JP2012251853A - Dimension measuring instrument - Google Patents

Dimension measuring instrument Download PDF

Info

Publication number
JP2012251853A
JP2012251853A JP2011124132A JP2011124132A JP2012251853A JP 2012251853 A JP2012251853 A JP 2012251853A JP 2011124132 A JP2011124132 A JP 2011124132A JP 2011124132 A JP2011124132 A JP 2011124132A JP 2012251853 A JP2012251853 A JP 2012251853A
Authority
JP
Japan
Prior art keywords
microscope
dimension
light
dimension measuring
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011124132A
Other languages
Japanese (ja)
Other versions
JP6086274B2 (en
Inventor
Hideo Komota
英男 小茂田
Jin-Cheol Park
珍哲 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
V Technology Korea Co Ltd
Original Assignee
V Technology Co Ltd
V Technology Korea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd, V Technology Korea Co Ltd filed Critical V Technology Co Ltd
Priority to JP2011124132A priority Critical patent/JP6086274B2/en
Priority to KR1020137027327A priority patent/KR102019978B1/en
Priority to PCT/JP2012/064078 priority patent/WO2012165549A1/en
Publication of JP2012251853A publication Critical patent/JP2012251853A/en
Application granted granted Critical
Publication of JP6086274B2 publication Critical patent/JP6086274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only
    • G02B21/084Condensers for incident illumination only having annular illumination around the objective
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To distinctly discriminate and measure dimensions of an upper part and a lower part of a rugged pattern.SOLUTION: A dimension measuring instrument includes: a microscope 1 for enlarging and observing the rugged pattern formed on a substrate 5; an imaging camera 2 for imaging the rugged pattern observed through the microscope 1; an illuminating optical system 3 for applying scattered light from the outside of a visual field of an objective lens 7 of the microscope 1 to the inside of the visual field; and control means 4 for inputting an image of the imaging camera 2, displaying the image on a screen 17a of a display part 17 and measuring dimensions of either one or both of the upper part and lower part of the rugged pattern included within a range inputted by input means 16 and designated on the display screen 17a.

Description

本発明は、凹凸パターンの縁部間の寸法を測定する寸法測定装置に関し、特に凹凸パターンの上部及び下部の寸法を明確に区別して測定しようとする寸法測定装置に係るものである。   The present invention relates to a dimension measuring apparatus that measures the dimension between edges of a concavo-convex pattern, and particularly relates to a dimension measuring apparatus that attempts to distinguish and measure the upper and lower dimensions of the concavo-convex pattern.

従来の寸法測定装置は、被測定物を照明する照明手段と、被測定物の像を結ぶ撮像光学系と、上記像を撮像し画像データに変換する撮像手段と、画像データを用いて測定処理を行う処理手段と、測定処理の結果を出力する出力手段とを具備し、上記撮像光学系が、被測定物の像を結像させる結像手段と、上記像を拡大し撮像手段が備える撮像素子上に結像させる拡大結像手段とを備えたものであり、上記結像手段として長焦点距離の結像光学系を用いることにより、被測定物と撮像光学系との間に距離を設けることを可能としていた(例えば、特許文献1参照)。そして、ここで使用される上記照明手段は、透過照明又は同軸落射照明であった。   A conventional dimension measuring apparatus includes an illuminating unit that illuminates an object to be measured, an imaging optical system that connects an image of the object to be measured, an imaging unit that captures the image and converts it into image data, and a measurement process using the image data. An imaging means for forming an image of the object to be measured, and an imaging means provided in the imaging means for enlarging the image. And an enlargement image forming means for forming an image on the element. By using an image forming optical system having a long focal length as the image forming means, a distance is provided between the object to be measured and the image pickup optical system. (See, for example, Patent Document 1). And the said illumination means used here was transmission illumination or coaxial epi-illumination.

特開2000−241123号公報JP 2000-241123 A

しかし、このような従来の寸法測定装置において、照明手段が透過照明の場合、凹凸パターンとその周辺との透過率の差が大きいときには、凹凸パターンを明瞭に検出することはできるものの、凹凸パターンの縁部における斜面部を検出することができず、凹凸パターンの上部及び下部の寸法を明確に区別して測定することができなかった。   However, in such a conventional dimension measuring apparatus, when the illumination means is transmissive illumination, the concavo-convex pattern can be clearly detected when the difference in transmittance between the concavo-convex pattern and its periphery is large, but the concavo-convex pattern The slope at the edge could not be detected, and the upper and lower dimensions of the concavo-convex pattern could not be clearly distinguished and measured.

また、照明手段が透過照明の場合、凹凸パターンとその周辺との透過率の差が小さいときには、凹凸パターンそのものを明瞭に検出することができず、この場合も、凹凸パターンの上部及び下部の寸法を明確に区別して測定することができなかった。   In addition, when the illumination means is transmissive illumination, when the difference in transmittance between the concavo-convex pattern and its periphery is small, the concavo-convex pattern itself cannot be detected clearly. It was not possible to measure clearly.

さらに、照明手段が同軸落射照明の場合、凹凸パターンとその周辺との反射率の差が大きいときには、凹凸パターンを明瞭に検出することはできるものの、凹凸パターンの縁部における斜面部を明瞭に検出することができず、凹凸パターンの上部及び下部の寸法を明確に区別して測定することができなかった。   Furthermore, when the illumination means is coaxial epi-illumination, the uneven pattern can be detected clearly when the difference in reflectance between the uneven pattern and its surroundings is large, but the slope at the edge of the uneven pattern is clearly detected. Therefore, the upper and lower dimensions of the concavo-convex pattern could not be clearly distinguished and measured.

そして、照明手段が同軸落射照明の場合、凹凸パターンとその周辺との反射率の差が小さいときには、凹凸パターンそのものを明瞭に検出することができず、この場合も、凹凸パターンの上部及び下部の寸法を明確に区別して測定することができなかった。   And, when the illumination means is coaxial epi-illumination, when the difference in reflectance between the concavo-convex pattern and its surroundings is small, the concavo-convex pattern itself cannot be detected clearly. It was not possible to measure the dimensions clearly.

そこで、本発明は、このような問題点に対処し、凹凸パターンの上部及び下部の寸法を明確に区別して測定しようとする寸法測定装置を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, the present invention addresses such problems and an object thereof is to provide a dimension measuring apparatus that attempts to clearly distinguish the upper and lower dimensions of a concavo-convex pattern for measurement.

上記目的を達成するために、本発明による寸法測定装置は、基板上に形成された凹凸パターンを拡大観察する顕微鏡と、前記顕微鏡を通して観察される前記凹凸パターンを撮像する撮像カメラと、前記顕微鏡の対物レンズの視野外からその視野内に散乱光を照射する照明光学系と、前記撮像カメラの画像を入力して表示部の画面上に表示し、入力手段により入力して前記表示画面上に指定された範囲内の前記凹凸パターンの上部及び下部のいずれか一方、又は両方の寸法を測定する制御手段と、を備えたものである。   In order to achieve the above object, a dimension measuring apparatus according to the present invention includes a microscope that magnifies and observes a concavo-convex pattern formed on a substrate, an imaging camera that images the concavo-convex pattern observed through the microscope, and the microscope. The illumination optical system that irradiates scattered light from outside the field of the objective lens into the field of view and the image of the imaging camera are input and displayed on the screen of the display unit, and input by the input means and specified on the display screen And a control means for measuring the size of either or both of the upper and lower portions of the concavo-convex pattern within the specified range.

このような構成により、基板上に形成された凹凸パターンを拡大観察する顕微鏡の対物レンズの視野外からその視野内に照明光学系により散乱光を照射し、撮像カメラで顕微鏡を通して観察される凹凸パターンを撮像し、制御手段で撮像カメラの画像を入力して表示部の画面上に表示し、入力手段により入力して表示画面上に指定された範囲内の凹凸パターンの上部及び下部のいずれか一方、又は両方の寸法を測定する。   With such a configuration, the uneven pattern formed by irradiating scattered light from outside the field of the objective lens of the microscope for observing the uneven pattern formed on the substrate with the illumination optical system and observing through the microscope with the imaging camera. The image of the imaging camera is input by the control means and displayed on the screen of the display unit, and one of the upper and lower portions of the uneven pattern within the range specified by the input means and input on the display screen , Or measure both dimensions.

また、前記制御手段は、前記入力手段により指定された範囲内を往復サーチすると共に該往復サーチで得られた輝度変化における暗から明へ変化した部分の間隔、又は明から暗へ変化した部分の間隔から前記凹凸パターンの上部及び下部のいずれか一方、又は両方の寸法を測定するものである。これにより、入力手段により指定された範囲内を往復サーチし、それによって得られた輝度変化における暗から明へ変化した部分の間隔、又は明から暗へ変化した部分の間隔から凹凸パターンの上部及び下部のいずれか一方、又は両方の寸法を測定する。   Further, the control means performs a reciprocal search within the range specified by the input means, and an interval between portions where the brightness change obtained by the reciprocal search has changed from dark to light, or a portion which has changed from light to dark. One or both of the upper and lower portions of the concavo-convex pattern is measured from the interval. Thus, the range specified by the input means is reciprocally searched, and the upper portion of the uneven pattern and the interval between the portions changed from dark to light or the portion changed from light to dark in the luminance change obtained thereby. Measure one or both of the bottom dimensions.

さらに、前記入力手段により指定された範囲は、四角形であり、該四角形の一辺に平行方向に往復サーチすると共に該往復サーチを前記辺と交差する方向に等間隔で複数回実施する。これにより、入力手段により指定された範囲内を四角形の一辺に平行方向に往復サーチすると共に該往復サーチを上記辺と交差する方向に等間隔で複数回実施する。   Further, the range designated by the input means is a quadrangle, and a reciprocal search is performed in a direction parallel to one side of the quadrangle, and the reciprocal search is performed a plurality of times at equal intervals in a direction intersecting the side. Accordingly, the range specified by the input means is reciprocated in the direction parallel to one side of the quadrangle, and the reciprocation search is performed a plurality of times at equal intervals in the direction intersecting the side.

前記凹凸パターンは、前記基板の透過率又は反射率と略同等の透過率又は反射率を有する薄膜パターンである。これにより、基板の透過率又は反射率と略同等の透過率又は反射率を有する薄膜パターンに対して対物レンズの視野外からその視野内に散乱光を照射し、薄膜パターンの寸法を測定する。   The concavo-convex pattern is a thin film pattern having a transmittance or reflectance substantially equal to the transmittance or reflectance of the substrate. As a result, the thin film pattern having a transmittance or reflectance substantially equal to the transmittance or reflectance of the substrate is irradiated with scattered light from outside the field of view of the objective lens, and the dimension of the thin film pattern is measured.

請求項1に係る発明によれば、顕微鏡の光軸に直交する凹凸パターンの上面及び基板面で反射する光は顕微鏡の対物レンズに取り込まれず、凹凸パターンの縁部の斜面部で反射される光だけが対物レンズに取り込まれ観察される。したがって、凹凸パターンの撮像画像は黒の背景に輝線で描かれた線画となり、線画の輝線の内側縁部間の寸法及び外側縁部間の寸法を測定することにより、凹凸パターンの上部及び下部の寸法を明確に区別して測定することができる。これにより、凹凸パターンを精度よく測定することができる。   According to the first aspect of the present invention, the light reflected by the upper surface and the substrate surface of the concave / convex pattern orthogonal to the optical axis of the microscope is not taken into the objective lens of the microscope, but is reflected by the slope of the edge of the concave / convex pattern Only is taken into the objective and observed. Therefore, the captured image of the concavo-convex pattern is a line drawing drawn with bright lines on a black background, and by measuring the dimension between the inner edge and the outer edge of the bright line of the line drawing, The dimensions can be clearly distinguished and measured. Thereby, an uneven | corrugated pattern can be measured accurately.

また、請求項2に係る発明によれば、入力手段で指定した範囲内の寸法測定を行うことができ、凹凸パターンの所望の部分の寸法測定を正確に行うことができる。   Moreover, according to the invention which concerns on Claim 2, the dimension measurement within the range designated with the input means can be performed, and the dimension measurement of the desired part of an uneven | corrugated pattern can be performed correctly.

さらに、請求項3に係る発明によれば、指定された領域内の寸法測定を行うことができ、上記領域内の寸法の最大値、最小値及び平均値を算出することができる。したがって、寸法測定をより精度よく行うことができる。   Furthermore, according to the third aspect of the present invention, it is possible to measure the dimensions in the designated area, and to calculate the maximum value, the minimum value, and the average value of the dimensions in the area. Therefore, the dimension measurement can be performed with higher accuracy.

そして、請求項4に係る発明によれば、基板の透過率又は反射率と略同等の透過率又は反射率を有する薄膜パターンの寸法測定も精度よく行なうことができる。   According to the fourth aspect of the present invention, it is possible to accurately measure the dimension of a thin film pattern having a transmittance or reflectance substantially equal to the transmittance or reflectance of the substrate.

本発明による寸法測定装置の実施形態を示す正面図である。It is a front view which shows embodiment of the dimension measuring apparatus by this invention. 本発明による寸法測定装置の動作及び寸法測定について説明するフローチャートである。It is a flowchart explaining the operation | movement and dimension measurement of the dimension measuring apparatus by this invention. 上記寸法測定装置の照明光学系による照明について示す説明図である。It is explanatory drawing shown about the illumination by the illumination optical system of the said dimension measuring apparatus. 上記寸法測定装置の表示画面上に表示される凹凸パターンの画像を示す説明図である。It is explanatory drawing which shows the image of the uneven | corrugated pattern displayed on the display screen of the said dimension measuring apparatus. 上記寸法測定装置による寸法測定について示す説明図であり、(a)は輝度変化を示し、(b)は(a)の輝度変化に対応する凹凸パターンを示す。It is explanatory drawing shown about the dimension measurement by the said dimension measuring apparatus, (a) shows a luminance change, (b) shows the uneven | corrugated pattern corresponding to the luminance change of (a).

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による寸法測定装置の実施形態を示す正面図である。この寸法測定装置は、凹凸パターンの縁部間の寸法を測定するもので、顕微鏡1と、撮像カメラ2と、計測用照明光学系3と、制御手段4と、を備えて構成されている。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a front view showing an embodiment of a dimension measuring apparatus according to the present invention. This dimension measuring device measures a dimension between edges of a concavo-convex pattern, and includes a microscope 1, an imaging camera 2, a measurement illumination optical system 3, and a control unit 4.

上記顕微鏡1は、基板5上に形成された凹凸パターンを拡大観察するもので、XYステージ6に載置された基板5に対向して設けられた対物レンズ7と、該対物レンズ7で取り込んだ基板5上の凹凸パターンの像を後述の撮像カメラ2の受光部に結像する結像レンズ8とを備えて結像光学系を構成している。   The microscope 1 magnifies and observes the concave-convex pattern formed on the substrate 5. The objective lens 7 provided facing the substrate 5 placed on the XY stage 6, and the objective lens 7 captures the microscope 1. An imaging optical system is configured by including an imaging lens 8 that forms an image of the concavo-convex pattern on the substrate 5 on a light receiving portion of the imaging camera 2 described later.

上記顕微鏡1の光路上にて上記基板5とは反対側には、撮像カメラ2が設けられている。この撮像カメラ2は、顕微鏡1を通して観察される上記凹凸パターンを撮像するもので、例えば二次元のCCDカメラ等である。   An imaging camera 2 is provided on the opposite side of the optical path of the microscope 1 from the substrate 5. The imaging camera 2 captures the uneven pattern observed through the microscope 1 and is, for example, a two-dimensional CCD camera.

上記基板5上の凹凸パターンを照明可能に計測用照明光学系3が設けられている。この計測用照明光学系3は、上記顕微鏡1の対物レンズ7の視野外からその視野内に散乱光を照射するものであり、光の進行方向上流から下流に向かって、光源9と、円錐状ミラー10と、リング状ミラー11と、穴あき平面ミラー12と、リング状導光部材13とをこの順に備えて構成されている。   A measurement illumination optical system 3 is provided so as to illuminate the uneven pattern on the substrate 5. The measurement illumination optical system 3 irradiates scattered light from the outside of the field of the objective lens 7 of the microscope 1 into the field of view, and the light source 9 and the conical shape from upstream to downstream of the light traveling direction. The mirror 10, the ring-shaped mirror 11, the perforated plane mirror 12, and the ring-shaped light guide member 13 are provided in this order.

ここで、上記光源9は、白色散乱光を発生するものである。また、上記円錐状ミラー10は、円錐の外表面を全反射ミラーとしたもので、光源9からの光を直交方向に放射状に反射するもので、円錐の頂点を通る中心軸を計測用照明光学系3の光軸に合致させて設けられている。さらに、リング状ミラー11は、リング状に形成された部材の内周面を円錐状の全反射ミラーとして形成し、リングの中心軸を上記光軸に合致させて内周面を上記円錐状ミラー10のミラー面と対向させた状態に配置され、上記円錐状ミラー10で放射状に反射された光をリング状の照明光として直交方向前方に反射するものである。さらにまた、上記穴あき平面ミラー12は、穴12aの中心を上記計測用照明光学系3の光軸及び顕微鏡1の光軸に合致させて45度傾けて設けられ、リング状ミラー11で反射されたリング状の照明光を基板5側に反射するものである。この場合、上記穴12aの径は、顕微鏡1の結像光学系における光路径よりも大きくされている。そして、上記リング状導光部材13は、穴あき平面ミラー12で反射されたリング状の照明光を顕微鏡1の対物レンズ7の先端部まで導き、対物レンズ7の視野外からその視野内に照射するもので、対物レンズ7を取り囲んだリング状の部材の内周面にて基板5側の先端部近傍部を凹面鏡13aに形成し、リング状の照明光を対物レンズ7の外周面とリング状部材の内周面との間の隙間14を基板5側に向かって導き、上記凹面鏡13aで対物レンズ7の焦点近傍部に集光させるようになっている。   Here, the light source 9 generates white scattered light. Further, the conical mirror 10 has a conical outer surface as a total reflection mirror, and reflects light from the light source 9 radially in the orthogonal direction, and the central axis passing through the apex of the cone is used as measurement illumination optics. It is provided so as to coincide with the optical axis of the system 3. Furthermore, the ring-shaped mirror 11 forms the inner peripheral surface of the ring-shaped member as a conical total reflection mirror, and matches the central axis of the ring with the optical axis so that the inner peripheral surface is the conical mirror. 10 is arranged in a state of being opposed to the mirror surface, and the light radially reflected by the conical mirror 10 is reflected forward in the orthogonal direction as ring-shaped illumination light. Furthermore, the perforated plane mirror 12 is provided with the center of the hole 12 a inclined by 45 degrees so as to match the optical axis of the measurement illumination optical system 3 and the optical axis of the microscope 1, and is reflected by the ring-shaped mirror 11. The ring-shaped illumination light is reflected to the substrate 5 side. In this case, the diameter of the hole 12a is made larger than the optical path diameter in the imaging optical system of the microscope 1. The ring-shaped light guide member 13 guides the ring-shaped illumination light reflected by the perforated plane mirror 12 to the tip of the objective lens 7 of the microscope 1 and irradiates the visual field of the objective lens 7 from outside the visual field. In the inner peripheral surface of the ring-shaped member surrounding the objective lens 7, the vicinity of the tip portion on the substrate 5 side is formed in the concave mirror 13 a, and the ring-shaped illumination light and the outer peripheral surface of the objective lens 7 are ring-shaped. A gap 14 between the inner peripheral surface of the member is guided toward the substrate 5 side, and is condensed in the vicinity of the focal point of the objective lens 7 by the concave mirror 13a.

上記撮像カメラ2に接続して制御手段4が設けられている。この制御手段4は、撮像カメラ2の画像を入力して表示部の画面上に表示し、入力手段により入力して表示画面上に指定された範囲内の凹凸パターンの上部及び下部のいずれか一方、又は両方の寸法を測定するもので、例えばパーソナルコンピュータ(PC)である。そして、制御部15と、入力手段16と、表示部17とを備えている。   A control means 4 is provided in connection with the imaging camera 2. This control means 4 inputs the image of the imaging camera 2 and displays it on the screen of the display unit. Either one of the upper part and the lower part of the concavo-convex pattern within the range specified by the input means and input on the display screen. , Or both dimensions, for example a personal computer (PC). A control unit 15, an input unit 16, and a display unit 17 are provided.

次に、このように構成された寸法測定装置の動作及び寸法測定手順について図2のフローチャートを参照して説明する。
先ず、ステップS1においては、XYステージ6を移動して顕微鏡1を基板5上の被測定位置に位置付ける。
Next, the operation and dimension measurement procedure of the dimension measuring apparatus configured as described above will be described with reference to the flowchart of FIG.
First, in step S <b> 1, the XY stage 6 is moved to position the microscope 1 at a measurement position on the substrate 5.

次に、ステップS2においては、図示省略の例えば同軸落射照明により基板5の被測定位置を照明し、観察されるパターンの画像が鮮明になるように顕微鏡1の高さを変えてオートフォーカスを実行する。   Next, in step S2, the measurement position of the substrate 5 is illuminated by, for example, coaxial epi-illumination (not shown), and auto-focusing is performed by changing the height of the microscope 1 so that the image of the observed pattern becomes clear. To do.

続いて、ステップS3においては、照明を計測用照明光学系3による照明に切り換えて、顕微鏡1の対物レンズ7の視野外から視野内に向かって散乱光を照射し、基板5の被測定位置の凹凸パターンを照明する。   Subsequently, in step S3, the illumination is switched to illumination by the measurement illumination optical system 3, and the scattered light is irradiated from the outside of the field of the objective lens 7 of the microscope 1 into the field of view. Illuminate the uneven pattern.

ステップS4においては、顕微鏡1の対物レンズ7により上記被測定位置の凹凸パターンの像を取り込み結像レンズ8により撮像カメラ2の受光部に結像する。これにより、撮像カメラ2により基板5上の凹凸パターンが拡大して撮像される。撮像カメラ2で取得した凹凸パターンの像は、制御手段4の表示部17の画面17a上に表示される。   In step S <b> 4, an image of the concavo-convex pattern at the measurement position is captured by the objective lens 7 of the microscope 1 and imaged on the light receiving portion of the imaging camera 2 by the imaging lens 8. Thereby, the uneven pattern on the substrate 5 is enlarged and imaged by the imaging camera 2. An image of the uneven pattern acquired by the imaging camera 2 is displayed on the screen 17 a of the display unit 17 of the control unit 4.

この場合、計測用照明光学系3による照明は、上述したように顕微鏡1の対物レンズ7の視野外から視野内に向かって散乱光を照射するものであるため、図3に示すように、対物レンズ7の光軸に直交する面(例えば凹凸パターン18の上面18a)で反射された同図に破線で示す反射光は、顕微鏡1の対物レンズ7に取り込まれず、凹凸パターン18の縁部の斜面部18bで反射された同図に実線で示す反射光が対物レンズ7に取り込まれることになる。したがって、撮像カメラ2で撮像され制御手段4の表示部17に表示される画像は、図4に示すような線画となる。なお、図4においては、図面を明瞭にするために、白黒を反転して示している。即ち、実際の表示においては、黒い線の部分が「明部」であり、白で示した部分が「暗部」となる。   In this case, since the illumination by the measurement illumination optical system 3 irradiates the scattered light from the outside of the field of the objective lens 7 of the microscope 1 to the inside of the field of view as described above, as shown in FIG. Reflected light indicated by a broken line in the drawing reflected by a surface orthogonal to the optical axis of the lens 7 (for example, the upper surface 18a of the concavo-convex pattern 18) is not taken into the objective lens 7 of the microscope 1 and is inclined at the edge of the concavo-convex pattern 18. The reflected light indicated by the solid line in FIG. 6 reflected by the portion 18 b is taken into the objective lens 7. Therefore, the image captured by the imaging camera 2 and displayed on the display unit 17 of the control means 4 is a line drawing as shown in FIG. In FIG. 4, the black and white are shown inverted for the sake of clarity. That is, in the actual display, the black line portion is the “bright portion” and the white portion is the “dark portion”.

ステップS5においては、入力手段16の一つである例えばマウス19を使用して測定範囲ARを指定する。具体的には、マウス19をクリックして、図4に示すように画面17a上に点a,b,cを順番に指定すると、該点a,b,cを頂点とする平行四辺形の範囲が確定される。   In step S5, the measurement range AR is designated using, for example, the mouse 19 which is one of the input means 16. Specifically, when the mouse 19 is clicked and points a, b, and c are specified in order on the screen 17a as shown in FIG. 4, a range of parallelograms having the points a, b, and c as vertices. Is confirmed.

ステップS6においては、制御部15に保存されたプログラムに従って、上記確定された平行四辺形の測定範囲ARの例えば辺abに平行方向に(同図に示すサーチライン20に沿って)往復サーチし、それにより検出される輝度変化における暗から明へ変化した部分の間隔、又は明から暗へ変化した部分の間隔から凹凸パターン18の上部及び下部のいずれか一方、又は両方の寸法を測定する。ここでは、暗から明へ変化した部分を検出して計測する場合について述べる。   In step S6, in accordance with a program stored in the control unit 15, a reciprocating search is performed in a direction parallel to the side ab (for example, along the search line 20 shown in the figure) of the determined parallelogram measurement range AR. The dimension of one or both of the upper part and the lower part of the concavo-convex pattern 18 is measured from the interval between the changed portions from dark to bright or the interval between the changed portions from bright to dark in the detected luminance change. Here, the case where the part which changed from dark to light is detected and measured will be described.

先ず、図4に示すように、辺abに平行に矢印A方向にサーチして輝度変化を調べる。この場合、スタート位置を基準とした位置と検出輝度との関係を調べると、図5(a)に示すようなグラフとなる。これにより、矢印A方向のサーチにおいて最初に暗から明へ変化した点P1を検出し、該点P1の位置を制御部15のメモリに記憶する。   First, as shown in FIG. 4, the luminance change is examined by searching in the direction of arrow A parallel to the side ab. In this case, when the relationship between the position relative to the start position and the detected luminance is examined, a graph as shown in FIG. 5A is obtained. As a result, the point P1 first changed from dark to bright in the search in the direction of arrow A is detected, and the position of the point P1 is stored in the memory of the control unit 15.

次に、図4に示すように、矢印Aとは逆の矢印B方向にサーチして輝度変化を調べる。そして、矢印B方向のサーチにおいて最初に暗から明へ変化した点P2(図5(a)参照)を検出し、該点P2の位置を制御部15のメモリに記憶する。   Next, as shown in FIG. 4, a change in luminance is examined by searching in the direction of arrow B opposite to arrow A. Then, a point P2 (see FIG. 5A) that first changes from dark to bright in the search in the direction of arrow B is detected, and the position of the point P2 is stored in the memory of the control unit 15.

続いて、上記検出された点P1,P2の位置をメモリから読出し、制御部15で演算してP1,P2間の距離Lを算出する。そして、メモリに記憶する。この場合、算出された距離Lは、図5(b)に示す凹凸パターン18の下部の寸法に相当する。   Subsequently, the positions of the detected points P1 and P2 are read from the memory and calculated by the control unit 15 to calculate the distance L between P1 and P2. And it memorize | stores in memory. In this case, the calculated distance L corresponds to the size of the lower part of the uneven pattern 18 shown in FIG.

ステップS7においては、指定された平行四辺形の領域内の寸法測定を全て終了したか否かを制御部15で判定する。ここで、未だ終了していないときには、ステップS7は“NO”判定となって、ステップS8に進む。   In step S <b> 7, the control unit 15 determines whether or not all the dimension measurements in the designated parallelogram area have been completed. Here, when the process has not been completed yet, step S7 is “NO” determination, and the process proceeds to step S8.

ステップS8においては、サーチ位置を辺abに直交する方向に予め定められた一定距離だけずらし、ステップS6に戻り、新たなサーチ位置で往復サーチし、上述と同様にして凹凸パターン18の下部の寸法を測定する。この寸法測定は、指定された平行四辺形の領域内の寸法測定が全て終了し、ステップS7において、“YES”判定となるまで繰り返し実行される。そして、ステップS7において“YES”判定となるとステップS9に進む。   In step S8, the search position is shifted by a predetermined distance in a direction orthogonal to the side ab, and the process returns to step S6 to perform a reciprocal search at the new search position. Measure. This dimension measurement is repeated until all dimension measurements in the designated parallelogram area are completed and “YES” is determined in step S7. And if it becomes "YES" determination in step S7, it will progress to step S9.

ステップS9においては、メモリに保存された全ての測定結果を読み出して制御部15で演算し、指定された測定範囲AR内の凹凸パターン18の寸法の最大値、最小値及び平均値を求め、表示部17に表示する。又は、図示省略のプリンターによりプリントアウトしてもよい。   In step S9, all the measurement results stored in the memory are read out and calculated by the control unit 15, and the maximum value, minimum value, and average value of the dimensions of the uneven pattern 18 within the specified measurement range AR are obtained and displayed. Displayed on the unit 17. Alternatively, it may be printed out by a printer (not shown).

また、凹凸パターン18の上部の寸法測定は、輝度変化における「明」から「暗」に変化する点を検出し、上述のようにして行えばよい。   Further, the dimension measurement of the upper portion of the concave / convex pattern 18 may be performed as described above by detecting a point changing from “bright” to “dark” in the luminance change.

さらに、指定した平行四辺形の測定範囲AR内において、例えば辺abに平行方向に測定した後、辺bc方向に測定するようにプログラムを設定すれば、四角形の凹凸パターン18の大きさを測定することができる。   Furthermore, if the program is set to measure in the direction of the side bc after measuring in the direction parallel to the side ab within the specified parallelogram measurement range AR, the size of the rectangular uneven pattern 18 is measured. be able to.

このように、上記実施形態によれば、凹凸パターン18の上部及び下部の寸法を明確に区別して測定することができ、特に、基板5の透過率又は反射率と略同等の透過率又は反射率を有する薄膜パターンの寸法も精度よく測定することができる。   As described above, according to the above-described embodiment, the upper and lower dimensions of the uneven pattern 18 can be clearly distinguished and measured, and in particular, the transmittance or reflectance substantially equal to the transmittance or reflectance of the substrate 5 can be measured. The dimension of a thin film pattern having a can be measured with high accuracy.

また、上記撮像カメラ2は、シャッタスピードを可変にするとよい。これにより、例えば、反射輝度が小さい場合には、シャッタスピードを遅くして受光光量を増すことができる。逆に、反射輝度が高くて受光素子の出力が飽和するときには、シャッタスピードを速くして受光光量を減らすことができる。したがって、いずれの場合にも、凹凸パターン18を適切な輝度で検出することができ、寸法測定を高精度に行うことができる。   The imaging camera 2 may have a variable shutter speed. Thereby, for example, when the reflected luminance is low, the amount of received light can be increased by slowing the shutter speed. Conversely, when the reflected luminance is high and the output of the light receiving element is saturated, the amount of received light can be reduced by increasing the shutter speed. Therefore, in any case, the concave / convex pattern 18 can be detected with appropriate luminance, and dimension measurement can be performed with high accuracy.

なお、上記実施形態においては、平行四辺形の測定範囲ARを指定する場合について説明したが、本発明はこれに限られず、測定範囲ARは直線で指定してもよい。これにより、直線で指定された範囲の寸法測定を行うことができる。   In the above embodiment, the case of specifying the parallelogram measurement range AR has been described. However, the present invention is not limited to this, and the measurement range AR may be specified by a straight line. Thereby, the dimension measurement of the range designated with the straight line can be performed.

また、上記実施形態においては、計測用照明光学系3が光源9から発した光を複数の反射ミラーを介して対物レンズ7の視野外からその視野内に導くように構成したものである場合について説明したが、本発明はこれに限られず、対物レンズ7の外周部分に設けた例えばLEDや光ファイバー等により光を対物レンズ7の視野内に直接供給するようにしてもよい。   In the above embodiment, the measurement illumination optical system 3 is configured to guide the light emitted from the light source 9 from outside the field of the objective lens 7 into the field of view through a plurality of reflecting mirrors. Although described above, the present invention is not limited to this, and light may be directly supplied into the field of view of the objective lens 7 by, for example, an LED or an optical fiber provided on the outer peripheral portion of the objective lens 7.

1…顕微鏡
2…撮像カメラ
3…計測用照明光学系(照明光学系)
4…制御手段
5…基板
16…入力手段
17…表示部
17a…画面
AR…測定範囲
DESCRIPTION OF SYMBOLS 1 ... Microscope 2 ... Imaging camera 3 ... Measurement illumination optical system (illumination optical system)
DESCRIPTION OF SYMBOLS 4 ... Control means 5 ... Board | substrate 16 ... Input means 17 ... Display part 17a ... Screen AR ... Measurement range

Claims (4)

基板上に形成された凹凸パターンを拡大観察する顕微鏡と、
前記顕微鏡を通して観察される前記凹凸パターンを撮像する撮像カメラと、
前記顕微鏡の対物レンズの視野外からその視野内に散乱光を照射する照明光学系と、
前記撮像カメラの画像を入力して表示部の画面上に表示し、入力手段により入力して前記表示画面上に指定された範囲内の前記凹凸パターンの上部及び下部のいずれか一方、又は両方の寸法を測定する制御手段と、
を備えたことを特徴とする寸法測定装置。
A microscope for magnifying and observing the uneven pattern formed on the substrate;
An imaging camera for imaging the concavo-convex pattern observed through the microscope;
An illumination optical system for irradiating scattered light from outside the field of view of the objective lens of the microscope,
The image of the imaging camera is input and displayed on the screen of the display unit, input by the input means, and either or both of the upper and lower portions of the uneven pattern within the range specified on the display screen Control means for measuring dimensions;
A dimension measuring device comprising:
前記制御手段は、前記入力手段により指定された範囲内を往復サーチすると共に該往復サーチで得られた輝度変化における暗から明へ変化した部分の間隔、又は明から暗へ変化した部分の間隔から前記凹凸パターンの上部及び下部のいずれか一方、又は両方の寸法を測定することを特徴とする請求項1記載の寸法測定装置。   The control means performs a reciprocal search within the range specified by the input means, and from an interval of a portion changed from dark to light or an interval of a portion changed from light to dark in the luminance change obtained by the reciprocal search. The dimension measuring apparatus according to claim 1, wherein the dimension of either or both of the upper part and the lower part of the uneven pattern is measured. 前記入力手段により指定された範囲は、四角形であり、該四角形の一辺に平行方向に往復サーチすると共に該往復サーチを前記辺と交差する方向に等間隔で複数回実施することを特徴とする請求項2記載の寸法測定装置。   The range specified by the input means is a quadrangle, and a reciprocal search is performed in a direction parallel to one side of the quadrangle, and the reciprocal search is performed a plurality of times at equal intervals in a direction intersecting the side. Item 3. The dimension measuring apparatus according to Item 2. 前記凹凸パターンは、前記基板の透過率又は反射率と略同等の透過率又は反射率を有する薄膜パターンであることを特徴とする請求項1〜3のいずれか1項に記載の寸法測定装置。   The dimension measuring apparatus according to claim 1, wherein the uneven pattern is a thin film pattern having a transmittance or a reflectance substantially equal to a transmittance or a reflectance of the substrate.
JP2011124132A 2011-06-02 2011-06-02 Dimension measuring device Active JP6086274B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011124132A JP6086274B2 (en) 2011-06-02 2011-06-02 Dimension measuring device
KR1020137027327A KR102019978B1 (en) 2011-06-02 2012-05-31 Dimension measuring apparatus
PCT/JP2012/064078 WO2012165549A1 (en) 2011-06-02 2012-05-31 Dimension measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124132A JP6086274B2 (en) 2011-06-02 2011-06-02 Dimension measuring device

Publications (2)

Publication Number Publication Date
JP2012251853A true JP2012251853A (en) 2012-12-20
JP6086274B2 JP6086274B2 (en) 2017-03-01

Family

ID=47259401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124132A Active JP6086274B2 (en) 2011-06-02 2011-06-02 Dimension measuring device

Country Status (3)

Country Link
JP (1) JP6086274B2 (en)
KR (1) KR102019978B1 (en)
WO (1) WO2012165549A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210097623A (en) 2020-01-30 2021-08-09 한국전자통신연구원 Method and apparatus for detecting dimension error
FR3113741B1 (en) * 2020-08-28 2022-08-05 Commissariat Energie Atomique focusing and collection optical system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102505A (en) * 1984-10-26 1986-05-21 Hitachi Ltd Lighting device
JPH10274707A (en) * 1997-03-31 1998-10-13 Sankyo Seiki Mfg Co Ltd Diffraction grating
JP2000283909A (en) * 1999-03-30 2000-10-13 Jeol Ltd Surface observation device
JP2002014053A (en) * 2000-06-28 2002-01-18 Sony Corp Equipment and method for inspection
JP2004150942A (en) * 2002-10-30 2004-05-27 Sysmex Corp Cell for detecting particle, and particle detector using the same
JP2005134666A (en) * 2003-10-30 2005-05-26 Hoya Corp Photomask and method for forming video device
JP2006093251A (en) * 2004-09-22 2006-04-06 Hitachi High-Technologies Corp Dimension measuring method and its device
JP2008096125A (en) * 2006-10-05 2008-04-24 Keyence Corp Optical displacement meter, optical method and program for recording displacement, computer-readable recording medium, and apparatus with the program stored
WO2010073360A1 (en) * 2008-12-26 2010-07-01 株式会社アドバンテスト Pattern measuring apparatus and pattern measuring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241123A (en) 1999-02-23 2000-09-08 Toppan Printing Co Ltd Very small dimension measuring apparatus
KR20080075257A (en) * 2007-02-12 2008-08-18 한국표준과학연구원 Method and apparatus for testing pattern of flat panel display

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102505A (en) * 1984-10-26 1986-05-21 Hitachi Ltd Lighting device
JPH10274707A (en) * 1997-03-31 1998-10-13 Sankyo Seiki Mfg Co Ltd Diffraction grating
JP2000283909A (en) * 1999-03-30 2000-10-13 Jeol Ltd Surface observation device
JP2002014053A (en) * 2000-06-28 2002-01-18 Sony Corp Equipment and method for inspection
JP2004150942A (en) * 2002-10-30 2004-05-27 Sysmex Corp Cell for detecting particle, and particle detector using the same
JP2005134666A (en) * 2003-10-30 2005-05-26 Hoya Corp Photomask and method for forming video device
JP2006093251A (en) * 2004-09-22 2006-04-06 Hitachi High-Technologies Corp Dimension measuring method and its device
JP2008096125A (en) * 2006-10-05 2008-04-24 Keyence Corp Optical displacement meter, optical method and program for recording displacement, computer-readable recording medium, and apparatus with the program stored
WO2010073360A1 (en) * 2008-12-26 2010-07-01 株式会社アドバンテスト Pattern measuring apparatus and pattern measuring method

Also Published As

Publication number Publication date
KR102019978B1 (en) 2019-09-09
WO2012165549A1 (en) 2012-12-06
JP6086274B2 (en) 2017-03-01
KR20140026416A (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US7969582B2 (en) Laser scanning microscope apparatus, and surface shape measuring method thereof
US10133050B2 (en) Sample observation device and sample observation method
JP5560558B2 (en) Measuring apparatus and measuring method
JP5982405B2 (en) Microscope having autofocus device and autofocus method in microscope
US20210215923A1 (en) Microscope system
JP4922823B2 (en) 3D shape measuring device
JP2008281395A (en) Optical system evaluation device, optical system evaluation method, and optical system evaluation program
US7205531B2 (en) Sample information measuring method and scanning confocal microscope
JP2015055561A (en) Defect inspection method and defect inspection device of microlens array
JP2020076717A (en) Optical inspection device and optical inspection method
JP2010156558A (en) Transmission lighting system, inspection system and transmission lighting method
JP6086274B2 (en) Dimension measuring device
JP2012026762A (en) Bubble detector and bubble detection method of transparent tube
JP2010216864A (en) Photometric apparatus
JP2008164324A (en) Apparatus and method for acquisition of shape information and apparatus and method for defect detection
US11175129B2 (en) Sample shape measuring method and sample shape measuring apparatus
TWI738808B (en) Method and system for measuring geometric parameters of through holes
US20220244516A1 (en) Microscope device and data generation method using microscope
US10310247B2 (en) Sample observation device and sample observation method
JP6867916B2 (en) Observation device
US20180180867A1 (en) Microscope and setting support method
JP2008046362A (en) Optical device
JP5191265B2 (en) Optical microscope apparatus and data processing apparatus for optical microscope
JP5251218B2 (en) Measuring apparatus and measuring method
JP2007316133A (en) Observing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140522

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160513

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6086274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250