JP2012242764A - Optical member and planar light source device using the same - Google Patents

Optical member and planar light source device using the same Download PDF

Info

Publication number
JP2012242764A
JP2012242764A JP2011115294A JP2011115294A JP2012242764A JP 2012242764 A JP2012242764 A JP 2012242764A JP 2011115294 A JP2011115294 A JP 2011115294A JP 2011115294 A JP2011115294 A JP 2011115294A JP 2012242764 A JP2012242764 A JP 2012242764A
Authority
JP
Japan
Prior art keywords
light source
sheet
optical member
resin sheet
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011115294A
Other languages
Japanese (ja)
Inventor
Daishi Imai
今井大資
Toshio Awaji
淡路敏夫
Tatsushi Hirauchi
平内達史
Yuki Miyoshi
三吉祐輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011115294A priority Critical patent/JP2012242764A/en
Publication of JP2012242764A publication Critical patent/JP2012242764A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical member and a planar light source device capable of reducing or further eliminating brightness unevenness even for the reduction of installation intervals of LED light sources and an optical sheet or enlargement of arrangement intervals of the LED light sources, in a direct backlight with a plurality of LED light sources arranged.SOLUTION: There is provided an optical member for a planar light source device using a plurality of LEDs (light-emitting diodes) set on a reflection sheet as light sources. The optical member is formed by laminating a resin sheet (A) having a polygonal pyramid or an inverted polygonal pyramid shaped lens group on the surface opposite to an LED light source and a resin sheet (B) in which a light diffusion agent having a different refractive index from that of a transparent resin is dispersed in the transparent resin and the difference in diffusivity (D50) in at least an orthogonal direction is 7° or more.

Description

本発明は、液晶表示パネルなどの照明に用いる面状光源装置用光学部材、および該光学部材用いた面状光源装置に関する。   The present invention relates to an optical member for a planar light source device used for illumination of a liquid crystal display panel or the like, and a planar light source device using the optical member.

薄型テレビや薄型モニターなどの大型ディスプレイには、画像表示のための液晶表示装置が広く採用されている。これらの液晶表示装置には、自発光性がない液晶表示パネルを照射するためにバックライトユニットが用いられている。バックライトユニットとしては、例えば導光板と、該導光板の端面に配置したLED光源を備え、光源からの光を導光して主面全体から液晶表示パネルへ向け照射するエッジタイプや、導光板を用いず、液晶パネルの直下にLED光源を配置し、光拡散板や光学シートの主面全体から液晶パネルに向け照射する直下タイプがある。   Liquid crystal display devices for displaying images are widely used for large displays such as thin televisions and thin monitors. In these liquid crystal display devices, a backlight unit is used to irradiate a liquid crystal display panel that does not have self-luminous properties. The backlight unit includes, for example, a light guide plate and an LED light source disposed on an end face of the light guide plate, guides light from the light source, and irradiates the entire main surface toward the liquid crystal display panel, or a light guide plate There is a direct type in which an LED light source is disposed directly under the liquid crystal panel without using the light, and the liquid crystal panel is irradiated from the entire main surface of the light diffusion plate or optical sheet.

近年、液晶テレビの大画面化にともない、軽量化や薄型化に対する要望がより高くなってきているが、導光板を用いたエッジタイプでは、導光板自体の重量増によりテレビ自体の軽量化が困難になるとともに、表示画面の輝度上昇が困難になってきている。一方、導光板を用いない直下タイプでは、導光板がない分軽量化が可能であるが、LED光源の指向性が強いため、LED直上部分が非常に明るくなり著しい輝度ムラが生じ、出光面全体で輝度ムラの少ない照射光を得るためには、LED光源の配置間隔を狭くするか、光拡散板とLED光源の距離を充分離す必要があり、薄型化やコスト削減が困難な状況にある。   In recent years, with the increase in screen size of liquid crystal televisions, demands for weight reduction and thinning have increased, but with the edge type using a light guide plate, it is difficult to reduce the weight of the television itself due to the increase in the weight of the light guide plate itself. At the same time, it has become difficult to increase the brightness of the display screen. On the other hand, the direct type that does not use a light guide plate can be reduced in weight because there is no light guide plate, but because the directivity of the LED light source is strong, the portion directly above the LED becomes very bright, causing significant luminance unevenness, and the entire light exit surface In order to obtain irradiation light with little luminance unevenness, it is necessary to narrow the arrangement interval of the LED light sources or to sufficiently separate the distance between the light diffusion plate and the LED light source, and it is difficult to reduce the thickness and reduce the cost.

特許文献1には、光束制御部材をLED素子上に取り付け、LED直上部分への指向性を緩和し、直下型バックライトの光源として用いた際の明暗を抑制する方法が開示されている。特許文献2には、LED光源をマトリックス上に配置した直下型バックライトユニットにおける輝度ムラ解消を目的として、表面に略逆多角錐または略逆多角錐台形状の凹部を有し、凹部形状を有する面を入光面とする全光線透過率が65%〜100%であり、凹部形状を有する面の反対面を入光面とした全光線透過率が30%〜80%である光拡散板を用いることが開示されている。   Patent Document 1 discloses a method in which a light flux controlling member is attached on an LED element, the directivity to a portion directly above the LED is relaxed, and brightness and darkness when used as a light source of a direct type backlight is disclosed. In Patent Document 2, for the purpose of eliminating luminance unevenness in a direct type backlight unit in which an LED light source is arranged on a matrix, the surface has a concave portion of a substantially inverted polygonal pyramid or a substantially inverted polygonal truncated cone shape, and has a concave shape. A light diffusing plate having a total light transmittance of 65% to 100% with the surface as the light incident surface, and a total light transmittance of 30% to 80% with the opposite surface of the surface having the concave shape as the light incident surface. It is disclosed to use.

特開2009−117207号公報JP 2009-117207 A 特開2010−117707号公報JP 2010-117707 A

しかしながら、バックライトコスト削減のためのLED光源数のさらなる削減や、あるいは液晶テレビのさらなる薄型化、具体的には、図2に示すような反射シート上に設置された複数個のLED光源間の最も接近した間隔(L)と、反射シートと光学シートの点光源側の面までの最も接近した距離(D)の比であるL/Dが、2.5以上においても、輝度ムラを解消できるという課題に対しては、応えられていないのが現状である。   However, further reduction in the number of LED light sources for reducing the backlight cost, or further thinning of the liquid crystal television, specifically, between a plurality of LED light sources installed on a reflective sheet as shown in FIG. Even when L / D, which is the ratio of the closest distance (L) to the closest distance (D) between the reflecting sheet and the surface of the optical sheet on the point light source side, is 2.5 or more, uneven brightness can be eliminated. The current situation is that we are not responding to these issues.

すなわち、直下型バックライトの点光源として光束制御部材をLED素子上に配置することによりLEDの直上以外の範囲に広く配光することが可能となるが、LED光源側に配置される光拡散板とLED光源との間隔を縮小、あるいはLED光源の配置間隔を拡げていくと光束制御部材の形状に起因する明暗パターンが生じてしまい、従来の光拡散板や光学シートの構成では、さらなる液晶表示装置の薄型化やLED光源数の削減が困難となっている。   That is, it is possible to distribute light widely in a range other than directly above the LED by arranging the light flux control member on the LED element as a point light source of the direct type backlight, but the light diffusion plate arranged on the LED light source side If the distance between the LED light source and the LED light source is reduced or the arrangement distance of the LED light source is increased, a light / dark pattern is generated due to the shape of the light flux controlling member. It is difficult to reduce the thickness of the apparatus and the number of LED light sources.

一方、バックライトユニットのさらなる薄型化、あるいはLED光源の配置間隔拡大によるLED使用数の削減化において求められる、上記のL/D≧2.5となるという厳しい条件下において、反射シート上に配置されたLED光源に、略逆多角錐または略逆多角錐台形状の凹部を有し、凹部形状を有する面を入光面とする全光線透過率が65%〜100%、凹部形状を有する面の反対面を入光面とした全光線透過率が30%〜80%である光拡散板を用い、この拡散板上に熱可塑性フィルム表面に光拡散剤となる微粒子を塗布した従来タイプの“拡散シート”、従来から光拡散板に重ね合わせてきたプリズムシート、マイクロレンズシート、反射偏光シートなどを適宜重ね合わせるといった光学シート構成だけで、輝度ムラの大幅低減や解消することには、限界が生じるようになってきている。   On the other hand, the backlight unit is placed on the reflective sheet under the strict condition of L / D ≧ 2.5, which is required for further thinning the backlight unit or reducing the number of LEDs used by expanding the LED light source spacing. A surface having a concave portion having a substantially inverted polygonal pyramid or substantially inverted polygonal frustum-shaped concave portion, and having a surface having the concave shape as a light incident surface. A light diffusion plate having a total light transmittance of 30% to 80% with the opposite surface as the light incident surface, and a fine particle as a light diffusion agent coated on the surface of the thermoplastic film on the diffusion plate. Diffusion sheet ”, prism sheet, microlens sheet, reflective polarizing sheet, etc. that have been superposed on the light diffusing plate from the past. Thing is to, have come to limit occurs.

本発明は前述の課題に鑑みてなされたものであり、その目的は、LED光源を配置した直下型バックライトにおいて、さらなる薄型化、あるいはさらなるLED光源数削減を実現させることが可能な面状光源装置用光学部材および該光学部材を備えた面状光源装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is a planar light source capable of realizing further thinning or further reduction in the number of LED light sources in a direct type backlight provided with LED light sources. An optical member for an apparatus and a planar light source device including the optical member are provided.

前記目標を達成するために、本発明は以下の手段を採用した。すなわち、第1の発明は 反射シート上に設置された複数個のLED(発光ダイオード)を光源とする面状光源装置用の光学部材であって、LED光源の反対側の表面に多角錐形状または転倒多角錐形状のレンズ群をする樹脂シート(A)と、透明樹脂中に、該透明樹脂と屈折率が異なる光拡散剤が分散しているものであり、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上である樹脂シート(B)を積層してなることを特徴とする面状光源装置用光学部材である。   In order to achieve the above goal, the present invention employs the following means. That is, the first invention is an optical member for a planar light source device having a plurality of LEDs (light emitting diodes) installed on a reflective sheet as a light source, and has a polygonal pyramid shape on the surface opposite to the LED light source. A resin sheet (A) that forms a lens group having a falling polygonal pyramid shape, and a light diffusing agent having a refractive index different from that of the transparent resin are dispersed in the transparent resin, and at least one diffusivity in the orthogonal direction. An optical member for a planar light source device, characterized in that a resin sheet (B) having a difference of (D50) of 7 ° or more is laminated.

ここで、拡散度(D50)とは、変角光度計ゴニオメーター(村上色彩社製、GP−5)で、該樹脂シートに垂直方向から光を入射した場合に、0°出射光に対する出射光の強度が50%となる出射角を意味する。   Here, the diffusivity (D50) is a goniophotometer goniometer (GP-5, manufactured by Murakami Color Co., Ltd.). When light is incident on the resin sheet from the vertical direction, the emitted light with respect to 0 ° emitted light. Means an emission angle at which the intensity of the light becomes 50%.

第2の発明は、第1の発明の光学部材において、前記樹脂シート(B)の表面の算術平均粗さが10μm以下であることを特徴とする請求項1に記載の面状光源装置用光学部材である。   2nd invention WHEREIN: The arithmetic mean roughness of the surface of the said resin sheet (B) is 10 micrometers or less in the optical member of 1st invention, The optical for planar light source devices of Claim 1 characterized by the above-mentioned. It is a member.

第3の発明は、第1〜2の発明の光学部材において、前記樹脂シート(B)は、分散されている光拡散剤が扁平な楕円形状を有するものであって、下記式(1)で表される架橋密度が0.001%以上、0.12%以下である架橋重合粒子からなり、且つその長軸方向が一方向に配向している光拡散層を含むことを特徴とする請求項1または2に記載の面状光源装置用光学部材である。   According to a third invention, in the optical members of the first and second inventions, the resin sheet (B) has a flat elliptical shape in which the dispersed light diffusing agent has a flat elliptical shape. A light diffusion layer comprising cross-linked polymer particles having a cross-linking density represented by 0.001% or more and 0.12% or less, and having a major axis direction oriented in one direction. The optical member for a planar light source device according to 1 or 2.

架橋密度(%)=〔{Fn(c)/Mw(c)}×{W(c)}×100〕/{W(m)+W(c)} ・・・(1)
[式中、Fn(c)は架橋重合粒子の製造に用いる架橋剤の架橋性官能基数を示し;Mw(c)は架橋重合粒子の製造に用いる架橋剤の分子量を示し;W(c)は架橋重合粒子の製造に用いる架橋剤の、単量体と架橋剤の合計に対する質量配合割合(質量%)を示し;W(m)は架橋重合粒子の製造に用いる単量体の、単量体と架橋剤の合計に対する質量配合割合(質量%)を示す]。
Crosslink density (%) = [{Fn (c) / Mw (c)} × {W (c)} × 100] / {W (m) + W (c)} (1)
[Wherein Fn (c) represents the number of crosslinkable functional groups of the crosslinking agent used for the production of the crosslinked polymer particles; Mw (c) represents the molecular weight of the crosslinking agent used for the production of the crosslinked polymer particles; The mass proportion (% by mass) of the crosslinking agent used for the production of the crosslinked polymer particles relative to the total of the monomer and the crosslinking agent is shown; W (m) is the monomer of the monomer used for the production of the crosslinked polymer particles And mass blending ratio (mass%) with respect to the total of the crosslinking agent].

第4の発明は、反射シート上に設置された複数個のLED(発光ダイオード)を光源とし、第1〜3の発明のいずれかに記載の光学部材を有することを特徴とする面状光源装置である。   According to a fourth aspect of the present invention, there is provided a planar light source device comprising a plurality of LEDs (light emitting diodes) installed on a reflective sheet as a light source and the optical member according to any one of the first to third aspects of the invention. It is.

本発明の光学部材を、反射シート上に配置された複数個のLEDを光源とする面状光源装置に用いることにより、LED光源配置間隔が従来の間隔よりも拡大、あるいはLED光源と光学シートの間隔が縮小しても、輝度ムラ低減化や解消が可能になる。また、本発明の光学部材を用いた面状光源装置は、LED光源配置間隔が従来の間隔よりも拡大、あるいはLED光源と光学シートの間隔が縮小しても、輝度ムラ低減化や解消が可能になるため、LED光源を配置した直下型面状光源装置として、さらなる薄型化を促進できるとともに、低コスト化のためのさらなるLED光源数削減が可能となる。   By using the optical member of the present invention in a planar light source device using a plurality of LEDs arranged on a reflection sheet as a light source, the LED light source arrangement interval is larger than the conventional interval, or the LED light source and the optical sheet Even if the interval is reduced, the luminance unevenness can be reduced or eliminated. In addition, the planar light source device using the optical member of the present invention can reduce or eliminate luminance unevenness even when the LED light source arrangement interval is larger than the conventional interval or the interval between the LED light source and the optical sheet is reduced. Therefore, as a direct type planar light source device in which LED light sources are arranged, it is possible to further reduce the thickness and further reduce the number of LED light sources for cost reduction.

本発明の実施形態において、複数のLED光源を配置した面状光源を示す簡略的な要部の平面図である。In embodiment of this invention, it is a top view of the simple principal part which shows the planar light source which has arrange | positioned several LED light source. 本発明の光学部材を、複数のLED光源上に配置した実施形態の1例を示す簡略的断面図である。It is a simplified sectional view showing one example of an embodiment which arranged an optical member of the present invention on a plurality of LED light sources. 本発明の光学部材における、樹脂シート(A)の実施形態の表面形状(転倒四角錘形状)の電子顕微鏡観察図(シート表面の法線方向から観察)を示す。The electron microscope observation figure (observation from the normal line direction of a sheet | seat surface) of the surface shape (falling square pyramid shape) of embodiment of the resin sheet (A) in the optical member of this invention is shown. 本発明の光学部材における、樹脂シート(A)の実施形態の表面形状(転倒四角錘形状)の電子顕微鏡観察図(シート表面の法線方向から約60°の角度から観察)を示す。The electron microscope observation figure (observation from the angle of about 60 degrees from the normal line direction of a sheet | seat surface) of the surface shape (falling square pyramid shape) of embodiment of the resin sheet (A) in the optical member of this invention is shown.

1:反射シート
2:LED
3:LED光源の反対側の表面に多角錐形状または転倒多角錐形状のレンズ群を有する樹脂シート(A)
4:透明樹脂中に、該透明樹脂と屈折率が異なる光拡散剤が分散しているものであり、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上である樹脂シート(B)
5:プリズムシート
6:マイクロレンズシート
7:反射偏光シート
D: 反射シート表面からLED光源側へ最接近した光学シートの入光面までの距離
L: LED配置間隔の最短距離
1: Reflective sheet 2: LED
3: Resin sheet (A) having a lens group of a polygonal pyramid shape or a falling polygonal pyramid shape on the surface opposite to the LED light source
4: A resin sheet in which a light diffusing agent having a refractive index different from that of the transparent resin is dispersed in the transparent resin, and a difference in diffusivity (D50) in at least one orthogonal direction is 7 ° or more ( B)
5: Prism sheet 6: Micro lens sheet 7: Reflective polarizing sheet
D: Distance from the reflecting sheet surface to the light incident surface of the optical sheet closest to the LED light source side
L: Minimum distance between LED placement intervals

以下、本発明の実施形態に係る光学部材および該光学部材を用いた面状光源装置について詳細に説明する。本発明の光学部材は、LED光源の反対側の表面に多角錐形状または転倒多角錐形状のレンズ群を有してなる樹脂シート(A)と、透明樹脂中に、該透明樹脂と屈折率が異なる光拡散剤が分散しているものであり、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上である樹脂シート(B)を積層してなるものであり、これらの光学シートは、ラミネート法などにより貼りあわされ、一体化されたものであることが好ましい。また積層される順序としては、光源側から樹脂シート(A)、樹脂シート(B)の順が好ましい。   Hereinafter, an optical member according to an embodiment of the present invention and a planar light source device using the optical member will be described in detail. The optical member of the present invention has a resin sheet (A) having a lens group having a polygonal pyramid shape or a falling polygonal pyramid shape on the surface opposite to the LED light source, and the transparent resin and the refractive index in the transparent resin. Different light diffusing agents are dispersed, and at least one resin sheet (B) having a difference in diffusivity (D50) in the orthogonal direction of 7 ° or more is laminated. The sheet is preferably laminated and integrated by a lamination method or the like. Further, the order of lamination is preferably the order of the resin sheet (A) and the resin sheet (B) from the light source side.

図2は本発明の光学部材を用いた面状光源装置の1例となる断面模式図を示す。反射シート1上に、複数のLED光源2が最も接近した間隔(L)で配置されており、その上方に、LED光源の反対側の表面に多角錐形状または転倒多角錐形状のレンズ群をする樹脂シート(A)と、透明樹脂中に、該透明樹脂と屈折率が異なる光拡散剤が分散しているものであり、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上である樹脂シート(B)を有する光学シート構成からなる本発明の光学部材が、反射シートの光反射面とLED光源側に最も接近した光学シートのLED光源からの入光面との距離(D)で設置されている。図2においては、樹脂シート(A)と樹脂シート(B)からなる光学部材により、一部は光源側に反射され、一部は拡散、偏向し、光学シート構成の最もLED光源から離れた光学シートの出光面において輝度ムラが低減あるいは解消される。   FIG. 2 is a schematic sectional view showing an example of a planar light source device using the optical member of the present invention. On the reflective sheet 1, a plurality of LED light sources 2 are arranged at the closest interval (L), and above them, a lens group having a polygonal pyramid shape or a falling polygonal pyramid shape is formed on the surface opposite to the LED light source. A light diffusing agent having a refractive index different from that of the transparent resin is dispersed in the resin sheet (A) and the transparent resin, and a difference in diffusivity (D50) in at least one orthogonal direction is 7 ° or more. The distance between the light reflecting surface of the reflecting sheet and the light incident surface from the LED light source of the optical sheet closest to the LED light source side (D ). In FIG. 2, the optical member composed of the resin sheet (A) and the resin sheet (B) is partially reflected to the light source side, partially diffused and deflected, and is optically far from the LED light source in the optical sheet configuration. Luminance unevenness is reduced or eliminated on the light exit surface of the sheet.

さらに、図2の樹脂シート(A)、樹脂シート(B)の上方に、表面に連続的に三角柱レンズを並べた、いわゆるプリズムシートや、表面に半球状のレンズを配したマイクロレンズシート、表面に拡散性微粒子をバインダーにより塗布したタイプの拡散シート、シート中に拡散性微粒子を分散させたタイプの拡散シートなどを併用することによって、輝度ムラ解消効果をさらに高めることも好ましい態様のひとつである。   Further, a so-called prism sheet in which triangular prism lenses are continuously arranged on the surface above the resin sheet (A) and the resin sheet (B) in FIG. 2, a microlens sheet having a hemispherical lens on the surface, a surface It is also one of preferred embodiments that the effect of eliminating luminance unevenness is further enhanced by using together a diffusion sheet of a type in which diffusible fine particles are coated with a binder and a diffusion sheet of a type in which diffusible fine particles are dispersed in the sheet. .

本発明の光学部材における樹脂シート(A)は、LED光源に最も接近して設置されることが好ましい態様であるため、樹脂シート(B)や他の光学シートを併用する際の支持体的役割を果たす必要があることと、熱的影響を受けやすい環境下にあり、機械的あるいは熱的変形を避けるために、樹脂シート(A)の厚みは、0.5mm以上とすることが好ましく、0.8mm以上とすることがより好ましく、1.0mm以上とすることがさらに好ましい。また樹脂シート(A)の厚みの上限としては、液晶表示装置の薄型化や材料コストの観点から、4mm以下が好ましく、3mm以下がより好ましく、2mm以下がさらに好ましい。   Since the resin sheet (A) in the optical member of the present invention is preferably disposed closest to the LED light source, it serves as a support when the resin sheet (B) and other optical sheets are used in combination. In order to avoid mechanical or thermal deformation, the thickness of the resin sheet (A) is preferably 0.5 mm or more. It is more preferable to set it as 8 mm or more, and it is still more preferable to set it as 1.0 mm or more. Further, the upper limit of the thickness of the resin sheet (A) is preferably 4 mm or less, more preferably 3 mm or less, and further preferably 2 mm or less from the viewpoint of thinning of the liquid crystal display device and material cost.

また、本発明の光学部材における樹脂シート(B)は、樹脂シート(A)を基準として光源と反対側に配置されることが好ましい態様であり、樹脂シート(A)のように他の光学シートの支持体的役割を果たす必要性は低く、液晶表示装置の薄型化や材料コストの観点から、厚みは0.8mm以下が好ましく、0.6mm以下がより好ましく、0.3mm以下がさらに好ましい。   In addition, the resin sheet (B) in the optical member of the present invention is preferably disposed on the side opposite to the light source with respect to the resin sheet (A), and other optical sheets like the resin sheet (A). The thickness of the liquid crystal display device is preferably 0.8 mm or less, more preferably 0.6 mm or less, and even more preferably 0.3 mm or less from the viewpoint of thinning the liquid crystal display device and material cost.

本発明の光学部材は、本発明の光学部材は、LED光源の反対側の表面に多角錐形状または転倒多角錐形状のレンズ群を有してなる樹脂シート(A)と、透明樹脂中に、該透明樹脂と屈折率が異なる光拡散剤が分散しているものであり、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上である樹脂シート(B)を有することが必須であり、用いられる面状光源装置におけるLED配置間隔や、LEDが配置されている反射シートと光学シートまでの距離など、LED光源や面状光源装置の仕様によっては、樹脂シート(A)または樹脂シート(B)を2枚以上用いた態様も含まれる。ただし、面状光源装置が装着される液晶表示装置の薄肉化が進められている状況下においては、本発明の光学部材に占める樹脂シート(A)、樹脂シート(B)とも使用枚数は1枚が好ましい。   In the optical member of the present invention, the optical member of the present invention includes a resin sheet (A) having a lens group having a polygonal pyramid shape or a falling polygonal pyramid shape on the opposite surface of the LED light source, and a transparent resin. It is essential to have a resin sheet (B) in which a light diffusing agent having a refractive index different from that of the transparent resin is dispersed and at least one difference in diffusivity (D50) in the orthogonal direction is 7 ° or more. Depending on the specifications of the LED light source and the planar light source device such as the LED arrangement interval in the planar light source device used and the distance between the reflective sheet and the optical sheet on which the LEDs are disposed, the resin sheet (A) or resin A mode using two or more sheets (B) is also included. However, in a situation where the thickness of the liquid crystal display device to which the planar light source device is mounted is being reduced, the number of sheets used for both the resin sheet (A) and the resin sheet (B) in the optical member of the present invention is one. Is preferred.

本発明のLED光源側の反対面に多角錐形状または転倒多角錐形状を有する樹脂シート(A)の多角錐形状または転倒多角錐形状は、底面積が10〜10μmであり、かつ底面から最高部または最深部までの高低差が10〜500μmであることが好ましい。底面積が10μm未満であり、かつ底面から最高部または最深部までの高低差が10μm未満であると、樹脂シート(A)表面に再現性よく多角錐形状または転倒多角錐形状を賦型することが困難となり、安定的な輝度ムラ低減や解消が困難となる。また、底面積が10μmを超え、かつ底面から最高部または最深部までの高低差が500μmを超えると、賦型LED光源側の反対面に多角錐形状または転倒多角錐形状を再現性よく賦型できるものの、LED光源配置間隔が従来の間隔よりも拡大、あるいはLED光源と光学シートの間隔が縮小した面状光源装置においては輝度ムラ低減化や解消が難しくなる傾向がある。 The resin sheet (A) having a polygonal pyramid shape or a falling polygonal pyramid shape on the opposite surface of the LED light source side of the present invention has a bottom area of 10 2 to 10 6 μm 2 and It is preferable that the height difference from the bottom surface to the highest part or the deepest part is 10 to 500 μm. When the bottom area is less than 10 2 μm 2 and the difference in height from the bottom surface to the highest or deepest part is less than 10 μm, a polygonal or inverted polygonal pyramid shape is imparted to the surface of the resin sheet (A) with good reproducibility. It becomes difficult to mold, and it becomes difficult to reduce or eliminate uneven brightness. In addition, when the bottom area exceeds 10 6 μm 2 and the height difference from the bottom to the highest or deepest part exceeds 500 μm, the reproducibility of the polygonal pyramid shape or the falling polygonal pyramid shape on the opposite surface of the shaped LED light source side Although it can be shaped well, in a planar light source device in which the LED light source arrangement interval is larger than the conventional interval or the interval between the LED light source and the optical sheet is reduced, it tends to be difficult to reduce or eliminate luminance unevenness.

本発明の光学部材を構成する樹脂シート(A)の表面に形成される多角錐形状または転倒多角錐形状は、各側面が光学シート平面に対して35°〜55°の傾斜角を有することが、LED光源からの光を効率よく反射、偏向でき、輝度ムラの減少した面状光源を発現させることができるため好ましく、より好ましくは40°〜50°である。また、多角錐形状または転倒多角錐形状を形成する複数の側面の傾斜角は、同一でも異なっていてもよい。   In the polygonal pyramid shape or the falling polygonal pyramid shape formed on the surface of the resin sheet (A) constituting the optical member of the present invention, each side surface may have an inclination angle of 35 ° to 55 ° with respect to the optical sheet plane. The light from the LED light source can be efficiently reflected and deflected, and a planar light source with reduced luminance unevenness can be produced, and is preferably 40 ° to 50 °. Further, the inclination angles of the plurality of side surfaces forming the polygonal pyramid shape or the falling polygonal pyramid shape may be the same or different.

本発明の光学部材を構成する樹脂シート(A)の表面に賦型されている多角錐形状または転倒多角錐形状の底面積および底面から最高部または最深部までの高低差は、同一でも異なっていてもよい。   The bottom area of the polygonal pyramid shape or the falling polygonal pyramid shape formed on the surface of the resin sheet (A) constituting the optical member of the present invention and the height difference from the bottom surface to the highest part or the deepest part are the same or different. May be.

本発明の光学部材を構成する樹脂シート(A)の表面に賦型されている多角錐形状または転倒多角錐形状としては、三角錘形状、四角錘形状、または、転倒三角錐形状、転倒四角錘形状等があげられるが、中でもLED光源からの光を反射、偏向できる傾斜角を有する側面が多い四角錘形状、または転倒四角錘形状が好ましく、連続して用いる樹脂シート(B)の傷つき防止の観点から、転倒四角錐形状がより好ましい。   Examples of the polygonal pyramid shape or the falling polygonal pyramid shape formed on the surface of the resin sheet (A) constituting the optical member of the present invention include a triangular pyramid shape, a quadrangular pyramid shape, a falling triangular pyramid shape, and a falling quadrangular pyramid. The shape of the resin sheet (B), which has many side surfaces having an inclination angle capable of reflecting and deflecting light from the LED light source, or the falling quadrangular pyramid shape is preferable. From the viewpoint, a falling quadrangular pyramid shape is more preferable.

本発明の光学部材を構成する樹脂シート(A)の表面に賦型されている多角錐形状または転倒多角錐形状は、その底辺がなす形状は、成型上の容易さから、すべての内角が180°未満である凸多角形であることが好ましく、多角錐形状または転倒多角錐形状を樹脂シート上に連続的に配置するために、正方形を含む平行四辺形、または台形が好ましい。
本発明の光学部材を構成する樹脂シート(A)の表面に賦型されている多角錐形状または転倒多角錐形状は、光学シート表面に隙間なく配置してもよいし、間隔をあけて配置してもよい。間隔をあけて配置する場合、単位形状間の形状は曲面でも、平面でもよい。
In the polygonal pyramid shape or the falling polygonal pyramid shape formed on the surface of the resin sheet (A) constituting the optical member of the present invention, the shape formed by the bottom side thereof is 180 for all inner angles because of ease of molding. A convex polygon that is less than 0 ° is preferable, and in order to continuously arrange the polygonal pyramid shape or the falling polygonal pyramid shape on the resin sheet, a parallelogram including a square or a trapezoid is preferable.
The polygonal pyramid shape or the falling polygonal pyramid shape formed on the surface of the resin sheet (A) constituting the optical member of the present invention may be arranged without a gap on the optical sheet surface, or arranged at intervals. May be. When arrange | positioning at intervals, the shape between unit shapes may be a curved surface, or a plane.

本発明の光学部材を構成する樹脂シート(B)は、透明樹脂中に、該透明樹脂と屈折率が異なる光拡散剤が分散しているものであり、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上であるものであり、この直交する方向の拡散度(D50)の差は、9°以上がより好ましく、11°以上がさらに好ましい。   In the resin sheet (B) constituting the optical member of the present invention, a light diffusing agent having a refractive index different from that of the transparent resin is dispersed in the transparent resin, and at least one diffusivity in the orthogonal direction ( D50) is 7 ° or more, and the diffusivity (D50) difference in the orthogonal direction is more preferably 9 ° or more, and even more preferably 11 ° or more.

ここで、拡散度(D50)とは、変角光度計ゴニオメーター(村上色彩社製、GP−5)で、該樹脂シートに垂直方向から光を入射した場合に、0°出射光に対する出射光の強度が50%となる出射角を意味する。   Here, the diffusivity (D50) is a goniophotometer goniometer (GP-5, manufactured by Murakami Color Co., Ltd.). When light is incident on the resin sheet from the vertical direction, the emitted light with respect to 0 ° emitted light. Means an emission angle at which the intensity of the light becomes 50%.

少なくとも1つの直交する方向の拡散度(D50)の差が、上記範囲であると、樹脂シート(B)での光の拡散性に適度な方向性が生じ、さらに樹脂シート(B)の上部に使用されるプリズムシートなどの光学シートにより、その方向性を緩和することで、より高いレベルの輝度均整化が可能となる。   If the difference in the diffusivity (D50) in at least one orthogonal direction is within the above range, an appropriate directionality occurs in the light diffusibility in the resin sheet (B), and further on the upper part of the resin sheet (B). By using an optical sheet such as a prism sheet that is used, the directionality is relaxed, so that a higher level of brightness leveling can be achieved.

樹脂シート(B)の表面は、微細な凹凸形状、または鏡面となっていることが好ましく、その算術平均粗さとしては10μm以下が好ましく、7μm以下がより好ましい。   The surface of the resin sheet (B) is preferably a fine uneven shape or a mirror surface, and its arithmetic average roughness is preferably 10 μm or less, more preferably 7 μm or less.

また、樹脂シート(B)は、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上であることを特徴とするが、この拡散度の差は、本発明の好適な例の一つである、扁平な楕円形状を有する光拡散剤が樹脂シート(B)の内部に、その長軸方向が一方向に配向している光拡散層などによる、内部拡散に起因するものであることが好ましい。   The resin sheet (B) is characterized in that the difference in diffusivity (D50) in at least one orthogonal direction is 7 ° or more. This difference in diffusivity is a preferred example of the present invention. One light diffusing agent having a flat elliptical shape is caused by internal diffusion due to a light diffusion layer or the like in which the major axis direction is oriented in one direction inside the resin sheet (B). It is preferable.

樹脂シート(B)の全光線透過率は、50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましい。全光線透過率が上記範囲未満であると、本発明の光学部材をバックライトに使用した場合に、輝度が不足する傾向がある。   The total light transmittance of the resin sheet (B) is preferably 50% or more, more preferably 60% or more, and further preferably 70% or more. When the total light transmittance is less than the above range, the luminance tends to be insufficient when the optical member of the present invention is used for a backlight.

本発明の光学部材に用いる樹脂シート(A)の表面に賦型されている多角錐形状または転倒多角錐形状の底辺と、樹脂シート(B)の拡散度が最大となる方向は、10°以上の傾きを持つように配置されていることが好ましく、20°以上がより好ましい。樹脂シート(A)の表面に賦型されている多角錐形状または転倒多角錐形状の底辺と、樹脂シート(B)の拡散度が最大となる方向の傾きが上記範囲未満である場合、輝度ムラ解消効果が小さくなる恐れがある。   The direction in which the diffusivity of the polygonal pyramid shape or the falling polygonal pyramid shape formed on the surface of the resin sheet (A) used for the optical member of the present invention and the resin sheet (B) is maximized is 10 ° or more. It is preferable to arrange | position so that it may have inclination of 20 degrees or more. When the base of the polygonal pyramid shape or the falling polygonal pyramid shape formed on the surface of the resin sheet (A) and the inclination in the direction in which the diffusivity of the resin sheet (B) is maximum are less than the above range, luminance unevenness There is a risk that the elimination effect will be reduced.

本発明の光学部材は、既存のプリズムシート、マイクロレンズシート、レンチキュラーシート、拡散シート、反射偏光シートなど併用することができ、本光学部材が使用される面状光源装置の仕様、あるいは液晶表示装置の仕様によって、適宜これらの光学シートを重ね合わせて用いることができる。   The optical member of the present invention can be used in combination with an existing prism sheet, microlens sheet, lenticular sheet, diffusion sheet, reflective polarizing sheet, etc., and the specification of a planar light source device in which the optical member is used, or a liquid crystal display device Depending on the specifications, these optical sheets can be used by appropriately overlapping.

樹脂シート(A)は、透明樹脂に光拡散剤が分散されたシートの片面に多角錐形状または転倒多角錐形状が賦型されたものであり、多角錐形状または転倒多角錐形状が賦型された面の反対面は鏡面、あるいは算術平均粗さが0.5〜50μmのエンボス、マットなど凹凸形状が施されていてもよく、また片面と同じく多角錐形状または転倒多角錐形状が賦型されたものでも良い。   The resin sheet (A) is formed by forming a polygonal pyramid shape or a falling polygonal pyramid shape on one side of a sheet in which a light diffusing agent is dispersed in a transparent resin. The opposite surface may be mirror-like, or may have an irregular shape such as embossing or mat with an arithmetic average roughness of 0.5 to 50 μm, and it is shaped like a polygonal cone or a falling polygonal pyramid like one side It may be good.

樹脂シート(A)、及び樹脂シート(B)を構成する透明樹脂は、無色透明であり、かつ光学シートの主な構成要素として適度な強度を有するものであれば特に制限されない。例えば、ポリカーボネート樹脂;ポリメチルメタクリレートなどのアクリル系樹脂;ポリスチレン、ポリビニルトルエン、ポリ(p−メチルスチレン)などのスチレン系樹脂;MS樹脂(メチルメタクリレートとスチレンの共重合体);ノルボルネン系樹脂;ポリアリレート樹脂;ポリエーテルスルホン樹脂や、これらのうち2種以上の混合樹脂などを用いることができる。好適にはポリカーボネート樹脂、スチレン系樹脂またはノルボルネン系樹脂を用いる。中でもポリカーボネート樹脂は、透明性や耐熱性、加工性に優れており、且つそれらのバランスがよいので光学シート用の樹脂として特に好ましい。   The transparent resin constituting the resin sheet (A) and the resin sheet (B) is not particularly limited as long as it is colorless and transparent and has an appropriate strength as a main component of the optical sheet. For example, polycarbonate resin; acrylic resin such as polymethyl methacrylate; styrene resin such as polystyrene, polyvinyl toluene, and poly (p-methylstyrene); MS resin (copolymer of methyl methacrylate and styrene); norbornene resin; poly Arylate resin; polyethersulfone resin, or a mixed resin of two or more of these can be used. A polycarbonate resin, a styrene resin, or a norbornene resin is preferably used. Among these, polycarbonate resin is particularly preferable as a resin for an optical sheet because it is excellent in transparency, heat resistance, and workability and has a good balance.

本発明の樹脂シート(A)、及び樹脂シート(B)に用いる光拡散剤としては、有機系微粒子、無機系微粒子、有機−無機ハイブリッド系微粒子のいずれの微粒子でも使用でき、例えば、(メタ)アクリル系樹脂、スチレン系樹脂、アミノ系樹脂、ポリエステル系樹脂、シリコーン系樹脂、フッ素系樹脂、これらの共重合体などの有機系微粒子;ガラス、スメクタイト、カオリナイト、シリカ、アルミナ、酸化チタン、酸化ジルコニウムなどの無機系微粒子;アクリル−シリカなどの有機−無機ハイブリッド系微粒子などが挙げられる。これらの材質のうち、(メタ)アクリル系樹脂、シリコーン系樹脂、シリカが特に好適である。   As the light diffusing agent used in the resin sheet (A) and the resin sheet (B) of the present invention, any fine particles of organic fine particles, inorganic fine particles, and organic-inorganic hybrid fine particles can be used. Organic fine particles such as acrylic resin, styrene resin, amino resin, polyester resin, silicone resin, fluorine resin, and copolymers thereof; glass, smectite, kaolinite, silica, alumina, titanium oxide, oxidation Inorganic fine particles such as zirconium; organic-inorganic hybrid fine particles such as acrylic-silica. Of these materials, (meth) acrylic resins, silicone resins, and silica are particularly suitable.

本発明の光学部材を構成する、樹脂シート(A)、及び樹脂シート(B)に用いる光拡散剤の平均粒子径は、0.3μm〜30μmが好ましく、これ以上小さくても、大きくても光拡散効果が大きく低下して好ましくなく、より好ましくは0.5μm〜15μmであり、さらに好ましくは1.0μm〜10μmである。光拡散剤の最適配合量は、樹脂シート(A)表面に賦型された多角錐形状または転倒多角錐形状や、樹脂シート(B)表面に賦型された直線畝状に形成された凸状のレンズ群による拡散効果、樹脂シートを構成する透明樹脂と光拡散剤の屈折率差、光拡散剤の粒子径によって異なるが、樹脂シート中に0.001〜10質量%分散されていることが必要である。より好ましくは、0.005〜5質量%、さらに好ましくは0.01〜3質量%である。   The average particle diameter of the light diffusing agent used in the resin sheet (A) and the resin sheet (B) constituting the optical member of the present invention is preferably 0.3 μm to 30 μm. The diffusion effect is greatly reduced, which is not preferable, more preferably 0.5 μm to 15 μm, and still more preferably 1.0 μm to 10 μm. The optimum amount of the light diffusing agent is a polygonal pyramid shape or a falling polygonal pyramid shape formed on the surface of the resin sheet (A), or a convex shape formed in a linear bowl shape formed on the surface of the resin sheet (B). The dispersion effect by the lens group, the refractive index difference between the transparent resin constituting the resin sheet and the light diffusing agent, and the particle size of the light diffusing agent may vary from 0.001 to 10% by mass in the resin sheet. is necessary. More preferably, it is 0.005-5 mass%, More preferably, it is 0.01-3 mass%.

本発明の光学部材を構成する、樹脂シート(A)、樹脂シート(B)における、光拡散剤の分散形態としては、樹脂シート全体に均一に分散した形態、LED光源側または、LED光源の反対側に光拡散剤分散層を形成した形態などがある。   As the dispersion form of the light diffusing agent in the resin sheet (A) and the resin sheet (B) constituting the optical member of the present invention, a form uniformly dispersed throughout the resin sheet, the LED light source side or the opposite of the LED light source There is a form in which a light diffusing agent dispersion layer is formed on the side.

本発明の光学部材を構成する、樹脂シート(A)の製法としては、上記の透明熱可塑性樹脂と光拡散剤、さらに熱安定剤などを均一に配合した熱可塑性樹脂混合物を、所望の凹凸形状の反転形状が実質全面に彫刻加工された金型を用いて、押出成形、射出成形、プレス成形などにより得ることができる。なかでも押出成形による方法が、光拡散層や、帯電防止性能や特定波長の光吸収層などの表面機能層を形成できるなど多層化が容易なことや、生産効率が高いなどの点で特に好ましい。   As a method for producing the resin sheet (A) constituting the optical member of the present invention, a thermoplastic resin mixture in which the above transparent thermoplastic resin, a light diffusing agent, a heat stabilizer and the like are uniformly blended is formed into a desired uneven shape. Can be obtained by extrusion molding, injection molding, press molding, or the like using a mold having a reverse shape of which is engraved on substantially the entire surface. Among them, the extrusion method is particularly preferable from the viewpoints of easy multilayering and high production efficiency such as the formation of a light diffusing layer and a surface functional layer such as an antistatic performance and a light absorbing layer having a specific wavelength. .

一方、本発明の光学部材を構成する樹脂シート(B)は、透明樹脂中に、該透明樹脂と屈折率が異なる光拡散剤が分散しているものであり、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上であるものであり、その製法としては、特開2008−292853に記載のような、架橋密度が0.001%以上、0.12%以下である架橋重合粒子を分散させた透明熱可塑性樹脂をシート状に成型し、得られたシートを一軸延伸することにより、架橋重合微粒子を扁平な楕円形状に変形させ、かつその長軸方向が一方向に配向したシートを作成する方法や、特許4484330号に記載のような、屈折率が異なる連続層と分散層から構成される溶融押出してシート状とし、一軸延伸する方法等をとることができる。   On the other hand, in the resin sheet (B) constituting the optical member of the present invention, a light diffusing agent having a refractive index different from that of the transparent resin is dispersed in the transparent resin, and diffusion in at least one orthogonal direction. The difference in degree (D50) is 7 ° or more, and the production method thereof is cross-linking polymerization having a cross-linking density of 0.001% or more and 0.12% or less as described in JP-A-2008-292853. The transparent thermoplastic resin in which the particles are dispersed is molded into a sheet shape, and the resulting sheet is uniaxially stretched to deform the crosslinked polymer fine particles into a flat elliptical shape, and the major axis direction is oriented in one direction. A method for producing a sheet, a method for forming a sheet by melt extrusion composed of a continuous layer and a dispersed layer having different refractive indexes, as described in Japanese Patent No. 4484330, and uniaxially stretching can be used.

本発明の面状光源装置に用いるLED光源は、出射強度のピークがLED光源設置面の法線方向であるランバーシャータイプ、法線から傾いた方向である側面放射タイプの白色LEDが好ましく用いられるが、面状光源装置の輝度ムラ低減や解消のし易さから、LEDチップ上にレンズ、あるいは光束制御部材を設置した側面放射型が特に好ましく用いられる。   The LED light source used in the surface light source device of the present invention is preferably a Lambershire type whose emission intensity peak is the normal direction of the LED light source installation surface, or a side emission type white LED whose direction is inclined from the normal line. However, a side emission type in which a lens or a light flux controlling member is installed on an LED chip is particularly preferably used because of the reduction in luminance unevenness of the planar light source device and the ease of eliminating it.

なかでも、配光パターンがLED光源設置面の法線から30°以上の深い角度に出射強度のピークを有する略回転対称の出射分布を有するレンズ付LEDであることが好ましい。さらに、配光パターンがLED光源設置面の法線から45°以上の深い角度に出射強度のピークを有する略回転対称の出射分布を有するレンズ付LEDを光源に用いることは、LED光源配置間隔の拡大化した面状光源装置、あるいはLED光源が配置されている反射シートと光学シートの間隔が縮小した薄型面状光源装置においても、一層、輝度ムラ解消や低減をはかれることとなり、より好ましい。   Especially, it is preferable that it is LED with a lens in which a light distribution pattern has the substantially rotationally symmetrical output distribution which has the peak of an output intensity in the deep angle of 30 degrees or more from the normal line of a LED light source installation surface. Furthermore, using a LED with a lens having a substantially rotationally symmetric emission distribution with a light emission pattern having an emission intensity peak at a deep angle of 45 ° or more from the normal line of the LED light source installation surface, Even an enlarged planar light source device or a thin planar light source device in which the distance between the reflection sheet and the optical sheet on which the LED light source is disposed is reduced, which is more preferable because the luminance unevenness can be further reduced and reduced.

LED光源の配置方法としては、特に制約はなく、直線状配列セットの並列配置、格子状や千鳥状配置などが用いられる。   The arrangement method of the LED light source is not particularly limited, and a parallel arrangement of a linear arrangement set, a lattice arrangement, a staggered arrangement, or the like is used.

本発明の面状光源装置に用いる反射シートは、白色シートであり、反射機能を有する金属板、フィルム、金属箔、アルミなどを蒸着したフィルムでできており、LED光源からの出射光、光学シート(A)、(B)、(C)からの偏向あるいは反射光などを、再度光学シートの出光方向に戻すとともに光学シートへの入射角度の平準化役割を担っており、輝度ムラ解消や低減に重要な働きをしている。   The reflection sheet used in the planar light source device of the present invention is a white sheet, and is made of a metal plate having a reflection function, a film, a metal foil, a film on which aluminum is vapor-deposited, emitted light from an LED light source, an optical sheet The deflection or reflected light from (A), (B), and (C) is returned again to the light exit direction of the optical sheet, and also plays a role in leveling the incident angle to the optical sheet. It plays an important role.

LED光源を用いた直下型面状光源装置において、実質的に輝度ムラ解消可能なレベルを、図2や図3に示すように反射シート上に設置された複数個のLED光源間の最も接近した間隔(L)と、反射シートの光反射面と、光学シート構成の最もLED光源側に接近した光学シートのLED光源からの入光面との距離(D)の比であるL/Dで示すと、本発明の光学シート構成を用いることにより、従来の光学シート構成では難易度が高かった、L/D≧2.5の面状光源装置の実現をも可能にすることができた。   In a direct type planar light source device using an LED light source, the level at which luminance unevenness can be substantially eliminated is closest to a plurality of LED light sources installed on a reflection sheet as shown in FIGS. L / D, which is the ratio of the distance (L) and the distance (D) between the light reflecting surface of the reflecting sheet and the light incident surface from the LED light source of the optical sheet closest to the LED light source side of the optical sheet configuration By using the optical sheet configuration of the present invention, it was possible to realize a planar light source device with L / D ≧ 2.5, which was difficult with the conventional optical sheet configuration.

次に、本発明に係る面状光源装置を、実験例、実施例、比較例により具体的に説明する。   Next, the planar light source device according to the present invention will be specifically described with reference to experimental examples, examples, and comparative examples.

<製造例1> 架橋重合微粒子の製造
攪拌機(特殊機化工業社製、T.K.ホモジナイザー)、窒素ガス導入管、還流冷却器および温度計を備えたフラスコへ、ポリオキシエチレンジスチリルフェニルエーテル硫酸エステルアンモニウム(第一工業製薬社製、商品名「ハイテノール(登録商標)NF−08」)1質量部を溶解した脱イオン水900部を入れた。さらに、メタクリル酸メチル99質量部、エチレングリコールジメタクリレート1質量部、およびラウリルパーオキサイド2質量部を加え、3500rpm、常温で3分間攪拌した。次いで、窒素ガスを吹き込みながら反応混合液が65℃になるまで加熱し、65℃で4時間架橋重合反応させた後、さらに75℃で2時間熟成させた。次に反応混合液を室温まで放冷し、濾過により架橋反応物を濾別した。得られた架橋反応物を熱風乾燥機(ヤマト科学社製)により65℃で20時間乾燥することにより架橋重合体微粒子を得た。当該微粒子の粒度分布を精密粒度分布測定装置(ベックマン・コールター社製、コールターマルチサイザーIII)で測定したところ、平均粒子径(50%累積径)は7.3μm、変動係数は40.5%であった。また、当該微粒子の架橋密度を前述の式(1)により計算したところ、0.01であった。
<Production Example 1> Production of crosslinked polymer fine particles Polyoxyethylene distyryl phenyl ether into a flask equipped with a stirrer (manufactured by Tokushu Kika Kogyo Co., Ltd., TK homogenizer), a nitrogen gas inlet tube, a reflux condenser and a thermometer. 900 parts of deionized water in which 1 part by weight of ammonium sulfate ester (Daiichi Kogyo Seiyaku Co., Ltd., trade name “Hytenol (registered trademark) NF-08”) was dissolved was added. Furthermore, 99 parts by mass of methyl methacrylate, 1 part by mass of ethylene glycol dimethacrylate, and 2 parts by mass of lauryl peroxide were added, and the mixture was stirred at 3500 rpm at room temperature for 3 minutes. Next, the reaction mixture was heated while blowing nitrogen gas until the reaction mixture reached 65 ° C., subjected to a crosslinking polymerization reaction at 65 ° C. for 4 hours, and further aged at 75 ° C. for 2 hours. Next, the reaction mixture was allowed to cool to room temperature, and the crosslinking reaction product was filtered off by filtration. The obtained cross-linked reaction product was dried at 65 ° C. for 20 hours with a hot air dryer (manufactured by Yamato Kagaku Co., Ltd.) to obtain cross-linked polymer fine particles. When the particle size distribution of the fine particles was measured with a precision particle size distribution measuring device (Beckman Coulter, Coulter Multisizer III), the average particle size (50% cumulative diameter) was 7.3 μm, and the coefficient of variation was 40.5%. there were. Moreover, it was 0.01 when the crosslinking density of the said microparticles | fine-particles was computed by the above-mentioned Formula (1).

<製造例2> 樹脂シート(B)の製造
上記製造例1で得られた架橋重合粒子3重量部、ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)97重量部、リン系酸化防止剤(BASF社製、IRGAFOS168)0.1重量部をブレンドした原料を押出成形機(日立造船社製、SHT90、スクリュー径:90mm、L/D=32)に投入し、両方の面が鏡面となるように3本のポリシングロールでシート状に成形してのち、第3のポリシングロール速度に対する引取りロールの速度を2倍として延伸して、厚さ0.3mmの樹脂シート(B1)を得た。
<Production Example 2> Production of Resin Sheet (B) 3 parts by weight of the crosslinked polymer particles obtained in Production Example 1 above, 97 parts by weight of polycarbonate ("Iupilon E2000FN": manufactured by Mitsubishi Engineering Plastics), phosphorus antioxidant ( The raw material blended with 0.1 parts by weight of BASF, IRGAFOS168) is put into an extrusion molding machine (Hitachi Shipbuilding Co., Ltd., SHT90, screw diameter: 90 mm, L / D = 32) so that both surfaces become mirror surfaces. After forming into a sheet shape with three polishing rolls, the take-up roll speed was doubled with respect to the third polishing roll speed to obtain a resin sheet (B1) having a thickness of 0.3 mm.

この樹脂シートを変角光度計ゴニオメーター(村上色彩社製 GP−5)で、延伸方向の拡散度(D50)と延伸方向に垂直な方向の拡散度(D50)を測定したところ、その直交する2方向の拡散度の差は15°であった。   When this resin sheet was measured for the diffusivity (D50) in the stretching direction and the diffusivity (D50) in the direction perpendicular to the stretching direction with a goniophotometer goniometer (GP-5 manufactured by Murakami Color Co., Ltd.), they were orthogonal to each other. The difference in diffusivity in the two directions was 15 °.

<製造例3>
成型したシートを延伸しない以外は製造例2と同様にして、厚さ0.3mmの樹脂シート(C)を得た。
この樹脂シートを変角光度計ゴニオメーター(村上色彩社製 GP−5)で、延伸方向の拡散度(D50)と延伸方向に垂直な方向の拡散度(D50)を測定したところ、その直交する2方向の拡散度の差は2°であった。
<Production Example 3>
A resin sheet (C) having a thickness of 0.3 mm was obtained in the same manner as in Production Example 2, except that the molded sheet was not stretched.
When this resin sheet was measured for the diffusivity (D50) in the stretching direction and the diffusivity (D50) in the direction perpendicular to the stretching direction with a goniophotometer goniometer (GP-5 manufactured by Murakami Color Co., Ltd.), they were orthogonal to each other. The difference in diffusivity in the two directions was 2 °.

<製造例4> 樹脂シート(A)の製造
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.1質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、底辺が150μm、シート平面に対する各側面の傾斜角が45°、深さが74μmの転倒四角錐が凹状に一方の全面に賦型され、反対面が数平均粗さ(Ra)が4.5μmのエンボス面である厚さ1.25mmの樹脂シート(A1)を得た。
Production Example 4 Production of Resin Sheet (A) 100 parts by mass of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics) and silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent 0 .1 part by weight, 0.1 parts by weight of a phosphorus-based antioxidant (“Irgaphos 168”: manufactured by BASF) as a heat stabilizer is blended, the bottom is 150 μm, and the inclination angle of each side with respect to the sheet plane is A resin sheet having a thickness of 1.25 mm, in which a falling quadrangular pyramid of 45 ° and a depth of 74 μm is formed on one entire surface in a concave shape, and the opposite surface is an embossed surface having a number average roughness (Ra) of 4.5 μm A1) was obtained.

<製造例5>
製造例2で得られた樹脂シート(B1)を、製造例4で得られた樹脂シート(A1)の転倒四角錘の凹状形状が賦型された面に、アクリル系粘着材を用いて貼りあわせて、厚さ1.55mmの樹脂シートを得た。
<Production Example 5>
The resin sheet (B1) obtained in Production Example 2 is bonded to the surface of the resin sheet (A1) obtained in Production Example 4 on which the concave shape of the falling quadrangular pyramid is formed using an acrylic adhesive material. Thus, a resin sheet having a thickness of 1.55 mm was obtained.

<製造例6>
製造例3で得られた樹脂シート(C1)を、製造例4で得られた樹脂シート(A1)の転倒四角錘の凹状形状が賦型された面に、アクリル系粘着材を用いて貼りあわせて、厚さ1.55mmの樹脂シートを得た。
<Production Example 6>
The resin sheet (C1) obtained in Production Example 3 is bonded to the surface of the resin sheet (A1) obtained in Production Example 4 on which the concave shape of the falling quadrangular pyramid is shaped using an acrylic adhesive material. Thus, a resin sheet having a thickness of 1.55 mm was obtained.

<実施例、および比較例>
設置面の法線から約70°に出射強度のピークを有するレンズ付白色LEDを、図1に示すように、300mm×240mmの白色の反射シート上に20個、60mm間隔(X方向、Y方向とも)で格子状に配置し、反射シートからの距離が15mmになるように、上記製造例3及び、4で作製した樹脂シートを設置し、その上にプリズムシートBEFIII(住友3M社製)、マイクロレンズシートPTD837(SHINWHA INTERTECH社製)、反射偏光フィルム、DBEF−D400(住友3M社製)の順に設置して、LEDを点灯させ、輝度ムラを目視判定した。結果を表.1に示す。
<Examples and Comparative Examples>
As shown in FIG. 1, 20 white LEDs with a lens having a peak of emission intensity at about 70 ° from the normal of the installation surface, on a white reflective sheet of 300 mm × 240 mm, 60 mm intervals (X direction, Y direction) The resin sheet prepared in Production Example 3 and 4 is installed so that the distance from the reflection sheet is 15 mm, and a prism sheet BEFIII (manufactured by Sumitomo 3M) is placed thereon, A microlens sheet PTD837 (manufactured by SHINWHA INTERTECH), a reflective polarizing film, and DBEF-D400 (manufactured by Sumitomo 3M) were installed in this order, the LED was turned on, and luminance unevenness was visually determined. Table of results. It is shown in 1.

<輝度ムラ評価>
輝度ムラ評価は、LED上に配置した光学シートの法線方向から目視により判定し、下記の5段階に区分した。
1: 明確な境界線を有する明暗のパターンが確認できる
2: 明暗領域の明確な境界線は認められないが、明暗パターンが明確に認められる
3: 薄い明暗パターンが認められるが、一定以上の輝度均一化効果は得られている。
4: わずかに明暗パターンが認められるものの、ほぼ全体的な輝度均一レベルが得られている
5: 明暗領域の存在が確認できず、全体的に輝度均一レベルが得られている。
<Evaluation of uneven brightness>
The luminance unevenness evaluation was visually determined from the normal direction of the optical sheet disposed on the LED, and was classified into the following five stages.
1: A bright and dark pattern with a clear boundary line can be confirmed. 2: A clear boundary line in the bright and dark area is not recognized, but a bright and dark pattern is clearly recognized. A uniform effect is obtained.
4: Although a light / dark pattern is slightly observed, almost the entire luminance uniformity level is obtained. 5: The presence of the light / dark region cannot be confirmed, and the luminance uniformity level is obtained as a whole.

Figure 2012242764
Figure 2012242764

本発明の光学部材、および該光学部材を用いた面状光源装置は、LED光源直下型液晶表示装置の薄型化、コスト削減化に好適である。   The optical member of the present invention and the planar light source device using the optical member are suitable for reducing the thickness and cost of the LED light source direct type liquid crystal display device.

Claims (4)

反射シート上に設置された複数個のLED(発光ダイオード)を光源とする面状光源装置用の光学部材であって、
LED光源の反対側の表面に多角錐形状または転倒多角錐形状のレンズ群をする樹脂シート(A)と、透明樹脂中に該透明樹脂と屈折率が異なる光拡散剤が分散しているものであり、少なくとも1つの直交する方向の拡散度(D50)の差が7°以上である樹脂シート(B)を積層してなることを特徴とする面状光源装置用光学部材。
拡散度(D50):変角光度計ゴニオメーターで、該樹脂シートに垂直方向から光を入射した場合に、0°出射光に対する出射光の強度が50%となる出射角
An optical member for a planar light source device using a plurality of LEDs (light emitting diodes) installed on a reflection sheet as a light source,
A resin sheet (A) having a lens group of a polygonal pyramid shape or a falling polygonal pyramid shape on the opposite surface of the LED light source, and a light diffusing agent having a refractive index different from that of the transparent resin are dispersed in the transparent resin. There is provided an optical member for a planar light source device, wherein at least one resin sheet (B) having a difference in diffusivity (D50) in an orthogonal direction of 7 ° or more is laminated.
Diffusivity (D50): a variable angle photometer goniometer, and when the light is incident on the resin sheet from the vertical direction, the output angle at which the intensity of the output light with respect to the 0 ° output light is 50%
樹脂シート(B)の表面の算術平均粗さが10μm以下であることを特徴とする請求項1に記載の面状光源装置用光学部材。   2. The optical member for a planar light source device according to claim 1, wherein the surface of the resin sheet (B) has an arithmetic average roughness of 10 μm or less. 樹脂シート(B)は、分散されている光拡散剤が扁平な楕円形状を有するものであって、下記式(1)で表される架橋密度が0.001%以上、0.12%以下である架橋重合粒子からなり、且つその長軸方向が一方向に配向している光拡散層を含むことを特徴とする請求項1または2に記載の面状光源装置用光学部材。
架橋密度(%)=〔{Fn(c)/Mw(c)}×{W(c)}×100〕/{W(m)+W(c)} ・・・(1)
[式中、Fn(c)は架橋重合粒子の製造に用いる架橋剤の架橋性官能基数を示し;Mw(c)は架橋重合粒子の製造に用いる架橋剤の分子量を示し;W(c)は架橋重合粒子の製造に用いる架橋剤の、単量体と架橋剤の合計に対する質量配合割合(質量%)を示し;W(m)は架橋重合粒子の製造に用いる単量体の、単量体と架橋剤の合計に対する質量配合割合(質量%)を示す]
In the resin sheet (B), the dispersed light diffusing agent has a flat elliptical shape, and the crosslinking density represented by the following formula (1) is 0.001% or more and 0.12% or less. 3. The optical member for a planar light source device according to claim 1, comprising a light diffusion layer made of a certain crosslinked polymer particle and having a major axis direction oriented in one direction.
Crosslink density (%) = [{Fn (c) / Mw (c)} × {W (c)} × 100] / {W (m) + W (c)} (1)
[Wherein Fn (c) represents the number of crosslinkable functional groups of the crosslinking agent used for the production of the crosslinked polymer particles; Mw (c) represents the molecular weight of the crosslinking agent used for the production of the crosslinked polymer particles; The mass proportion (% by mass) of the crosslinking agent used for the production of the crosslinked polymer particles relative to the total of the monomer and the crosslinking agent is shown; W (m) is the monomer of the monomer used for the production of the crosslinked polymer particles And the mass blending ratio (mass%) with respect to the total of the crosslinking agent]
反射シート上に設置された複数個のLED(発光ダイオード)を光源とし、請求項1〜3のいずれかに記載の光学部材を有することを特徴とする面状光源装置。   A planar light source device comprising a plurality of LEDs (light emitting diodes) installed on a reflective sheet as a light source and the optical member according to claim 1.
JP2011115294A 2011-05-24 2011-05-24 Optical member and planar light source device using the same Withdrawn JP2012242764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115294A JP2012242764A (en) 2011-05-24 2011-05-24 Optical member and planar light source device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115294A JP2012242764A (en) 2011-05-24 2011-05-24 Optical member and planar light source device using the same

Publications (1)

Publication Number Publication Date
JP2012242764A true JP2012242764A (en) 2012-12-10

Family

ID=47464509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115294A Withdrawn JP2012242764A (en) 2011-05-24 2011-05-24 Optical member and planar light source device using the same

Country Status (1)

Country Link
JP (1) JP2012242764A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110612A (en) * 2014-07-07 2014-10-22 京东方光科技有限公司 Straight-down type backlight source structure, backlight source module and liquid crystal display device
CN104252015A (en) * 2013-06-26 2014-12-31 欧姆龙株式会社 Polarized Plate, Surface Light Source Device And Lighting Switch
KR20170104455A (en) 2015-01-05 2017-09-15 데이진 필름 솔루션스 가부시키가이샤 White reflective film for direct surface light source and direct surface light source using same
US10578921B2 (en) 2017-02-27 2020-03-03 Fujifilm Corporation Brightness homogenizing member, backlight unit, and liquid crystal display device
CN111028714A (en) * 2019-12-26 2020-04-17 惠州市华星光电技术有限公司 Back plate structure and display device
US11655957B2 (en) 2018-01-30 2023-05-23 Brightview Technologies, Inc. Microstructures for transforming light having Lambertian distribution into batwing distributions
US11822158B2 (en) 2019-09-11 2023-11-21 Brightview Technologies, Inc. Back light unit for backlit displays
US11906842B2 (en) 2020-01-24 2024-02-20 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252015A (en) * 2013-06-26 2014-12-31 欧姆龙株式会社 Polarized Plate, Surface Light Source Device And Lighting Switch
CN104110612A (en) * 2014-07-07 2014-10-22 京东方光科技有限公司 Straight-down type backlight source structure, backlight source module and liquid crystal display device
KR20170104455A (en) 2015-01-05 2017-09-15 데이진 필름 솔루션스 가부시키가이샤 White reflective film for direct surface light source and direct surface light source using same
US10578921B2 (en) 2017-02-27 2020-03-03 Fujifilm Corporation Brightness homogenizing member, backlight unit, and liquid crystal display device
US11655957B2 (en) 2018-01-30 2023-05-23 Brightview Technologies, Inc. Microstructures for transforming light having Lambertian distribution into batwing distributions
US11822158B2 (en) 2019-09-11 2023-11-21 Brightview Technologies, Inc. Back light unit for backlit displays
CN111028714A (en) * 2019-12-26 2020-04-17 惠州市华星光电技术有限公司 Back plate structure and display device
US11906842B2 (en) 2020-01-24 2024-02-20 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same

Similar Documents

Publication Publication Date Title
JP2012242764A (en) Optical member and planar light source device using the same
TWI494615B (en) Optical prism sheet having a certain roughness thereon
KR101392288B1 (en) Diffusion sheet and back lighting unit using same
JP2012234047A (en) Optical sheet and surface light source device using the optical sheet
KR20120023184A (en) Light diffusing plate used for point light sources, and direct-lighting point-light-source backlight device
JP2012043671A (en) Planar light source device
JP2012114003A (en) Optical member and planar light source device using the optical member
KR20110065610A (en) Condensing type optical sheet
JP2012094266A (en) Optical member and planar light source device using the same
KR102235161B1 (en) Optical plate with protrusions, optical structure, backlight module and display device
JP2011243518A (en) Light source unit for display device, and display device including light source unit for display device
JP5614128B2 (en) Optical sheet, backlight unit and display device
JP2010204156A (en) Light-condensing-and-diffusing sheet, backlight unit, and display device
JP2009157356A (en) Light diffuser and method for producing light diffuser
JP2006310150A (en) Direct backlight device
JP5532799B2 (en) White reflective film
JP2008091114A (en) Direct backlight device and display device
JP2012237978A (en) Optical sheet and planar light source device using the same
JP2009123397A (en) Illumination device, and image display device using it
KR101814873B1 (en) Light transmissive plate with protrusions
KR101812385B1 (en) Light transmissive plate with protrusions
JP2008071716A (en) Direct backlight device
JP2012042783A (en) Optical sheet, optical sheet manufacturing method, light source device with the optical sheet, and display device
JP2010231194A (en) Optical sheet, method for manufacturing the same, light source including optical sheet, and display device
JP2015031893A (en) Lens film laminate for lighting equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805