JP2012248748A - Electronic component mounting substrate and electronic apparatus using the same - Google Patents

Electronic component mounting substrate and electronic apparatus using the same Download PDF

Info

Publication number
JP2012248748A
JP2012248748A JP2011120652A JP2011120652A JP2012248748A JP 2012248748 A JP2012248748 A JP 2012248748A JP 2011120652 A JP2011120652 A JP 2011120652A JP 2011120652 A JP2011120652 A JP 2011120652A JP 2012248748 A JP2012248748 A JP 2012248748A
Authority
JP
Japan
Prior art keywords
metal layer
base
substrate
rod
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011120652A
Other languages
Japanese (ja)
Inventor
Yuichi Abe
裕一 阿部
Kunihide Yomo
邦英 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011120652A priority Critical patent/JP2012248748A/en
Publication of JP2012248748A publication Critical patent/JP2012248748A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electronic component mounting substrate exhibiting high heat dissipation.SOLUTION: An electronic component mounting substrate 1 exhibiting high heat dissipation can be obtained because it includes a substrate 11 containing alumina as a main component, a metal layer 12 provided on the substrate 11, and a plurality of rod-like bodies 13 each containing silicon carbide as a main component and having one end located in the substrate 11 and the other end located in the metal layer 12. Furthermore, a highly reliable electronic device 111 can be obtained because an electronic component 15 is bonded to the electronic component mounting substrate 1 exhibiting high heat dissipation and having high adhesion strength of the substrate 11 and the metal layer 12, and the rod-like bodies 13 exist at positions corresponding to the joints.

Description

本発明は、電子部品実装用基体およびこの電子部品実装用基体に電子部品が実装された電子装置に関するものである。   The present invention relates to an electronic component mounting substrate and an electronic device in which an electronic component is mounted on the electronic component mounting substrate.

半導体素子、発熱素子、ペルチェ素子等の各種電子部品が電子部品実装用基体上に実装された電子装置が用いられている。   2. Description of the Related Art An electronic device in which various electronic components such as a semiconductor element, a heating element, and a Peltier element are mounted on an electronic component mounting base is used.

このような電子装置においては、実装される電子部品が高温の熱を発するため、電子部品実装用基体には放熱性が高いセラミック基体が用いられている。   In such an electronic device, since the electronic component to be mounted generates high-temperature heat, a ceramic substrate having high heat dissipation is used as the electronic component mounting substrate.

従来の電子部品実装用基体としては、例えば、特許文献1に、セラミック焼結体に凹部が設けられており、その凹部に金属層が形成された電子部品実装用基体が提案されている。   As a conventional electronic component mounting substrate, for example, Patent Document 1 proposes an electronic component mounting substrate in which a concave portion is provided in a ceramic sintered body and a metal layer is formed in the concave portion.

特開2006−5252公報JP 2006-5252 A

しかしながら、近年、電子装置の小型化、薄型化および電子部品の高集積化に伴い、電子部品実装用基体は、体積あたりに加わる熱量が大きくなっており、さらに高い放熱性が求められている。   However, in recent years, with the downsizing and thinning of electronic devices and the high integration of electronic components, the amount of heat applied to the electronic component mounting base is increasing, and higher heat dissipation is required.

本発明は、上記課題を解決すべく案出されたものであり、放熱性が高い電子部品実装用基体およびこれを用いた信頼性の高い電子装置を提供するものである。   The present invention has been devised to solve the above-described problems, and provides an electronic component mounting base having high heat dissipation and a highly reliable electronic device using the same.

本発明の電子部品実装用基体は、アルミナを主成分とする基体と、該基体に設けられている金属層と、一端部が前記基体内に位置し、炭化ケイ素を主成分とする複数の棒状体とを備え、前記棒状体は、他端部が前記金属層内に位置することを特徴とするものである。   The substrate for mounting electronic parts of the present invention includes a substrate mainly composed of alumina, a metal layer provided on the substrate, and a plurality of rod-shaped members each having one end located in the substrate and mainly composed of silicon carbide. And the other end of the rod-like body is located in the metal layer.

また、本発明の電子部品実装用基体は、アルミナを主成分とする基体と、該基体に設けられている金属層と、前記基体と前記金属層との間に介在されガラスを主成分とする中間層と、一端部が前記基体内に位置し、炭化ケイ素を主成分とする複数の棒状体とを備え、該棒状体は、他端部が前記中間層内に位置することを特徴とするものである。   The electronic component mounting substrate of the present invention includes a substrate mainly composed of alumina, a metal layer provided on the substrate, and a glass as a main component interposed between the substrate and the metal layer. An intermediate layer and a plurality of rod-shaped bodies each having one end portion located in the base and having silicon carbide as a main component, the rod-shaped body having the other end portion located in the intermediate layer Is.

また、本発明の電子装置は、上記構成の本発明の電子部品実装用基体に電子部品を接合してなり、該接合部と対応する位置に前記棒状体が存在していることを特徴とするものである。   The electronic device of the present invention is characterized in that an electronic component is bonded to the electronic component mounting base of the present invention having the above-described configuration, and the rod-shaped body is present at a position corresponding to the bonded portion. Is.

本発明の電子部品実装用基体は、アルミナを主成分とする基体と、基体に設けられている金属層と、一端部が基体内に位置し、炭化ケイ素を主成分とする複数の棒状体とを備え、棒状体は、他端部が金属層内に位置するので、放熱性が高い電子部品実装用基体とすることができる。   The electronic component mounting substrate of the present invention includes a substrate mainly composed of alumina, a metal layer provided on the substrate, a plurality of rod-shaped bodies each having one end portion located in the substrate and mainly composed of silicon carbide. The other end portion of the rod-shaped body is located in the metal layer, so that the electronic component mounting base body with high heat dissipation can be obtained.

また、本発明の電子部品実装用基体は、アルミナを主成分とする基体と、基体に設けられている金属層と、基体と金属層との間に介在されガラスを主成分とする中間層と、一端部が基体内に位置し、炭化ケイ素を主成分とする複数の棒状体とを備え、棒状体は、他端部が中間層内に位置するので、放熱性が高い電子部品実装用基体とすることができる。   The electronic component mounting substrate of the present invention includes a substrate mainly composed of alumina, a metal layer provided on the substrate, and an intermediate layer mainly composed of glass interposed between the substrate and the metal layer. And a plurality of rod-shaped bodies each having one end portion located in the substrate and having silicon carbide as a main component, and the other end portion of the rod-shaped body is located in the intermediate layer, so that the substrate for mounting electronic parts having high heat dissipation It can be.

また、本発明の電子装置によれば、本発明の電子部品実装用基体に電子部品を接合してなり、接合部と対応する位置に棒状体が存在していることから、信頼性の高い電子装置とすることができる。   In addition, according to the electronic device of the present invention, the electronic component is bonded to the electronic component mounting base of the present invention, and the rod-shaped body is present at a position corresponding to the bonded portion. It can be a device.

本実施形態の電子部品実装用基体の一例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。An example of the electronic component mounting substrate of the present embodiment is shown, in which (a) is a plan view and (b) is a cross-sectional view taken along the line A-A ′ of (a). 本実施形態の電子部品実装用基体の他の例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。The other example of the base for electronic component mounting of this embodiment is shown, (a) is a top view and (b) is a sectional view in the A-A 'line of (a). 本実施形態の電子部品実装用基体のさらに他の例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。The other example of the base for electronic component mounting of this embodiment is shown, (a) is a top view and (b) is a sectional view in the A-A 'line of (a). 本実施形態の電子部品実装用基体のさらに他の例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。The other example of the base for electronic component mounting of this embodiment is shown, (a) is a top view and (b) is a sectional view in the A-A 'line of (a). 本実施形態の電子部品実装用基体のさらに他の例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。The other example of the base for electronic component mounting of this embodiment is shown, (a) is a top view and (b) is a sectional view in the A-A 'line of (a). 図1に示す電子部品実装用基体の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the base | substrate for electronic component mounting shown in FIG. 図3に示す電子部品実装用基体の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the base | substrate for electronic component mounting shown in FIG. 本実施形態の電子装置の一例を示す断面図であり、(a)は図1に示す電子部品実装用基体を用いた電子装置の断面図、(b)は図2に示す電子部品実装用基体を用いた電子装置の断面図、(c)は図3に示す電子部品実装用基体を用いた電子装置の断面図である。2A and 2B are cross-sectional views illustrating an example of the electronic device of the present embodiment, in which FIG. 1A is a cross-sectional view of an electronic device using the electronic component mounting substrate illustrated in FIG. 1, and FIG. 2B is an electronic component mounting substrate illustrated in FIG. FIG. 4C is a cross-sectional view of an electronic device using the electronic component mounting substrate shown in FIG. 3. 電子部品実装用基体の金属層の接合強度の測定方法を示す断面図である。It is sectional drawing which shows the measuring method of the joint strength of the metal layer of the base | substrate for electronic component mounting.

以下、本実施形態の一例について図面を参照しながら説明する。   Hereinafter, an example of this embodiment will be described with reference to the drawings.

図1は、本実施形態の電子部品実装用基体の一例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。   1A and 1B show an example of an electronic component mounting base according to the present embodiment, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line A-A ′ in FIG.

図1に示す電子部品実装用基体1は、アルミナを主成分とする基体11と、基体11に設けられている金属層12と、一端部が基体11内に位置し、炭化ケイ素を主成分とする複数の棒状体13とを備え、棒状体13は、他端部が金属層12内に位置する棒状体である。なお、以降の説明において、同一の部材については同一の符号を用いて説明するものとする。   An electronic component mounting base 1 shown in FIG. 1 includes a base 11 mainly composed of alumina, a metal layer 12 provided on the base 11, one end located in the base 11, and silicon carbide as a main component. The rod-shaped body 13 is a rod-shaped body having the other end portion located in the metal layer 12. In the following description, the same members will be described using the same reference numerals.

図1に示す電子部品実装用基体1は、一端部が基体11内に位置し、かつ他端部が金属層12内に位置する炭化ケイ素を主成分とする複数の棒状体13を備えているので、棒状体13を介して金属層12から基体11に熱が伝達されやすく、基体11と金属層12間の熱伝達が向上するので、電子部品実装用基体1の放熱性がより高くなる。   The electronic component mounting base 1 shown in FIG. 1 includes a plurality of rod-like bodies 13 mainly composed of silicon carbide, one end of which is located in the base 11 and the other end is located in the metal layer 12. Therefore, heat is easily transferred from the metal layer 12 to the base body 11 through the rod-like body 13, and heat transfer between the base body 11 and the metal layer 12 is improved, so that the heat dissipation of the electronic component mounting base body 1 is further increased.

また、棒状体13の一端部が基体11内に位置し、他端部が金属層12内に位置するため、棒状体13によるアンカー効果によって、基体11と金属層12とがより強固に接合される傾向がある。さらに、棒状体13は、放熱性の観点から考えると基体11に対して垂直に設けられていることが好ましいが、棒状体13は、基体11に対して傾斜して設けられているとより高いアンカー効果が得られ、基体11と金属層12とがさらに強固に接合される傾向がある。なお
、基体11と棒状体13との鋭角側のなす角が30°以上60°以下であれば、放熱性を高く維持し、かつ基体11と金属層12との接合強度を高くすることができる。
Further, since one end portion of the rod-shaped body 13 is located in the base body 11 and the other end portion is located in the metal layer 12, the base body 11 and the metal layer 12 are more firmly joined by the anchor effect of the rod-shaped body 13. There is a tendency to. Further, the rod-like body 13 is preferably provided perpendicular to the base body 11 from the viewpoint of heat dissipation, but the rod-like body 13 is higher when provided with an inclination relative to the base body 11. An anchor effect is obtained, and the base 11 and the metal layer 12 tend to be bonded more firmly. If the angle formed by the acute angle side between the base 11 and the rod-like body 13 is 30 ° or more and 60 ° or less, the heat dissipation can be maintained high, and the bonding strength between the base 11 and the metal layer 12 can be increased. .

なお、炭化ケイ素を主成分とする複数の棒状体13の一端部が基体11内に位置し、かつ他端部が金属層12内に位置するかどうかを確認するためには、例えば、基体11と金属層12との接合面が観察できるように電子部品実装用基体1を切断し、その断面をSEM(走査型電子顕微鏡)により観察すれば、炭化ケイ素を主成分とする複数の棒状体13において、棒状体13の一端部が基体11内に位置し、かつ他端部が金属層12内に位置するかどうかを確認することができ、またX線回折法による分析やTEM(透過型電子顕微鏡)またはSEMによるEDS分析によって棒状体13を構成する物質を同定できる。   In order to confirm whether one end of the plurality of rod-shaped bodies 13 mainly composed of silicon carbide is located in the base 11 and the other end is located in the metal layer 12, for example, the base 11 When the electronic component mounting substrate 1 is cut so that the bonding surface between the metal layer 12 and the metal layer 12 can be observed, and the cross section thereof is observed with an SEM (scanning electron microscope), a plurality of rod-like bodies 13 mainly composed of silicon carbide are obtained. It is possible to confirm whether one end of the rod-like body 13 is located in the base 11 and the other end is located in the metal layer 12, and analysis by X-ray diffraction or TEM (transmission electron) The substance which comprises the rod-shaped body 13 can be identified by EDS analysis by a microscope or SEM.

ここで、複数の棒状体13は、金属層12が設けられた基体11の接合面における面積の10%以上50%以下を占めるように配置されていれば、放熱性が高く、かつ接合強度を高く維持できる傾向がある。   Here, if the plurality of rod-like bodies 13 are arranged so as to occupy 10% or more and 50% or less of the area of the joining surface of the base body 11 provided with the metal layer 12, the heat dissipation is high and the joining strength is high. There is a tendency to keep it high.

金属層12が設けられる基体11の接合面における、棒状体13が占める面積割合は、公知のエッチング方法で電子部品実装用基体1の金属層12を取り除き、金属層12が設けられていた基体11の接合面をSEMにより拡大画像を撮影し、撮影した画像を用いて公知の画像解析法で、単位面積あたりに棒状体13が占める割合を算出して、その割合を棒状体13が基体11の接合面を占める面積割合とすればよい。なお、この拡大画像を用いて、基体11と棒状体13のなす角を測定することもできる。   The area ratio occupied by the rod-shaped body 13 in the joint surface of the base body 11 on which the metal layer 12 is provided is the base body 11 on which the metal layer 12 is provided by removing the metal layer 12 of the base 1 for mounting electronic components by a known etching method. An enlarged image of the joint surface is taken with an SEM, and a ratio of the rod-shaped body 13 per unit area is calculated by a known image analysis method using the captured image. What is necessary is just to make it the area ratio which occupies a joint surface. Note that the angle formed between the base 11 and the rod-like body 13 can also be measured using this enlarged image.

本実施形態において棒状体13とは、アスペクト比(棒状体13の長さを、棒状体13の直径で除算した値)が1.5以上であるものをいう。棒状体13のアスペクト比が1.5以上であると、高いアンカー効果が得られやすく、基体11と金属層12とが強固に接合される傾向がある。   In the present embodiment, the rod-like body 13 refers to one having an aspect ratio (a value obtained by dividing the length of the rod-like body 13 by the diameter of the rod-like body 13) of 1.5 or more. When the aspect ratio of the rod-shaped body 13 is 1.5 or more, a high anchor effect is easily obtained, and the base 11 and the metal layer 12 tend to be firmly bonded.

また、棒状体13のアスペクト比は、JIS R1670−2006に準拠して測定すればよい(但し、棒状体13の長さは長径、直径は短径として測定する)。   The aspect ratio of the rod-shaped body 13 may be measured in accordance with JIS R1670-2006 (however, the length of the rod-shaped body 13 is measured as a major axis and the diameter is measured as a minor axis).

また、金属層12内に位置する棒状体13の長さが、金属層12の厚さの1/30以上2/7以下であれれば、放熱性がより高く、かつ金属層12の導電性をより高く維持できる傾向がある。なお、金属層12の厚さは50μm以上が好ましく、それにより高い導電性を得ることができる。   Further, if the length of the rod-like body 13 located in the metal layer 12 is 1/30 or more and 2/7 or less of the thickness of the metal layer 12, the heat dissipation is higher and the conductivity of the metal layer 12 is improved. There is a tendency to maintain higher. In addition, the thickness of the metal layer 12 is preferably 50 μm or more, whereby high conductivity can be obtained.

また、基体11内に位置する棒状体13は、その基体11内に位置する長さが基体11の厚さの1/500以上のとき、より高いアンカー効果が得られる傾向がある。   Further, the rod-like body 13 located in the base body 11 tends to obtain a higher anchor effect when the length located in the base body 11 is 1/500 or more of the thickness of the base body 11.

図2は、本実施形態の電子部品実装用基体の他の一例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。   2A and 2B show another example of the electronic component mounting substrate according to the present embodiment, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line A-A ′ of FIG.

図2に示す電子部品実装用基体2は、基体11と金属層12との間に介在され、ガラスを主成分とする中間層14が介在されており、中間層14を棒状体13が貫通している。   The electronic component mounting base 2 shown in FIG. 2 is interposed between the base 11 and the metal layer 12, an intermediate layer 14 mainly composed of glass is interposed, and the rod-like body 13 penetrates the intermediate layer 14. ing.

基体11と金属層12との間に中間層14が設けられることにより、基体11と金属層12とを直接接合するよりも、基体11と金属層12との接合強度が高まる傾向にある。さらに、基体11内に一端部が位置する棒状体13の他端部が、中間層14を貫通して、金属層12内に位置するので、金属層12の熱が棒状体13を介して基体11に伝達されやすく、放熱性がより向上する傾向がある。さらに、棒状体13によるアンカー効果により金属層12と中間層14との接合強度がより高くなる傾向がある。   By providing the intermediate layer 14 between the base 11 and the metal layer 12, the bonding strength between the base 11 and the metal layer 12 tends to be higher than when the base 11 and the metal layer 12 are directly bonded. Furthermore, since the other end of the rod-shaped body 13 whose one end is located in the base 11 passes through the intermediate layer 14 and is positioned in the metal layer 12, the heat of the metal layer 12 passes through the rod-shaped body 13 to the base. It is easy to transmit to 11, and there is a tendency for heat dissipation to improve more. Furthermore, due to the anchor effect of the rod-shaped body 13, the bonding strength between the metal layer 12 and the intermediate layer 14 tends to be higher.

なお、中間層14は、加工性の観点からSiO,Bi,SiO−Bi,B−SiO−Bi系またはZnO系のガラスにより構成されていることが望ましい。さらに、SiO−BiおよびB−SiO−Bi系のガラスは、熱伝導率がより高く、また基体11に対する濡れ性がよいので特に好ましい。 The intermediate layer 14 is made of SiO 2 , Bi 2 O 3 , SiO 2 —Bi 2 O 3 , B 2 O 3 —SiO 2 —Bi 2 O 3 or ZnO 2 glass from the viewpoint of workability. It is desirable that Furthermore, SiO 2 —Bi 2 O 3 and B 2 O 3 —SiO 2 —Bi 2 O 3 based glasses are particularly preferable because they have higher thermal conductivity and good wettability to the substrate 11.

また、中間層14の厚さは0.5μm以上5μm以下が好ましく、基体11と中間層14との接
合強度が高く、さらに放熱性を高く維持できる傾向がある。
Further, the thickness of the intermediate layer 14 is preferably 0.5 μm or more and 5 μm or less, the bonding strength between the base 11 and the intermediate layer 14 is high, and the heat dissipation tends to be maintained high.

本実施形態の電子部品実装用基体1および2は、金属層12が、銅またはアルミニウムを主成分とすることが好ましく、特には銅を主成分とすることが好ましい。   In the electronic component mounting bases 1 and 2 of this embodiment, the metal layer 12 is preferably composed mainly of copper or aluminum, and particularly preferably composed mainly of copper.

銅は熱伝導性が高いため、金属層12が銅を主成分とすると放熱性が高まる傾向がある。なお、ここでいう銅とは、銅単体のほか、銅の酸化物(CuOまたはCuO)であってもよい。また、金属層12の副成分として、パラジウム,ニッケル,ストロンチウム,カルシウム,ジルコニウム,チタン,モリブデン,スズまたは亜鉛を含有してもよい。なお、金属層12の主成分とは、金属層12を構成する成分のうち、質量比率が50%より多い成分を示す。 Since copper has high thermal conductivity, heat dissipation tends to be enhanced when the metal layer 12 is mainly composed of copper. In addition, copper here may be a copper oxide (CuO or Cu 2 O) in addition to simple copper. Further, palladium, nickel, strontium, calcium, zirconium, titanium, molybdenum, tin, or zinc may be contained as a subcomponent of the metal layer 12. The main component of the metal layer 12 refers to a component having a mass ratio of more than 50% among the components constituting the metal layer 12.

また、金属層12の露出した表面上にめっき処理をおこなってもよい。めっき処理をおこなうことによって、半田接合やワイヤーボンディングなどの処理を行うことができ、さらに金属層12が酸化腐蝕するのを抑制することができる。めっきの種類としては公知のめっきであればよく、例えば、金めっき、銀めっきまたはニッケル−金めっきなどがあげられる。   In addition, a plating process may be performed on the exposed surface of the metal layer 12. By performing the plating process, it is possible to perform a process such as solder bonding or wire bonding, and to suppress the metal layer 12 from being oxidized and corroded. The type of plating may be a known plating, and examples thereof include gold plating, silver plating, nickel-gold plating, and the like.

図3は、本実施形態の電子部品実装用基体のさらに他の例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。   3A and 3B show still another example of the electronic component mounting substrate of the present embodiment, in which FIG. 3A is a plan view and FIG. 3B is a cross-sectional view taken along line A-A ′ of FIG.

電子部品実装用基体3は、基体11が板状体であって、板状体の主面に凸部11’を有し、凸部11’の両側面に金属層12が設けられているとともに、棒状体13の他端部が凸部11’の両側面を介して金属層12側へ延出している。   In the electronic component mounting base 3, the base 11 is a plate-like body, and has a convex portion 11 ′ on the main surface of the plate-like body, and metal layers 12 are provided on both side surfaces of the convex portion 11 ′. The other end portion of the rod-like body 13 extends to the metal layer 12 side via both side surfaces of the convex portion 11 ′.

電子部品実装用基体3は、基体11の主面に設けられた凸部11’の両側面に、金属層12が設けられているので、基体11と金属層12との接合面積が大きくなり、基体11と金属層12との接合強度および電子部品実装用基体3の放熱性がより高まる傾向がある。さらに、棒状体13の他端部が凸部11’の両側面を介して金属層12側へ延出しているので基体11と金属層12との接合強度および電子部品実装用基体3の放熱性がさらに高まる傾向がある。   Since the electronic component mounting base 3 is provided with the metal layers 12 on both side surfaces of the convex portion 11 ′ provided on the main surface of the base 11, the bonding area between the base 11 and the metal layer 12 increases. There is a tendency that the bonding strength between the base 11 and the metal layer 12 and the heat dissipation of the electronic component mounting base 3 are further increased. Further, since the other end of the rod-like body 13 extends to the metal layer 12 side via both side surfaces of the convex portion 11 ′, the bonding strength between the base 11 and the metal layer 12 and the heat dissipation of the base 3 for mounting electronic components are provided. Tend to increase further.

なお、図3には示していないが、金属層12の一部が凸部11’の上面と接するように設けることもできる。それにより、基体11と金属層12との接合面積がより大きくなるので、基体11と金属層12との接合強度および電子部品実装用基体の放熱性がより一層高まる傾向がある。なお、これら基体11と金属層12との接合において、図2と同様に中間層を介して接合することもできる。   Although not shown in FIG. 3, a part of the metal layer 12 may be provided so as to be in contact with the upper surface of the convex portion 11 ′. As a result, the bonding area between the base 11 and the metal layer 12 becomes larger, so that the bonding strength between the base 11 and the metal layer 12 and the heat dissipation of the electronic component mounting base tend to be further increased. In addition, in joining of these base | substrates 11 and the metal layer 12, it can also join through an intermediate | middle layer similarly to FIG.

また、金属層12の一部を凸部11’の上面と接するように設けると、複数の金属層12をエッチング加工によって形成するとき、凸部11’によって金属層12の厚さが薄くなっている部位をエッチングすることで、隣接する金属層12間のピッチをより狭くすることができる。なお、電気の接続性を確保するために金属層12の厚さを50μm以上としたとしても、凸部11’の高さを適宜設定することで金属層12間のピッチを80μm以下と極めて狭いものとすることができ高密度な回路を形成することができる。   Further, when a part of the metal layer 12 is provided so as to be in contact with the upper surface of the convex portion 11 ′, when the plurality of metal layers 12 are formed by etching, the thickness of the metal layer 12 is reduced by the convex portion 11 ′. The pitch between the adjacent metal layers 12 can be made narrower by etching the portion. Even if the thickness of the metal layer 12 is set to 50 μm or more in order to ensure electrical connectivity, the pitch between the metal layers 12 is extremely narrow as 80 μm or less by appropriately setting the height of the convex portion 11 ′. And a high-density circuit can be formed.

図4は、本実施形態の電子部品実装用基体のさらに他の例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。   4A and 4B show still another example of the electronic component mounting substrate according to the present embodiment, in which FIG. 4A is a plan view and FIG. 4B is a cross-sectional view taken along line A-A ′ in FIG.

電子部品実装用基体4は、図2に示す電子部品実装用基体2と対比して、棒状体13の他端部が中間層14内に位置する点で異なる。   The electronic component mounting base 4 is different from the electronic component mounting base 2 shown in FIG. 2 in that the other end of the rod-shaped body 13 is located in the intermediate layer 14.

電子部品実装用基体4は、一端部が基体11内に位置し、かつ他端部が中間層14内に位置する炭化ケイ素を主成分とする棒状体13を備えるので、棒状体13を介して中間層14から基体11に熱が伝達されやすく、基体11と金属層12または中間層14間の熱伝達が向上するので、電子部品実装用基体4の放熱性がより高くなる。   The electronic component mounting base 4 includes the rod-like body 13 mainly composed of silicon carbide having one end portion located in the base body 11 and the other end portion located in the intermediate layer 14. Since heat is easily transferred from the intermediate layer 14 to the base 11 and heat transfer between the base 11 and the metal layer 12 or the intermediate layer 14 is improved, the heat dissipation of the electronic component mounting base 4 is further increased.

なお、複数の棒状体13のうち、棒状体13の他端部が金属層12内に位置する棒状体が存在しいてもかまわない。   Of the plurality of rod-shaped bodies 13, there may be a rod-shaped body in which the other end of the rod-shaped body 13 is located in the metal layer 12.

ここで、一端部が基体11内に配置された棒状体13の他端部が中間層14内に位置すると、棒状体13によるアンカー効果によって、中間層14と基体11との接合強度をより高めることができ、基体11と金属層12との接合強度が高くなる傾向がある。   Here, when the other end portion of the rod-like body 13 having one end portion disposed in the base body 11 is located in the intermediate layer 14, the bonding effect between the intermediate layer 14 and the base body 11 is further increased by the anchor effect by the rod-like body 13. The bonding strength between the substrate 11 and the metal layer 12 tends to be high.

なお、中間層14内に位置する棒状体13の長さは、0.5μm以上であると、放熱性が高く
、かつ基体11と中間層14との接合強度を高くできる傾向があり、それ以外については上述した電子部品実装用基体1〜3の説明と同様である。
In addition, when the length of the rod-shaped body 13 located in the intermediate layer 14 is 0.5 μm or more, there is a tendency that heat dissipation is high and the bonding strength between the base 11 and the intermediate layer 14 can be increased. Is the same as the description of the electronic component mounting bases 1 to 3 described above.

図5は、本実施形態の電子部品実装用基体のさらに他の例を示し、(a)は平面図、(b)は(a)のA−A’線における断面図である。   5A and 5B show still another example of the electronic component mounting substrate according to the present embodiment, in which FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line A-A ′ of FIG.

電子部品実装用基体5は、基体11が板状体であって、板状体の主面に凸部11’を有し、基体11に設けられた凸部11’の両側面に、中間層14を介して、金属層12が設けられているとともに、棒状体13の他端部が凸部11’の両側面を介して金属層12側へ延出している。なお、凸部11’の両側面に設けられている複数の棒状体のうち、他端部が金属層12に位置するものがあってもかまわない。   The electronic component mounting base 5 includes a base 11 having a plate-like body, and has a convex portion 11 ′ on the main surface of the plate-like body, and intermediate layers on both side surfaces of the convex portion 11 ′ provided on the base 11. A metal layer 12 is provided via 14, and the other end of the rod-like body 13 extends toward the metal layer 12 via both side surfaces of the convex portion 11 ′. Of the plurality of rod-like bodies provided on both side surfaces of the convex portion 11 ′, the other end portion may be located on the metal layer 12.

電子部品実装用基体5は、基体11に設けられた凸部11’の両側面に、中間層14を介して金属層12が設けられているので、基体11と金属層12との接合面積が大きくなり、基体11と金属層12との接合強度および電子部品実装用基体3の放熱性がより高まる傾向がある。   In the electronic component mounting base 5, the metal layer 12 is provided on both side surfaces of the protrusion 11 ′ provided on the base 11 via the intermediate layer 14, so that the bonding area between the base 11 and the metal layer 12 is large. There is a tendency that the bonding strength between the base 11 and the metal layer 12 and the heat dissipation of the electronic component mounting base 3 are further increased.

なお、図5には示していないが、金属層12の一部が凸部11’の上面と接するように設けることもできる。それにより、基体11と金属層12との接合面積がより大きくなるので、基体11と金属層12との接合強度および電子部品実装用基体の放熱性がより一層高まる傾向がある。また、複数の金属層12をエッチング加工によって形成するとき、凸部11’によって金属層12の厚さが薄くなっている部位をエッチングすることで、隣接する金属層12間のピッチをより狭くすることができる。なお、電気の接続性を確保するために金属層12の厚さを50μm以上としたとしても、凸部11’の高さを適宜設定することで金属層12間のピッチを80μm以下と極めて狭いものとすることができ高密度な回路を形成することができる。   Although not shown in FIG. 5, a part of the metal layer 12 may be provided so as to be in contact with the upper surface of the convex portion 11 '. As a result, the bonding area between the base 11 and the metal layer 12 becomes larger, so that the bonding strength between the base 11 and the metal layer 12 and the heat dissipation of the electronic component mounting base tend to be further increased. Further, when the plurality of metal layers 12 are formed by etching, the pitch between the adjacent metal layers 12 is made narrower by etching the portion where the thickness of the metal layer 12 is reduced by the protrusion 11 ′. be able to. Even if the thickness of the metal layer 12 is set to 50 μm or more in order to ensure electrical connectivity, the pitch between the metal layers 12 is extremely narrow as 80 μm or less by appropriately setting the height of the convex portion 11 ′. And a high-density circuit can be formed.

以下、本実施形態の電子部品実装用基体の製造方法の一例について図を用いて説明する。   Hereinafter, an example of a method for manufacturing an electronic component mounting substrate according to the present embodiment will be described with reference to the drawings.

図6は、図1に示す電子部品実装用基体1の製造方法を示す概略断面図である。   FIG. 6 is a schematic cross-sectional view showing a method for manufacturing the electronic component mounting substrate 1 shown in FIG.

図6(a−1)に示す基体11の作製方法について説明する。まず、例えば、平均粒径が1.4〜1.8μm程度の酸化アルミニウム(Al),酸化珪素(SiO)および酸化マグネシウム(MgO)の粉末を準備し、酸化アルミニウムの粉末を96質量%以上として、酸化珪素(SiO)および酸化マグネシウム(MgO)の粉末との合計含有量が100
質量%となるように秤量した混合粉末を水等の溶媒とともに回転ミルに投入して、混合する。なお、これらの粉末に加えて、酸化カルシウム(CaO)の粉末を準備し、各粉末の合計含有量が100質量%となるように秤量した混合粉末を水等の溶媒とともに回転ミルに
投入して、混合してもかまわない。
A method for manufacturing the substrate 11 shown in FIG. First, for example, aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), and magnesium oxide (MgO) powder having an average particle size of about 1.4 to 1.8 μm is prepared, and the aluminum oxide powder is 96% by mass or more. The total content of silicon oxide (SiO 2 ) and magnesium oxide (MgO) powder is 100
The mixed powder weighed so as to be in mass% is put into a rotary mill together with a solvent such as water and mixed. In addition to these powders, calcium oxide (CaO) powder is prepared, and the mixed powder weighed so that the total content of each powder is 100% by mass is put into a rotary mill together with a solvent such as water. They can be mixed.

次に、ポリビニルアルコール,ポリエチレングリコール,アクリル樹脂またはブチラール樹脂等のバインダの中から少なくとも一種を、混合粉末100質量%に対して4〜8質量
%添加し、高純度のアルミナボールを用いて、さらに回転ミルで混合してスラリーを得る。さらに、このスラリーを用いて、ドクターブレード法でシートを成形するか、ロールコンパクション法によってシートを成形する。また、作製したシートを金型による加工もしくはレーザ加工によって成形体を作製する。
Next, 4-8% by mass of at least one binder such as polyvinyl alcohol, polyethylene glycol, acrylic resin or butyral resin is added to 100% by mass of the mixed powder, and a high-purity alumina ball is used. Mix with a rotary mill to obtain a slurry. Furthermore, using this slurry, a sheet is formed by a doctor blade method or a sheet is formed by a roll compaction method. Moreover, a molded body is produced from the produced sheet by processing using a mold or laser processing.

そして、得られた成形体を、大気(酸化)雰囲気の焼成炉(例えば、ローラー式トンネル炉,バッチ式雰囲気炉およびプッシャー式トンネル炉)を用いて、最高温度が1400〜1540℃となるように設定して焼成することによって、本実施形態の基体11を作製することができる。   The obtained compact is then used in an air (oxidation) atmosphere firing furnace (for example, a roller-type tunnel furnace, a batch-type atmosphere furnace, and a pusher-type tunnel furnace) so that the maximum temperature is 1400-1540 ° C. By setting and firing, the substrate 11 of the present embodiment can be produced.

次に、アスペクト比が1.5以上の炭化ケイ素を主成分とする棒状体13を準備して、図6
(b−1)に示すように、マイクロブラストを用いて、炭化ケイ素を主成分とする棒状体13を基体11の表面に噴射して、棒状体13の一端部を基体11内に埋設させる。
Next, a rod-shaped body 13 mainly composed of silicon carbide having an aspect ratio of 1.5 or more is prepared, and FIG.
As shown in (b-1), a rod-like body 13 mainly composed of silicon carbide is sprayed onto the surface of the base 11 using microblast, and one end of the rod-like body 13 is embedded in the base 11.

次に、図6(c−1)に示すように、棒状体13が埋設された基体11の表面に金属層12となる金属ペーストを被着させて焼成して金属層12を形成する。続いて、レジスト膜61を金属層12の上面に公知の方法で形成する。   Next, as shown in FIG. 6 (c-1), the metal layer 12 is formed by depositing a metal paste to be the metal layer 12 on the surface of the substrate 11 in which the rod-like body 13 is embedded and baking it. Subsequently, a resist film 61 is formed on the upper surface of the metal layer 12 by a known method.

なお、金属層12の厚さを調整するために、上記の工程に加えて形成した金属層12の上面に、金属ペーストを重ねてスクリーン印刷し焼成する工程を複数回行ってもよい。   In order to adjust the thickness of the metal layer 12, in addition to the above steps, the step of screen printing by baking a metal paste on the upper surface of the metal layer 12 formed and baking may be performed a plurality of times.

ここで、金属ペーストは、銅またはアルミニウムを80質量%以上含有していることが望ましい。また、これらの金属粉末の平均粒径は、0.5μm以上10μm以下であればよい。
また、金属ペーストのバインダとしては、例えば、アクリル樹脂およびエチルセルロースを使用でき、溶剤としては、例えば、α−テルピネオール等が使用できる。なお、バインダは金属粉末の合計含有量を100質量%としたときに、2質量%以上10質量%以下添加す
ればよく、溶剤は金属粉末の合計含有量を100質量%としたときに、5質量%以上15質量
%以下添加すればよい。
Here, the metal paste preferably contains 80% by mass or more of copper or aluminum. Moreover, the average particle diameter of these metal powders should just be 0.5 micrometer or more and 10 micrometers or less.
Moreover, as a binder of a metal paste, acrylic resin and ethyl cellulose can be used, for example, and α-terpineol can be used as a solvent. The binder may be added in an amount of 2% by mass to 10% by mass when the total content of the metal powder is 100% by mass, and the solvent is 5% when the total content of the metal powder is 100% by mass. What is necessary is just to add mass% or more and 15 mass% or less.

また、金属層12を形成するための焼成条件は、銅を主成分とする場合ならば、最高温度850〜1150℃、保持時間0.5〜2時間、アルミニウムを主成分とする場合ならば、最高温度500〜700℃、保持時間0.5〜2時間とすればよい。なお、焼成後の金属層12の厚さは50μ
m以上とすればよい。また、金属ペーストを焼成して金属層12を形成した後、金属層12の上部を研削することによって、金属層12の高さを調整してもよい。
The firing conditions for forming the metal layer 12 are the maximum temperature of 850 to 1150 ° C. and the holding time of 0.5 to 2 hours if copper is the main component, and the maximum temperature if aluminum is the main component. What is necessary is just to set it as 500-700 degreeC and holding time 0.5-2 hours. The thickness of the metal layer 12 after firing is 50 μm
What is necessary is just to be m or more. Alternatively, the height of the metal layer 12 may be adjusted by grinding the upper portion of the metal layer 12 after firing the metal paste to form the metal layer 12.

なお、図2,図4および図5に示す電子部品実装用基体2,4,5のように、基体11と金属層12との間に中間層14を形成するには、金属ペーストにガラスフリットを添加するとよい。金属ペーストにガラスフリットを添加すると、金属ペースト中のガラス成分が溶融し、基体11の上面に中間層14を形成することができる。ガラスフリットは、SiO,B
,SiO−Bi,B−SiO−Bi系またはZnO系のガラスを用いればよい。特に、基体11との接合強度を高くする上で、SiO−BiまたはB−SiO−Bi系のガラスフリットを用いることが好ましい。なお、バインダは金属粉末の合計量を100質量%としたときに、2質量%以上10質量%
以下添加すればよく、溶剤は金属ペーストに含有する金属粉末の合計量を100質量%とし
たときに、5質量%以上15質量%以下添加すればよい。また、中間層14の厚さはガラスフリットの添加量で調整することができる。ガラスフリットは1質量%以上20質量%以下添加すればよく、この範囲ならば中間層14の厚さを0.5μm以上5μm以下とすることがで
きる。
In order to form the intermediate layer 14 between the base 11 and the metal layer 12 as in the electronic component mounting bases 2, 4 and 5 shown in FIGS. 2, 4 and 5, a glass frit is applied to the metal paste. May be added. When glass frit is added to the metal paste, the glass component in the metal paste is melted, and the intermediate layer 14 can be formed on the upper surface of the substrate 11. Glass frit is made of SiO 2 , B
A glass of i 2 O 3 , SiO 2 —Bi 2 O 3 , B 2 O 3 —SiO 2 —Bi 2 O 3 or ZnO 2 may be used. In particular, in order to increase the bonding strength with the substrate 11, it is preferable to use a SiO 2 —Bi 2 O 3 or B 2 O 3 —SiO 2 —Bi 2 O 3 glass frit. The binder is 2% by mass or more and 10% by mass when the total amount of the metal powder is 100% by mass.
What is necessary is just to add below, and a solvent should just add 5 mass% or more and 15 mass% or less when the total amount of the metal powder contained in a metal paste is 100 mass%. The thickness of the intermediate layer 14 can be adjusted by the amount of glass frit added. The glass frit may be added in an amount of 1% by mass to 20% by mass. Within this range, the thickness of the intermediate layer 14 can be 0.5 μm or more and 5 μm or less.

また、ガラスフリットを添加した金属ペーストを用いて金属層12を形成するための焼成条件は、銅を主成分とする場合ならば、最高温度850〜1050℃、保持時間0.5〜2時間、アルミニウムを主成分とする場合ならば、最高温度500〜600℃、保持時間0.5〜2時間とす
ればよい。
In addition, the firing conditions for forming the metal layer 12 using a metal paste to which glass frit has been added are the maximum temperature of 850 to 1050 ° C., the holding time of 0.5 to 2 hours, If the main component is used, the maximum temperature is 500 to 600 ° C. and the holding time is 0.5 to 2 hours.

なお、中間層14は、公知のガラス層の形成方法を用いてもよい。   The intermediate layer 14 may use a known glass layer forming method.

次に、レジスト膜61が上面に形成された金属層12を、塩化第二鉄、塩化第二銅またはアルカリからなるエッチング液等を用いてエッチング加工し、その後、水酸化ナトリウム水溶液等を用いてレジスト膜61を除去することで、図6(d−1)に示すように、複数の金属層12を形成することができる。また、エッチング加工はその他の公知の方法を用いてもよい。   Next, the metal layer 12 having the resist film 61 formed on the upper surface is etched using an etching solution made of ferric chloride, cupric chloride or alkali, and then using an aqueous sodium hydroxide solution or the like. By removing the resist film 61, a plurality of metal layers 12 can be formed as shown in FIG. The etching process may use other known methods.

以上の手順により、アルミナを主成分とする基体11と、基体11に設けられている金属層12と、一端部が基体11内に位置し、炭化ケイ素を主成分とする複数の棒状体13とを備え、棒状体13は、他端部が金属層12内に位置する電子部品実装用基体1を得ることができる。   By the above procedure, the base body 11 mainly composed of alumina, the metal layer 12 provided on the base body 11, a plurality of rod-shaped bodies 13 whose one end portion is located in the base body 11 and whose main component is silicon carbide, And the rod-shaped body 13 can obtain the electronic component mounting substrate 1 whose other end is located in the metal layer 12.

図7は、図3に示す電子部品実装用基体3の製造方法を示す概略断面図である。   FIG. 7 is a schematic cross-sectional view showing a method of manufacturing the electronic component mounting base 3 shown in FIG.

上述した電子部品実装用基体1と同様の方法で基体11を得る。   A base 11 is obtained in the same manner as the electronic component mounting base 1 described above.

そして図7(b−2)に示すように、レジスト膜71を、基体11の主面に形成する。なお、レジスト膜71の材料およびレジスト膜71を形成する方法は公知の材料および方法で行えばよい。   Then, as shown in FIG. 7B-2, a resist film 71 is formed on the main surface of the substrate 11. The material for the resist film 71 and the method for forming the resist film 71 may be performed using known materials and methods.

次に、図7(b−2)のレジスト膜71が上面に形成された基体11を、マイクロブラストを用いて研削加工をおこない、基体11を所望の形状に加工することにより、凸部11’を形成し、水酸化ナトリウム水溶液等を用いてレジスト膜71を除去する。なお、凸部11’は、その他の公知の方法によって基体11を研削するほか、2つ以上のセラミックスを接合して作製してもよい。   Next, the base 11 on which the resist film 71 shown in FIG. 7B-2 is formed is ground using a microblast, and the base 11 is processed into a desired shape, thereby forming the convex portion 11 ′. And the resist film 71 is removed using an aqueous sodium hydroxide solution or the like. The convex portion 11 ′ may be produced by grinding the base body 11 by other known methods and joining two or more ceramics.

そして、アスペクト比が1.5以上の炭化ケイ素を主成分とする棒状体13を準備して、図
7(c−2)に示すように、棒状体13をマイクロブラストによって基体11の主面に噴射して、棒状体13の一端部を基体11内に埋設する。なお、マイクロブラストのノズルと基体11との距離を遠ざけることで噴射する棒状体13が水平方向に広がりやすくなり、凸部11’の側面に棒状体13を存在させやすくなる。また、凸部11’の側面にマイクロブラストのノズルの先端を向けて棒状体13を噴射してもかまわない。
Then, a rod-like body 13 mainly composed of silicon carbide having an aspect ratio of 1.5 or more is prepared, and the rod-like body 13 is sprayed onto the main surface of the substrate 11 by microblasting as shown in FIG. 7 (c-2). Thus, one end of the rod-like body 13 is embedded in the base 11. Note that the rod-like body 13 to be ejected is easily spread in the horizontal direction by increasing the distance between the microblast nozzle and the base body 11, and the rod-like body 13 is likely to be present on the side surface of the convex portion 11 ′. Alternatively, the rod-shaped body 13 may be sprayed with the tip of the microblast nozzle directed toward the side surface of the convex portion 11 ′.

次に、図7(d−2)に示すように、金属層12となる金属ペーストを基体11に被着させて焼成し、金属層12を形成する。なお、金属層12となる金属ペーストの被着は公知のスク
リーン印刷法で行えばよい。
Next, as shown in FIG. 7 (d-2), a metal paste to be the metal layer 12 is deposited on the substrate 11 and baked to form the metal layer 12. Note that the metal paste to be the metal layer 12 may be applied by a known screen printing method.

以上の手順により、基体11に設けられた凸部11’の両側面に、金属層12がそれぞれ設けられているとともに、棒状体13の他端部が凸部11’の両側面を介して金属層12側へ延出している電子部品実装用基体3を得ることができる。   According to the above procedure, the metal layer 12 is provided on both side surfaces of the convex portion 11 ′ provided on the base 11, and the other end portion of the rod-shaped body 13 is metal via the both side surfaces of the convex portion 11 ′. The electronic component mounting base 3 extending to the layer 12 side can be obtained.

ガラスを主成分とする中間層14を基体11と金属層12との間に介在させる場合は上記と同様にすればよく、また中間層14を凸部11’の側面に設ける場合は、公知のガラス層の形成方法を用いて凸部11’の側面にガラス層を設けて、上記と同様に金属層12を設ければよい。   When the intermediate layer 14 mainly composed of glass is interposed between the base 11 and the metal layer 12, it may be the same as described above, and when the intermediate layer 14 is provided on the side surface of the convex portion 11 ′, a known A glass layer may be provided on the side surface of the convex portion 11 ′ using the glass layer forming method, and the metal layer 12 may be provided in the same manner as described above.

なお、電子部品実装用基体1〜5は、分割溝が形成された基体11を用いて、上述した方法で複数の金属層12,棒状体13および凸部11’を設けることで多数個取り基体を作製し、その多数個取り基体を分割して作製してもよい。   The electronic component mounting bases 1 to 5 are obtained by providing a plurality of metal layers 12, rod-like bodies 13, and convex portions 11 ′ by the above-described method using the base body 11 on which divided grooves are formed. It is also possible to manufacture the substrate by dividing the multi-piece substrate.

図8は、本実施形態の電子装置の一例を示す概略断面図であり、(a)は図1に示す電子部品実装用基体を用いた電子装置の断面図、(b)は図2に示す電子部品実装用基体を用いた電子装置の断面図、(c)は図3に示す電子部品実装用基体を用いた電子装置の断面図である。   FIG. 8 is a schematic cross-sectional view showing an example of the electronic device of the present embodiment, where (a) is a cross-sectional view of the electronic device using the electronic component mounting substrate shown in FIG. 1, and (b) is shown in FIG. FIG. 4C is a cross-sectional view of an electronic device using the electronic component mounting base, and FIG. 3C is a cross-sectional view of the electronic device using the electronic component mounting base shown in FIG. 3.

図8(a),(b)および(c)に示す例の電子装置111,112および113は、実装用基
体1〜3に電子部品15を接合してなり、接合部と対応する位置に棒状体13が存在している
。電子部品実装用基体1〜3の金属層12の上に電極パッド16a,16bが設けられ、電極パッド16aの上に電子部品15が接合されている。そして、ボンディングワイヤ17によって電子部品15および電極パッド16bが電気的に接続される。
The electronic devices 111, 112, and 113 in the examples shown in FIGS. 8A, 8B, and 8C are formed by bonding the electronic component 15 to the mounting bases 1 to 3, and in a bar shape at a position corresponding to the bonding portion. Body 13 is present. Electrode pads 16a and 16b are provided on the metal layer 12 of the electronic component mounting bases 1 to 3, and the electronic component 15 is joined to the electrode pad 16a. The electronic component 15 and the electrode pad 16b are electrically connected by the bonding wire 17.

ここで電子部品15は、例えば、絶縁ゲート・バイポーラ・トランジスタ(IGBT)素子,インテリジェント・パワー・モジュール(IPM)素子,金属酸化膜型電界効果トランジスタ(MOSFET)素子,発光ダイオード(LED)素子,フリーホイーリングダイオード(FWD)素子,ジャイアント・トランジスタ(GTR)素子,ショットキー・バリア・ダイオード(SBD)等の半導体素子、昇華型サーマルプリンタヘッド用またはサーマルインクジェットプリンタヘッド用の発熱素子、ペルチェ素子等を用いることができる。   Here, the electronic component 15 is, for example, an insulated gate bipolar transistor (IGBT) element, an intelligent power module (IPM) element, a metal oxide field effect transistor (MOSFET) element, a light emitting diode (LED) element, a free element Semiconductor elements such as wheeling diode (FWD) elements, giant transistor (GTR) elements, Schottky barrier diodes (SBD), heating elements for sublimation thermal printer heads or thermal inkjet printer heads, Peltier elements, etc. Can be used.

電子装置111〜113は、電子部品実装用基体1〜3に棒状体13が存在することによって、放熱性が高く、また基体11と金属層12との接合強度が高いので、長期的に使用できるという信頼性を向上することができる。   The electronic devices 111 to 113 can be used for a long time because the heat dissipation is high and the bonding strength between the base 11 and the metal layer 12 is high due to the presence of the rod-like body 13 in the electronic component mounting bases 1 to 3. Reliability can be improved.

なお、図8では図示しないが、電子部品実装用基体1〜3と同様に、電子部品実装用基
体4および5に電子部品15を接合してなり、接合部に対応する位置に棒状体13が存在している、電子装置は、放熱性が高く、また基体11と金属層12との接合強度が高いので、長期的に使用できるという信頼性を向上することができる。
Although not shown in FIG. 8, similarly to the electronic component mounting bases 1 to 3, the electronic component 15 is joined to the electronic component mounting bases 4 and 5, and the rod-like body 13 is located at a position corresponding to the joint. The existing electronic device has high heat dissipation and high bonding strength between the base 11 and the metal layer 12, so that the reliability that it can be used for a long time can be improved.

以下、本発明の実施例を具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to the following examples.

まず、試料No.1〜13を以下のように作製した。   First, sample no. 1 to 13 were produced as follows.

各試料において縦の長さが120mm,横の長さが120mmおよび厚さが0.45mmで、アル
ミナを96質量%,酸化珪素を2.7質量%,酸化マグネシウムを1.3質量%含有する基体11を作製した。なお、基体11には、縦の長さが3.6mm,横の長さが3.6mmの個片に784個分
割できるように縦横に分割溝を29本ずつ形成して、電子部品実装用基体を多数個取れるようにした。
In each sample, a base 11 having a vertical length of 120 mm, a horizontal length of 120 mm and a thickness of 0.45 mm, containing 96% by mass of alumina, 2.7% by mass of silicon oxide, and 1.3% by mass of magnesium oxide was produced. . The substrate 11 is formed with 29 dividing grooves vertically and horizontally so that it can be divided into 784 pieces each having a vertical length of 3.6 mm and a horizontal length of 3.6 mm. I was able to take many.

そして、試料No.1〜11に用いる基体11には、表面にマイクロブラストにより、長さが5μm,アスペクト比が1.5の炭化ケイ素からなる棒状体を噴射して、棒状体13の一端
部を基体11内に埋設した。試料No.12,13は、棒状体13を設けなかった。そして、基体11を850℃で熱処理することによって、基体11の表面に付着した有機物や残留炭素を除去
した。
And sample no. A base 11 made of silicon carbide having a length of 5 μm and an aspect ratio of 1.5 was sprayed on the surface of the base 11 used for 1 to 11 by microblasting, and one end of the stick 13 was embedded in the base 11. . Sample No. In 12 and 13, the rod-like body 13 was not provided. Then, the substrate 11 was heat-treated at 850 ° C. to remove organic substances and residual carbon adhering to the surface of the substrate 11.

次いで、試料No.1〜13において、基体11の主面に、表1に示す金属が金属層12の主成分となるように、金属粉末を89質量%、バインダとしてアクリル樹脂および溶剤としてα−テルピネオールを合計11質量%含有するペーストを、スクリーン印刷法により、図4(c−1)に示すように塗布した。そして、窒素雰囲気中において、試料No.1,12は焼成温度を660℃,焼成時間を1時間,試料No.2〜11,13は焼成温度を1050℃、焼成
時間を1時間とし、各個片につき、厚さが70μm,縦の長さが3mm,横の長さが3mmの金属層を形成した後、金属層の上にエッチング用のレジスト膜61を形成し、塩化第二鉄溶液を用いてエッチング加工して金属層12を形成した。なお、レジスト膜61は、各個片において、エッチング加工後の金属層12間の間隔が表1に示した値となるように設けた。そして、レジスト膜61を水酸化ナトリウム水溶液によって除去した後、基体11を分割して、基体11と、基体11に設けられている金属層12と、一端部が基体11内に位置し、炭化ケイ素を主成分とする複数の棒状体13とを備え、棒状体13は、他端部が金属層12内に位置する試料No.1〜11および棒状体13が存在しない試料No.12,13を得た。
Next, sample No. 1 to 13, a total of 11 masses of 89% by mass of metal powder, acrylic resin as a binder, and α-terpineol as a solvent on the main surface of the substrate 11 so that the metal shown in Table 1 is the main component of the metal layer 12 % Paste was applied by screen printing as shown in FIG. 4 (c-1). In a nitrogen atmosphere, the sample No. Nos. 1 and 12 have a firing temperature of 660 ° C., a firing time of 1 hour, sample No. Nos. 2 to 11 and 13 have a firing temperature of 1050 ° C., a firing time of 1 hour, and after forming a metal layer having a thickness of 70 μm, a vertical length of 3 mm, and a horizontal length of 3 mm for each piece, A resist film 61 for etching was formed on the layer, and the metal layer 12 was formed by etching using a ferric chloride solution. The resist film 61 was provided so that the distance between the metal layers 12 after the etching processing was the value shown in Table 1 in each piece. Then, after removing the resist film 61 with an aqueous sodium hydroxide solution, the base body 11 is divided, and the base body 11, the metal layer 12 provided on the base body 11, and one end portion thereof are located in the base body 11, and silicon carbide. And a plurality of rod-shaped bodies 13 whose main component is a sample No. 1 whose other end is located in the metal layer 12. Sample Nos. 1 to 11 and rod-like body 13 are not present. 12 and 13 were obtained.

次に、試料No.14,15,22を以下のように作製した。   Next, sample No. 14, 15, and 22 were produced as follows.

まず、試料No.1〜13と同様の基体11を作製した。   First, sample no. Substrates 11 similar to 1 to 13 were produced.

そして、試料No.14に用いる基体11には、表面にマイクロブラストにより、長さが2μm,アスペクト比が1.5の炭化ケイ素からなる棒状体を噴射して、棒状体13の一端部を
基体11内に埋設した。そして、試料No.15に用いる基体11には、表面にマイクロブラストにより、長さが5μm,アスペクト比が1.5の炭化ケイ素からなる棒状体を噴射して、
棒状体13の一端部を基体11内に埋設した。なお、試料No.22となる基体11は、棒状体13を埋設しなかった。
And sample no. A base 11 made of silicon carbide having a length of 2 μm and an aspect ratio of 1.5 was sprayed on the surface of the base 11 used for 14 by microblasting, and one end of the stick 13 was embedded in the base 11. And sample no. The substrate 11 used for 15 is sprayed with a rod-shaped body made of silicon carbide having a length of 5 μm and an aspect ratio of 1.5 by microblasting on the surface,
One end of the rod-like body 13 was embedded in the base 11. Sample No. The base body 11 to be 22 did not embed the rod-like body 13.

また、試料No.14,15,22に用いる基体11を50℃で熱処理することによって、基体11の表面に付着した有機物や残留炭素を除去した。   Sample No. The substrate 11 used for 14, 15, and 22 was heat-treated at 50 ° C. to remove organic substances and residual carbon adhering to the surface of the substrate 11.

次いで、試料No.14,15,22において、基体11の主面に、銅粉末を80質量%,アクリル樹脂および溶剤としてα−テルピネオールを合計8質量%およびB−SiO−Bi系ガラスフリットを12質量%含有する金属ペーストを、スクリーン印刷法により、図6(c−1)に示すように塗布した。そして、窒素雰囲気中において、焼成温度を1050℃、焼成時間を1時間として焼成し、各個片につき、厚さが65μm,縦の長さが3mm,横の長さが3mmの金属層と、基体11と金属層との間に厚さ3μmの中間層14を形成した後、金属層の上にエッチング用のレジスト膜61を形成し、塩化第二鉄溶液を用いてエッチング加工して金属層12を形成した。なお、レジスト膜61は、各個片において、エッチング加工後の金属層12間の間隔が表1に示した値となるように設けた。そして、レジスト膜61を水酸化ナトリウム水溶液によって除去した後、基体11を分割して、基体11と金属層12との間に介在され、ガラスを主成分とする中間層14を備え、一端部が基体11内に位置す
る棒状体13の他端部が、中間層14に位置する試料No.14,15を得た。なお、試料No.15は、棒状体13の他端部が中間層14を貫通して金属層12に位置しており、試料No.22は棒状体13が存在していない。
Next, sample No. 14, 15 and 22, on the main surface of the substrate 11, 80% by mass of copper powder, a total of 8% by mass of α-terpineol as an acrylic resin and a solvent, and a B 2 O 3 —SiO 2 —Bi 2 O 3 glass frit A metal paste containing 12% by mass was applied by screen printing as shown in FIG. 6 (c-1). In a nitrogen atmosphere, firing was performed at a firing temperature of 1050 ° C. and a firing time of 1 hour. For each piece, a metal layer having a thickness of 65 μm, a vertical length of 3 mm, and a horizontal length of 3 mm, and a substrate After the intermediate layer 14 having a thickness of 3 μm is formed between the metal layer 11 and the metal layer, an etching resist film 61 is formed on the metal layer and etched using a ferric chloride solution. Formed. The resist film 61 was provided so that the distance between the metal layers 12 after the etching processing was the value shown in Table 1 in each piece. Then, after removing the resist film 61 with an aqueous sodium hydroxide solution, the base body 11 is divided, and is provided between the base body 11 and the metal layer 12, and includes an intermediate layer 14 mainly composed of glass, with one end portion The other end of the rod-like body 13 located in the base 11 is a sample No. 1 located in the intermediate layer 14. 14 and 15 were obtained. Sample No. 15, the other end of the rod-shaped body 13 is located in the metal layer 12 through the intermediate layer 14. No rod 22 is present in 22.

次に、試料No.16〜21を以下のように作製した。   Next, sample No. 16-21 were produced as follows.

まず、試料No.1〜15と同様の基体11を作製した。   First, sample no. Substrates 11 similar to 1 to 15 were produced.

次に、試料No.16は、図5(b−2)に示すように、レジスト膜71を、基体11の主面に形成した後、マイクロブラストを用いて基体11を研削し、高さが70μm、幅が120μm
の凸部11’を基体11に形成した。さらに、基体11の表面にマイクロブラストにより、長さが5μm,アスペクト比が1.5の炭化ケイ素を主成分とする棒状体を噴射して、棒状体13
の一端部を基体11内および凸部11’の側面内に埋設した。なお、レジスト膜71は、水酸化ナトリウム水溶液を用いて剥離させた。
Next, sample No. As shown in FIG. 5 (b-2), after forming a resist film 71 on the main surface of the base 11, the base 11 is ground using microblast, and the height is 70 μm and the width is 120 μm.
The convex portion 11 ′ was formed on the base 11. Further, a rod-shaped body mainly composed of silicon carbide having a length of 5 μm and an aspect ratio of 1.5 is sprayed on the surface of the substrate 11 by microblasting to form a rod-shaped body 13.
One end of each was embedded in the base 11 and the side surface of the convex portion 11 ′. The resist film 71 was peeled off using a sodium hydroxide aqueous solution.

そして、試料No.2〜11,13と同様の金属ペーストをスクリーン印刷法により図5(d−2)に示すように、凸部11’に被着させ、窒素雰囲気中において、焼成温度を950℃
、焼成時間を1時間とし、厚さ70μmの金属層12を形成した。
And sample no. As shown in FIG. 5 (d-2), the same metal paste as 2 to 11 and 13 is applied to the projection 11 ′ by screen printing, and the firing temperature is 950 ° C. in a nitrogen atmosphere.
The firing time was 1 hour, and a metal layer 12 having a thickness of 70 μm was formed.

また試料No.17〜21は、図5(b−2)に示すように、レジスト膜71を、作製した基体11の主面に形成した後、マイクロブラストを用いて基体11を研削し、高さが35μm、幅が120μmの凸部11’を基体11に形成した。さらに、基体11の表面にマイクロブラストに
より、長さが5μm,アスペクト比が1.5の炭化ケイ素からなる棒状体を噴射して、棒状
体13の一端部を基体11内および凸部11’の側面内に埋設した。なお、レジスト膜71は、水酸化ナトリウム水溶液を用いて剥離させた。
Sample No. 17-21, as shown in FIG. 5 (b-2), after forming a resist film 71 on the main surface of the produced base 11, the base 11 is ground using microblast, and the height is 35 μm. A protrusion 11 ′ having a width of 120 μm was formed on the substrate 11. Further, a rod-shaped body made of silicon carbide having a length of 5 μm and an aspect ratio of 1.5 is sprayed on the surface of the substrate 11 by microblasting, and one end of the rod-shaped body 13 is placed in the substrate 11 and in the side surface of the convex portion 11 ′. Buried in. The resist film 71 was peeled off using a sodium hydroxide aqueous solution.

そして、試料No.2〜11,13,16と同様の金属ペーストをスクリーン印刷法により、凸部11’の上面を被うように被着させ、窒素雰囲気中において、焼成温度を950℃、焼成
時間を1時間とし、厚さ70μmの金属層を形成した。
And sample no. The same metal paste as 2-11, 13 and 16 was deposited by screen printing so as to cover the upper surface of the convex portion 11 ', and in a nitrogen atmosphere, the firing temperature was 950 ° C and the firing time was 1 hour. A metal layer having a thickness of 70 μm was formed.

次に、凸部11’の上面を被う金属層にエッチング用のレジスト膜61を形成した後、塩化第二鉄溶液を用いてエッチング加工して金属層12を形成した。なお、レジスト膜61は、各個片において、エッチング加工後の金属層12間の間隔が表1に示した値となるように設けた。そして、レジスト膜61を水酸化ナトリウム水溶液によって除去した後、基体11を分割した。   Next, after forming a resist film 61 for etching on the metal layer covering the upper surface of the convex portion 11 ′, the metal layer 12 was formed by etching using a ferric chloride solution. The resist film 61 was provided so that the distance between the metal layers 12 after the etching processing was the value shown in Table 1 in each piece. Then, after removing the resist film 61 with an aqueous sodium hydroxide solution, the substrate 11 was divided.

以上のように、基体11に設けられた凸部11’の両側面に金属層12が接合されているとともに、棒状体13が凸部11’に設けられている試料No.16〜21を作製した。   As described above, the sample No. 1 in which the metal layer 12 is bonded to both side surfaces of the convex portion 11 ′ provided on the base 11 and the rod-like body 13 is provided on the convex portion 11 ′. 16-21 were produced.

次に、放熱性試験用として、試料No.1〜22に、図6(a),(b),(c)に示すように、電子部品15として半導体素子を実装して電子装置を作製した後、その電子装置に30Aの電流を流した。電流を流してから5分間放置後にそれぞれの半導体素子の表面における温度をサーモグラフィー(日本電子株式会社製、型番:JTG−7200)で測定した。なお、測定距離は20cmとした。   Next, for the heat dissipation test, Sample No. 1 to 22, as shown in FIGS. 6A, 6 </ b> B, and 6 </ b> C, a semiconductor element was mounted as the electronic component 15 to produce an electronic device, and then a current of 30 A was passed through the electronic device. . The temperature on the surface of each semiconductor element was measured by thermography (manufactured by JEOL Ltd., model number: JTG-7200) after being left for 5 minutes after the current was passed. The measurement distance was 20 cm.

次に、各試料の金属層12の接合強度を測定するために、試料No.1〜22を各10個作製した。   Next, in order to measure the bonding strength of the metal layer 12 of each sample, Sample No. Ten pieces of 1-22 were produced.

図9は、本実施形態の基体11の表面へ被着させた金属層12に対する接合強度の測定方法を示す断面図である。   FIG. 9 is a cross-sectional view showing a method for measuring the bonding strength of the metal layer 12 deposited on the surface of the substrate 11 of the present embodiment.

まず、接合強度を測定するための準備として、各試料の金属層12の表面に、Sn−Pb(6:4半田)系で全体に対してAgを2質量%とした半田19を用い、フラックスは、ロジン系合成樹脂にケトンとアルコール系溶剤とを混合したもので、タムラ化研株式会社製(商品名:XA−100)を用い、225±5℃の温度で径が0.6mmのメッキ導線20(銅線に
Snメッキ)を金属層12に半田付けした。
First, as a preparation for measuring the bonding strength, solder 19 having a Ag—2 mass% based on the Sn—Pb (6: 4 solder) system is used on the surface of the metal layer 12 of each sample. Is a rosin-based synthetic resin mixed with a ketone and an alcohol-based solvent, using Tamura Kaken Co., Ltd. (trade name: XA-100), and a plated conductor with a diameter of 0.6 mm at a temperature of 225 ± 5 ° C. 20 (Sn plating on copper wire) was soldered to the metal layer 12.

次に、このメッキ導線20を7.62mm/分の速度で引っ張り、金属層12が基体11から剥離するときの強度を測定して基体11に対する金属層の接合強度とした。この試験装置は、ANZA TECH社製のダイ・シェアリング・テスタ(型番:520D)を使用した。また、測定数は各試料数10個について測定し、その平均値を求めた。なお、メッキ導線20が金属層12から剥離した場合はデータから除外し、金属層12が基体11から剥離したときのデータを金属層12の接合強度とした。   Next, the plated conductive wire 20 was pulled at a rate of 7.62 mm / min, and the strength when the metal layer 12 peeled from the base 11 was measured to obtain the bond strength of the metal layer to the base 11. This test apparatus used a die sharing tester (model number: 520D) manufactured by ANZA TECH. The number of measurements was measured for 10 samples, and the average value was obtained. The case where the plating conductor 20 peeled off from the metal layer 12 was excluded from the data, and the data obtained when the metal layer 12 peeled off from the substrate 11 was taken as the bonding strength of the metal layer 12.

また、棒状体13が基体11の表面を占める面積割合を測定するために、エッチング液を用いて各試料の金属層12を取り除き(試料No.14,15は中間層14もエッチング液により取り除いた。)、金属層12が形成されていた基体11の表面をSEMにより拡大画像を撮影し、撮影した画像を用いて、単位面積(120×120μm)あたりに棒状体13が占める割合を算出して、その割合を棒状体13が基体11の表面を占める面積割合として表1に示した。   Further, in order to measure the area ratio of the rod-shaped body 13 occupying the surface of the substrate 11, the metal layer 12 of each sample was removed using an etching solution (sample Nos. 14 and 15 were also removed the intermediate layer 14 with the etching solution). .), An enlarged image of the surface of the substrate 11 on which the metal layer 12 was formed was photographed with an SEM, and the proportion of the rod-shaped body 13 per unit area (120 × 120 μm) was calculated using the photographed image. The ratio is shown in Table 1 as the area ratio of the rod-shaped body 13 occupying the surface of the substrate 11.

Figure 2012248748
Figure 2012248748

表1から、試料No.1〜11,14〜21は、炭化ケイ素を主成分とする棒状体13の一端部が基体11内に位置し、他端部が金属層12または中間層14に位置するので、棒状体13が存在しない試料No.12,13および22に比べて、表面温度が低くなっており、放熱性が高いことがわかった。また、試料No.1〜9,14〜21は、試料No.12,13および22に比べて
接合強度が高いことがわかった。
From Table 1, Sample No. 1 to 11 and 14 to 21, since one end of the rod-shaped body 13 mainly composed of silicon carbide is located in the base 11, and the other end is located in the metal layer 12 or the intermediate layer 14, the rod-shaped body 13 Sample No. which does not exist Compared to 12, 13 and 22, the surface temperature was lower and it was found that the heat dissipation was higher. Sample No. 1 to 9, 14 to 21 are sample Nos. It was found that the bonding strength was higher than that of 12, 13, and 22.

また、試料No.2〜11において、棒状体13が基体11の接合面を占める面積割合が10%以上50%以下である試料No.4〜9は、棒状体13が基体11の接合面を占める面積割合が10%未満の試料No.2,3に比べ放熱性がより高く、また棒状体13が基体11の接合面を占める面積割合が50%を超える試料No.10,11に比べ接合強度がより高くなっており、棒状体13が基体11の接合面を占める面積割合が10%以上50%以下であると、放熱性が高く、かつ接合強度を高く維持できる傾向があることがわかった。   Sample No. 2 to 11, sample Nos. In which the bar-shaped body 13 occupies the bonding surface of the substrate 11 has an area ratio of 10% to 50%. Samples Nos. 4 to 9 are those in which the area ratio of the rod-like body 13 occupying the bonding surface of the base 11 is less than 10%. Sample No. 2 has higher heat dissipation than that of Nos. 2 and 3, and the area ratio of the rod-like body 13 occupying the bonding surface of the base 11 exceeds 50%. The bonding strength is higher than 10 and 11, and the area ratio of the rod-shaped body 13 occupying the bonding surface of the substrate 11 is 10% or more and 50% or less, the heat dissipation is high and the bonding strength can be maintained high. I found a tendency.

また、試料No.2〜11,15において、基体11と金属層12との間に、中間層14が介在する試料No.15は、基体11と金属層12との間に、中間層14が介在しない試料No.2〜11に比べて接合強度がより高いことがわかった。   Sample No. 2 to 11 and 15, the sample No. 2 in which the intermediate layer 14 is interposed between the base 11 and the metal layer 12. Sample No. 15 in which the intermediate layer 14 is not interposed between the base 11 and the metal layer 12 is used. It was found that the bonding strength was higher than 2-11.

また、試料No.2〜11,16〜21において、基体11の主面に設けられた凸部11’の両側面に、金属層12が接合されている試料No.16〜21は、凸部11’が設けられていない試料No.2〜11に比べて放熱性がより高く、かつ接合強度がより高いことがわかった。   Sample No. 2 to 11 and 16 to 21, sample numbers No. 1 and No. 2 in which the metal layer 12 is bonded to both side surfaces of the convex portion 11 ′ provided on the main surface of the substrate 11. Samples Nos. 16 to 21 are sample Nos. With no protrusion 11 '. It was found that heat dissipation was higher and bonding strength was higher than 2-11.

また、棒状体13の一端部が基体11内に位置し、他端部が中間層14内に位置する試料No.14は、棒状体13が存在しない試料No.22に比べて放熱性が高く、さらに接合強度がより高いことがわかった。   Sample No. 1 in which one end portion of the rod-shaped body 13 is located in the base 11 and the other end portion is located in the intermediate layer 14 is used. Sample No. 14 in which the rod-like body 13 is not present. It was found that the heat dissipation was higher than that of 22 and the bonding strength was higher.

なお、基体11と金属層12との間に中間層14が介在する試料No.14,15において、棒状体13の他端部が、中間層14を貫通して金属層12に位置する試料No.15のほうが、放熱性がより高いことがわかった。   It should be noted that the sample No. 1 in which the intermediate layer 14 is interposed between the substrate 11 and the metal layer 12 is used. 14 and 15, the other end of the rod-shaped body 13 penetrates the intermediate layer 14 and is located on the metal layer 12. 15 was found to have higher heat dissipation.

以上のことから、試料No.1〜11,15〜21は、棒状体13の一端部が基体11内に位置し、他端部が金属層12内に位置するので、放熱性が高いといえる。   In view of the above, sample no. 1 to 11 and 15 to 21 can be said to have high heat dissipation because one end of the rod-like body 13 is located in the base 11 and the other end is located in the metal layer 12.

また、試料No.14は、棒状体13の一端部が基体11内に位置し、他端部が中間層14内に位置するので、放熱性が高いといえる。   Sample No. 14 can be said to have high heat dissipation because one end of the rod-shaped body 13 is located in the base 11 and the other end is located in the intermediate layer 14.

また、放熱性が高い試料No.1〜11,14〜21に電子部品15を接合してなり、接合部と対応する位置に棒状体13が存在している電子装置は信頼性が高いといえる。   In addition, sample No. It can be said that the electronic device in which the electronic component 15 is joined to 1 to 11 and 14 to 21 and the rod-like body 13 exists at a position corresponding to the joined portion has high reliability.

1,2,3,4,5:電子部品実装用基体
11:基体
11’:凸部
12:金属層
13:棒状体
14:中間層
15:電子部品
16a,16b:電極パッド
17:ボンディングワイヤ
18:半田
19:めっき導線
61,71:レジスト膜
111,112,113:電子装置
1, 2, 3, 4, 5: Substrates for mounting electronic components
11: Base
11 ': Convex
12: Metal layer
13: Rod-shaped body
14: Middle layer
15: Electronic components
16a, 16b: Electrode pad
17: Bonding wire
18: Solder
19: Plating wire
61, 71: Resist film
111, 112, 113: Electronic devices

Claims (5)

アルミナを主成分とする基体と、該基体に設けられている金属層と、一端部が前記基体内に位置し、炭化ケイ素を主成分とする複数の棒状体とを備え、前記棒状体は、他端部が前記金属層内に位置することを特徴とする電子部品実装用基体。   A substrate comprising alumina as a main component, a metal layer provided on the substrate, and a plurality of rods having one end portion located in the substrate and having silicon carbide as a main component, An electronic component mounting base, wherein the other end is located in the metal layer. 前記基体と前記金属層との間に、ガラスを主成分とする中間層が介在されており、該中間層を前記棒状体が貫通していることを特徴とする請求項1に記載の電子部品実装用基体。   2. The electronic component according to claim 1, wherein an intermediate layer mainly composed of glass is interposed between the base and the metal layer, and the rod-shaped body penetrates the intermediate layer. Mounting substrate. アルミナを主成分とする基体と、該基体に設けられている金属層と、前記基体と前記金属層との間に介在されガラスを主成分とする中間層と、一端部が前記基体内に位置し、炭化ケイ素を主成分とする複数の棒状体とを備え、該棒状体は、他端部が前記中間層内に位置することを特徴とする電子部品実装用基体。   A substrate mainly composed of alumina, a metal layer provided on the substrate, an intermediate layer mainly composed of glass interposed between the substrate and the metal layer, and one end portion located in the substrate And a plurality of rod-shaped bodies mainly composed of silicon carbide, wherein the other ends of the rod-shaped bodies are located in the intermediate layer. 前記基体が板状体であって、該板状体の主面に凸部を有し、該凸部の両側面に前記金属層が設けられているとともに、前記棒状体の他端部が前記凸部の両側面を介して前記金属層側へ延出していることを特徴とする請求項1乃至3のいずれかに記載の電子部品実装用基体。   The base is a plate-like body, and has a convex portion on the main surface of the plate-like body, the metal layer is provided on both side surfaces of the convex portion, and the other end of the rod-like body is 4. The electronic component mounting substrate according to claim 1, wherein the substrate is mounted to the metal layer side through both side surfaces of the convex portion. 請求項1乃至請求項4のいずれかに記載の電子部品実装用基体に電子部品を接合してなり、該接合部と対応する位置に前記棒状体が存在していることを特徴とする電子装置。   5. An electronic apparatus comprising: an electronic component mounted on the electronic component mounting base according to claim 1; and the rod-shaped body is present at a position corresponding to the bonded portion. .
JP2011120652A 2011-05-30 2011-05-30 Electronic component mounting substrate and electronic apparatus using the same Withdrawn JP2012248748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120652A JP2012248748A (en) 2011-05-30 2011-05-30 Electronic component mounting substrate and electronic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120652A JP2012248748A (en) 2011-05-30 2011-05-30 Electronic component mounting substrate and electronic apparatus using the same

Publications (1)

Publication Number Publication Date
JP2012248748A true JP2012248748A (en) 2012-12-13

Family

ID=47468916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120652A Withdrawn JP2012248748A (en) 2011-05-30 2011-05-30 Electronic component mounting substrate and electronic apparatus using the same

Country Status (1)

Country Link
JP (1) JP2012248748A (en)

Similar Documents

Publication Publication Date Title
EP2720520B1 (en) Circuit board and electronic device provided with same
US9161444B2 (en) Circuit board and electronic apparatus provided with the same
JP5664625B2 (en) Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method
JP5665769B2 (en) Silicon nitride substrate, circuit board and electronic device using the same
JP5905962B2 (en) Circuit board and electronic device having the same
JP6146007B2 (en) Manufacturing method of joined body, manufacturing method of power module, power module substrate and power module
US9183967B2 (en) Low firing temperature copper composition
TW200914391A (en) Insulation paste for a metal core substrate and electronic device
EP2919287B1 (en) Substrate for light emitting diodes
WO2018062373A1 (en) Resistor, circuit board provided with same, and electronic device
TWI784000B (en) Conductor-forming composition and manufacturing method thereof, conductor and manufacturing method thereof, chip resistor
JP2012248748A (en) Electronic component mounting substrate and electronic apparatus using the same
JP5806030B2 (en) Circuit board and electronic device having the same
JP6114001B2 (en) Conductive paste, circuit board and electronic device
JP6235700B2 (en) Circuit board and electronic device having the same
JP2012209355A (en) Circuit board and electronic apparatus using the same
JP5743916B2 (en) Circuit board and electronic device having the same
JP5248941B2 (en) Ceramic parts and manufacturing method thereof
JP2014168053A (en) Circuit board and electronic apparatus including the same
JP6298174B2 (en) Circuit board and electronic device having the same
TWI783999B (en) Conductor-forming composition, conductor and manufacturing method thereof, and chip resistor
TWI842810B (en) Electronic component and manufacturing method thereof
CN111052879B (en) Circuit board and electronic device provided with same
JP2007227081A (en) Conductor paste and manufacturing method of ceramic multilayered substrate

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805