvent includes a cyclic carbonate having a branched chain such as propylene carbonate and butylene carbonate (cyclic carbonate having a branched chain), γ-butyrolactone, γ- It contains one or more selected from lactones such as valerolactone, or consists of one or more of the above.

前記非水溶媒は、必要に応じて、エチレンカーボネート、フルオロエチレンカーボネート、1,2−ジフルオロエチレンカーボネート等の分岐鎖を有さない環状カーボネート類、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の環状構造を有さない鎖状カーボネート類、テトラヒドロフラン、1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチルー1,3−ジオキソラン等のエーテル類、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチルなどのカルボン酸エステル類、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル等のニトリル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類及びスルホラン、ジメチルスルホキシド等のスルホン類からなる群から選択される一種以上が含まれていても良い。   The non-aqueous solvent, if necessary, cyclic carbonates such as ethylene carbonate, fluoroethylene carbonate, 1,2-difluoroethylene carbonate and the like having no branched chain, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc. Chain carbonates not containing benzene, tetrahydrofuran, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, 1,3-dioxolane, ethers such as 4-methyl-1,3-dioxolane, methyl formate, ethyl formate, propyl formate , Carboxylic acid esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, methyl butyrate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropioni Nitriles Lil etc., N, N-dimethylformamide, N, N-amides of dimethylacetamide and sulfolane, may contain one or more kinds selected from the group consisting of sulfones such as dimethyl sulfoxide.

前記分岐鎖を有する環状カーボネート類として、以下の一般式(I)で表される化合物が挙げられる。   Examples of the cyclic carbonates having a branched chain include compounds represented by the following general formula (I).

Figure 2012252799
Figure 2012252799

一般式(I)中、R1、R2、R3及びR4は互いに独立して、水素原子、炭素数1〜10の直鎖若しくは分岐鎖状のアルキル基、又は炭素数1〜10のシクロアルキル基を表し、R1、R2、R3及びR4のうち、何れか一つ以上は水素原子以外の前記アルキル基若しくは前記シクロアルキル基である。前記アルキル基同士の末端が結合して環を形成していてもよい。
例えば、R1がエチル基であり且つR2、R3及びR4が水素原子である場合、当該分岐鎖状カーボネートは1,2−ブチレンカーボネートである。また、例えばR1及びR4がメチル基であり且つR2及びR3が水素原子である場合、当該分岐鎖状カーボネートは2,3−ブチレンカーボネートである。
In general formula (I), R 1 , R 2 , R 3 and R 4 are independently of each other a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a group having 1 to 10 carbon atoms. Represents a cycloalkyl group, and any one or more of R 1 , R 2 , R 3 and R 4 is the alkyl group or cycloalkyl group other than a hydrogen atom. The ends of the alkyl groups may be bonded to form a ring.
For example, when R 1 is an ethyl group and R 2 , R 3 and R 4 are hydrogen atoms, the branched carbonate is 1,2-butylene carbonate. For example, when R 1 and R 4 are methyl groups and R 2 and R 3 are hydrogen atoms, the branched carbonate is 2,3-butylene carbonate.

前記非水溶媒は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。   The said non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.

<(A)有機酸のリチウム塩>
本発明における(A)有機酸のリチウム塩は、前記(C)成分の有機リチウム塩に該当しないものであり、且つ当該塩中に、炭素原子及び有機酸をなす基を有するものであれば特に制限されない。前記有機酸をなす基としてはカルボキシル基の他、弱い酸性を示すヒドロキシフェニル基等の水酸基、が例示できる。
本発明における(A)有機酸のリチウム塩は、カルボン酸のリチウム塩が好ましい。また、(A)有機酸のリチウム塩において、リチウム塩を構成する酸基の数は、特に限定されない。例えば前記有機酸がカルボン酸の場合、そのカルボン酸のカルボキシル基の数は1〜4であることが好ましい。このような範囲とすることで、前記(A)有機酸のリチウム塩の非水溶媒への溶解性が一層向上する。
また、前記弱い酸性を示す水酸基のリチウム塩として、4−ヒドロキシフェニル基のリチウム塩、即ちリチウムフェノキシド、が例示できる。
<(A) Lithium salt of organic acid>
The lithium salt of the organic acid (A) in the present invention is not particularly applicable to the organic lithium salt of the component (C), and the salt has a carbon atom and a group that forms an organic acid. Not limited. Examples of the group that forms the organic acid include a carboxyl group and a hydroxyl group such as a hydroxyphenyl group that exhibits weak acidity.
The lithium salt of organic acid (A) in the present invention is preferably a lithium salt of carboxylic acid. In the lithium salt of (A) organic acid, the number of acid groups constituting the lithium salt is not particularly limited. For example, when the organic acid is a carboxylic acid, the number of carboxyl groups in the carboxylic acid is preferably 1 to 4. By setting it as such a range, the solubility to the nonaqueous solvent of the lithium salt of the said (A) organic acid improves further.
Examples of the lithium salt of a hydroxyl group exhibiting weak acidity include a lithium salt of 4-hydroxyphenyl group, that is, lithium phenoxide.

前記カルボン酸のリチウム塩は、脂肪族カルボン酸、脂環式カルボン酸及び芳香族カルボン酸のいずれのリチウム塩でもよく、1価カルボン酸及び多価カルボン酸のいずれのリチウム塩でもよい。好ましくは、炭素数1〜6の脂肪族カルボン酸のリチウム塩又は炭素数7〜8の芳香族カルボン酸のリチウム塩である。より具体的な好ましい前記カルボン酸のリチウム塩としては、ギ酸リチウム、酢酸リチウム、プロピオン酸リチウム、酪酸リチウム、イソ酪酸リチウム、シュウ酸リチウム、乳酸リチウム、酒石酸リチウム、マレイン酸リチウム、フマル酸リチウム、マロン酸リチウム、コハク酸リチウム、リンゴ酸リチウム、クエン酸リチウム、グルタル酸リチウム、アジピン酸リチウム、フタル酸リチウム、安息香酸リチウムが例示できる。より好ましい前記カルボン酸のリチウム塩としては、ギ酸リチウム、シュウ酸リチウム、マロン酸リチウム、コハク酸リチウムが例示できる。   The lithium salt of the carboxylic acid may be any lithium salt of aliphatic carboxylic acid, alicyclic carboxylic acid and aromatic carboxylic acid, and may be any lithium salt of monovalent carboxylic acid and polyvalent carboxylic acid. A lithium salt of an aliphatic carboxylic acid having 1 to 6 carbon atoms or a lithium salt of an aromatic carboxylic acid having 7 to 8 carbon atoms is preferable. More specifically, preferable lithium salts of the carboxylic acid include lithium formate, lithium acetate, lithium propionate, lithium butyrate, lithium isobutyrate, lithium oxalate, lithium lactate, lithium tartrate, lithium maleate, lithium fumarate, and malon. Examples thereof include lithium oxide, lithium succinate, lithium malate, lithium citrate, lithium glutarate, lithium adipate, lithium phthalate, and lithium benzoate. More preferable examples of the lithium salt of carboxylic acid include lithium formate, lithium oxalate, lithium malonate, and lithium succinate.

本明細書で例示したリチウム塩を構成する有機酸が多価の有機酸である場合、当該リチウム塩としては、その価数と同じ数以下のLi原子を含有するものが挙げられる。例えば、シュウ酸は2価カルボン酸であるから、シュウ酸のリチウム塩としては、「シュウ酸モノリチウム(シュウ酸水素リチウム)」と「シュウ酸ジリチウム(シュウ酸ニリチウム)」があるが、これらを単に「シュウ酸リチウム塩」と表記している。すなわち、本明細書及び特許請求の範囲においては、特に明記しない限り、いずれの有機酸のリチウム塩も、その価数に関わらず、単に「有機酸リチウム」と表記している。「有機リチウム塩又は無機リチウム塩」の表記においても同様である。   In the case where the organic acid constituting the lithium salt exemplified in the present specification is a polyvalent organic acid, examples of the lithium salt include those containing no more than the same number of Li atoms as the valence. For example, since oxalic acid is a divalent carboxylic acid, the lithium salts of oxalic acid include “monolithium oxalate (lithium hydrogen oxalate)” and “dilithium oxalate (dilithium oxalate)”. It is simply written as “lithium oxalate”. That is, in the present specification and claims, unless otherwise specified, any organic acid lithium salt is simply expressed as “organic acid lithium” regardless of its valence. The same applies to the expression “organic lithium salt or inorganic lithium salt”.

(A)有機酸のリチウム塩は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。前記有機酸のリチウム塩の配合量(添加量)は特に限定されず、例えば、前記有機酸のリチウム塩の種類や前記非水溶媒の種類に応じて適宜調節すれば良い。通常は、前記、(C)有機リチウム塩又は無機リチウム塩の配合量:(A)有機酸のリチウム塩の配合量が99.5:0.5〜50:50(モル比)であることが好ましく、99:1〜50:50であることがより好ましく、99:1〜70:30であることがさらに好ましい。ここで示した比はモル比であり、当該電解液に配合された前記(C)成分のモル数と、当該電解液に配合された前記(A)成分のモル数との比を意味する。
上記範囲のモル比とすることで、(A)有機酸のリチウム塩が良好なSEIの形成に寄与し、本発明の効果が一層顕著に現れ得る。
(A) The lithium salt of organic acid may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose. The blending amount (addition amount) of the organic acid lithium salt is not particularly limited, and may be appropriately adjusted according to, for example, the type of the organic acid lithium salt and the type of the non-aqueous solvent. Usually, the blending amount of (C) organic lithium salt or inorganic lithium salt: (A) the blending amount of lithium salt of organic acid is 99.5: 0.5 to 50:50 (molar ratio). Preferably, it is 99: 1 to 50:50, more preferably 99: 1 to 70:30. The ratio shown here is a molar ratio, and means the ratio between the number of moles of the component (C) blended in the electrolytic solution and the number of moles of the component (A) blended in the electrolytic solution.
By setting it as the molar ratio of the said range, the lithium salt of (A) organic acid contributes to formation of favorable SEI, and the effect of this invention may appear more notably.

<(B)ホウ素化合物>
本発明における(B)ホウ素化合物は、種々の公知のホウ素化合物を使用できる。例えば好ましいものとして具体的には、三フッ化ホウ素(BF)等のハロゲン化ホウ素;三フッ化ホウ素ジメチルエーテル錯体(BFO(CH)、三フッ化ホウ素ジエチルエーテル錯体(BFO(C)、三フッ化ホウ素ジn−ブチルエーテル錯体(BFO(C)、三フッ化ホウ素ジtert−ブチルエーテル錯体(BFO((CHC))、三フッ化ホウ素tert−ブチルメチルエーテル錯体(BFO((CHC)(CH))、三フッ化ホウ素テトラヒドロフラン錯体(BFOC)等のハロゲン化ホウ素アルキルエーテル錯体;三フッ化ホウ素メタノール錯体(BFHOCH)、三フッ化ホウ素プロパノール錯体(BFHOC)、三フッ化ホウ素フェノール錯体(BFHOC)等のハロゲン化ホウ素アルコール錯体;三フッ化ホウ素ピペリジニウム錯体、三フッ化ホウ素エチルアミン錯体等のハロゲン化ホウ素アミン錯体;2,4,6−トリメトキシボロキシン等の2,4,6−トリアルコキシボロキシン;ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリ−n−プロピル、ホウ酸トリ−n−ブチル、ホウ酸トリ−n−ペンチル、ホウ酸トリ−n−ヘキシル、ホウ酸トリ−n−ヘプチル、ホウ酸トリ−n−オクチル、ホウ酸トリイソプロピル、ホウ酸トリオクタデシル等のホウ酸トリアルキル;ホウ酸トリフェニル等のホウ酸トリアリール;トリス(トリメチルシリル)ボラート等のトリス(トリアルキルシリル)ボラートが例示できる。
より好ましいものとしては、BF等のハロゲン化ホウ素;BFO(CH、BFO(C、BFO(C、BFO((CHC)、BFO((CHC)(CH)、BFOC等のハロゲン化ホウ素アルキルエーテル錯体;BFHOCH、BFHOC、BFHOC等のハロゲン化ホウ素アルコール錯体が例示できる。
(B)ホウ素化合物は、(A)有機酸のリチウム塩において、リチウムイオンのアニオン部からの解離を促進し、非水溶媒への溶解性を向上させる機能を有していると推測される。
<(B) Boron compound>
As the (B) boron compound in the present invention, various known boron compounds can be used. For example, specific examples of preferable boron halides such as boron trifluoride (BF 3 ); boron trifluoride dimethyl ether complex (BF 3 O (CH 3 ) 2 ), boron trifluoride diethyl ether complex (BF 3) O (C 2 H 5 ) 2 ), boron trifluoride di n-butyl ether complex (BF 3 O (C 4 H 9 ) 2 ), boron trifluoride di tert-butyl ether complex (BF 3 O ((CH 3 ) 3 C) 2 ), boron trifluoride tert-butyl methyl ether complex (BF 3 O ((CH 3 ) 3 C) (CH 3 )), boron trifluoride tetrahydrofuran complex (BF 3 OC 4 H 8 ), etc. boron halide alkyl ether complex; boron trifluoride methanol complex (BF 3 HOCH 3), boron trifluoride-propanol complex (BF 3 HOC H 7), boron trifluoride phenol complex (BF 3 HOC 6 H 5) boron halide alcohol complexes such as; boron trifluoride piperidinium complex, boron halide amine complex such as boron trifluoride ethylamine complex; 2,4 2,4,6-trialkoxyboroxine such as 1,6-trimethoxyboroxine; trimethyl borate, triethyl borate, tri-n-propyl borate, tri-n-butyl borate, tri-n-borate Boric acid such as pentyl, tri-n-hexyl borate, tri-n-heptyl borate, tri-n-octyl borate, triisopropyl borate, trioctadecyl borate; boric acid such as triphenyl borate Triaryl; tris (trialkylsilyl) borate such as tris (trimethylsilyl) borate can be exemplified.
More preferred are boron halides such as BF 3 ; BF 3 O (CH 3 ) 2 , BF 3 O (C 2 H 5 ) 2 , BF 3 O (C 4 H 9 ) 2 , BF 3 O (( Boron halide alkyl ether complexes such as CH 3 ) 3 C) 2 , BF 3 O ((CH 3 ) 3 C) (CH 3 ), BF 3 OC 4 H 8 ; BF 3 HOCH 3 , BF 3 HOC 3 H 7 And boron halide alcohol complexes such as BF 3 HOC 6 H 5 .
(B) The boron compound (A) in the lithium salt of an organic acid is presumed to have a function of promoting dissociation from the anion portion of lithium ions and improving the solubility in a non-aqueous solvent.

(B)ホウ素化合物は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。   (B) A boron compound may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.

(B)ホウ素化合物の配合量は適宜調節することができる。例えば、(B)ホウ素化合物の種類や(A)有機酸のリチウム塩の種類に応じて適宜調節すれば良い。通常は、[(B)ホウ素化合物の配合量(モル数)]/[配合された(A)有機酸のリチウム塩中のリチウム原子のモル数]のモル比が0.7以上であることが好ましく、0.8以上であることがより好ましく、0.9以上であることがさらに好ましい。このような範囲とすることで、各種非水溶媒に対する(A)有機酸のリチウム塩の溶解度が一層向上する。また、前記モル比の上限値は本発明の効果を妨げない限り特に限定されないが、1.5であることが好ましく、1.3であることがより好ましく、1.2であることがさらに好ましい。   (B) The compounding quantity of a boron compound can be adjusted suitably. For example, what is necessary is just to adjust suitably according to the kind of (B) boron compound and the kind of (A) organic acid lithium salt. Usually, the molar ratio of [(B) Boron compound content (mole number)] / [Mixed (A) mole number of lithium atoms in lithium salt of organic acid] is 0.7 or more. Preferably, it is 0.8 or more, more preferably 0.9 or more. By setting it as such a range, the solubility of the lithium salt of (A) organic acid with respect to various non-aqueous solvents further improves. The upper limit of the molar ratio is not particularly limited as long as the effect of the present invention is not hindered, but is preferably 1.5, more preferably 1.3, and further preferably 1.2. .

<その他の成分>
本発明の電解液は、(C)有機リチウム塩又は無機リチウム塩、前記非水溶媒、(A)有機酸のリチウム塩及び(B)ホウ素化合物以外に、本発明の効果を妨げない範囲内において、その他の成分が配合されていても良い。
<Other ingredients>
In addition to (C) the organic lithium salt or inorganic lithium salt, the non-aqueous solvent, (A) the lithium salt of organic acid, and (B) the boron compound, the electrolytic solution of the present invention is within a range that does not hinder the effects of the present invention. Other components may be blended.

<電解液の製造方法>
本発明の電解液は、(C)有機リチウム塩又は無機リチウム塩、前記非水溶媒、(A)有機酸のリチウム塩及び(B)ホウ素化合物、並びに必要に応じてその他の成分を適宜配合することで、製造できる。各成分の配合時の添加順序、温度、時間等の各条件は、配合成分の種類に応じて任意に調節できる。
<Method for producing electrolyte solution>
The electrolytic solution of the present invention suitably contains (C) an organic lithium salt or inorganic lithium salt, the non-aqueous solvent, (A) a lithium salt of an organic acid and (B) a boron compound, and other components as necessary. It can be manufactured. Each condition such as the order of addition, temperature, time and the like at the time of blending each component can be arbitrarily adjusted according to the type of the blended component.

<<ゲル電解質>>
本発明のゲル電解質は、本発明の電解液に、さらに(D)マトリクスポリマーが配合されてなるものである。(D)マトリクスポリマーは架橋ゲル構造を有するものであってもよい。本発明のゲル電解質は、リチウムイオン二次電池における電解液の代わりに若しくは電解液と併用して使用することができる。本発明のゲル電解質はゲル状であるため、当該リチウムイオン二次電池から当該ゲル電解質が漏れる虞は極めて少ない。
<< Gel electrolyte >>
The gel electrolyte of the present invention is obtained by further blending (D) a matrix polymer with the electrolytic solution of the present invention. (D) The matrix polymer may have a crosslinked gel structure. The gel electrolyte of the present invention can be used in place of or in combination with an electrolytic solution in a lithium ion secondary battery. Since the gel electrolyte of the present invention is in a gel form, there is very little possibility that the gel electrolyte will leak from the lithium ion secondary battery.

<(D)マトリクスポリマー>
本発明のゲル電解質における(D)マトリクスポリマーの種類は特に限定されず、ゲル又は固体電解質分野で公知のものが適宜使用できる。
(D)マトリクスポリマーの好ましいものとして具体的には、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系ポリマー;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリフッ化ビニリデン−六フッ化プロピレン共重合体、ポリフッ化ビニリデン−六フッ化アセトン共重合体、ポリテトラフルオロエチレン等のフッ素系ポリマー;ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリアクリルアミド、エチレンオキシドユニットを含むポリアクリレート等のポリアクリル系ポリマー;ポリアクリロニトリル;ポリホスファゼン;ポリシロキサンが例示できる。
<(D) Matrix polymer>
The kind of (D) matrix polymer in the gel electrolyte of the present invention is not particularly limited, and those known in the gel or solid electrolyte field can be used as appropriate.
(D) Specific examples of preferred matrix polymers include polyether polymers such as polyethylene oxide and polypropylene oxide; polyvinyl fluoride, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, and polyvinylidene fluoride. Fluoropolymers such as hexafluoroacetone copolymer and polytetrafluoroethylene; polyacrylic polymers such as poly (meth) acrylate methyl, poly (meth) ethyl acrylate, polyacrylamide, and polyacrylate containing ethylene oxide units; Examples include polyacrylonitrile; polyphosphazene; polysiloxane.

(D)マトリクスポリマーは、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。
本発明において、(D)マトリクスポリマーは、ポリエーテル系ポリマー、フッ素系ポリマー、ポリアクリル系ポリマー、ポリアクリロニトリル、ポリホスファゼン及びポリシロキサンからなる群から選択される一種以上であることが好ましく、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリフッ化ビニリデン−6フッ化プロピレン共重合体、ポリフッ化ビニリデン−六フッ化アセトン共重合体、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリホスファゼン及びポリシロキサンからなる群から選択される一種以上であることがより好ましい。
(D) A matrix polymer may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.
In the present invention, the matrix polymer (D) is preferably at least one selected from the group consisting of polyether polymers, fluorine polymers, polyacrylic polymers, polyacrylonitrile, polyphosphazenes, and polysiloxanes. , Polypropylene oxide, polyvinyl fluoride, polyvinylidene fluoride, polyvinylidene fluoride-6-propylene fluoride copolymer, polyvinylidene fluoride-hexafluoroacetone copolymer, polytetrafluoroethylene, polyacrylonitrile, polyphosphazene and polysiloxane More preferably, it is one or more selected from the group consisting of:

(D)マトリクスポリマーの配合量は特に限定されず、その種類に応じて適宜調節すれば良いが、配合成分の総量に占める(D)マトリクスポリマーの配合量は、2〜50質量%であることが好ましい。下限値以上とすることで、ゲル電解質からなる膜強度を一層向上させることができる。   (D) The blending amount of the matrix polymer is not particularly limited, and may be appropriately adjusted according to the type, but the blending amount of the (D) matrix polymer in the total amount of the blending components is 2 to 50% by mass. Is preferred. By setting it to the lower limit value or more, the film strength made of the gel electrolyte can be further improved.

<ゲル電解質の製造方法>
本発明のゲル電解質は、本発明の電解液、マトリクスポリマー、及び必要に応じてその他の成分を適宜配合することで、製造できる。各成分の配合時の添加順序、温度、時間等の各条件は、配合成分の種類に応じて任意に調節できる。
<Method for producing gel electrolyte>
The gel electrolyte of the present invention can be produced by appropriately blending the electrolytic solution of the present invention, a matrix polymer, and other components as necessary. Each condition such as the order of addition, temperature, time and the like at the time of blending each component can be arbitrarily adjusted according to the type of the blended component.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、上記本発明の電解液若しくはゲル電解質を用いて得られたことを特徴とする。
本発明のリチウムイオン二次電池は、本発明の電解液若しくはゲル電解質を用いること以外は、従来のリチウムイオン二次電池と同様の構成とすることができ、例えば、負極、正極、セパレータ及び前記電解液を備えて構成される。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention is obtained using the above-described electrolytic solution or gel electrolyte of the present invention.
The lithium ion secondary battery of the present invention can have the same configuration as the conventional lithium ion secondary battery except that the electrolytic solution or gel electrolyte of the present invention is used. For example, the negative electrode, the positive electrode, the separator, and the above It is configured with an electrolytic solution.

前記負極の材質は特に限定されないが、金属リチウム、リチウム合金、リチウムを吸蔵及び放出し得る炭素系材料、金属酸化物等が例示でき、これら材質からなる群から選択される一種以上であることが好ましい。
前記正極の材質は特に限定されないが、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、オリビン型リン酸鉄リチウム、リチウムコバルト・ニッケル・マンガン複合酸化物等の遷移金属酸化物が例示でき、これら材質からなる群から選択される一種以上であることが好ましい。
The material of the negative electrode is not particularly limited, and examples thereof include metal lithium, lithium alloy, carbon-based material capable of inserting and extracting lithium, metal oxide, and the like, and may be one or more selected from the group consisting of these materials. preferable.
The material of the positive electrode is not particularly limited, and examples thereof include transition metal oxides such as lithium cobaltate, lithium nickelate, lithium manganate, olivine type lithium iron phosphate, and lithium cobalt / nickel / manganese composite oxide. It is preferable that it is 1 or more types selected from the group which consists of.

前記セパレータの材質は特に限定されないが、微多孔性の高分子膜、不織布、ガラスファイバー等が例示でき、これら材質からなる群から選択される一種以上であることが好ましい。   Although the material of the separator is not particularly limited, it can be exemplified by a microporous polymer film, a nonwoven fabric, glass fiber, and the like, and is preferably at least one selected from the group consisting of these materials.

本発明のリチウムイオン二次電池の形状は、特に限定されず、円筒型、角型、コイン型、シート型、ラミネート型等、種々のものに調節できる。   The shape of the lithium ion secondary battery of the present invention is not particularly limited, and can be adjusted to various shapes such as a cylindrical shape, a square shape, a coin shape, a sheet shape, and a laminate shape.

本発明のリチウムイオン二次電池は、公知の方法に従って、例えば、グローブボックス内又は乾燥空気雰囲気下で、前記電解液若しくはゲル電解質及び電極を使用して製造すれば良い。   What is necessary is just to manufacture the lithium ion secondary battery of this invention using the said electrolyte solution or gel electrolyte, and an electrode according to a well-known method, for example in a glove box or a dry air atmosphere.

以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.

(1)使用した化学物質
本実施例で使用した化学物質を以下に示す。
・(C)塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩
六フッ化リン酸リチウム(LiPF)(キシダ化学社製)
・(A)有機酸のリチウム塩の原料
ギ酸(アルドリッチ社製)
シュウ酸(アルドリッチ社製)
コハク酸(アルドリッチ社製)
水酸化リチウム・一水和物(LiOH・HO)(アルドリッチ社製)
・(B)ホウ素化合物
三フッ化ホウ素ジエチルエーテル錯体(BFO(C)(アルドリッチ社製)
三フッ化ホウ素ジn−ブチルエーテル錯体(BFO(C)(アルドリッチ社製)
三フッ化ホウ素テトラヒドロフラン錯体(BFOC)(アルドリッチ社製)
・非水溶媒
エチレンカーボネート(以下、ECと略記する)(キシダ化学社製)
ジメチルカーボネート(以下、DMCと略記する)(キシダ化学社製)
エチルメチルカーボネート(以下、EMCと略記する)(キシダ化学社製)
γ−ブチロラクトン(以下、GBLと略記する)(キシダ化学社製)
プロピレンカーボネート(以下、PCと略記する)(キシダ化学社製)
(1) Chemical substances used The chemical substances used in this example are shown below.
・ (C) Organic lithium salt or inorganic lithium salt containing chlorine, fluorine or boron
Lithium hexafluorophosphate (LiPF 6 ) (Kishida Chemical Co., Ltd.)
-(A) Organic acid lithium salt raw material Formic acid (manufactured by Aldrich)
Oxalic acid (Aldrich)
Succinic acid (Aldrich)
Lithium hydroxide monohydrate (LiOH.H 2 O) (Aldrich)
(B) Boron compound Boron trifluoride diethyl ether complex (BF 3 O (C 2 H 5 ) 2 ) (manufactured by Aldrich)
Boron trifluoride di n-butyl ether complex (BF 3 O (C 4 H 9 ) 2 ) (Aldrich)
Boron trifluoride tetrahydrofuran complex (BF 3 OC 4 H 8 ) (manufactured by Aldrich)
・ Nonaqueous solvent Ethylene carbonate (hereinafter abbreviated as EC) (Kishida Chemical Co., Ltd.)
Dimethyl carbonate (hereinafter abbreviated as DMC) (manufactured by Kishida Chemical Co., Ltd.)
Ethyl methyl carbonate (hereinafter abbreviated as EMC) (manufactured by Kishida Chemical Co., Ltd.)
γ-butyrolactone (hereinafter abbreviated as GBL) (manufactured by Kishida Chemical Co., Ltd.)
Propylene carbonate (hereinafter abbreviated as PC) (Kishida Chemical Co., Ltd.)

(2)(A)有機酸のリチウム塩の調製
(2−1)ギ酸リチウムの調製
ギ酸(20.0g、434.5mmol)を丸底フラスコに量り取り、これを50mLの蒸留水に溶解させた。これにLiOH・HO(17.87g、426.0mmol)を100mLの蒸留水に溶かした溶液をゆっくりと滴下した。室温で24時間撹拌した後、ロータリーエバポレーターを用いて溶液を濃縮した。濃縮した溶液を200mLのアセトニトリルにゆっくりと滴下し、析出した固体を再度アセトニトリルにて洗浄した後、乾燥させることによって白色粉末のギ酸リチウムを得た。
(2) (A) Preparation of lithium salt of organic acid (2-1) Preparation of lithium formate Formic acid (20.0 g, 434.5 mmol) was weighed into a round bottom flask and dissolved in 50 mL of distilled water. . A solution obtained by dissolving LiOH.H 2 O (17.87 g, 426.0 mmol) in 100 mL of distilled water was slowly added dropwise thereto. After stirring for 24 hours at room temperature, the solution was concentrated using a rotary evaporator. The concentrated solution was slowly added dropwise to 200 mL of acetonitrile, and the precipitated solid was washed again with acetonitrile and then dried to obtain white powder of lithium formate.

(2−2)シュウ酸リチウムの調製
シュウ酸(10.0g、111mmol)を丸底フラスコに量り取り、これを100mLの蒸留水に溶解させた。これにLiOH・HO(9.23g、220mmol)を100mLの蒸留水に溶かした溶液をゆっくりと滴下した。室温で24時間撹拌した後、ロータリーエバポレーターを用いて溶液を濃縮した。濃縮した溶液を200mLのアセトニトリルにゆっくりと滴下し、析出した固体を再度アセトニトリルにて洗浄した後、乾燥させることによって白色粉末のシュウ酸リチウムを得た。
(2-2) Preparation of lithium oxalate Oxalic acid (10.0 g, 111 mmol) was weighed into a round bottom flask and dissolved in 100 mL of distilled water. A solution obtained by dissolving LiOH.H 2 O (9.23 g, 220 mmol) in 100 mL of distilled water was slowly added dropwise thereto. After stirring for 24 hours at room temperature, the solution was concentrated using a rotary evaporator. The concentrated solution was slowly added dropwise to 200 mL of acetonitrile, and the precipitated solid was washed again with acetonitrile and then dried to obtain white powder of lithium oxalate.

(2−3)コハク酸リチウムの調製
コハク酸(10.0g、84.7mmol)を丸底フラスコに量り取り、これを50mLの蒸留水に溶解させた。これにLiOH・HO(7.27g、169.8mmol)を100mLの蒸留水に溶かした溶液をゆっくりと滴下した。室温で24時間撹拌した後、ロータリーエバポレーターを用いて溶液を濃縮した。濃縮した溶液を200mLのアセトニトリルにゆっくりと滴下し、析出した固体を再度アセトニトリルにて洗浄した後、乾燥させることによって白色粉末のコハク酸リチウムを得た。
(2-3) Preparation of lithium succinate Succinic acid (10.0 g, 84.7 mmol) was weighed into a round bottom flask and dissolved in 50 mL of distilled water. A solution prepared by dissolving LiOH.H 2 O (7.27 g, 169.8 mmol) in 100 mL of distilled water was slowly added dropwise thereto. After stirring for 24 hours at room temperature, the solution was concentrated using a rotary evaporator. The concentrated solution was slowly added dropwise to 200 mL of acetonitrile, and the precipitated solid was washed again with acetonitrile and then dried to obtain white powder of lithium succinate.

(3)電解液及びセルの製造
以下に示す実施例及び比較例における操作は、すべてドライボックス内で行った。
(3) Manufacture of electrolyte solution and cell All the operations in Examples and Comparative Examples shown below were performed in a dry box.

[実施例1]
<電解液の製造>
(C)成分としてLiPF(0.807g、5.31mmol)及び非水溶媒としてGBLをサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1a)を得た。また、(A)成分として上記(2−2)で得られたシュウ酸リチウム(0.284g、2.79mmol)、(B)成分としてBFO(C(0.792g、5.58mmol)及び非水溶媒としてGBLをサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(2a)を得た。
上記で得られた電解液(1a)90重量部に対し、電解液(2a)を10重量部加えることにより、本実施例にて用いた電解液を得た。
[Example 1]
<Manufacture of electrolyte>
(C) LiPF 6 (0.807 g, 5.31 mmol) as a component and GBL as a non-aqueous solvent are weighed into a sample bottle and mixed so that the concentration of lithium atoms is 1.0 mol / kg. (1a) was obtained. Moreover, the lithium oxalate (0.284 g, 2.79 mmol) obtained in the above (2-2) as the (A) component, and BF 3 O (C 2 H 5 ) 2 (0.792 g, 5.58 mmol) and GBL as a non-aqueous solvent were weighed into a sample bottle and mixed so that the concentration of lithium atoms was 1.0 mol / kg to obtain an electrolytic solution (2a).
The electrolytic solution used in this example was obtained by adding 10 parts by weight of the electrolytic solution (2a) to 90 parts by weight of the electrolytic solution (1a) obtained above.

<コイン型セルの製造>
負極(宝泉株式会社製)及び正極(宝泉株式会社製)を直径16mmの円盤状に打ち抜いた。また、セパレータとしてガラスファイバーを直径17mmの円盤状に打ち抜いた。得られた正極、セパレータ及び負極をこの順にSUS製の電池容器(CR2032)内で積層し、上記で得られた電解液をセパレータ、負極及び正極に含浸させ、さらに負極上に、SUS製の板(厚さ1.2mm、直径16mm)を載せ、蓋をすることによりコイン型セルを製造した。
<Manufacture of coin cell>
A negative electrode (manufactured by Hosen Co., Ltd.) and a positive electrode (manufactured by Hosen Co., Ltd.) were punched into a disk shape having a diameter of 16 mm. Further, a glass fiber was punched into a disk shape having a diameter of 17 mm as a separator. The obtained positive electrode, separator and negative electrode were laminated in this order in a battery container made of SUS (CR2032), the separator, the negative electrode and the positive electrode were impregnated with the electrolytic solution obtained above, and a SUS plate was placed on the negative electrode. A coin-type cell was manufactured by placing (covering a thickness of 1.2 mm, a diameter of 16 mm) and capping.

[実施例2]
非水溶媒として、GBLに代えてPCを使用して、電解液(1a)及び電解液(2a)を製造したこと以外は、実施例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[Example 2]
The electrolytic solution and the coin-type cell were manufactured in the same manner as in Example 1 except that the electrolytic solution (1a) and the electrolytic solution (2a) were manufactured using PC instead of GBL as the nonaqueous solvent. Manufactured.

[実施例3]
非水溶媒として、GBLに代えてEC及びGBLの混合溶媒(EC:GBL=30:70(体積比))を使用して、電解液(1a)及び電解液(2a)を製造したこと以外は、実施例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[Example 3]
Except that the mixed solution of EC and GBL (EC: GBL = 30: 70 (volume ratio)) was used as the non-aqueous solvent instead of GBL, and the electrolytic solution (1a) and the electrolytic solution (2a) were produced. In the same manner as in Example 1, an electrolyte solution and a coin-type cell were manufactured.

[実施例4]
非水溶媒として、GBLに代えてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))を使用して、電解液(1a)及び電解液(2a)を製造したこと以外は、実施例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[Example 4]
Except that the mixed solution of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) was used as the non-aqueous solvent instead of GBL to produce the electrolytic solution (1a) and the electrolytic solution (2a). In the same manner as in Example 1, an electrolyte solution and a coin-type cell were manufactured.

[実施例5]
実施例3で得られた電解液(1a)99重量部に対し、実施例3で得られた電解液(2a)を1重量部加えることにより電解液を製造したこと以外は、実施例3と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[実施例6]
実施例3で得られた電解液(1a)95重量部に対し、実施例3で得られた電解液(2a)を5重量部加えることにより電解液を製造したこと以外は、実施例3と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[実施例7]
実施例3で得られた電解液(1a)80重量部に対し、実施例3で得られた電解液(2a)を20重量部加えることにより電解液を製造したこと以外は、実施例3と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[実施例8]
実施例3で得られた電解液(1a)50重量部に対し、実施例3で得られた電解液(2a)を50重量部加えることにより電解液を製造したこと以外は、実施例3と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[実施例9]
<電解液の製造>
(C)成分としてLiPF(0.807g、5.31mmol)及び非水溶媒としてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1a)を得た。また、(A)成分として上記(2−2)にて得られたシュウ酸リチウム(0.183g、1.80mmol)、(B)成分としてBFO(C(0.712g、3.60mmol)並びに非水溶媒としてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(2a)を得た。
上記で得られた電解液(1a)90重量部に対し、電解液(2a)を10重量部加えることにより、本実施例にて用いた電解液を得た。
[Example 5]
Example 3 is the same as Example 3 except that 1 part by weight of the electrolytic solution (2a) obtained in Example 3 was added to 99 parts by weight of the electrolytic solution (1a) obtained in Example 3. In the same manner, an electrolytic solution and a coin-type cell were manufactured.
[Example 6]
Example 3 is the same as Example 3 except that 5 parts by weight of the electrolytic solution (2a) obtained in Example 3 was added to 95 parts by weight of the electrolytic solution (1a) obtained in Example 3. In the same manner, an electrolytic solution and a coin-type cell were manufactured.
[Example 7]
Example 3 is the same as Example 3 except that 20 parts by weight of the electrolyte solution (2a) obtained in Example 3 was added to 80 parts by weight of the electrolyte solution (1a) obtained in Example 3. In the same manner, an electrolytic solution and a coin-type cell were manufactured.
[Example 8]
Example 3 is the same as Example 3 except that 50 parts by weight of the electrolytic solution (2a) obtained in Example 3 was added to 50 parts by weight of the electrolytic solution (1a) obtained in Example 3. In the same manner, an electrolytic solution and a coin-type cell were manufactured.
[Example 9]
<Manufacture of electrolyte>
(C) LiPF 6 (0.807 g, 5.31 mmol) as the component and a mixed solvent of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) as the non-aqueous solvent were weighed into a sample bottle, The electrolyte solution (1a) was obtained by mixing so that a density | concentration might be 1.0 mol / kg. Moreover, lithium oxalate (0.183 g, 1.80 mmol) obtained in (2-2) above as (A) component, and BF 3 O (C 4 H 9 ) 2 (0.712 g) as (B) component 3.60 mmol) and a mixed solvent of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) as a non-aqueous solvent are weighed into a sample bottle so that the concentration of lithium atoms becomes 1.0 mol / kg. To obtain an electrolytic solution (2a).
The electrolytic solution used in this example was obtained by adding 10 parts by weight of the electrolytic solution (2a) to 90 parts by weight of the electrolytic solution (1a) obtained above.

<コイン型セルの製造>
負極(宝泉株式会社製)及び正極(宝泉株式会社製)を直径16mmの円盤状に打ち抜いた。また、セパレータとしてガラスファイバーを直径17mmの円盤状に打ち抜いた。得られた正極、セパレータ及び負極をこの順にSUS製の電池容器(CR2032)内で積層し、上記で得られた電解液をセパレータ、負極及び正極に含浸させ、さらに負極上に、SUS製の板(厚さ1.2mm、直径16mm)を載せ、蓋をすることによりコイン型セルを製造した。
<Manufacture of coin cell>
A negative electrode (manufactured by Hosen Co., Ltd.) and a positive electrode (manufactured by Hosen Co., Ltd.) were punched into a disk shape having a diameter of 16 mm. Further, a glass fiber was punched into a disk shape having a diameter of 17 mm as a separator. The obtained positive electrode, separator and negative electrode were laminated in this order in a battery container made of SUS (CR2032), the separator, the negative electrode and the positive electrode were impregnated with the electrolytic solution obtained above, and a SUS plate was placed on the negative electrode. A coin-type cell was manufactured by placing (covering a thickness of 1.2 mm, a diameter of 16 mm) and capping.

[実施例10]
<電解液の製造>
(C)成分としてLiPF(0.807g、5.31mmol)及び非水溶媒としてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1a)を得た。また、(A)成分として上記(2−2)にて得られたシュウ酸リチウム(0.170g、1.67mmol)、(B)成分としてBFOC(0.467g、3.34mmol)に、非水溶媒としてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(2a)を得た。
上記で得られた電解液(1a)90重量部に対し、電解液(2a)を10重量部加えることにより、本実施例にて用いた電解液を得た。
[Example 10]
<Manufacture of electrolyte>
(C) LiPF 6 (0.807 g, 5.31 mmol) as the component and a mixed solvent of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) as the non-aqueous solvent were weighed into a sample bottle, The electrolyte solution (1a) was obtained by mixing so that a density | concentration might be 1.0 mol / kg. Moreover, lithium oxalate (0.170 g, 1.67 mmol) obtained in (2-2) above as (A) component, and BF 3 OC 4 H 8 (0.467 g, 3.34 mmol) as (B) component ) As a non-aqueous solvent, a mixed solvent of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) is weighed into a sample bottle and mixed so that the concentration of lithium atoms is 1.0 mol / kg. As a result, an electrolytic solution (2a) was obtained.
The electrolytic solution used in this example was obtained by adding 10 parts by weight of the electrolytic solution (2a) to 90 parts by weight of the electrolytic solution (1a) obtained above.

<コイン型セルの製造>
負極(宝泉株式会社製)及び正極(宝泉株式会社製)を直径16mmの円盤状に打ち抜いた。また、セパレータとしてガラスファイバーを直径17mmの円盤状に打ち抜いた。得られた正極、セパレータ及び負極をこの順にSUS製の電池容器(CR2032)内で積層し、上記で得られた電解液をセパレータ、負極及び正極に含浸させ、さらに負極上に、SUS製の板(厚さ1.2mm、直径16mm)を載せ、蓋をすることによりコイン型セルを製造した。
<Manufacture of coin cell>
A negative electrode (manufactured by Hosen Co., Ltd.) and a positive electrode (manufactured by Hosen Co., Ltd.) were punched into a disk shape having a diameter of 16 mm. Further, a glass fiber was punched into a disk shape having a diameter of 17 mm as a separator. The obtained positive electrode, separator and negative electrode were laminated in this order in a battery container made of SUS (CR2032), the separator, the negative electrode and the positive electrode were impregnated with the electrolytic solution obtained above, and a SUS plate was placed on the negative electrode. A coin-type cell was manufactured by placing (covering a thickness of 1.2 mm, a diameter of 16 mm) and capping.

[実施例11]
<電解液の製造>
(C)成分としてLiPF(0.807g、5.31mmol)及び非水溶媒としてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1a)を得た。また、(A)成分として上記(2−1)にて得られたギ酸リチウム(0.174g、3.35mmol)、(B)成分としてBFO(C(0.475g、3.35mmol)並びに非水溶媒としてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(2a)を得た。
上記で得られた電解液(1a)90重量部に対し、電解液(2a)を10重量部加えることにより、本実施例にて用いた電解液を得た。
[Example 11]
<Manufacture of electrolyte>
(C) LiPF 6 (0.807 g, 5.31 mmol) as the component and a mixed solvent of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) as the non-aqueous solvent were weighed into a sample bottle, The electrolyte solution (1a) was obtained by mixing so that a density | concentration might be 1.0 mol / kg. Moreover, the lithium formate (0.174 g, 3.35 mmol) obtained in the above (2-1) as the component (A) and BF 3 O (C 2 H 5 ) 2 (0.475 g, 3.35 mmol) and a mixed solvent of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) as a non-aqueous solvent are weighed into a sample bottle so that the concentration of lithium atoms is 1.0 mol / kg. By mixing, an electrolytic solution (2a) was obtained.
The electrolytic solution used in this example was obtained by adding 10 parts by weight of the electrolytic solution (2a) to 90 parts by weight of the electrolytic solution (1a) obtained above.

<コイン型セルの製造>
負極(宝泉株式会社製)及び正極(宝泉株式会社製)を直径16mmの円盤状に打ち抜いた。また、セパレータとしてガラスファイバーを直径17mmの円盤状に打ち抜いた。得られた正極、セパレータ及び負極をこの順にSUS製の電池容器(CR2032)内で積層し、上記で得られた電解液をセパレータ、負極及び正極に含浸させ、さらに負極上に、SUS製の板(厚さ1.2mm、直径16mm)を載せ、蓋をすることによりコイン型セルを製造した。
<Manufacture of coin cell>
A negative electrode (manufactured by Hosen Co., Ltd.) and a positive electrode (manufactured by Hosen Co., Ltd.) were punched into a disk shape having a diameter of 16 mm. Further, a glass fiber was punched into a disk shape having a diameter of 17 mm as a separator. The obtained positive electrode, separator and negative electrode were laminated in this order in a battery container made of SUS (CR2032), the separator, the negative electrode and the positive electrode were impregnated with the electrolytic solution obtained above, and a SUS plate was placed on the negative electrode. A coin-type cell was manufactured by placing (covering a thickness of 1.2 mm, a diameter of 16 mm) and capping.

[実施例12]
<電解液の製造>
(C)成分としてLiPF(0.807g、5.31mmol)及び非水溶媒としてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1a)を得た。また、(A)成分として上記(2−3)にて得られたコハク酸リチウム(0.221g、1.70mmol)、(B)成分としてBFO(C(0.483g、3.41mmol)並びに非水溶媒としてEMC及びGBLの混合溶媒(EMC:GBL=50:50(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(2a)を得た。
上記で得られた電解液(1a)90重量部に対し、電解液(2a)を10重量部加えることにより、本実施例にて用いた電解液を得た。
[Example 12]
<Manufacture of electrolyte>
(C) LiPF 6 (0.807 g, 5.31 mmol) as the component and a mixed solvent of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) as the non-aqueous solvent were weighed into a sample bottle, The electrolyte solution (1a) was obtained by mixing so that a density | concentration might be 1.0 mol / kg. Moreover, lithium succinate (0.221 g, 1.70 mmol) obtained in the above (2-3) as the component (A) and BF 3 O (C 2 H 5 ) 2 (0.483 g) as the component (B) 3.41 mmol) and a mixed solvent of EMC and GBL (EMC: GBL = 50: 50 (volume ratio)) as a nonaqueous solvent is weighed into a sample bottle so that the concentration of lithium atoms becomes 1.0 mol / kg. To obtain an electrolytic solution (2a).
The electrolytic solution used in this example was obtained by adding 10 parts by weight of the electrolytic solution (2a) to 90 parts by weight of the electrolytic solution (1a) obtained above.

<コイン型セルの製造>
負極(宝泉株式会社製)及び正極(宝泉株式会社製)を直径16mmの円盤状に打ち抜いた。また、セパレータとしてガラスファイバーを直径17mmの円盤状に打ち抜いた。得られた正極、セパレータ及び負極をこの順にSUS製の電池容器(CR2032)内で積層し、上記で得られた電解液をセパレータ、負極及び正極に含浸させ、さらに負極上に、SUS製の板(厚さ1.2mm、直径16mm)を載せ、蓋をすることによりコイン型セルを製造した。
<Manufacture of coin cell>
A negative electrode (manufactured by Hosen Co., Ltd.) and a positive electrode (manufactured by Hosen Co., Ltd.) were punched into a disk shape having a diameter of 16 mm. Further, a glass fiber was punched into a disk shape having a diameter of 17 mm as a separator. The obtained positive electrode, separator and negative electrode were laminated in this order in a battery container made of SUS (CR2032), the separator, the negative electrode and the positive electrode were impregnated with the electrolytic solution obtained above, and a SUS plate was placed on the negative electrode. A coin-type cell was manufactured by placing (covering a thickness of 1.2 mm, a diameter of 16 mm) and capping.

[比較例1]
実施例1で得られた電解液(1a)のみを使用したこと以外は、実施例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[比較例2]
実施例2で得られた電解液(1a)のみを使用したこと以外は、実施例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[比較例3]
実施例3で得られた電解液(1a)のみを使用したこと以外は、実施例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[比較例4]
比較例1で使用した電解液(1a)において、非水溶媒として、GBLに代えてEC及びPCの混合溶媒(EC:PC=30:70(体積比))を使用したこと以外は、比較例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[比較例5]
実施例4で得られた電解液(1a)のみを使用したこと以外は、実施例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[比較例6]
比較例1で使用した電解液(1a)において、非水溶媒として、GBLに代えてEMC及びPCの混合溶媒(EMC:PC=50:50(体積比))を使用したこと以外は、比較例1と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[Comparative Example 1]
Except that only the electrolytic solution (1a) obtained in Example 1 was used, an electrolytic solution and a coin cell were manufactured in the same manner as in Example 1.
[Comparative Example 2]
Except that only the electrolytic solution (1a) obtained in Example 2 was used, an electrolytic solution and a coin-type cell were manufactured in the same manner as in Example 1.
[Comparative Example 3]
Except that only the electrolyte solution (1a) obtained in Example 3 was used, an electrolyte solution and a coin-type cell were manufactured in the same manner as in Example 1.
[Comparative Example 4]
In the electrolytic solution (1a) used in Comparative Example 1, as a nonaqueous solvent, a mixed solvent of EC and PC (EC: PC = 30: 70 (volume ratio)) was used instead of GBL. In the same manner as in No. 1, an electrolyte solution and a coin cell were manufactured.
[Comparative Example 5]
Except that only the electrolytic solution (1a) obtained in Example 4 was used, an electrolytic solution and a coin-type cell were manufactured in the same manner as in Example 1.
[Comparative Example 6]
Comparative Example 1 except that the electrolyte solution (1a) used in Comparative Example 1 used a mixed solvent of EMC and PC (EMC: PC = 50: 50 (volume ratio)) instead of GBL as the non-aqueous solvent. In the same manner as in No. 1, an electrolyte solution and a coin cell were manufactured.

(4)電池性能の評価
実施例1〜12及び比較例1〜6のコイン型セルについて、25℃において0.2Cの定電流定電圧充電を、上限電圧4.2Vとして電流値が0.1Cに収束するまで行った後、0.2Cの定電流放電を2.7Vまで行った。その後、充放電電流を1Cとして同様の方法で、充放電サイクルを数回〜数十回程度繰り返し行い電池の状態を安定化させた。その後、充放電電流を1Cとして同様の方法で、充放電サイクルを繰り返し行い、100サイクルでの容量維持率(100サイクル目の放電容量(mAh)/1サイクル目の放電容量(mAh))×100を算出した。なお、100サイクルの充放電試験が不可能だった場合においては、容量維持率が80%になったときのサイクル数(表記「80%(サイクル数)」)、ならびに50%になったときのサイクル数(表記「50%(サイクル数)」)を示した。なお5サイクル以内に容量が半分以下に低下したものは「充放電不可」と判断した。結果を表2に示す。
(4) Evaluation of battery performance For the coin-type cells of Examples 1 to 12 and Comparative Examples 1 to 6, 0.2 C constant current and constant voltage charging at 25 ° C. was set to an upper limit voltage of 4.2 V, and the current value was 0.1 C. Then, 0.2C constant current discharge was performed up to 2.7V. Thereafter, the charge / discharge current was set to 1 C and the charge / discharge cycle was repeated several times to several tens of times in the same manner to stabilize the state of the battery. Thereafter, the charge / discharge cycle was repeated in the same manner at a charge / discharge current of 1C, and the capacity retention rate at 100 cycles (discharge capacity at the 100th cycle (mAh) / discharge capacity at the 1st cycle (mAh)) × 100 Was calculated. In addition, when the charge / discharge test of 100 cycles is impossible, the number of cycles when the capacity maintenance rate becomes 80% (notation “80% (number of cycles)”) and when the capacity maintenance rate becomes 50% The number of cycles (notation “50% (number of cycles)”) is shown. In addition, the case where the capacity decreased to less than half within 5 cycles was judged as “impossible to charge / discharge”. The results are shown in Table 2.

Figure 2012252799
Figure 2012252799

Figure 2012252799
Figure 2012252799

実施例1〜4の結果から明らかなように、(C)成分としてLiPFを用いた電解液において、(A)成分のシュウ酸リチウムと(B)成分のBFO(Cとを組み合わせて添加することにより、非水溶媒として、プロピレンカーボネートなどの分岐鎖を有する環状炭酸エステル類や、γ−ブチロラクトンなどのラクトン類を溶媒として含んでいても、十分な充放電特性(サイクル寿命特性)を示した。
また、実施例5〜8の結果から明らかなように、シュウ酸リチウムとBFO(Cの添加量を様々に変えた場合でも、実施例1〜4と同様の結果が得られた。
また、実施例9〜10の結果から明らかなように、(B)成分として異なる構造のホウ素化合物を配合した場合でも、実施例1〜8と同様の結果が得られた。
また、実施例11〜12の結果から明らかなように、(A)成分として異なる構造の有機酸リチウムを配合した場合でも、実施例1〜10と同様の結果が得られた。
一方、比較例1〜6の結果から明らかなように、リチウム塩としてLiPFだけを用いた場合においては、プロピレンカーボネート等の分岐鎖を有する環状炭酸エステル類やγ−ブチロラクトン等のラクトン類が溶媒に含まれていると、様々の非水溶媒の組み合わせにおいても、良好な充放電挙動を示さなかった。この原因は、当該電解液が(A)成分及び(B)成分を含有していないことにある。
As is clear from the results of Examples 1 to 4, in the electrolytic solution using LiPF 6 as the component (C), lithium oxalate as the component (A) and BF 3 O (C 2 H 5 ) as the component (B). 2 in combination with a sufficient amount of charge / discharge characteristics even when a non-aqueous solvent includes a cyclic carbonate having a branched chain such as propylene carbonate or a lactone such as γ-butyrolactone as a solvent. Cycle life characteristics).
In addition, as is clear from the results of Examples 5 to 8, even when the addition amounts of lithium oxalate and BF 3 O (C 2 H 5 ) 2 were variously changed, the same results as in Examples 1 to 4 were obtained. Obtained.
Further, as is clear from the results of Examples 9 to 10, even when a boron compound having a different structure was blended as the component (B), the same results as in Examples 1 to 8 were obtained.
Further, as is clear from the results of Examples 11 to 12, even when organic acid lithium having a different structure was blended as the component (A), the same results as those of Examples 1 to 10 were obtained.
On the other hand, as is apparent from the results of Comparative Examples 1 to 6, when only LiPF 6 is used as the lithium salt, cyclic carbonates having a branched chain such as propylene carbonate and lactones such as γ-butyrolactone are solvents. When it was contained in, it did not show good charge / discharge behavior even in various combinations of non-aqueous solvents. This is because the electrolytic solution does not contain the component (A) and the component (B).

本発明は、電気デバイスの分野で利用可能である。例えばキャパシタ、リチウムイオン二次電池の分野で利用可能である。   The present invention can be used in the field of electrical devices. For example, it can be used in the field of capacitors and lithium ion secondary batteries.

Claims (13)

(C)塩素、フッ素若しくはホウ素を含む、有機リチウム塩又は無機リチウム塩、前記有機リチウム塩に該当しない(A)有機酸のリチウム塩及び(B)ホウ素化合物が、ラクトン類及び/又は分岐鎖を有する環状カーボネート類を含む非水溶媒に配合されてなることを特徴とする電解液。   (C) Organic lithium salt or inorganic lithium salt containing chlorine, fluorine or boron, (A) lithium salt of organic acid and (B) boron compound not corresponding to the above organic lithium salt are lactones and / or branched chains An electrolytic solution comprising a non-aqueous solvent containing cyclic carbonates having the electrolyte. 前記(A)有機酸のリチウム塩が、炭素数1〜6の脂肪族カルボン酸及び炭素数7〜8の芳香族カルボン酸のリチウム塩からなる群から選択される1種以上含むことを特徴とする請求項1に記載の電解液。   The lithium salt of (A) the organic acid contains one or more selected from the group consisting of aliphatic carboxylic acids having 1 to 6 carbon atoms and lithium salts of aromatic carboxylic acids having 7 to 8 carbon atoms, The electrolyte solution according to claim 1. 前記(A)有機酸のリチウム塩が、ギ酸リチウム、酢酸リチウム、プロピオン酸リチウム、酪酸リチウム、イソ酪酸リチウム、シュウ酸リチウム、マロン酸リチウム、コハク酸リチウム、グルタル酸リチウム、アジピン酸リチウム、マレイン酸リチウム、フマル酸リチウム、フタル酸リチウム及び安息香酸リチウムからなる群から選択される1種以上であることを特徴とする請求項1又は2に記載の電解液。   The lithium salt of the organic acid (A) is lithium formate, lithium acetate, lithium propionate, lithium butyrate, lithium isobutyrate, lithium oxalate, lithium malonate, lithium succinate, lithium glutarate, lithium adipate, maleic acid 3. The electrolytic solution according to claim 1, wherein the electrolytic solution is one or more selected from the group consisting of lithium, lithium fumarate, lithium phthalate, and lithium benzoate. 前記(C)塩素、フッ素若しくはホウ素を含む、有機リチウム塩又はの無機リチウム塩の配合量:前記(A)有機酸のリチウム塩の配合量が99:1〜50:50(モル比)であることを特徴とする請求項1〜3に記載の電解液。   (C) Compounding amount of organic lithium salt or inorganic lithium salt containing chlorine, fluorine or boron: Compounding amount of lithium salt of (A) organic acid is 99: 1 to 50:50 (molar ratio) The electrolytic solution according to claim 1, wherein 前記(B)ホウ素化合物が、ハロゲン化ホウ素及び/又はハロゲン化ホウ素錯体であることを特徴とする請求項1〜4いずれか一項に記載の電解液。   The electrolytic solution according to claim 1, wherein the boron compound (B) is a boron halide and / or a boron halide complex. 前記(B)ホウ素化合物が、三フッ化ホウ素及び/又は三フッ化ホウ素錯体であることを特徴とする請求項1〜5いずれか一項に記載の電解液。   The electrolyte solution according to claim 1, wherein the boron compound (B) is boron trifluoride and / or boron trifluoride complex. 前記(B)ホウ素化合物が、三フッ化ホウ素、三フッ化ホウ素ジメチルエーテル錯体、三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素ジn−ブチルエーテル錯体、三フッ化ホウ素ジtert−ブチルエーテル錯体、三フッ化ホウ素tert−ブチルメチルエーテル錯体、三フッ化ホウ素テトラヒドロフラン錯体、三フッ化ホウ素メタノール錯体、三フッ化ホウ素プロパノール錯体、及び三フッ化ホウ素フェノール錯体からなる群から選択される1種以上であることを特徴とする請求項1〜6のいずれか一項に記載の電解液。   The boron compound (B) is boron trifluoride, boron trifluoride dimethyl ether complex, boron trifluoride diethyl ether complex, boron trifluoride di n-butyl ether complex, boron trifluoride di tert-butyl ether complex, trifluoride. It must be at least one selected from the group consisting of boron bromide tert-butyl methyl ether complex, boron trifluoride tetrahydrofuran complex, boron trifluoride methanol complex, boron trifluoride propanol complex, and boron trifluoride phenol complex. The electrolytic solution according to any one of claims 1 to 6, wherein: 前記(C)塩素、フッ素若しくはホウ素を含む有機リチウム塩又は無機リチウム塩が、六フッ化リン酸リチウム、四フッ化ホウ素リチウム、ビス(トリフルオロメチルスルホニル)イミドリチウム、三フッ化メタンスルホン酸リチウム、六フッ化アンチモン酸リチウム、六フッ化ヒ素酸リチウム、及びテトラフェニルホウ酸リチウムからなる群から選択される1種以上であることを特徴とする請求項1〜7のいずれか一項に記載の電解液。   The organic lithium salt or inorganic lithium salt containing (C) chlorine, fluorine or boron is lithium hexafluorophosphate, lithium tetratetrafluoride, lithium bis (trifluoromethylsulfonyl) imide, lithium trifluoromethanesulfonate It is 1 or more types selected from the group which consists of lithium hexafluoroantimonate, lithium hexafluoroarsenate, and lithium tetraphenylborate, It is any one of Claims 1-7 characterized by the above-mentioned. Electrolyte. 前記分岐鎖を有する環状カーボネート類が、プロピレンカーボネート又はブチレンカーボネートであることを特徴とする請求項1〜8のいずれか一項に記載の電解液。   The electrolyte solution according to any one of claims 1 to 8, wherein the cyclic carbonate having a branched chain is propylene carbonate or butylene carbonate. 前記ラクトン類がγ−ブチロラクトン又はγ−バレロラクトンであることを特徴とする請求項1〜9のいずれか一項に記載の電解液。   The electrolytic solution according to claim 1, wherein the lactone is γ-butyrolactone or γ-valerolactone. さらに、分岐鎖を有さない環状カーボネート、鎖状カーボネート、エーテル類、カルボン酸エステル類、ニトリル類、アミド類及びスルホン類からなる群から選択される1種以上が配合されてなることを特徴とする請求項1〜10のいずれか一項に記載の電解液。   Furthermore, it is characterized in that one or more selected from the group consisting of cyclic carbonates having no branched chain, chain carbonates, ethers, carboxylic acid esters, nitriles, amides and sulfones are blended. The electrolyte solution according to any one of claims 1 to 10. 請求項1〜11のいずれか一項に記載の電解液に、さらに(D)マトリクスポリマーが配合されてなることを特徴とするゲル電解質。   A gel electrolyte, wherein the electrolyte solution according to any one of claims 1 to 11 is further blended with (D) a matrix polymer. 請求項1〜11のいずれか一項に記載の電解液又は請求項12に記載のゲル電解質を用いたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the electrolytic solution according to any one of claims 1 to 11 or the gel electrolyte according to claim 12.
JP2011122452A 2011-05-31 2011-05-31 Electrolyte, gel electrolyte and lithium ion secondary battery Active JP5592836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011122452A JP5592836B2 (en) 2011-05-31 2011-05-31 Electrolyte, gel electrolyte and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122452A JP5592836B2 (en) 2011-05-31 2011-05-31 Electrolyte, gel electrolyte and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012252799A true JP2012252799A (en) 2012-12-20
JP5592836B2 JP5592836B2 (en) 2014-09-17

Family

ID=47525458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122452A Active JP5592836B2 (en) 2011-05-31 2011-05-31 Electrolyte, gel electrolyte and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5592836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448032A (en) * 2019-09-02 2021-03-05 华南师范大学 New application of lithium benzoate
JP7421199B2 (en) 2018-03-23 2024-01-24 富山薬品工業株式会社 Electrolytes and non-aqueous electrolytes for power storage devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6668302B2 (en) 2017-09-20 2020-03-18 株式会社東芝 Rechargeable batteries, battery packs and vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297219A (en) * 2007-05-29 2008-12-11 Toyota Motor Corp Asymmetric bf3 complex
JP2011204569A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Nonaqueous electrolyte secondary battery, and separator for battery
JP2012174437A (en) * 2011-02-21 2012-09-10 Denso Corp Charging apparatus and charging method for lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297219A (en) * 2007-05-29 2008-12-11 Toyota Motor Corp Asymmetric bf3 complex
JP2011204569A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Nonaqueous electrolyte secondary battery, and separator for battery
JP2012174437A (en) * 2011-02-21 2012-09-10 Denso Corp Charging apparatus and charging method for lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421199B2 (en) 2018-03-23 2024-01-24 富山薬品工業株式会社 Electrolytes and non-aqueous electrolytes for power storage devices
CN112448032A (en) * 2019-09-02 2021-03-05 华南师范大学 New application of lithium benzoate

Also Published As

Publication number Publication date
JP5592836B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5462949B2 (en) Electrolyte, electrolytic solution, gel electrolyte, electrolyte membrane, method for producing gel electrolyte battery, and lithium ion secondary battery
JP7210436B2 (en) Phosphinic acid silyl esters as electrolyte additives
JP5487458B2 (en) Lithium ion secondary battery
US20180254516A1 (en) Non-aqueous electrolytes for high energy lithium-ion batteries
CN106450438A (en) Lithium-ion battery electrolyte and lithium ion battery with the same
JP2001057237A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
KR20120089197A (en) Electrolyte for electrochemical device and the electrochemical device thereof
CN109716578B (en) Electrochemical cell comprising difunctional silyl phosphonate
CN111864260B (en) Ether gel electrolyte and preparation method and application thereof
JP5739728B2 (en) Electrolyte and lithium ion secondary battery
US20210351437A1 (en) Nonaqueous Secondary Battery
JP2012209145A (en) Lithium-ion secondary battery
JP5592836B2 (en) Electrolyte, gel electrolyte and lithium ion secondary battery
CN110165298B (en) Electrolyte solution
JP6010309B2 (en) Lithium ion secondary battery
JP5758214B2 (en) Electrolyte and electrolyte membrane
CN112216867B (en) Electrolyte additive, lithium ion high-voltage electrolyte and lithium ion battery
KR20190119572A (en) Improving Ionic Conductivity of Electrolytes Based on Lithium Imidazolate Salts
JP6200129B2 (en) Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6333875B2 (en) Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014063710A (en) Electrolytic solution and lithium ion secondary battery
US11165098B2 (en) Substituted isoxazoles for lithium batteries
JP2012209144A (en) Electrolyte and lithium-ion secondary battery
JP2010218834A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
CN117691190A (en) Electrolyte for lithium-rich manganese-based positive electrode high-voltage lithium ion battery and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R151 Written notification of patent or utility model registration

Ref document number: 5592836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250