JP2012250430A - Method of manufacturing molded body keeping isotropy - Google Patents

Method of manufacturing molded body keeping isotropy Download PDF

Info

Publication number
JP2012250430A
JP2012250430A JP2011124520A JP2011124520A JP2012250430A JP 2012250430 A JP2012250430 A JP 2012250430A JP 2011124520 A JP2011124520 A JP 2011124520A JP 2011124520 A JP2011124520 A JP 2011124520A JP 2012250430 A JP2012250430 A JP 2012250430A
Authority
JP
Japan
Prior art keywords
mold
fibers
thermoplastic resin
fiber
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011124520A
Other languages
Japanese (ja)
Other versions
JP5749572B2 (en
Inventor
Michiharu Taniguchi
路治 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011124520A priority Critical patent/JP5749572B2/en
Publication of JP2012250430A publication Critical patent/JP2012250430A/en
Application granted granted Critical
Publication of JP5749572B2 publication Critical patent/JP5749572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a molded body which comprises a fiber reinforced composite material, is light in weight, has shape flexibility and maintains isotropy.SOLUTION: A random mat comprises a reinforced fiber having 10-100 mm fiber length and 25-3,000 g/munit weight and a thermoplastic resin, wherein the ratio of mat occupied in a reinforced fiber bundle constituted of equal to or above critical single yarn number defined by the formula (1):(the critical single yarn number)=600/D is ≥30 vol.% and <90 vol.% and the average number (N) of fibers in the reinforced fiber bundle satisfies the formula (2):0.7×104/D2<N<6×104/D2, wherein D is average fiber diameter (μm). A prepreg 1 comprising the random mat is arranged in a mold comprising a cavity 2 and a cavity edge 3 in ≥50 and <90% charge rate defined by the formula (3):(the charge rate (%))=100×(base material surface area)/(mold cavity projected area), wherein both the base material surface area and the mold cavity projected area are projected areas in a draft direction. Then the prepreg is press-molded under a condition of a prescribed temperature and pressure and after that, the pressure is increased by 1.2-25 times and then the prepreg 1 is cooled to equal to or below a prescribed temperature, so that the prepreg 1 is molded.

Description

本発明は、強化繊維と熱可塑製樹脂とから構成されるランダムマットを出発物質とした繊維強化複合材料からなる成形体の製造方法およびそれに用いるランダムマットに関する。中でも、金型形状に対し低チャージ率のランダムマットを用いてプレス成形した場合でも、端部まで繊維の等方性の維持が可能な成形体の製造方法およびそれに用いるランダムマットである。   The present invention relates to a method for producing a molded body made of a fiber reinforced composite material using a random mat composed of reinforcing fibers and a thermoplastic resin as a starting material, and a random mat used therefor. Among them, a method for producing a molded body capable of maintaining the isotropy of fibers up to the end portion even when press molding is performed using a random mat having a low charge rate with respect to a mold shape, and a random mat used therefor.

炭素繊維やアラミド繊維、ガラス繊維などを強化繊維として用いた繊維強化複合材料は、その高い比強度・比弾性率を利用して、航空機や自動車などの構造材料や、テニスラケット、ゴルフシャフト、釣り竿などの一般産業やスポーツ用途などに広く利用されてきた。   Fiber reinforced composite materials using carbon fibers, aramid fibers, glass fibers, etc. as reinforcing fibers make use of their high specific strength and specific elastic modulus to make structural materials such as aircraft and automobiles, tennis rackets, golf shafts, fishing rods. It has been widely used in general industries such as sports and sports applications.

不連続の強化繊維と樹脂を有してなる基材を積層してプリフォームを作製し、その基材を金型キャビティ総面積より広範囲に配置してプレス成形することが提案されている(特許文献1)。しかし、この成形方法では、成形体外周部をトリムする必要があり、大幅に端材が発生し、またその処分にコストがかかる。また、実質的等方性を示す一体化成形品を供与するためには、常に対称積層となるように気をつけなければならず、基材の準備時間、成形加工においての基材配置方法の裁量度が低い。   It has been proposed that a base material having discontinuous reinforcing fibers and a resin is laminated to form a preform, and the base material is arranged in a wider range than the total mold cavity area and press-molded (patent) Reference 1). However, in this molding method, it is necessary to trim the outer peripheral portion of the molded body, which generates a large amount of offcuts and costs for disposal. In addition, in order to provide an integrally molded product exhibiting substantially isotropic properties, care must be taken to always have a symmetrical lamination, and the preparation time of the substrate, the method of arranging the substrate in the molding process, Low discretion.

特開2010−253938号公報JP 2010-253938 A

本発明の目的は強化繊維と熱可塑製樹脂とから構成されるランダムマットからの成形体の製造方法であって、金型形状に対し低チャージのランダムマットを用いてプレス成形した場合でも端部まで繊維の等方性の維持が可能な成形体を提供することにある。本発明のさらなる目的は、複雑な形状へも形状追随性良く成形することができ、短時間成形可能であるとともに、製品形状へのトリミングが不要な成形体の製造方法を提供することにある。本発明は上記成形体を製造方法に適用できるランダムマットを提供することにある。   An object of the present invention is a method for producing a molded body from a random mat composed of reinforcing fibers and a thermoplastic resin, and the end portion even when press molding is performed using a low-charge random mat against the mold shape An object of the present invention is to provide a molded product capable of maintaining the isotropy of fibers. It is a further object of the present invention to provide a method for producing a molded body that can be molded into a complicated shape with good shape followability, can be molded in a short time, and does not require trimming into a product shape. It is an object of the present invention to provide a random mat that can be applied to a manufacturing method of the above molded body.

本発明者らは強化繊維中に熱可塑性樹脂が分散しているが未含浸状態である特定のランダムマットを用い、特定の条件で成形することで標記課題を解決できることを見出した。   The present inventors have found that the subject can be solved by using a specific random mat in which the thermoplastic resin is dispersed in the reinforcing fibers but not impregnated and molding under specific conditions.

すなわち本発明は繊維長10〜100mmの強化繊維と熱可塑性樹脂とから構成されるランダムマットを金型に下記式(3)で表されるチャージ率が50%以上90%未満となるように配置し、金型を熱可塑性樹脂の熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで昇温しつつ、
プレス成形を行い(第1プレス工程)、次いで1段以上であり、最終段の圧力が第1プレス工程の圧力の1.2倍〜25倍となるような第2プレス工程を行った後、
金型を熱可塑性樹脂の結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下まで冷却し成形させる、強化繊維と熱可塑性樹脂を含む成形体の製造方法であって、
ランダムマットは、強化繊維が25〜3000g/mの目付けにて実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が30Vol%以上90Vol%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことを特徴とする強化繊維と熱可塑性樹脂を含む成形体の製造方法およびそれに用いるランダムマットである。
臨界単糸数=600/D (1)
0.7×10/D<N<6×10/D(2)
(ここでDは強化繊維の平均繊維径(μm)である)
チャージ率(%)=100×基材面積(mm2)/金型キャビティ投影面積(mm2)(3)
(ここで基材面積とは配置した全てのプリプレグの抜き方向への投影面積であり、金型キャビティ投影面積とは抜き方向への投影面積である)
That is, in the present invention, a random mat composed of reinforcing fibers having a fiber length of 10 to 100 mm and a thermoplastic resin is placed in a mold so that the charge rate represented by the following formula (3) is 50% or more and less than 90%. When the thermoplastic resin of the thermoplastic resin is crystalline, the mold is heated to a temperature not lower than the melting point of the thermoplastic resin and lower than the thermal decomposition temperature, and if amorphous, it is not lower than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature. While raising the temperature to
After performing the press forming (first pressing step) and then performing the second pressing step that is one or more stages and the final stage pressure is 1.2 to 25 times the pressure of the first pressing process,
In the case where the mold is crystalline of the thermoplastic resin, it is a melting point or lower, and in the case of amorphous, the mold is cooled to the glass transition temperature or lower and molded, and a method for producing a molded body containing reinforcing fibers and a thermoplastic resin,
The random mat has reinforcing fiber bundles (A) in which the reinforcing fibers are oriented substantially two-dimensionally at a basis weight of 25 to 3000 g / m 2 and are composed of the number of critical single yarns or more defined by the formula (1). ), The ratio of the mat to the total amount of fibers is 30 Vol% or more and less than 90 Vol%, and the average number of fibers (N) in the reinforcing fiber bundle (A) satisfies the following formula (2): The manufacturing method of the molded object containing a thermoplastic resin, and the random mat used for it.
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
Charge rate (%) = 100 × base material area (mm 2 ) / mold cavity projected area (mm 2 ) (3)
(Here, the substrate area is the projected area in the drawing direction of all the arranged prepregs, and the mold cavity projected area is the projected area in the drawing direction.)

本発明により、等方性を維持しながら、薄肉、軽量、高剛性で意匠性に優れ、複雑な3次元形状を有する成形体を、ホットプレスによりプリプレグを必要とせず、高い生産性で製造することが可能となる。また、必要最小限の材料を用いて製品形状を成形することができ、トリム工程がなくなることによる廃棄材料の大幅な削減、それに伴うコストの削減ができる。本発明により、薄肉であっても均一な厚みのものが提供でき、また成形体のどの部分においてもほぼ同一の繊維含有量の成形体を得ることができる。また本発明により複雑な形状へも形状追随性良く成形体を得ることができ、短時間で成形体を製造可能である。   According to the present invention, while maintaining isotropy, a molded product having a thin, light, high rigidity, excellent design, and a complicated three-dimensional shape is manufactured with high productivity without requiring a prepreg by hot pressing. It becomes possible. In addition, the product shape can be molded using the minimum necessary material, and the waste material can be significantly reduced due to the elimination of the trimming process, and the costs associated therewith can be reduced. According to the present invention, even a thin wall can be provided with a uniform thickness, and a molded body having substantially the same fiber content can be obtained at any part of the molded body. Further, according to the present invention, it is possible to obtain a molded body having a good shape following property even to a complicated shape, and the molded body can be manufactured in a short time.

実施例1および3における金型への基材配置の模式図Schematic diagram of substrate placement on mold in Examples 1 and 3 実施例2で用いた立体形状の金型の模式図Schematic diagram of a three-dimensional mold used in Example 2 実施例1および3で得られた成形品の模式図(斜視図)Schematic diagram (perspective view) of the molded product obtained in Examples 1 and 3 実施例2における金型への基材配置の模式図Schematic diagram of substrate placement on mold in Example 2 実施例2で得られた成形品の模式図(斜視図)Schematic diagram (perspective view) of the molded product obtained in Example 2 実施例4における金型への基材配置の模式図Schematic diagram of substrate placement on mold in Example 4 実施例4で得られた成形品の模式図(斜視図)Schematic diagram (perspective view) of the molded product obtained in Example 4 金型のシェアエッジ構造の説明図Explanatory diagram of mold share edge structure

以下に、本発明の実施の形態について順次説明するが、本発明はこれらに制限されるものではない。   Hereinafter, embodiments of the present invention will be described in order, but the present invention is not limited thereto.

繊維長10〜100mmの強化繊維と熱可塑性樹脂とから構成されるランダムマットを金型に下記式(3)で表されるチャージ率が50%以上90%未満となるように配置し、金型を熱可塑性樹脂の熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで昇温しつつ、
プレス成形を行い(第1プレス工程)、次いで1段以上であり、最終段の圧力が第1プレス工程の圧力の1.2倍〜25倍となるような第2プレス工程を行った後、
金型を熱可塑性樹脂の結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下まで冷却し成形させる、強化繊維と熱可塑性樹脂を含む成形体の製造方法である。本発明は、特定のランダムマットからのプリプレグを用いて成形することで、基材のチャージ率が50%以上90%未満、即ち金型内で基材を流動させつつプレス成形した場合にも、等方性を維持した成形体を製造する方法である。
A random mat composed of reinforcing fibers having a fiber length of 10 to 100 mm and a thermoplastic resin is placed on a mold so that the charge rate represented by the following formula (3) is 50% or more and less than 90%, and the mold If the thermoplastic resin of the thermoplastic resin is crystalline, the temperature rises to a temperature not lower than the melting point of the thermoplastic resin and lower than the thermal decomposition temperature, and if amorphous, it is increased to a temperature not lower than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature. While warming
After performing the press forming (first pressing step) and then performing the second pressing step that is one or more stages and the final stage pressure is 1.2 to 25 times the pressure of the first pressing process,
This is a method for producing a molded article containing reinforcing fibers and a thermoplastic resin, in which the mold is cooled to a melting point or lower in the case of crystallinity of the thermoplastic resin and is molded to a glass transition temperature or lower in the case of amorphous. The present invention is formed by using a prepreg from a specific random mat so that the charge rate of the base material is 50% or more and less than 90%, that is, when press forming while the base material is flowing in a mold, This is a method for producing a molded body maintaining isotropic properties.

[成形体]
本発明の製造方法で得られる成形体は、強化繊維と熱可塑性樹脂を含む繊維強化複合材料からなるものである。本発明で得られる成形体は、面内2次元ランダム配向する層を有し、実質的等方性を示す。(ここで実質的等方性とは、複合材料を成形した後、成形板の任意の方向、及びこれと直交する方向を基準とする引張試験を行い、引張弾性率を測定し、測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)が1.3以下であることとする。)
[Molded body]
The molded product obtained by the production method of the present invention is made of a fiber-reinforced composite material containing reinforcing fibers and a thermoplastic resin. The molded product obtained in the present invention has a layer that is two-dimensionally randomly oriented in the plane and exhibits substantially isotropic properties. (Substantially isotropic here means that after forming a composite material, a tensile test based on an arbitrary direction of the molded plate and a direction orthogonal thereto is performed, the tensile modulus is measured, and the measured tensile force is measured. (The ratio (Eδ) obtained by dividing the larger elastic modulus value by the smaller elastic modulus value is 1.3 or less.)

繊維強化複合材料を構成する強化繊維は炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種であることが好ましい。これらは併用することもでき、なかでも炭素繊維が、軽量でありながら強度に優れた成形体が提供できる点で好ましい。炭素繊維の場合、平均繊維径は好ましくは3〜12μmであり、より好ましくは5〜7μmである。
繊維強化複合材料からなる成形体は、強化繊維と熱可塑製樹脂とから構成されるランダムマットを出発物質とする。成形体においても強化繊維の繊維長、および束と単糸の割合はランダムマット中における状態を保っている。
The reinforcing fibers constituting the fiber-reinforced composite material are preferably at least one selected from the group consisting of carbon fibers, aramid fibers, and glass fibers. These can be used in combination, and among these, carbon fiber is preferable in that it can provide a molded article having excellent strength while being lightweight. In the case of carbon fibers, the average fiber diameter is preferably 3 to 12 μm, more preferably 5 to 7 μm.
A molded body made of a fiber-reinforced composite material starts with a random mat composed of reinforcing fibers and a thermoplastic resin. Also in the molded body, the fiber length of the reinforcing fibers and the ratio of the bundle to the single yarn are kept in the state in the random mat.

繊維強化複合材料を構成する熱可塑性樹脂の種類としては例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸樹脂などが挙げられる。
繊維強化複合材料における熱可塑性樹脂の存在量は、好ましくは強化繊維100重量部に対し、50〜1000重量部、より好ましくは50〜500重量部である。
Examples of the thermoplastic resin constituting the fiber reinforced composite material include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin ( ABS resin), acrylic resin, methacrylic resin, polyethylene resin, polypropylene resin, polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, Polyethylene naphthalate resin, Boribylene terephthalate resin, Polyarylate resin, Polyphenylene ether resin, Polyphenylene sulfide resin, Polysulfur Down resins, polyether sulfone resins, polyether ether ketone resins, such as polylactic acid resins.
The abundance of the thermoplastic resin in the fiber-reinforced composite material is preferably 50 to 1000 parts by weight, more preferably 50 to 500 parts by weight with respect to 100 parts by weight of the reinforcing fibers.

[ランダムマット]
本発明の成形体の製造方法に用いられるランダムマットは、強化繊維と熱可塑性樹脂を含むものである。用いられる強化繊維および熱可塑性樹脂の種類は上記の成形体の項に記載したのものと同様である。
ランダムマットを構成する強化繊維は不連続であり、平均繊維長10〜100mm以下である。ランダムマットはある程度長い強化繊維を含んで強化機能が発現できることを特長とし、好ましくは強化繊維の繊維長が10mm以上50mm以下であり、より好ましくは10mm以上30mm以下である。また後述する好ましい強化繊維のカット方法を採用することで、ランダムマットを構成する強化繊維の長さは固定長とすることができる。
ランダムマットを構成する強化繊維は、サイジング剤が付着されたものを用いることが好ましく、サイジング剤は強化繊維100重量部に対し、0〜10重量部であることが好ましい。
[Random mat]
The random mat used in the method for producing a molded article of the present invention contains reinforcing fibers and a thermoplastic resin. The types of reinforcing fiber and thermoplastic resin used are the same as those described in the section of the molded article.
The reinforcing fibers constituting the random mat are discontinuous and have an average fiber length of 10 to 100 mm. The random mat includes a long reinforcing fiber to a certain extent and is capable of exhibiting a reinforcing function. The fiber length of the reinforcing fiber is preferably 10 mm or more and 50 mm or less, more preferably 10 mm or more and 30 mm or less. Moreover, the length of the reinforced fiber which comprises a random mat can be made into fixed length by employ | adopting the preferable cutting method of the reinforced fiber mentioned later.
The reinforcing fibers constituting the random mat are preferably those to which a sizing agent is attached, and the sizing agent is preferably 0 to 10 parts by weight with respect to 100 parts by weight of the reinforcing fibers.

[ランダムマットの開繊程度]
本発明の成形体の製造方法に用いるランダムマットは、式(1)
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
で定義する臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が30Vol%以上90Vol%未満であることを特徴とする。マット中には、強化繊維束(A)以外の強化繊維として、単糸の状態または臨界単糸数未満で構成される繊維束が存在する。
[Random mat opening degree]
The random mat used in the method for producing a molded body of the present invention has the formula (1)
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
The reinforcing fiber bundle (A) composed of the number of critical single yarns or more defined in the above is characterized in that the ratio of the mat to the total amount of fibers is 30 Vol% or more and less than 90 Vol%. In the mat, there is a fiber bundle composed of a single yarn state or less than the critical number of single yarns as reinforcing fibers other than the reinforcing fiber bundle (A).

すなわち本発明におけるランダムマットには、平均繊維径に依存して定義される臨界単糸数以上で構成される強化繊維束の存在量を30Vol%以上90Vol%未満とする、すなわち強化繊維の開繊程度をコントロールし、特定本数以上の強化繊維からなる強化繊維束と、それ以外の開繊された強化繊維を特定の比率で含むことを特徴とする。   That is, in the random mat in the present invention, the abundance of the reinforcing fiber bundle composed of the critical single yarn number or more defined depending on the average fiber diameter is set to 30 Vol% or more and less than 90 Vol%, that is, the degree of opening of the reinforcing fiber And a reinforcing fiber bundle composed of reinforcing fibers of a specific number or more and other opened reinforcing fibers at a specific ratio.

繊維全量に対する強化繊維束(A)の割合が30Vol%未満になると、本発明におけるランダムマットを成形する際に、型内で流動させ難くなり、金型キャビティ端部まで充填させることができず、設計寸法通りの成形体が得にくくなる。強化繊維束(A)の割合が90Vol%以上になると、繊維の交絡部が局部的に厚くなり、薄肉のものが得られない。強化繊維束(A)の割合はより好ましくは30Vol%以上80Vol%未満である。   When the ratio of the reinforcing fiber bundle (A) to the total amount of fibers is less than 30 Vol%, when molding the random mat in the present invention, it becomes difficult to flow in the mold, and it cannot be filled to the end of the mold cavity, It becomes difficult to obtain a molded body as designed. When the proportion of the reinforcing fiber bundle (A) is 90 Vol% or more, the entangled portion of the fibers is locally thick and a thin-walled product cannot be obtained. The ratio of the reinforcing fiber bundle (A) is more preferably 30 Vol% or more and less than 80 Vol%.

さらに臨界単糸数以上で構成される強化繊維束(A)中の平均繊維数(N)が下記式(2)
0.7×10/D<N<6×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
を満たすことを特徴とする。
Furthermore, the average number of fibers (N) in the reinforcing fiber bundle (A) composed of the number of critical single yarns or more is represented by the following formula (2).
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
It is characterized by satisfying.

具体的にはランダムマットを構成する炭素繊維の平均繊維径が5〜7μmの場合、臨界単糸数は86〜120本となり、炭素繊維の平均繊維径が5μmの場合、繊維束中の平均繊維数は280〜2000本の範囲となるが、なかでも600〜1600本であることが好ましい。炭素繊維の平均繊維径が7μmの場合、繊維束中の平均繊維数は142〜1020本の範囲となるが、なかでも300〜800本であることが好ましい。   Specifically, when the average fiber diameter of the carbon fibers constituting the random mat is 5 to 7 μm, the critical single yarn number is 86 to 120, and when the average fiber diameter of the carbon fibers is 5 μm, the average number of fibers in the fiber bundle Is in the range of 280 to 2000, with 600 to 1600 being particularly preferred. When the average fiber diameter of the carbon fibers is 7 μm, the average number of fibers in the fiber bundle is in the range of 142 to 1020, preferably 300 to 800.

強化繊維束(A)中の平均繊維数(N)が0.7×10/D以下の場合、高い繊維体積含有率(Vf)を得ることが困難となる。また強化繊維束(A)中の平均繊維数(N)が6×10/D以上の場合、局部的に厚い部分が生じ、ボイドの原因となりやすい。1mm以下の薄肉な成形体を得ようとした場合、単純に分繊しただけの繊維を用いたのでは、疎密が大きく、良好な物性が得られない。又、全ての繊維を開繊した場合には、より薄いものを得ることは容易になるが、繊維の交絡が多くなり、繊維体積含有率の高いものが得られない。式(1)で定義される臨界単糸以上の強化繊維束(A)と、単糸の状態又は臨界単糸数未満の強化繊維(B)が同時に存在するランダムマットにより、薄肉であり、かつ得られる物性の高いランダムマットを得ることが可能である。本発明におけるランダムマットは、各種の厚みとすることが可能であり、各種目的とする成形体の厚みに合わせたランダムマットを作成することができる。強化繊維束(A)中の平均繊維数は後述するような好ましい製造方法のカット工程、並びに開繊工程にて制御できる。 When the average number of fibers (N) in the reinforcing fiber bundle (A) is 0.7 × 10 4 / D 2 or less, it is difficult to obtain a high fiber volume content (Vf). In addition, when the average number of fibers (N) in the reinforcing fiber bundle (A) is 6 × 10 4 / D 2 or more, a locally thick portion is generated, which tends to cause voids. When trying to obtain a thin molded body having a thickness of 1 mm or less, the use of a fiber that has been simply split is large in density, and good physical properties cannot be obtained. Further, when all the fibers are opened, it becomes easy to obtain a thinner one, but the entanglement of the fibers increases, and a fiber with a high fiber volume content cannot be obtained. It is thin and obtained by the random mat in which the reinforcing fiber bundle (A) having a critical single yarn or more defined by the formula (1) and the reinforcing fiber (B) having a single yarn state or less than the critical single yarn are simultaneously present. It is possible to obtain a random mat with high physical properties. The random mat in the present invention can have various thicknesses, and a random mat can be prepared in accordance with the thickness of the molded article for various purposes. The average number of fibers in the reinforcing fiber bundle (A) can be controlled by a cutting step and a fiber opening step of a preferable manufacturing method as described later.

[ランダムマットにおける熱可塑性樹脂]
ランダムマットにおいては、熱可塑性樹脂が、繊維状および/または粒子状で存在することが好ましい。強化繊維と繊維状および/または粒子状の熱可塑性樹脂が混合して存在していることにより、成形時に熱可塑性樹脂を容易に含浸できる。熱可塑性樹脂の種類を2種以上とすることもでき、また繊維状と粒子状のものを併用してもよい。
[Thermoplastic resin in random mat]
In the random mat, the thermoplastic resin is preferably present in the form of fibers and / or particles. Since the reinforcing fiber and the fibrous and / or particulate thermoplastic resin are mixed and present, the thermoplastic resin can be easily impregnated at the time of molding. Two or more types of thermoplastic resins may be used, and fibrous and particulate resins may be used in combination.

繊維状の場合、繊度100〜5000dtexのもの、より好ましくは繊度1000〜2000dtexものがより好ましく、平均繊維長としては0.5〜50mmが好ましく、より好ましくは平均繊維長1〜10mmである。
粒子状の場合、球状、細片状、あるいはペレットのような円柱状が好ましく挙げられる。球状の場合は、真円または楕円の回転体、あるいは卵状ような形状が好ましく挙げられる。球とした場合の好ましい平均粒子径は0.01〜1000μmである。より好ましくは平均粒子径0.1〜900μmものがより好ましく、更に好ましくは平均粒子径1〜800μmものがより好ましい。粒子径分布についてはとくに制限はないが、分布シャープなものがより薄い成形体を得る目的としてはより好ましいが、分級等の操作により所望の粒度分布として用いることが出来る。
細片状の場合、ペレットのような円柱状や、角柱状、リン片状が好ましい形状として挙げられる。この場合ある程度のアスペクト比を有しても良いが、好ましい長さは上記の繊維状の場合と同程度とする。
In the case of a fiber, a fineness of 100 to 5000 dtex, more preferably 1000 to 2000 dtex is more preferred, and an average fiber length of 0.5 to 50 mm is preferred, and an average fiber length of 1 to 10 mm is more preferred.
In the case of particles, a spherical shape, a strip shape, or a columnar shape such as a pellet is preferable. In the case of a spherical shape, a perfect circular or elliptical rotating body or an egg-like shape is preferable. A preferable average particle diameter in the case of a sphere is 0.01 to 1000 μm. More preferably, the average particle size is 0.1 to 900 μm, and still more preferably the average particle size is 1 to 800 μm. The particle size distribution is not particularly limited, but a sharp distribution is more preferable for the purpose of obtaining a thinner molded product, but can be used as a desired particle size distribution by an operation such as classification.
In the case of a strip shape, a columnar shape such as a pellet, a prismatic shape, or a flake shape is mentioned as a preferable shape. In this case, it may have a certain aspect ratio, but the preferred length is about the same as that of the above fibrous form.

ランダムマット中には、目的を損なわない範囲で、本発明の強化繊維以外の各種繊維状または非繊維状フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤を含んでいてもよい。とくに電子・電気機器用途や自動車用途においては、高い難燃性が要求されることがあるため、熱可塑性樹脂に難燃剤を含有させることが好ましい。難燃剤の例としては、公知のものが使用でき、本発明の熱可塑性組成物に難燃性を付与できる物であれば特に限定はされない。具体的には、リン系難燃剤、窒素系難燃剤、シリコーン化合物、有機アルカリ金属塩、有機アルカリ土類金属塩、臭素系難燃剤等を挙げることができ、これらの難燃剤は単独で使用しても良いし、複数を併用して用いても良い。難燃剤の含有量は、物性、成形性、難燃性のバランスから樹脂100質量部に対して1〜40質量部とすることが好ましく、1〜20質量部とすることがさらに好ましい。   In the random mat, various fibrous or non-fibrous fillers other than the reinforcing fiber of the present invention, flame retardant, UV-resistant agent, pigment, release agent, softener, plasticizer, surface active agent, as long as the purpose is not impaired An additive for the agent may be included. Particularly in electronic / electric equipment and automobile applications, high flame retardancy may be required, and therefore it is preferable to include a flame retardant in the thermoplastic resin. As an example of a flame retardant, a well-known thing can be used, and if it can give a flame retardance to the thermoplastic composition of this invention, it will not specifically limit. Specific examples include phosphorus flame retardants, nitrogen flame retardants, silicone compounds, organic alkali metal salts, organic alkaline earth metal salts, bromine flame retardants, etc. These flame retardants can be used alone. Alternatively, a plurality of them may be used in combination. The content of the flame retardant is preferably 1 to 40 parts by mass and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin from the balance of physical properties, moldability, and flame retardancy.

[ランダムマットの製造方法]
本発明に用いるランダムマットは以下の工程1〜4より、好ましく製造方法される。
1.強化繊維をカットする工程、
2.カットされた強化繊維を管内に導入し、空気を繊維に吹き付けることにより、繊維束を開繊させる工程、
3.開繊させた強化繊維を拡散させると同時に、繊維状又は粒子状の熱可塑性樹脂とともに吸引し、強化繊維と熱可塑性樹脂を同時に散布する塗布工程、
4.塗布された強化繊維および熱可塑性樹脂を定着させる工程。
[Random mat manufacturing method]
The random mat used in the present invention is preferably produced from the following steps 1 to 4.
1. Cutting the reinforcing fibers,
2. A step of opening the fiber bundle by introducing cut reinforcing fibers into the pipe and blowing air on the fibers;
3. An application process in which the reinforced fibers that have been spread are diffused and simultaneously sucked together with the fibrous or particulate thermoplastic resin, and the reinforced fibers and the thermoplastic resin are sprayed simultaneously.
4). Fixing the applied reinforcing fiber and thermoplastic resin;

以下、各工程について詳細に述べる。
[カット工程]
強化繊維のカット方法は、具体的にはナイフを用いて強化繊維をカットする工程である。ナイフとしてはロータリーカッター等が好ましい。
所望の大きさの繊維束とするために、カットに供する繊維束として、ストランド幅が細めのものを用いる、あるいは縦方向に切ってストランド幅を細くすることも好ましい。その場合、繊維方向に平行な刃を有したカッターを用いて、特定の繊維長にカットすると同時に繊維束を縦方向にスリットすることも好ましい。
ロータリーカッターとしては、角度を規定した螺旋状ナイフ又は分繊ナイフを用いることが好ましい。
Hereinafter, each step will be described in detail.
[Cut process]
Specifically, the method for cutting reinforcing fibers is a step of cutting reinforcing fibers using a knife. As the knife, a rotary cutter or the like is preferable.
In order to obtain a fiber bundle having a desired size, it is also preferable to use a fiber bundle having a narrow strand width as a fiber bundle to be cut or to cut the strand width in the longitudinal direction. In that case, it is also preferable to use a cutter having a blade parallel to the fiber direction to cut the fiber bundle in the longitudinal direction simultaneously with cutting to a specific fiber length.
As the rotary cutter, it is preferable to use a spiral knife or a splitting knife with a specified angle.

[開繊工程]
開繊工程はカットされた強化繊維を管内に導入し、空気を繊維に吹き付けることにより、繊維束を開繊させる工程である。開繊の度合いについては、空気の圧力等により適宜コントロールすることが出来る。ランダムマット製造における強化繊維開繊方法は、空気を強化繊維に吹き付けることを特徴としている。開繊工程において好ましくは圧縮空気吹き付け孔より、風速5〜500m/secにて空気を直接繊維束に吹き付けることにより、より完全に強化繊維を開繊させることができる。具体的には強化繊維の通る管内にΦ1mm程度の孔を数箇所あけ、外側より0.2〜0.8MPa程度の圧力をかけ、圧縮空気を繊維束に直接吹き付けることにより、繊維束を容易に開繊することができる。
[Opening process]
The fiber opening process is a process of opening the fiber bundle by introducing cut reinforcing fibers into the tube and blowing air onto the fibers. The degree of opening can be appropriately controlled by air pressure or the like. The reinforcing fiber opening method in the production of random mats is characterized in that air is blown onto the reinforcing fibers. In the fiber opening step, the reinforcing fibers can be opened more completely by blowing air directly onto the fiber bundle at a wind speed of 5 to 500 m / sec, preferably from a compressed air blowing hole. Specifically, several holes of about Φ1mm are opened in the tube through which the reinforcing fibers pass, pressure of about 0.2 to 0.8 MPa is applied from the outside, and the compressed air is blown directly onto the fiber bundle, thereby facilitating the fiber bundle. It can be opened.

[塗布工程]
塗布工程は開繊させた強化繊維を、拡散させると同時に、繊維状又は粒子状の熱可塑性樹脂とともに吸引し、強化繊維と熱可塑性樹脂を同時に散布する塗布工程である。開繊させた強化繊維と、繊維状又は粒子状の熱可塑性樹脂とを好ましくは同時に、シート上、具体的には開繊装置下部に設けた通気性シート上に塗布する。
塗布工程において、熱可塑性樹脂の供給量は、強化繊維100重量部に対し、50〜1000重量部であることが好ましい。
[Coating process]
The coating process is a coating process in which the opened reinforcing fibers are diffused and simultaneously sucked together with the fibrous or particulate thermoplastic resin, and the reinforcing fibers and the thermoplastic resin are simultaneously sprayed. The opened reinforcing fiber and the fibrous or particulate thermoplastic resin are preferably applied simultaneously on the sheet, specifically on a breathable sheet provided at the lower part of the opening device.
In the coating step, the supply amount of the thermoplastic resin is preferably 50 to 1000 parts by weight with respect to 100 parts by weight of the reinforcing fiber.

ここで、強化繊維と、繊維状又は粒子状の熱可塑性樹脂は2次元配向する様に散布することが好ましい。開繊した繊維を2次元配向させながら塗布するためには、塗布方法及び下記の定着方法が重要となる。強化繊維の塗布方法には、円錐形等のテーパ管を用いることが好ましい。円錐等の管内では、空気が拡散し、管内の流速が減速し、このとき強化繊維には回転力が与えられる。このベンチュリ効果を利用して開繊させた強化繊維を好ましく拡散させ散布することができる。
また下記の定着工程のためにも、吸引機構を持つ可動式の通気性シート上に散布することが好ましい。
ここで強化繊維および熱可塑性樹脂は、ランダムマット中に均等に斑無く散布することが好ましい。
Here, it is preferable that the reinforcing fiber and the fibrous or particulate thermoplastic resin are dispersed so as to be two-dimensionally oriented. In order to apply the spread fibers while being two-dimensionally oriented, an application method and a fixing method described below are important. For the method of applying the reinforcing fibers, it is preferable to use a tapered pipe having a conical shape or the like. In a tube such as a cone, air diffuses and the flow velocity in the tube is reduced. At this time, a rotational force is applied to the reinforcing fibers. The reinforcing fibers opened using this venturi effect can be preferably diffused and dispersed.
Also for the following fixing step, it is preferable to spray on a movable breathable sheet having a suction mechanism.
Here, it is preferable that the reinforcing fiber and the thermoplastic resin are evenly and uniformly distributed in the random mat.

[定着工程]
定着工程は、塗布された強化繊維および熱可塑性樹脂を定着させる工程である。好ましくは通気性シート下部よりエアを吸引して繊維を定着させる。強化繊維と同時に散布された熱可塑性樹脂も混合されつつ、繊維状であればエア吸引により、粒子状であっても強化繊維に伴って定着される。
通気性のシートを通して、下部より吸引することにより、2次元配向の高いマットを得ることができる。又、発生する負圧を用いて粒子状、又は繊維状の熱可塑性樹脂を吸引し、更に、管内で発生する拡散流により、強化繊維と容易に混合することができる。得られる強化基材は、強化繊維の近傍に熱可塑性樹脂が存在することにより、含浸工程において、樹脂の移動距離が短く、比較的短時間で樹脂の含浸が可能となる。なお、予め、用いるマトリックス樹脂と同じ材質の通気性の不織布等を定着部にセットし、不織布上に強化繊維及び粒子を吹き付けることも可能である。
[Fixing process]
The fixing step is a step of fixing the applied reinforcing fiber and thermoplastic resin. Preferably, the fibers are fixed by sucking air from the lower part of the breathable sheet. The thermoplastic resin sprayed at the same time as the reinforcing fiber is also mixed, and if it is fibrous, it is fixed with the reinforcing fiber even if it is particulate by air suction.
A mat having a high two-dimensional orientation can be obtained by sucking from below through a breathable sheet. Further, the particulate or fibrous thermoplastic resin can be sucked using the generated negative pressure, and can be easily mixed with the reinforcing fiber by the diffusion flow generated in the tube. In the obtained reinforcing substrate, the presence of the thermoplastic resin in the vicinity of the reinforcing fibers makes it possible to impregnate the resin in a relatively short time because the resin moving distance is short in the impregnation step. It is also possible to previously set a breathable nonwoven fabric or the like of the same material as the matrix resin to be used on the fixing portion and spray reinforcing fibers and particles on the nonwoven fabric.

[プレス成形]
得られたランダムマットを熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度に温度調節された金型内に配置する。金型の温度は例えばKタイプの熱電対を金型内に設置し、加熱炉外に設置した計測機により測定を行うことができる。
金型の形状にとくに限定はないが、金型はコア側とキャビティ側がシェアエッジ構造を有することが好ましい。シェアエッジ構造の説明図を図8に示す。シェアエッジのクリアランスはとくに限定はないが0.05〜0.20mm以下であることが好ましい。シェアエッジ構造のシェアの角度はとくに限定はないが、1°〜3°であることが好ましい。
[Press molding]
When the thermoplastic resin is crystalline, the obtained random mat is heated to a temperature not lower than the melting point of the thermoplastic resin and lower than the thermal decomposition temperature, and in the case of amorphous, the temperature is not lower than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature. Place in a temperature-controlled mold. The temperature of the mold can be measured by, for example, a measuring machine installed outside the heating furnace with a K-type thermocouple installed in the mold.
The shape of the mold is not particularly limited, but the mold preferably has a shear edge structure on the core side and the cavity side. An explanatory diagram of the shared edge structure is shown in FIG. The clearance of the share edge is not particularly limited, but is preferably 0.05 to 0.20 mm or less. The shear angle of the shear edge structure is not particularly limited, but is preferably 1 ° to 3 °.

また、金型の表面性は得ようとする成形体に求められる意匠性に応じて研磨を行ってもよい。成形体が平滑な表面性を有するには#400以上で研磨されていることが好ましい。
ランダムマットは下記式(3)で表されるチャージ率が50%以上90%未満となるように金型に配置する。
チャージ率(%)=100×基材面積(mm2)/金型キャビティ投影面積(mm2)(3)
(ここで金型キャビティ投影面積とは抜き方向への投影面積である)
Moreover, you may grind | polish according to the design property calculated | required by the molded object to obtain the surface property of a metal mold | die. In order to have a smooth surface property, the molded body is preferably polished with # 400 or more.
The random mat is arranged in the mold so that the charge rate represented by the following formula (3) is 50% or more and less than 90%.
Charge rate (%) = 100 × base material area (mm 2 ) / mold cavity projected area (mm 2 ) (3)
(Here, the mold cavity projected area is the projected area in the punching direction)

金型へのランダムマットの配置は例えば図1に示す通り、1枚または2〜10枚の重ね合わせたランダムマットを金型キャビティへ配置する。重ね合わせる場合、得ようとする成形体に応じて一部または全体を重ね合わせて用いる。ここでランダムマット端部の全ての面が、金型キャビティエッジ部と接しないことが望ましい。また重ね合わせる場合、ランダムマットは全て同一の形状である必要はなく、それぞれ一部または全部が重ね合わされば良い。   For example, as shown in FIG. 1, one or two to ten random mats are arranged in the mold cavity. When superposing, a part or the whole is superposed and used depending on the molded product to be obtained. Here, it is desirable that all the surfaces of the end portion of the random mat do not contact the mold cavity edge portion. In the case of overlapping, the random mats need not all have the same shape, and may be partially or entirely overlapped.

さらに得ようとする成形体が立体形状の場合は、下記式(4)で表される総面積チャージ率が30%以上90%未満となるように金型に配してプレス成形を行うことが好ましい。
総面積チャージ率(%)=100×基材面積(mm2)/金型キャビティ総面積(mm2) (4)
金型形状の具体例を図2に示すが、図中に4で示した各々金型キャビティ表面の面積の総和が金型キャビティ総面積である。
Furthermore, when the molded product to be obtained has a three-dimensional shape, it may be press-molded by placing it in a mold so that the total area charge rate represented by the following formula (4) is 30% or more and less than 90%. preferable.
Total area charge rate (%) = 100 × base material area (mm 2 ) / total mold cavity area (mm 2 ) (4)
A specific example of the mold shape is shown in FIG. 2, and the total area of the mold cavity surfaces indicated by 4 in the figure is the total mold cavity area.

金型を熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで昇温しつつ、プレス成形を行い(第1プレス工程)、次いで、1段以上であり、最終段の圧力が第1プレス工程の圧力の1.2倍〜25倍となるような第2プレス工程を行う。   If the thermoplastic resin is crystalline, the mold is heated to a temperature that is higher than the melting point of the thermoplastic resin and lower than the thermal decomposition temperature, and if it is amorphous, the temperature is raised to a temperature that is higher than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature. Then, press molding is performed (first pressing step), and then the second pressing step is performed so that the pressure in the final step is 1.2 to 25 times the pressure in the first pressing step. .

第1プレス工程は、ランダムマットを第1目標圧力まで加圧し、好ましくは0.5〜20分保持して、熱可塑性樹脂を熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで暖める。次いで、第2プレス工程に移る間の時間は成形機の性能により適宜選択できるが、成形する時間を短縮する為、1〜10秒であることが望ましい。   In the first pressing step, the random mat is pressurized to the first target pressure, and is preferably held for 0.5 to 20 minutes. If the thermoplastic resin is crystalline, the thermoplastic resin is thermally decomposed to a temperature equal to or higher than the melting point of the thermoplastic resin. When it is amorphous, it is warmed to a temperature that is not lower than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature. Next, the time during which the process proceeds to the second pressing step can be appropriately selected depending on the performance of the molding machine, but is preferably 1 to 10 seconds in order to reduce the molding time.

第2プレス工程は、1段または多段の加圧を行う工程であるが、成形の簡略化の目的では1段であることが好ましい。第2プレス工程の金型温度は、第1プレス工程における金型温度と同じでも、1℃以上熱分解温度未満まで昇温させても良い。第2プレス工程が多段である場合は後段ほど昇温させてもあるいは冷却させても良く、昇温と冷却を交互に施しても良い。
第2プレス工程の合計のプレス時間は特に限定はないが、成形時間の短縮の観点から0.5〜10分であることが好ましい。
The second pressing step is a step of performing single-stage or multi-stage pressurization, but it is preferably one stage for the purpose of simplifying the molding. The mold temperature in the second pressing step may be the same as the mold temperature in the first pressing step or may be raised to 1 ° C. or higher and lower than the thermal decomposition temperature. When the second pressing step is multistage, the temperature may be raised or cooled as the latter stage, and the temperature raising and cooling may be performed alternately.
The total pressing time in the second pressing step is not particularly limited, but is preferably 0.5 to 10 minutes from the viewpoint of shortening the molding time.

また第1プレス工程の目標圧力は0.3MPa〜1.0MPa、好ましくは0.5MPa〜0.7MPaである。第2プレス工程の最終目標圧力は成形機の性能により適宜選択できるが、好ましくは1〜25MPaであり、より好ましくは2〜10MPaである。第2プレス工程の最終目標圧力は第1プレス工程の1.2〜25倍の圧力である。   The target pressure in the first pressing step is 0.3 MPa to 1.0 MPa, preferably 0.5 MPa to 0.7 MPa. Although the final target pressure in the second pressing step can be appropriately selected depending on the performance of the molding machine, it is preferably 1 to 25 MPa, more preferably 2 to 10 MPa. The final target pressure in the second pressing step is 1.2 to 25 times the pressure in the first pressing step.

[冷却工程]
第2プレス工程後、冷却媒体を使用して金型を熱可塑性樹脂の結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下まで冷却し成形体を得る。冷却後の温度は、熱可塑性樹脂の結晶性の場合は融点−200℃以上融点−10℃以下、非晶性の場合はガラス転移温度−200℃以上、ガラス転移温度−10℃以下とすることが好ましい。冷却工程に要する時間は冷却条件等により適宜コントロールできるが、成形時間の短縮の観点から0.5〜5分であることが好ましい。
金型の冷却方法にとくに限定はなく、金型内温調回路に冷却媒体を流すなどの方法により適宜冷却すれば良い。
[Cooling process]
After the second pressing step, a mold is obtained by using a cooling medium to cool the mold to a melting point or lower when the thermoplastic resin is crystalline, and to a glass transition temperature or lower when amorphous. The temperature after cooling should be a melting point of −200 ° C. or higher and a melting point of −10 ° C. or lower when the thermoplastic resin is crystalline, and a glass transition temperature of −200 ° C. or higher and a glass transition temperature of −10 ° C. or lower when amorphous. Is preferred. The time required for the cooling step can be appropriately controlled depending on the cooling conditions and the like, but is preferably 0.5 to 5 minutes from the viewpoint of shortening the molding time.
There is no particular limitation on the mold cooling method, and the mold may be appropriately cooled by a method of flowing a cooling medium through the mold temperature control circuit.

チャージ率が50%未満の場合、成形体に割れやシワの発生、反りがなく金型末端まで繊維が充填されている成形体を得ることができるが、水平部で実質的に面内2次元ランダム配向する層が確保できない領域が増える為、物性発現率や意匠性が低下する傾向にある。
金型中でのランダムマットの厚みは得ようとする形状の厚みに合わせて適宜選択できる。但し、流動を適切に行う為に、ランダムマットの厚みまたはランダムマットを積層した厚みの総和が0.5mm以上であることが好ましい。
When the charge rate is less than 50%, it is possible to obtain a molded body in which the molded body is filled with fibers up to the end of the mold without generation of cracks, wrinkles, and warpage. Since a region where a randomly oriented layer cannot be secured increases, the physical property expression rate and the design property tend to be lowered.
The thickness of the random mat in the mold can be appropriately selected according to the thickness of the shape to be obtained. However, in order to appropriately flow, it is preferable that the thickness of the random mat or the total thickness of the stacked random mats is 0.5 mm or more.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれにより何等限定を受けるものでは無い。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention does not receive any limitation by this.

1)ランダムマットにおける強化繊維束の分析
強化繊維束(A)のマットの繊維全量に対する割合の求め方は、以下の通りである。
ランダムマットを100mm×100mmに切り出し、厚み(Ta)と重量を測定する(Wa)。
切り出したマットより、繊維束をピンセットで全て取り出し、繊維束を太さ毎に分類する。本実施例では分類は、太さ0.2mm程度単位で分類した。
分類毎に、全ての繊維束の長さ(Li)と重量(Wi)、繊維束数(I)を測定し、記録する。ピンセットにて取り出すことができない程度に繊維束が小さいものについては、まとめて最後に重量を測定する(Wk)。このとき、1/1000gまで測定可能な天秤を用いる。なお、特に強化繊維を炭素繊維とした場合や、繊維長が短い場合には、繊維束の重量が小さく、測定が困難になる。こういった場合には、分類した繊維束を複数本まとめて重量を測定する。
測定後、以下の計算を行う。使用している強化繊維の繊度(F)より、個々の繊維束の繊維本数(Ni)は次式により求めた。
Ni=Wi/(Li×F)。
強化繊維束(A)中の平均繊維数(N)は以下の式により求める。
N=ΣNi/I
また、個々の繊維束の体積(Vi)及び、強化繊維束(A)の繊維全体に対する割合(VR)は、使用した強化繊維の繊維比重(ρ)を用いて次式により求めた。
Vi=Wi/ρ
VR=ΣVi/Va×100
ここで、Vaは切り出したマットの体積であり、Va=100×100×Ta
1) Analysis of reinforcing fiber bundle in random mat The method for obtaining the ratio of reinforcing fiber bundle (A) to the total amount of fibers in the mat is as follows.
A random mat is cut into 100 mm × 100 mm, and the thickness (Ta) and weight are measured (Wa).
From the cut out mat, all the fiber bundles are taken out with tweezers, and the fiber bundles are classified by thickness. In this embodiment, the classification is performed in units of about 0.2 mm in thickness.
For each classification, the length (Li) and weight (Wi) of all fiber bundles and the number of fiber bundles (I) are measured and recorded. When the fiber bundle is so small that it cannot be taken out with tweezers, the weight is finally measured together (Wk). At this time, a balance capable of measuring up to 1/1000 g is used. In particular, when the reinforcing fiber is a carbon fiber, or when the fiber length is short, the weight of the fiber bundle is small and measurement is difficult. In such a case, a plurality of classified fiber bundles are collected and the weight is measured.
After the measurement, the following calculation is performed. From the fineness (F) of the reinforcing fiber used, the number of fibers (Ni) of each fiber bundle was obtained by the following equation.
Ni = Wi / (Li × F).
The average number of fibers (N) in the reinforcing fiber bundle (A) is determined by the following formula.
N = ΣNi / I
Moreover, the volume (Vi) of each fiber bundle and the ratio (VR) of the reinforcing fiber bundle (A) to the whole fiber were obtained by the following formula using the fiber specific gravity (ρ) of the used reinforcing fiber.
Vi = Wi / ρ
VR = ΣVi / Va × 100
Here, Va is the volume of the cut out mat, Va = 100 × 100 × Ta

2)成形体における強化繊維束分析
成形体については、500℃×1時間程度、炉内にて樹脂を除去した後、上記のランダムマットにおける方法と同様にして測定した。
2) Reinforcing fiber bundle analysis in molded body The molded body was measured in the same manner as in the above random mat after removing the resin in a furnace at about 500 ° C for about 1 hour.

3)成形体における繊維配向の分析
複合材料を成形した後、繊維の等方性は、成形板の任意の方向、及びこれと直交する方向を基準とする引張り試験を行い、引張弾性率を測定し、測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)を測定することで確認した。弾性率の比が1に近いほど、等方性に優れる材料である。
3) Analysis of fiber orientation in the molded body After molding the composite material, the fiber isotropy is measured by performing a tensile test based on an arbitrary direction of the molded plate and a direction orthogonal thereto, and measuring the tensile modulus. It was confirmed by measuring a ratio (Eδ) obtained by dividing a larger value of the measured tensile modulus by a smaller value. The closer the modulus ratio is to 1, the better the material is.

4)成形体に含まれる強化繊維の平均繊維長の分析
得られた成形体に含まれる強化繊維平均繊維長は、500℃×1時間程度、炉内にて樹脂を除去した後、無作為に抽出した強化繊維100本の長さをルーペで1mm単位まで測定して記録し、測定した全ての強化繊維の長さ(Li)から、次式により平均繊維長(La)を求めた。
La=ΣLi/100
4) Analysis of the average fiber length of the reinforcing fibers contained in the molded body The average fiber length of the reinforcing fibers contained in the obtained molded body was randomly determined after removing the resin in the furnace for about 500 ° C x 1 hour. The length of 100 extracted reinforcing fibers was measured and recorded to the 1 mm unit with a magnifying glass, and the average fiber length (La) was determined from the measured lengths (Li) of all the reinforcing fibers by the following formula.
La = ΣLi / 100

[実施例1]
強化繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40−24KS(平均繊維径7μm、引張強度4000MPa)を使用した。炭素繊維を20mmの長さにカットし、炭素繊維の供給量を300g/minでテーパー管内に導入し、テーパー管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、テーパー管出口の下部に設置したXY方向に移動可能なテーブル上に、テーブル下部よりブロワにて吸引を行いながら散布した。またマトリックス樹脂としてポリアミド6樹脂(ユニチカ製 A1030)を360g/minでテーパー管内に供給し、炭素繊維と同時に散布することで、平均繊維長20mmの炭素繊維とPA6が混合された厚み5.0mm程度のランダムマットを得た。得られたランダムマットについて、強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、マットの繊維全量に対する割合は35%、強化繊維束(A)中の平均繊維数(N)は240であった。
得られたランダムマットを250℃に加熱された金型にチャージ率80%の割合で配置(図1)し、0.5MPaで加圧した。10分間保持後、10秒かけて2.5MPaまで圧力を上げ、さらに7分間保持した後に冷却媒体を使用して1分かけて金型温度を100℃まで冷却し、厚み1.0mmの成形体を得た。ここで金型の温度は金型表面付近に埋め込まれたKタイプの熱電対にて測定を行った。
図8に用いた金型のシェアエッジ部の模式図を示すが、金型のシェア角度は2度、金型シェアエッジ部のクリアランスは0.1mmであった。
得られた成形体は、材料の割れやシワの発生が無く、表面外観も良好で、製品反りの見られないものであり、金型末端まで樹脂と繊維が充填されていることが断面観察により確認できた。得られた成形体の模式図を図3に示すが、5で示した部分が金型内へ基材のチャージ部分であり、その外側の6で示した部分が、基材が金型キャビティエッジ部まで流動されて得られた流動部である。図中に7で示す箇所についてそれぞれVf(繊維含有率)を調べたところ、流動部の平均が35.0%、基材チャージ部が35.0%となり、流動部も基材チャージも、ほぼ同等の値を示した。流動部について図中に8で示す箇所の引張弾性率を測定したところ、互いに直交する二方向に測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)は1.01であり、等方性を保っていることを確認した。
[Example 1]
Carbon fiber “Tenax” (registered trademark) STS40-24KS (average fiber diameter: 7 μm, tensile strength: 4000 MPa) manufactured by Toho Tenax Co., Ltd. was used as the reinforcing fiber. Cut the carbon fiber into a length of 20 mm, introduce the carbon fiber into the taper tube at a supply rate of 300 g / min, blow the air onto the carbon fiber in the taper tube, and partially open the fiber bundle, then the taper tube It sprayed on the table which can be moved to XY direction installed in the lower part of the exit, sucking with a blower from the lower part of the table. Also, a polyamide 6 resin (A1030 manufactured by Unitika) as a matrix resin is supplied into the tapered tube at 360 g / min and dispersed simultaneously with the carbon fiber, so that the carbon fiber having an average fiber length of 20 mm and PA6 are mixed to a thickness of about 5.0 mm. A random mat was obtained. When the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) were examined for the obtained random mat, the critical single yarn number defined by the formula (1) was 86, and the reinforcing fiber bundle (A) The ratio of the mat to the total amount of fibers was 35%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 240.
The obtained random mat was placed in a mold heated to 250 ° C. at a charge rate of 80% (FIG. 1) and pressurized at 0.5 MPa. After holding for 10 minutes, the pressure is increased to 2.5 MPa over 10 seconds, and after further holding for 7 minutes, the mold temperature is cooled to 100 ° C. over 1 minute using a cooling medium, and a molded article having a thickness of 1.0 mm Got. Here, the temperature of the mold was measured with a K-type thermocouple embedded in the vicinity of the mold surface.
FIG. 8 shows a schematic diagram of the shear edge portion of the mold used. The shear angle of the mold is 2 degrees, and the clearance of the mold shear edge portion is 0.1 mm.
The resulting molded body has no material cracks or wrinkles, has a good surface appearance, has no product warpage, and has been observed through cross-sectional observation that resin and fibers are filled to the mold end. It could be confirmed. FIG. 3 shows a schematic diagram of the obtained molded body. The portion indicated by 5 is a charged portion of the base material into the mold, and the portion indicated by 6 on the outer side is the die cavity edge. This is a fluidized part obtained by fluidizing part. When Vf (fiber content) was examined for each of the locations indicated by 7 in the figure, the average of the fluidized portion was 35.0% and the base material charged portion was 35.0%. An equivalent value was shown. When the tensile modulus of elasticity at the location indicated by 8 in the figure for the fluidized portion was measured, the ratio (Eδ) obtained by dividing the larger value of the tensile modulus measured in two directions perpendicular to each other by the smaller value was 1.01. It was confirmed that the isotropic property was maintained.

[実施例2]
厚みを1mm程度とした以外は実施例1と同様にしてランダムマットを得た。
得られたランダムマットを10枚積層し、260℃に加熱された金型にチャージ率80%の割合で配置し(図1)、0.8MPaで加圧した。10分間保持後、10秒かけて7.0MPaまで圧力を上げ、さらに7分間保持した後に冷却媒体を使用して2.5分かけて金型温度を100℃まで冷却し、厚み2.4mmの成形体を得た。ここで金型の温度は金型表面付近に埋め込まれたKタイプの熱電対にて測定を行った。
図8に用いた金型のシェアエッジ部の模式図を示すが、金型のシェア角度は2度、金型シェアエッジ部のクリアランスは0.1mmであった。
得られた成形体は、材料の割れやシワの発生が無く、表面外観も良好で、製品反りの見られないものであり、金型末端まで樹脂と繊維が充填されていることが断面観察により確認できた。得られた成形体の模式図を図5に示すが、5で示した部分が金型内へ基材のチャージ部分であり、その外側の6で示した部分が、基材が金型キャビティエッジ部まで流動されて得られた流動部である。図中に7で示す箇所についてそれぞれVfを調べたところ、流動部の平均が35.7%、基材チャージ部が34.9%となり、流動部も基材チャージもほぼ同等の値を示した。流動部について図中に8で示す箇所の引張弾性率を測定したところ、互いに直交する二方向に測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)は1.06であり、等方性を保っていることを確認した。
[Example 2]
A random mat was obtained in the same manner as in Example 1 except that the thickness was about 1 mm.
Ten obtained random mats were laminated, placed in a mold heated to 260 ° C. at a charge rate of 80% (FIG. 1), and pressurized at 0.8 MPa. After holding for 10 minutes, the pressure was increased to 7.0 MPa over 10 seconds, and after holding for 7 minutes, the mold temperature was cooled to 100 ° C. over 2.5 minutes using a cooling medium, and the thickness was 2.4 mm. A molded body was obtained. Here, the temperature of the mold was measured with a K-type thermocouple embedded in the vicinity of the mold surface.
FIG. 8 shows a schematic diagram of the shear edge portion of the mold used. The shear angle of the mold is 2 degrees, and the clearance of the mold shear edge portion is 0.1 mm.
The resulting molded body has no material cracks or wrinkles, has a good surface appearance, has no product warpage, and has been observed through cross-sectional observation that resin and fibers are filled to the mold end. It could be confirmed. FIG. 5 shows a schematic diagram of the obtained molded body. The portion indicated by 5 is a charged portion of the base material into the mold, and the portion indicated by 6 on the outer side is the die cavity edge. This is a fluidized part obtained by fluidizing part. When Vf was examined for each of the parts indicated by 7 in the figure, the average of the fluid part was 35.7% and the base material charge part was 34.9%, and the fluid part and the base material charge showed almost the same value. . When the tensile modulus of the fluidized portion was measured at a location indicated by 8 in the figure, the ratio (Eδ) obtained by dividing the larger value of the tensile modulus measured in two directions orthogonal to each other by the smaller one was 1.06. It was confirmed that the isotropic property was maintained.

[実施例3]
マトリクス樹脂をポリカーボネート樹脂(帝人化成製 パンライト(登録商標)L−1225L)とし、炭素繊維100重量部に対して300重量部の割合で混合した以外は実施例1と同様にしてランダムマットを得た。得られたランダムマットについて、強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、式(1)で定義される臨界単糸数は120であり、強化繊維束(A)について、マットの繊維全量に対する割合は80%、強化繊維束(A)中の平均繊維数(N)は1000であった。
得られたランダムマットを、230℃に加熱された金型にチャージ率80%の割合で配置し(図4)、0.7MPaで加圧した。10分間保持後、10秒かけて3.0MPaまで圧力を上げ、さらに7分間保持した後に冷却媒体を使用して1分かけて金型温度を60℃まで冷却し、厚み0.5mmの成形体を得た。ここで金型の温度は金型表面付近に埋め込まれたKタイプの熱電対にて測定を行った。
図8に用いた金型のシェアエッジ部の模式図を示すが、金型のシェア角度は2度、金型シェアエッジ部のクリアランスは0.1mmであった。
得られた成形体は、材料の割れやシワの発生が無く、表面外観も良好で、製品反りの見られないものであり、金型末端まで樹脂と繊維が充填されていることが断面観察により確認できた。得られた成形体の模式図を図3に示すが、5で示した部分が金型内へ基材のチャージ部分であり、その外側の6で示した部分が、基材が金型キャビティエッジ部まで流動されて得られた流動部である。図中に7で示す箇所についてそれぞれVfを調べたところ、流動部の平均34.8%、基材チャージ部34.8%となり同等の数値を示した。引張弾性率を測定したところ、互いに直交する二方向に測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)は1.04であり、等方性を保っていることを確認した。
[Example 3]
A random mat was obtained in the same manner as in Example 1 except that the matrix resin was polycarbonate resin (Panlite (registered trademark) L-1225L manufactured by Teijin Chemicals) and mixed at a ratio of 300 parts by weight with respect to 100 parts by weight of carbon fiber. It was. When the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) were examined for the obtained random mat, the critical single yarn number defined by the formula (1) was 120, and the reinforcing fiber bundle (A) The ratio of the mat to the total amount of fibers was 80%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 1000.
The obtained random mat was placed in a mold heated to 230 ° C. at a charge rate of 80% (FIG. 4) and pressurized at 0.7 MPa. After holding for 10 minutes, the pressure is increased to 3.0 MPa over 10 seconds, and after further holding for 7 minutes, the mold temperature is cooled to 60 ° C. over 1 minute using a cooling medium, and a molded article having a thickness of 0.5 mm Got. Here, the temperature of the mold was measured with a K-type thermocouple embedded in the vicinity of the mold surface.
FIG. 8 shows a schematic diagram of the shear edge portion of the mold used. The shear angle of the mold is 2 degrees, and the clearance of the mold shear edge portion is 0.1 mm.
The resulting molded body has no material cracks or wrinkles, has a good surface appearance, has no product warpage, and has been observed through cross-sectional observation that resin and fibers are filled to the mold end. It could be confirmed. FIG. 3 shows a schematic diagram of the obtained molded body. The portion indicated by 5 is a charged portion of the base material into the mold, and the portion indicated by 6 on the outer side is the die cavity edge. This is a fluidized part obtained by fluidizing part. When Vf was examined for each part indicated by 7 in the figure, the average value was 34.8% in the fluidized part and 34.8% in the base material charged part, indicating the same numerical values. When the tensile elastic modulus was measured, the ratio (Eδ) obtained by dividing the value of the tensile elastic modulus measured in two directions perpendicular to each other by the smaller one was 1.04, and the isotropic property was maintained. It was confirmed.

[実施例4]
厚み2.5mm程度とした以外は実施例1と同様にしてランダムマットを得た。得られたランダムマットを、255℃に加熱されたリブ・ボス形状を有する金型にチャージ率80%の割合で3枚配置し(図6)、0.7MPaで加圧した。8分間保持後、10秒かけて4.0MPaまで圧力を上げ、さらに7分間保持した後に冷却媒体を使用して0.5分かけて金型温度を100℃まで冷却し、厚み0.4mmの成形体を得た。ここで金型の温度は金型表面付近に埋め込まれたKタイプの熱電対にて測定を行った。図8に用いた金型のシェアエッジ部の模式図を示すが、金型のシェア角度は2度、金型シェアエッジ部のクリアランスは0.1mmであった。
得られた成形体は、材料の割れやシワの発生が無く、表面外観も良好で、製品反りの見られないものであり、金型末端まで樹脂と繊維が充填されていることが断面観察により確認できた。得られた成形体の模式図を図7に示すが、5で示した部分が金型内へ基材のチャージ部分であり、その外側の6で示した部分が、基材が金型キャビティエッジ部まで流動されて得られた流動部である。図中に7で示す各部位についてそれぞれ示す各部位のVfを調べたところ、流動部の平均が35.1%、基材チャージ部が35.5%となりほぼ同等の値を示した。流動部の引張弾性率を測定したところ、互いに直交する二方向に測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)は1.10であり、等方性を保っていることを確認した。
[Example 4]
A random mat was obtained in the same manner as in Example 1 except that the thickness was about 2.5 mm. Three of the obtained random mats were placed in a mold having a rib and boss shape heated to 255 ° C. at a charge rate of 80% (FIG. 6), and pressurized at 0.7 MPa. After holding for 8 minutes, the pressure was increased to 4.0 MPa over 10 seconds, and after further holding for 7 minutes, the mold temperature was cooled to 100 ° C. over 0.5 minutes using a cooling medium, and the thickness was 0.4 mm. A molded body was obtained. Here, the temperature of the mold was measured with a K-type thermocouple embedded in the vicinity of the mold surface. FIG. 8 shows a schematic diagram of the shear edge portion of the mold used. The shear angle of the mold is 2 degrees, and the clearance of the mold shear edge portion is 0.1 mm.
The resulting molded body has no material cracks or wrinkles, has a good surface appearance, has no product warpage, and has been observed through cross-sectional observation that resin and fibers are filled to the mold end. It could be confirmed. A schematic diagram of the obtained molded body is shown in FIG. 7, where a portion indicated by 5 is a charged portion of the base material into the mold, and a portion indicated by 6 on the outside thereof is the die cavity edge. This is a fluidized part obtained by fluidizing part. When the Vf of each part indicated for each part indicated by 7 in the figure was examined, the average of the fluidized part was 35.1%, and the base material charged part was 35.5%, indicating a substantially equivalent value. When the tensile elastic modulus of the fluidized part was measured, the ratio (Eδ) obtained by dividing the value of the tensile elastic modulus measured in two directions orthogonal to each other by the smaller one was 1.10, and the isotropic property was maintained. Confirmed that.

[比較例1]
実施例1において、小孔からの風速を、50m/secとした以外は同様にランダムマットを作製した。得られたランダムマットについて、強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、マットの繊維全量に対する割合は95%、強化繊維束(A)中の平均繊維数(N)は1500であった。
得られたランダムマットを250℃に加熱された金型にチャージ率80%の割合で配置(図1)し、0.5MPaで加圧した。10分間保持後、10秒かけて2.5MPaまで圧力を上げ、さらに7分間保持した後に冷却媒体を使用して1分かけて金型温度を100℃まで冷却し、成形体を得た。ここで金型の温度は金型表面付近に埋め込まれたKタイプの熱電対にて測定を行った。
図8に用いた金型のシェアエッジ部の模式図を示すが、金型のシェア角度は2度、金型シェアエッジ部のクリアランスは0.1mmであった。
得られた成形体は、得られた成形体は厚みが1.4〜1.8mmと不均一であり、目付けのムラも大きく、裏から光を照射すると透過するものであった。
[Comparative Example 1]
A random mat was produced in the same manner as in Example 1 except that the wind speed from the small holes was 50 m / sec. When the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) were examined for the obtained random mat, the critical single yarn number defined by the formula (1) was 86, and the reinforcing fiber bundle (A) The ratio of the mat to the total amount of fibers was 95%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 1500.
The obtained random mat was placed in a mold heated to 250 ° C. at a charge rate of 80% (FIG. 1) and pressurized at 0.5 MPa. After holding for 10 minutes, the pressure was increased to 2.5 MPa over 10 seconds, and after further holding for 7 minutes, the mold temperature was cooled to 100 ° C. over 1 minute using a cooling medium to obtain a molded body. Here, the temperature of the mold was measured with a K-type thermocouple embedded in the vicinity of the mold surface.
FIG. 8 shows a schematic diagram of the shear edge portion of the mold used. The shear angle of the mold is 2 degrees, and the clearance of the mold shear edge portion is 0.1 mm.
The obtained molded body was uneven with a thickness of 1.4 to 1.8 mm, the unevenness of the basis weight was large, and it was transmitted when irradiated with light from the back side.

本発明方法で得られる強化繊維と熱可塑製樹脂を含む成形体は、軽量で形状自由度があり、金型形状に対し低チャージ率のプリプレグを用いてプレス成形した場合でも、等方性を維持しており、成形性、薄肉、比剛性、生産性、経済性に優れる材料であることから、電気・電子機器部品、自動車用部品、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電機器、玩具用品などの電気、電子部品や筐体に利用することができる。とりわけ、環境対応車に搭載される自動車部品に好ましく用いることができる。   The molded body containing the reinforcing fiber and the thermoplastic resin obtained by the method of the present invention is lightweight and has a degree of freedom in shape, and is isotropic even when pressed using a prepreg with a low charge rate for the mold shape. Because it is a material with excellent moldability, thin wall, specific rigidity, productivity, and economy, it is an electrical / electronic equipment part, automotive part, personal computer, OA equipment, AV equipment, mobile phone, telephone, facsimile. It can be used for electrical and electronic parts and housings such as home appliances and toy supplies. In particular, it can be preferably used for automobile parts mounted on environment-friendly vehicles.

1 プリプレグ
2 金型キャビティ
3 金型キャビティエッジ部
4 金型キャビティ総面積
5 基材チャージ部
6 流動部
7 Vfの計測点
8 引張弾性率計測店
9 ボス形状部
10 リブ形状部
11 金型のシェアの角度
12 金型のクリアランス
DESCRIPTION OF SYMBOLS 1 Prepreg 2 Mold cavity 3 Mold cavity edge part 4 Mold cavity total area 5 Base material charge part 6 Flowing part 7 Vf measuring point 8 Tensile modulus measurement shop 9 Boss shape part 10 Rib shape part 11 Share of mold Angle of 12 Mold clearance

Claims (8)

繊維長10〜100mmの強化繊維と熱可塑性樹脂とから構成されるランダムマットを金型に下記式(3)で表されるチャージ率が50%以上90%未満となるように配置し、
金型を熱可塑性樹脂が結晶性の場合は熱可塑性樹脂の融点以上熱分解温度未満の温度まで、非晶性の場合は熱可塑性樹脂のガラス転移温度以上熱分解温度未満の温度まで昇温しつつ、プレス成形を行い(第1プレス工程)、
次いで1段以上であり、最終段の圧力が第1プレス工程の圧力の1.2倍〜25倍となるような第2プレス工程を行った後、
金型を熱可塑性樹脂の結晶性の場合は融点以下、非晶性の場合はガラス転移温度以下まで冷却し成形させる、強化繊維と熱可塑性樹脂を含む成形体の製造方法であって、
ランダムマットは、強化繊維が25〜3000g/mの目付けにて実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が30Vol%以上90Vol%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことを特徴とする強化繊維と熱可塑性樹脂を含む成形体の製造方法。
臨界単糸数=600/D (1)
0.7×10/D<N<6×10/D(2)
(ここでDは強化繊維の平均繊維径(μm)である)
チャージ率(%)=100×基材面積(mm2)/金型キャビティ投影面積(mm2)(3)
(ここで基材面積とは配置した全てのプリプレグの抜き方向への投影面積であり、金型キャビティ投影面積とは抜き方向への投影面積である)
A random mat composed of reinforcing fibers having a fiber length of 10 to 100 mm and a thermoplastic resin is placed in a mold so that the charge rate represented by the following formula (3) is 50% or more and less than 90%,
If the thermoplastic resin is crystalline, the mold is heated to a temperature that is higher than the melting point of the thermoplastic resin and lower than the thermal decomposition temperature, and if it is amorphous, the temperature is raised to a temperature that is higher than the glass transition temperature of the thermoplastic resin and lower than the thermal decomposition temperature. While performing press molding (first pressing step),
Then, after performing the second pressing step, which is one or more stages, and the final stage pressure is 1.2 to 25 times the pressure of the first pressing process,
In the case where the mold is crystalline of the thermoplastic resin, it is a melting point or lower, and in the case of amorphous, the mold is cooled to the glass transition temperature or lower and molded, and a method for producing a molded body containing reinforcing fibers and a thermoplastic resin,
The random mat has reinforcing fiber bundles (A) in which the reinforcing fibers are oriented substantially two-dimensionally at a basis weight of 25 to 3000 g / m 2 and are composed of the number of critical single yarns defined by the formula (1). ), The ratio of the mat to the total amount of fibers is 30 Vol% or more and less than 90 Vol%, and the average number of fibers (N) in the reinforcing fiber bundle (A) satisfies the following formula (2): The manufacturing method of the molded object containing a thermoplastic resin.
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
Charge rate (%) = 100 × base material area (mm 2 ) / mold cavity projected area (mm 2 ) (3)
(Here, the substrate area is the projected area in the drawing direction of all the arranged prepregs, and the mold cavity projected area is the projected area in the drawing direction.)
第1プレス工程における成形圧力が0.3MPa〜1.0MPaである請求項1に記載の成形体の製造方法。   The method for producing a molded body according to claim 1, wherein the molding pressure in the first pressing step is 0.3 MPa to 1.0 MPa. ランダムマットにおける熱可塑性樹脂の存在量が、強化繊維100質量部に対し、50〜1000質量部である請求項1に記載の成形体の製造方法。   The manufacturing method of the molded object of Claim 1 whose abundance of the thermoplastic resin in a random mat is 50-1000 mass parts with respect to 100 mass parts of reinforcing fibers. ランダムマットを、下記式(4)で表される総面積チャージ率が30%以上90%未満となるように金型に配してプレス成形を行う、請求項1〜3のいずれかに記載の成形体の製造方法。
総面積チャージ率(%)=100×基材面積(mm2)/金型キャビティ総面積(mm2) (4)
(ここで基材面積とは配置した全てのプリプレグの抜き方向への投影面積であり、金型キャビティ総面積とは金型キャビティ表面の面積の総和である)
The random mat is placed in a mold such that the total area charge ratio represented by the following formula (4) is 30% or more and less than 90%, and press molding is performed. Manufacturing method of a molded object.
Total area charge rate (%) = 100 × base material area (mm 2 ) / total mold cavity area (mm 2 ) (4)
(Here, the substrate area is the projected area of all the arranged prepregs in the drawing direction, and the mold cavity total area is the total area of the mold cavity surfaces)
ランダムマットにおける強化繊維の繊維長が10〜30mmである請求項1に記載の成形体の製造方法。   The method for producing a molded article according to claim 1, wherein the fiber length of the reinforcing fibers in the random mat is 10 to 30 mm. 成形に用いる金型のコア側とキャビティ側が、シェアエッジ構造を有する請求項1に記載の成形体の製造方法。   The manufacturing method of the molded object of Claim 1 with which the core side and cavity side of the metal mold | die used for shaping | molding have a shear edge structure. 任意の方向、及びこれと直交する方向についての引張弾性率の大きいほうの値を小さい方の値で割った比(Eδ)が1.0から1.3となる請求項1〜6のいずれかに記載の製造方法で得られる成形体。   The ratio (Eδ) obtained by dividing the larger value of the tensile modulus in any direction and the direction perpendicular thereto by the smaller value is 1.0 to 1.3. A molded product obtained by the production method described in 1. 繊維長10〜100mmの強化繊維と熱可塑性樹脂とから構成され、強化繊維が25〜3000g/mの目付けにて実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が30Vol%以上90Vol%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たす、請求項1〜6のいずれかに記載の成形体の製造方法に用いるランダムマット。
臨界単糸数=600/D (1)
0.7×10/D<N<6×10/D(2)
(ここでDは強化繊維の平均繊維径(μm)である)
It is composed of a reinforcing fiber having a fiber length of 10 to 100 mm and a thermoplastic resin, and the reinforcing fiber is substantially two-dimensionally oriented with a basis weight of 25 to 3000 g / m 2 and is defined by the formula (1) For the reinforcing fiber bundle (A) composed of the number of critical single yarns or more, the ratio of the mat to the total amount of fibers is 30 Vol% or more and less than 90 Vol%, and the average number of fibers (N) in the reinforcing fiber bundle (A) is the following formula: The random mat used for the manufacturing method of the molded object in any one of Claims 1-6 which satisfy | fills (2).
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
JP2011124520A 2011-06-02 2011-06-02 Method for producing molded body maintaining isotropic property Expired - Fee Related JP5749572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124520A JP5749572B2 (en) 2011-06-02 2011-06-02 Method for producing molded body maintaining isotropic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124520A JP5749572B2 (en) 2011-06-02 2011-06-02 Method for producing molded body maintaining isotropic property

Publications (2)

Publication Number Publication Date
JP2012250430A true JP2012250430A (en) 2012-12-20
JP5749572B2 JP5749572B2 (en) 2015-07-15

Family

ID=47523704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124520A Expired - Fee Related JP5749572B2 (en) 2011-06-02 2011-06-02 Method for producing molded body maintaining isotropic property

Country Status (1)

Country Link
JP (1) JP5749572B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108568A (en) * 2012-12-03 2014-06-12 Meiki Co Ltd Method for press molding fiber composite molding, press molding apparatus for fiber composite molding, and mold for fiber composite molding
JP2014136365A (en) * 2013-01-17 2014-07-28 Meiki Co Ltd Method and apparatus for compression molding of fiber composite molding
WO2015194533A1 (en) * 2014-06-20 2015-12-23 帝人株式会社 Method for manufacturing molded article having opening, and molded article
WO2020246622A1 (en) * 2019-12-24 2020-12-10 株式会社The MOT Company Method for manufacturing thermoplastic fiber-reinforced resin molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020910A1 (en) * 2005-08-18 2007-02-22 Teijin Techno Products Limited Isotopic fiber-reinforced thermoplastic resin sheet, and process for production and molded plate thereof
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2009191392A (en) * 2008-02-13 2009-08-27 Teijin Ltd Pitch-based carbon fiber filer and molded article using the same
JP2010235779A (en) * 2009-03-31 2010-10-21 Toray Ind Inc Prepreg, preform and molded product
JP2010253938A (en) * 2009-03-31 2010-11-11 Toray Ind Inc Method for manufacturing integrated molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020910A1 (en) * 2005-08-18 2007-02-22 Teijin Techno Products Limited Isotopic fiber-reinforced thermoplastic resin sheet, and process for production and molded plate thereof
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2009191392A (en) * 2008-02-13 2009-08-27 Teijin Ltd Pitch-based carbon fiber filer and molded article using the same
JP2010235779A (en) * 2009-03-31 2010-10-21 Toray Ind Inc Prepreg, preform and molded product
JP2010253938A (en) * 2009-03-31 2010-11-11 Toray Ind Inc Method for manufacturing integrated molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108568A (en) * 2012-12-03 2014-06-12 Meiki Co Ltd Method for press molding fiber composite molding, press molding apparatus for fiber composite molding, and mold for fiber composite molding
JP2014136365A (en) * 2013-01-17 2014-07-28 Meiki Co Ltd Method and apparatus for compression molding of fiber composite molding
WO2015194533A1 (en) * 2014-06-20 2015-12-23 帝人株式会社 Method for manufacturing molded article having opening, and molded article
JP5952510B2 (en) * 2014-06-20 2016-07-13 帝人株式会社 Method for producing molded body having opening
US9533437B2 (en) 2014-06-20 2017-01-03 Teijin Limited Method for producing shaped product with opening, and shaped product
JPWO2015194533A1 (en) * 2014-06-20 2017-04-20 帝人株式会社 Method for producing molded body having opening
WO2020246622A1 (en) * 2019-12-24 2020-12-10 株式会社The MOT Company Method for manufacturing thermoplastic fiber-reinforced resin molded article
JP2021102274A (en) * 2019-12-24 2021-07-15 株式会社The MOT Company Manufacturing method of thermoplastic fiber reinforced resin molded product

Also Published As

Publication number Publication date
JP5749572B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5606622B2 (en) Method for producing molded body maintaining isotropic property
WO2012108446A1 (en) Molded object with thickness gradient and process for producing same
JP5735631B2 (en) Molded body made of fiber reinforced composite material
US10322559B2 (en) Shaped product having standing plane, and method for manufacturing the same
JP5702854B2 (en) Reinforced fiber composite material
JP5576147B2 (en) Carbon fiber composite material
JP2011178890A (en) Carbon fiber composite material
US10882224B2 (en) Method for manufacturing structure material
JP5944114B2 (en) Thermoplastic isotropic prepreg
JP2011241338A (en) Carbon fiber composite material
US8829103B2 (en) Carbon fiber composite material
JP5749343B2 (en) Method for producing composite molded body having undercut portion
JP5851767B2 (en) Fiber reinforced substrate
JP5749572B2 (en) Method for producing molded body maintaining isotropic property
JP5812439B2 (en) Laminated molded product of fiber reinforced thermoplastic resin
JP5650559B2 (en) Method for producing composite molded body
JP2013049751A (en) Fiber reinforcement substrate
JP6092923B2 (en) Carbon fiber composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees